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Abstract

It has long been known that epidemics can travel along communication lines,
such as roads. In the current COVID-19 epidemic, it has been observed that
major roads have enhanced its propagation in Italy. We propose a new simple
model of propagation of epidemics which exhibits this e�ect and allows for a
quantitative analysis. The model consists of a classical SIR model with dif-
fusion, to which an additional compartment is added, formed by the infected
individuals travelling on a line of fast di�usion. Exchanges between individuals
on the line and in the rest of the domain are taken into account. A classical
transformation allows us to reduce the proposed model to a system analogous to
one we had previously introduced [5] to describe the enhancement of biological
invasions by lines of fast di�usion. We establish the existence of an asymptotic
speed of spreading and we show that it may be quite large, even when the basic
reproduction number R0 is close to 1. More subtle qualitative features of the
�nal state, showing the important in�uence of the line, are also proved here.

Keywords: COVID-19, epidemics, SIR model, reaction-di�usion system, line of fast
di�usion, spreading speed, nonlinear PDEs.
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1 Context and motivation of this study

In the present context of the COVID-19 epidemic, a worldwide scienti�c e�ort is
currently under way to develop the modelling of its dynamics and propagation. Such
an endeavour is of essential value to monitor, and forecast the propagation of the
epidemic.

Most of the models that are used rely on various extensions of the classical SIR cor-
nerstone model of epidemiology. That is, they use population compartmental models
that contain various additional compartments to the SIR ones to account for segments
of the populations that are exposed, asymptomatic, presymptomatic, treated, etc.
Such models yield the evolution of the infected population at a given level of terri-
torial granularity (whole countries, regions, counties or cities). The spatial interplay
aspect, mostly overlooked, is included by involving transfer matrices of populations
and infected between various patches each of which being considered as uniform.

Yet, the propagation of COVID-19 exhibits remarkable spatial structure proper-
ties. Indeed, the spatial organization of epidemics in general have important spatial
features. This is especially true in relation with movements of individuals who carry
with them infectious chracteristics. This, since ancient times, it has long been known
that epidemics travel along lines of communications. In the black death epidemic of
the 14th century, contagion advanced along roads connecting trade fair cities, and from
there spread inwards leading to a front like invasion of Western Europe from South to
North, pulled by these roads. Such a mode of propagation was also at work for the
propagation of rumours (see for instance the propagation of the �big fear� in France,
after the Revolution See, for example, the presentation given by Siegfried in [28] and
the analogies between these two phenomena). In studying the propagation of HIV
virus in Congo [15], the authors pointed out that the virus mostly travelled along the
main lines of communications, railways and waterways.
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Some current studies are bringing to light a similar e�ect in the spread of the
coronavirus in Italy. Gatto et al. [16] and Sebastiani et al. [27] have established that
the coronavirus spread foremost along the main expressways. They argue indeed that
the location along the main North-South and East-West highways in Italy has yielded
an earlier contagion than in cities with similar or higher population sizes not situated
on these roads. Sebastiani et al. [27] emphasise the severity of the disease in Piacenza,
a city that is located at the crossroads of these two main transportation lines. That
this e�ect of roads still occurs in such a global and �modern� epidemic as COVID-19
is a matter of surprise.

With respect to patch models that include transfer matrices, it thus transpires that
the e�ect of lines is of a di�erent nature. And as we have seen, these lines can be roads,
railroads or rivers.

The aim of this paper is to propose a new model to account for such e�ects and then
to study quantitatively how a line acts on the overall epidemics propagation. We thus
introduce a model that we call the SIRT system, standing for Susceptibles, Infected,
Recovered, and Travelling infected. This model takes explicitly into account the ex-
istence of a line along which infected individuals can travel with a speci�c di�usion
coe�cient. Our aim here is to gain insight into this spreading aspect at the funda-
mental mathematical level of a SIR type model that now incorporates the possibility
of infected to travel along a speci�c line.

The SIR model dates back the fundamental paper of Kermack-McKendrick [23],
Kendall [21] introduced the SIR model with spatial interaction in the discussion of
a statistical study of measles by Bartlett [3]. These models may be rewritten as
nonlinear integro-di�erential equations in time and space variables, for which the study
of spreading dates back to the 1970's with, in particular, the milestone papers of
Aronson [1] and Diekmann [11]. We choose in this paper to restrict our model to local
(Brownian) di�usion and local interaction. Regarding the existence of travelling waves
for the local (homogeneous) di�usion model, see the studies of Källen [20], Hosono-
Ilyas [17, 18]. For a survey, see Murray [25].

The model we propose here aims at a fundamental mathematical understanding
of this e�ect. We look at a stylized situation � a laboratory case as it were. The
population of susceptibles di�use in a homogeneous open territory, that we take to be
a half plane. Then, the infected can travel along the line bounding this half plane.
The populations of infected in the open territory and on the lines are in constant
exchange. This is represented in our model by transmission parameters between these
two populations (stable and travelling infected). We aim at understanding the e�ects
of such lines on the speed of propagation of the epidemics, and how they a�ect the
balance of the total number and locations of infected individuals.

As a benchmark we use the classical SIR model with di�usion, for which we brie�y
recall the basic results and how to compute the speed of spreading. The latter coincides
with that of Aronson-Weinberger [2], we simply rewrite the formulas in terms of the
basic reproduction number R0.

Let us mention that the SIR model falls into a more general class of systems in
which one equation � the one for I here � exhibits a self-reinforcement mechanism
when the other unknown function � S � is above some threshold level. Berestycki-
Nordmann-Rossi [4] develop a mathematical study of this class of systems, called
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Activity/Modulator. As described there, SIR models also arise in a variety of contexts
to model contagion phenomena. They are particularly useful in the study of collective
behaviours, such as social unrest. The work by Bonasse-Gahot et al. [9], developed
such a system to model the spread of riots in France in 2005.

Of course, more realistic epidemiology models will incorporate networks rather
than single lines and, likewise, the remaining propagation does not take place in a
homogeneous territory. From this simpli�ed model, one can nonetheless deduce a
more realistic one involving a network of roads and a distribution of cities. Regarding
the latter aspect, Bonasse-Gahot et al. [9] use explicitly such a network of cities.

This family of models lends itself to various extensions. But since we want to derive
the mathematical properties of this system we only consider here the stylized model.
We hope that this stylized model can shed some light on how lines in�uence the global
unfolding of an epidemic.

Acknowledgment
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works of Gatto et al. [16] and Sebastiani et al. [27] on the role of major roads on the
propagation of COVID-19 in Italy.

2 A model for the propagation of epidemics along

lines

2.1 The SIR model with infected di�usion

The classical SIR model divides the overall population in three compartments: Sus-
ceptibles S, Infected (and infectious) I and recovered R. Since the total population N
is viewed as �xed, one derives the latter in a straightforward manner from the former
two: R = N −S−I. Therefore, we do not mention explicitly this function henceforth.
When taking into account spatial dependence, we view the unknowns S and I as de-
pending on both time t and space location X ∈ R2. We consider that the individuals
in the susceptible population S do not move around (or rather that movement does
no a�ect its distribution). We can think of S as the ambient population. Thus, we
assume that only the infected population I is subject to movement. We choose here
to represent this movement as a pure local di�usion that can be viewed as a limiting
Brownian movement of individuals. In the second part of this work [8], we consider
the case of non-local di�usions. We denote by d the di�usion coe�cient. We are thus
led to the following spatial di�usion SIR model:{

∂tI − d∆I = βSI − αI, t > 0, X ∈ R2,

∂tS = −βSI t > 0, X ∈ R2.
(2.1)

The system is supplemented with initial conditions. We assume that the initial dis-
tribution of S, S(0, X) ≡ S0 is constant and that I(0, X) = I0(X) is compactly
supported. The cumulative number of infected at location X, at time t is given by∫ t

0
I(t,X)dt. Several authors have considered this model or closely related ones with
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integral formulations. We mention some of the references in Subsection 3.1 below. For
the sake of completeness we derive here the main results concerning this system (2.1):
existence and properties of a �nal state to which the solutions and the cumulative
number of infections at each location converge, characterization of epidemic spread-
ing, and asymptotic speed of propagation. These properties involve the classical basic
reproduction number R0 := S0β/α. As we will recall, the position of R0 with re-
spect to 1 determines here too a threshold for the epidemic to spread. These various
properties will serve as benchmarks for our study of the e�ect of the presence of a
road.

2.2 A �SIRT � model in the presence of a road

Let us now introduce this system, which we call a road/�eld model. It represents a
situation where there is a road on which infected individuals can travel with a speci�c
di�usion coe�cient D. We are especially interested in the case of a large D. The aim
is to understand in what way such a road alters the epidemic spreading, in particular
if it enhances its propagation and in what measure exactly. The starting point of
our analysis consists in distinguishing the infected individuals which are moving on
the line with fast di�usion from the ones present in the rest of the territory, by using
two distinct density functions. This is the same modelling hypothesis we made in our
previous paper [5] to describe the dynamics of a single population in the presence of
a road.

As before we use the densities S(t, x, y) and I(t, x, y) of susceptible and infected
individuals at time t > 0 and position X = (x, y) ∈ R2. We still assume that we
can ignore the movement of susceptibles. We introduce a new compartment of the
population that we call T (t, x) standing for �travelling individuals�. This is the density
of infected individuals on the road, that is the line R. It is worth emphasizing that
I(t, x, y) and T (t, x) are two di�erent compartments, in particular T (t, x) is not the
same as I(t, x, 0). Both populations are assumed to di�use, but with di�erent di�usion
coe�cients: D for T on the line and d for I in the plane. The two compartments
interact by a constant exchange of individuals: at each time t > 0 and point x ∈ R,
the line yields an amount µT (t, x) of individuals to the domain, and receives an amount
νI(t, x, 0) of individuals from the domain.

To shed light on the e�ect of such a road it is enough to consider the interplay
of a half-plane with the road that bounds it. Indeed, results in this framework can
be translated for results in the whole space by straightforward symmetry arguments.
But it can also be seen that propagation properties in the plane in general can easily
be deduced from the half-plane case. (For such a discussion, we refer to our earlier
paper for the KPP equation with a road [5].) We prefer to carry our analysis in the
half-plane case for the sake of clarity and to simplify notations.

Thus, we consider the following system for the unknown S, I, T : By symmetry, we
can reduce to study the problem in the upper half-space R× (0,+∞). We end up with
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the following system :
∂tI − d∆I + αI = βSI (t > 0, x ∈ R, y > 0)

∂tS = −βSI (t > 0, x ∈ R, y > 0)

−d∂yI = µT − νI (t > 0, x ∈ R, y = 0)

∂tT −D∂xxT = νI(t, x, 0)− µT (t > 0, x ∈ R, y = 0).

(2.2)

We assume a uniform initial susceptible density: S(0, x, y) ≡ S0 > 0. The initial
density of infected individuals is assumed to be zero outside a bounded region:

(T (0, x), I(0, x, y)) = (T0(x), I0(x, y))

are nonnegative and compactly supported in R and R× [0,+∞) respectively, with in
addition I0 6≡ 0, but possibly T0 ≡ 0. Actually, to simplify matters, most fo the time
we will look at the case T0 ≡ 0, not that it changes much in the proofs.

2.3 Organization of the paper

In the next section, we will �rst analyse systems (2.1) to have sound benchmarks that
will be useful to discuss the e�ects of the road. Then, the remaining of the paper will
be devoted to the study of (2.2). We will start by discussing the stationary limiting
state and see whether the epidemic spreads or not in Subsection 3.2. There we will
also derive the asymptotic speed of spreading for the spatial spread of the epidemic.
In Section 4, we discuss how the presence of the road a�ects the distribution of the
total number of infected per location. Section 5 is devoted to the mathematical proofs
of these various results. These depend on the various parameters and we discuss their
in�uence in Section 6.

3 Analysis of the models

We are going to compare the behaviour of (2.2) to that of the classical SIR model
in the whole plane, with no di�usion of the susceptible population, that is (2.1). The
proofs of the results (in a slightly broader framework) are presented in Section 5.1.

3.1 Benchmark: the SIR model

System (2.1) can be reduced to the classical Fisher-KPP equation by noticing that
S(t,X) is easily computed from I(t,X):

ln

(
S(t,X)

S0

)
= −βv(t, x), v(t, x) =

∫ t

0

I(s,X)ds. (3.1)

Thus, the function v(t,X) satis�es the equation

vt − d∆v = f(v) + I0(X) (t > 0, X ∈ R2) (3.2)

with
f(v) := S0(1− e−βv)− αv,
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together with the initial condition

v(0, X) ≡ 0 (X ∈ R2). (3.3)

Transform (3.1) is a well-known particular case of a broader class (see for instance
Aronson [1], Diekmann [10]) that reduces the SIR model with nonlocal interactions,
and with no di�usion on the susceptible individuals, to nonlinear integral equations. In
this particular case, we retrieve a parabolic equation. Pulsating waves and spreading
speeds for periodic S0 are studied for (2.1) by Ducrot-Giletti [14]. The integral equation
resulting from the model with nonlocal interactions is studied by Ducasse [13].

The nonlinearity f is concave and vanishes at 0, it is then of the KPP type. Only
the presence of the �source� term I0 di�ers from the standard Fisher-KPP equation.
However, being I0 compactly supported, the dynamics of the equation is still governed
by the sign of f ′(0). Using a notation commonly employed in the literature, we write

f ′(0) = α(R0 − 1), where R0 :=
S0β

α
.

The quantity R0 can be viewed as the classical basic reproduction number, see for
instance [20] and the discussion on such number and its interpretation in [12]. This
parameter plays a crucial role and is widely mentioned by experts, decision makers
and media for the analysis of the present COVID-19 pandemic. The sign of f ′(0) is
determined by the position of R0 with respect to the threshold value R0 = 1. The
presence of I0 in (3.2) prevents the existence of constant steady states, making the
dynamics of the equation more complex. Nevertheless, the following Liouville-type
result holds.

Theorem 3.1. The equation in (3.2) admits a unique positive, bounded, stationary
solution v∞(X). Moreover, v∞ satis�es

lim
|X|→∞

v∞(X) =

{
0 if R0 6 1

v∗ if R0 > 1,

where v∗ is the unique positive zero of f .

The proof of this result, as well as the others in this section, are presented in
Section 5.1. They can also be found in Ducrot-Giletti [14], at least for the case R0 > 1,
in the more general framework of periodic coe�cients α(X), β(X) and distribution
S0(X). Some additional qualitative properties of v∞ are contained in Theorem 5.1
below. Namely, v∞ is radially decreasing outside the support of I0 and it has the
shape of a bump above the value 0 or v∗.

It turns out that the steady state v∞ is a global attractor for the dynamics of (3.2).

Theorem 3.2. The solution v(t,X) to (3.2)-(3.3) converges locally uniformly to v∞(X)
as t→ +∞.

Since the above convergence holds true for the time derivatives (see the proof in
Section 5.1), a �rst consequence we derive is:

I(t,X) = ∂tv(t,X)→ 0 as t→ +∞,
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that is, the number of infected individuals drops to 0 asymptotically in time.
One can also read Theorem 3.2 in terms of number of remaining susceptibles at

time t and position X, which is S(t,X) = S0e
−βv(t,X). Hence, the amount of people

that will be infected by the virus at a given place X, throughout the whole course of
the epidemic, is given by

Itot(X) = S0

(
1− e−βv∞(X)

)
.

We point ou that the fact that this function is not constant is a consequence of the
hypothesis that susceptibles do not di�use. Otherwise the di�usion tends to ��atten�
the density S, and this mechanism occurs for rather general systems, see e.g. [4, The-
orem 4.3]. For this reason, the description of the function v∞ is extremely important
in the study of the epidemic. With this regard, Theorem 3.1 leads to the following
crucial dichotomy for the total amount of infected people far from the epicentre:

lim
|X|→∞

Itot(X) =

{
0 if R0 6 1

S0

(
1− e−βv∗

)
if R0 > 1.

This corresponds to two opposite scenarios. If R0 6 1, the epidemic does not propagate
and areas very far from the initial outburst (the support of I0) will be essentially not
infected. Conversely, if R0 > 1, the epidemic propagates across the territory, and, even
though its impact will be weaker on places far from the epicentre, the total infected
people there will be a portion 1− e−βv∗ of the overall population.

What is important to determine in the case R0 > 1 is the speed at which the
epidemic spreads. This is provided by the following.

Theorem 3.3. Assume that R0 > 1. Call

cSIR := 2
√
dα(R0 − 1). (3.4)

Then, for all ε ∈ (0, cSIR), the solution v(t,X) to (3.2)-(3.3) satis�es

lim
t→+∞

(
max

|X|6(cSIR−ε)t
|v(t,X)− v∞(X)|

)
= 0,

lim
t→+∞

(
max

|X|>(cSIR+ε)t
v(t,X)

)
= 0.

The quantity cSIR is the asymptotic speed of spreading of the epidemic wave. It
coincides from one hand with the speed 2

√
df ′(0) of the standard Fisher-KPP equation,

and from the other with the minimal speed of the waves for the SIR model (2.1)
obtained by Källén [20].

A word must be said about the proof, presented in Section 5.1. It is essentially
a direct consequence of Theorem 3.2 above and Aronson-Weinberger [2]. Indeed, the
former describes the behaviour of the solution in compact regions, while the latter
provides the estimates far from the origin, where the in�uence of I0 is negligible.

8



3.2 Dynamics of the model in the presence of the line

It occurs that the very same transform works for the model with the line (2.2):

u(t, x) :=

∫ t

0

T (s, x)ds, v(t, x, y) :=

∫ t

0

I(t, x, y)ds.

The system for (u, v) is
∂tu−D∂xxu = νv(t, x, 0)− µu+ T0(x) (t > 0, x ∈ R)

∂tv − d∆v = f(v) + I0(x, y) (t > 0, x ∈ R, y > 0)

−d∂yv(t, x, 0) = µu(t, x)− νv(t, x, 0) (t > 0, x ∈ R).

(3.5)

with, as before, f(v) := S0(1− e−βv)− αv. The initial datum is

(u(0, ·), v(0, ·)) ≡ (0, 0). (3.6)

This is the same system studied in [5], except for the �source� terms I0, T0. We
recall that these are assumed here to be nonnegative and compactly supported, with
I0 6≡ 0 (and typically T0 ≡ 0).

We start with the Liouville-type result, analogous to Theorem 3.1.

Theorem 3.4. System (3.5) admits a unique positive, bounded, stationary solution
(ur∞, v

r
∞). Such solution satis�es

lim
|x|→∞

(
ur∞(x), vr∞(x, y)

)
=

{
(0, 0) if R0 6 1(
ν
µ
, 1
)
v∗ if R0 > 1,

uniformly in y > 0,

lim
y→+∞

vr∞(x, y) =

{
0 if R0 6 1

v∗ if R0 > 1,
uniformly in x ∈ R,

where v∗ is the unique positive zero of f .

The long-time behaviour for (3.5) is described by the following result, which is the
counterpart of Theorem 3.2 about the model without the line.

Theorem 3.5. The solution (u, v) to (3.5)-(3.6) converges to (ur∞, v
r
∞) as t → +∞,

locally uniformly in x ∈ R, y > 0.

At this stage, the picture is identical to the standard SIR model described in the
previous section. The total amount of infected individuals after the passage of the
epidemic wave, at a given point (x, y), is

Itot(x, y) = S0

(
1− e−βvr∞(x,y)

)
,

with vr∞ exhibiting two qualitatively distinct behaviours depending on whether R0 6 1
or R0 > 1. Namely, the total number of infected people very far from the epicentre of
the epidemic is

lim
|(x,y)|→∞

Itot(x, y) =

{
0 if R0 6 1

S0

(
1− e−βv∗

)
if R0 > 1,

which is the same as in the case without the line.
Next, we investigate the speed at which the epidemic spreads across the territory,

along the line.

9



Theorem 3.6. Assume that R0 > 1. Let (u, v) be the solution to (3.5)-(3.6). Then,
there exists cTSIR > 0 such that, for all ε ∈ (0, cTSIR),

lim
t→+∞

(
max

|x|6(cTSIR−ε)t

∣∣(u(t, x), v(t, x, y))− (ur∞(x), vr∞(x, y))
∣∣) = 0,

lim
t→+∞

(
max

|x|>(cTSIR+ε)t

∣∣(u(t, x), v(t, x, y))
∣∣) = 0,

locally uniformly with respect to y > 0.
In addition, the spreading speed cTSIR satis�es

cTSIR

{
= cSIR if D 6 2d

> cSIR if D > 2d.

The asymptotic speed of spreading cTSIR coincides with the one for the homogeneous
model, i.e. with I0, T0 ≡ 0, which is provided by [5, Theorem 1.1]. Form a mathematical
point of view, this means that the presence of the compact perturbation does not a�ect
the speed of propagation, as in the case of the SIR model (3.2). The fact that the
speed cannot decrease if one adds the perturbation is a straightforward consequence
of the comparison principle. Instead, to derive the opposite inequality, we need to go
into the proof of [5, Theorem 1.1] and use the supersolutions constructed there. This
is done in Section 5.2 below.

Theorem 3.6 shows that the presence of the line has a true impact on the speed at
which the epidemic spreads. Indeed, if the di�usion coe�cient on the line D is larger
than twice the one in the �eld d, the asymptotic speed of spreading in the direction of
the line is enhanced, compared with the standard one cSIR. How much the spreading
is enhanced is discussed in Section 6. One can then wonder what is the e�ect of
the line on the other directions. In the case I0, T0 ≡ 0, we have shown in [6] that
the enhancement of the speed occurs in a cone of directions around the line, with an
associated critical angle. We suspect the same scenario to hold true for system (3.5).

We conclude this section by showing that our model accounts for a true epidemic
wave, in the following sense. At every point of the domain under consideration, the
number of infected individuals, that was initially close to 0, raises to a nontrivial level
around a certain time, then decays back to 0.

Proposition 3.7. Assume that R0 > 1. There is a constant T∗ > 0, a function I∗(y),
de�ned for y > 0 and locally bounded from below away from 0, and a function τ∗(x),
de�ned for x ∈ R and such that

lim
|x|→+∞

τ∗(x)

|x|
=

1

cTSIR
, (3.7)

for which the following is true.

1. (peak around τ∗(x)). We have

T (τ∗(x), x) > T∗, I∗(τ∗(x), x, y) > I∗(y). (3.8)
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2. (decay far from τ∗(x)). The following limits hold uniformly in x ∈ R and locally
uniform in y > 0:

lim
t→+∞

(
T (τ∗(x) + t, x), I(τ∗(x) + t, x, y)

)
= (0, 0)

lim
τ∗(x)>t→+∞

(
T (τ∗(x)− t, x), I(τ∗(x)− t, x, y)

)
= (0, 0).

(3.9)

This proposition is proved in Section 5.2. We note that, for the true SIR model,
one has a much stronger result, as one may relate the maximum of I to the maximum
of the derivative of the one-dimensional Fisher-KPP wave. While we do have the
existence of travelling wave here (see [7]), we do not have precise convergence results
for the solution of the Cauchy Problem. This will be done in a future study.

4 E�ects of the line on the total number of infected

per location

We recall that the total number of infected people at a given location (x, y), for both
models without and with the road, is given by

Itot(x, y) = S0

(
1− e−βṽ∞(x,y)

)
,

where ṽ∞ is either v∞ or vr∞, that is, (the v component of) the unique positive,
stationary solution of the problem. We know that v∞ and vr∞ have the same limit at
in�nity: 0 if R0 6 1 and the positive zero v∗ of f if R0 > 1. What di�ers is the rate
of decay towards the limit state. Indeed, Theorem 5.1(ii)-(iii) below imply that the
decay of v∞ is √

−f ′(0)/d if R0 6 1,
√
−f ′(v∗)/d if R0 > 1,

whereas the next result shows that the one of (ur∞, v
r
∞) is strictly slower.

Theorem 4.1. The stationary solution to the problem with the road (3.5) satis�es

ur∞(x) =

{
0 if R0 6 1
ν
µ
v∗ if R0 > 1

+ e−κ(x)|x|, vr∞(x, y) =

{
0 if R0 6 1

v∗ if R0 > 1
+ e−λ(x,y)|x|,

with
lim
|x|→∞

κ(x) = lim
|x|→∞

λ(x, y) = a∗ > 0, locally uniformly in y > 0.

Moreover, a∗ = 0 if R0 = 1, whereas

0 < a∗ <


√
−f ′(0)
d

if R0 < 1√
−f ′(v∗)

d
if R0 > 1.
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This result has the important consequence of showing that vr∞ > v∞ close to the
x-axis and far away from the origin. Namely, the presence of the road increases the
number of infected people far from the epicentre of the epidemic.

Observe that the decay of v∞ is the natural one provided by the linearised equa-
tion (outside supp I0) and it is obtained through rather standard arguments. On the
contrary, the decay of vr∞ is slower than the natural one. The proof of Theorem 4.1,
presented in Section 5.2, relies on some ideas from [5], the keystone consisting in the
construction of suitable sub and supersolutions.

Let us sketch the argument. To start with, we look for a stationary solution to (3.5)
as a perturbation of the limit at in�nity:

u(x) =
ν

µ
v∗ + hũ(x), v(x, y) = v∗ + hṽ(x, y),

where, for notational simplicity, we have set v∗ := 0 in the cases R0 6 1. Dropping
the o(h) terms, outside the supports of I0 and T0 we get the linearised system

−D∂xxũ = νṽ(x, 0)− µũ(x) (x ∈ R)

−d∆ṽ = f ′(v∗)ṽ (x ∈ R, y > 0)

−d∂yṽ(x, 0) = µũ(x)− νṽ(x, 0) (x ∈ R).

(4.1)

Observe that f ′(v∗) 6 0. We seek for solutions in the form

ũ(x) = e−ax, ṽ(x, y) = γe−ax−by, (4.2)

with a, b, γ > 0. After some computation, the problem reduces to the algebraic system
Da2 =

µdb

db+ ν

a2 + b2 =
−f ′(v∗)

d
γ =

µ

db+ ν
.

(4.3)

If R0 6= 1, i.e. f ′(v∗) < 0, this system admits a unique positive solution, that we
denote (a∗, b∗, γ∗), whose �rst two components are represented in Figure 1. Observe
that a∗ <

√
−f ′(v∗)/d, which is the radius of the disk. If R = 0, i.e. f ′(v∗) = 0, then

the unique solution of (4.3) is (a∗, b∗, γ∗) := (0, 0, µ/ν). This will provide us with a
supersolution to (3.5), whence the exponential upper bound in Theorem 4.1.

For the lower bound, we need to modify the construction in order to obtain a
subsolution supported in a strip. First of all, we penalise the reaction term in the �eld
by considering a parameter ζ > −f ′(v∗) > 0. Next, we modify the above function ṽ,
considering now the pair

ũ(x) = e−ax, ṽ(x, y) = γe−ax
(
e−by − εeby

)
, (4.4)

where 0 < ε < 1. The linear system (4.1) with f ′(v∗) replaced by −ζ reduces to the
new algebraic system 

Da2 =
µdb(1 + ε)

db(1 + ε) + ν(1− ε)
a2 + b2 =

ζ

d
γ =

µ

db(1 + ε) + ν(1− ε)
.

(4.5)

12



Figure 1: The solution (b∗, a∗) to (4.3). Shaded regions correspond to inequalities �6�.

This system converges to (4.3) as (ζ, ε) → (−f ′(v∗), 0), and thus its unique positive
solution, denoted by (aζ,ε∗ , b

ζ,ε
∗ , γ

ζ,ε
∗ ), satis�es

lim
(ζ,ε)→(−f ′(v∗),0)

(aζ,ε∗ , b
ζ,ε
∗ , γ

ζ,ε
∗ ) = (a∗, b∗, γ∗). (4.6)

This leads to a family of bounded subsolutions with a decay in the x-variable arbitrarily
close to a∗.

The next result shows that there are regions where the road has the opposite e�ect.

Theorem 4.2. Suppose that R0 6= 1 and that I0(x, y) is either symmetric with respect
to y, or satis�es supp I0 ⊂ R×[0,+∞). Then there exist two subsets E± of R×[0,+∞)
such that

vr∞ > v∞ in E+, vr∞ < v∞ in E−.

This result shows that the presence of the road decreases the number of infected
people in some areas.

5 Proofs of the results

5.1 The SIR model

We give here the proofs of the results of Section 3.1, and we also derive some further
qualitative properties of the solution. We consider a more general framework: we
set problems (2.1), (3.2) in arbitrary space dimension N > 1, i.e., X ∈ RN , and for
initial data v(0, X) not necessarily identically equal to zero, but rather nonnegative
and compactly supported. This does not entail any additional di�culty.

Proof of Theorem 3.1. On one hand, the function identically equal to 0 is a subsolution
to the stationary equation

d∆v + f(v) + I0(X) = 0 (X ∈ RN). (5.1)

On the other hand, the constant function v̄ ≡ s is a supersolution of this equation
provided s > 0 is su�ciently large, because I0 is bounded and f(+∞) = −∞. The

13



existence of a solution 0 6 v∞ 6 s then follows from the standard sub/supersolution
method. Actually, as 0 is not a solution, the elliptic strong maximum principle yields
v∞ > 0 in RN .

Let us now derive the limit as |X| → ∞. By elliptic estimates, any sequence
of translations v∞(X + Xn), with (Xn)n∈N diverging, converges (up to subsequences)
towards a nonnegative, bounded solution ṽ to

d∆ṽ + f(ṽ) = 0 (X ∈ RN).

If R0 6 1, i.e. f ′(0) 6 0, then f < 0 on (0,+∞), from which one readily derives ṽ ≡ 0
(for instance by comparison with the ODE u̇ = f(u)) that necessarily. This shows
that v∞(X)→ 0 as |X| → ∞ when R0 6 1.

In the case R0 > 1, we remark that v∞ is a supersolution to the classical Fisher-
KPP equation

∂tv = d∆v + f(v) (t > 0, X ∈ RN), (5.2)

for which the �hair-trigger� e�ect holds, see [2]: any solution with a positive, bounded
initial datum converges as t→ +∞, locally uniformly in space, to the positive zero v∗
of f . We infer by comparison that v∞ > v∗ in RN . This shows in particular that ṽ
is positive, and thus applying the �hair-trigger� e�ect to ṽ we derive ṽ ≡ v∗. We have
shown that v∞(X)→ v∗ as |X| → ∞ when R0 > 1.

To prove the uniqueness, we distinguish again the cases R0 > 1 and R0 6 1.

Case R0 > 1.
We need to show that, for any pair of positive, bounded solutions v1, v2 to (5.1), there
holds that v1 6 v2 in RN . Assume by way of contradiction that

k := sup
RN

v1

v2

> 1.

Since v1, v2 → v∗ at in�nity, the above supremum is a maximum, attained at some
point X̄. Subtracting the equations we get

d∆(v1 − kv2) + f(v1)− kf(v2) + I0(X)(1− k) = 0,

which, evaluated at the point X̄ (where v1 = kv2 and ∆(v1 − kv2) 6 0) yields

kf(v2(x̄)) 6 f(v1(X̄)) = f(kv2(X̄)).

But this is impossible because, being concave and vanishing at 0, f satis�es

∀s > 0,
f(ks)

ks
<
f(s)

s
.

Case R0 6 1.

Now, any given positive, bounded solutions v1, v2 to (5.1) tend to 0 at in�nity. Take
ε > 0 and call vε2 := v2 + ε. Because f is decreasing in R+, we see that

d∆vε2 + f(vε2) + I0(X) < 0 (X ∈ RN).

14



Assuming by contradiction that v1 > vε2 somewhere and repeating the same arguments
as before with v2 replaced by vε2, we end up with the inequality

kf(vε2(X̄)) < f(kvε2(X̄)),

at some point X̄ and for some k > 1. As seen before, this is impossible. This means
that v1 6 vε2 in RN , which, by the arbitrariness of ε, entails the desired inequality
v1 6 v2.

The following result contains some additional properties ov v∞.

Theorem 5.1. The stationary solution v∞(X) satis�es the following properties:

(i) v∞ is radially decreasing outside the support of I0, i.e.,

∀e ∈ S1, δ 6 r1 < r2, v∞(r1e) > v∞(r2e),

where δ is such that X · e 6 δ for all X ∈ supp I0;

(ii) if R0 > 1 then v∞ > v∗ and moreover

v∞(X) = v∗ + e−λ(X)|X|, with lim
|X|→∞

λ(X) =

√
−f ′(v∗)

d
; (5.3)

(iii) if R0 6 1 then

v∞(X) = e−λ(X)|X|, with lim
|X|→∞

λ(X) =

√
−f ′(0)

d
. (5.4)

Proof.

Statement (i).
We make use of a re�ection argument due to Jones [19]. Fix a direction e ∈ SN−1 and
take r > δ, where δ is such that X · e 6 δ for all X ∈ supp I0. Let T be the re�ection
with respect to the hyperplane {X · e = r}, and de�ne ṽ := v∞ ◦ T . In the half-space
{X · e < r} (⊃ supp I0) the function ṽ solves d∆ṽ+ f(ṽ) = 0, hence it is a subsolution
of the equation satis�ed by v∞. In addition, ṽ ≡ v∞ on {X · e = r}. Repeating the
comparison argument in the proof of Theorem 3.1 with v1 = ṽ and v2 = v∞, but in
{X ·e < r}, and observing that the point X̄ cannot belong to the boundary {X ·e = r},
one infers that ṽ 6 v∞ in {X · e < r}. Actually, the strong maximum principle and
Hopf's lemma imply that the inequality is strict and moreover

∇ṽ(re) · e > ∇v∞(re) · e.

Since ∇ṽ(re) · e = −∇v∞(re) · e, this gives the desired monotonicity.

Statements (ii)-(iii).
We have shown in the proof of Theorem 3.1 that, in the case R0 > 1, v∞ > v∗ in RN .
The strict inequality follows from the strong maximum principle.
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We simultaneously derive properties (5.3)-(5.4). To do so, we set v∗ = 0 in the
case R0 < 1. For given e ∈ SN−1, k > 0 and λ =

√
−f ′(v∗)/d, consider the function

w(X) := ke−λX·e. Using the concavity of f , we derive

−d∆w = f ′(v∗)w > f(v∗ + w),

that is, v∗ + w is a supersolution to (5.1) outside supp I0. Let ρ > 0 be such that
supp I0 ⊂ Bρ. We choose

k := eλρ max v∞,

so that v∗+w > v∞ in Bρ ⊃ supp I0. As a consequence, the function min
(
v∞, v∗+w

)
is a generalized supersolution to (5.1). It then follows from the sub/supersolution
method, that there exists a solution 0 6 v 6

(
v∞, v∗ + w

)
, which is actually positive

by the strong maximum principle. Then v ≡ v∞ thanks to the Liouville result of
Theorem 3.1. We have thereby shown that

∀|X| > ρ, v∞(X) 6 v∗ + kz(X) = v∗ + ke−
√
−f ′(v∗)/dX·e.

This being true for all e ∈ SN−1, we obtain the upper bound

∀|X| > ρ, v∞(X) 6 v∗ + ke−
√
−f ′(v∗)/d |X|. (5.5)

Let us derive the lower bound. Take

λ :=

√
−f ′(v∗) + 2ε

d
, with ε > 0,

and de�ne z := e−λ|X|. This function satis�es, for |X| > dλ(N−1)
ε

,

−d∆z =

(
f ′(v∗)− 2ε+ dλ

N − 1

|X|

)
z 6

(
f ′(v∗)− ε

)
z.

It follows that, for h > 0 su�ciently small, the function v∗+hz is a subsolution to (5.1)

for |X| > dλ(N−1)
ε

. Up to decreasing h if need be, we further have that v∗+hz < v∞ for

|X| 6 dλ(N−1)
ε

, hence v := max
(
v∞, v∗ + hz

)
is a generalized subsolution to (5.1). By

the sub/supersolution method, there exists a solution v 6 v 6 s, where s is such that
f(s) < max I0. Theorem 3.1 eventually yields v ≡ v∞. This shows the lower bound

∀|X| > dλ(N − 1)

ε
, v∞(X) > v∗ + he−

√
−f ′(v∗)+2ε

d
|X|. (5.6)

Call

λ(X) :=
− log(v∞(X)− v∗)

|X|
.

The estimates (5.5)-(5.6) yield, for |X| su�ciently large,√
−f ′(v∗)

d
− log k

|X|
6 λ(X) 6

√
−f ′(v∗) + 2ε

d
− log h

|X|
,

from which the limits in (5.3)-(5.4) follow due to the arbitrariness of ε > 0.
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We now turn to the results about the Cauchy problem (3.2), with an initial datum
v(0, X) nonnegative and compactly supported.

Proof of Theorem 3.2. Let v, v be the solutions to the Cauchy problem emerging from
the initial data identically equal to 0 and s respectively, with s > 0 large enough so
that f(s) + max I0 < 0. We further take s > max v(0, ·). The parabolic comparison
principle yields

∀t > 0, X ∈ RN , v(t,X) 6 v(t,X) 6 v(t,X).

Since the initial data of v, v are respectively a sub and a supersolution of the problem,
the comparison principle implies that v, v are respectively increasing and decreasing
in t and then, by parabolic estimates, they converge to two stationary solutions 0 <
V 6 V < s. The convergences occur locally uniformly in space and hold true for the
time derivatives. Theorem 3.1 implies that V ≡ V ≡ v∞. The proof is complete.

Proof of Theorem 3.3. Take ε ∈ (0, cSIR) and consider a sequence (tn)n∈N diverging
to +∞ and a sequence (Xn)n∈N in RN such that |Xn| 6 (cSIR − ε)tn. If (Xn)n∈N
is bounded, we already know from Theorem 3.2 that v(tn, Xn) − v∞(Xn) → 0 as
n→∞. Suppose now that (Xn)n∈N diverges (up to subsequences). Recall that v is a
supersolution to the standard Fisher-KPP equation (5.2), for which spreading occurs
with the asymptotic speed 2

√
df ′(0), that is exactly cSIR. Because v(1, ·) > 0, we infer

that
lim inf
n→∞

(
v(tn, Xn)− v∞(Xn)

)
) > v∗ − v∗ = 0.

To derive the upper bound, we consider the same function w(X) := ke−λX·e as in
the proof of Theorem 5.1(ii), with λ =

√
−f ′(v∗)/d and e ∈ SN−1, k > 0. We

have seen that v∗ + w is a supersolution to (5.1) outside supp I0. We then take k
large enough, independently of e, so that v∗ + w(X) > v(t,X) for all t > 0 and
X ∈ supp I0 ∪ supp v(0, ·). Hence, by comparison, v(t,X) < v∗ + w(X) for all t > 0,
X ∈ RN . This being true for any e ∈ SN−1, with k independent of e, yields v(t,X) 6
v∗ + ke−λ|X|, for all t > 0, X ∈ RN . It follows that

lim sup
n→∞

v(tn, Xn) 6 lim sup
n→∞

(
v∗ + ke−λ|Xn|

)
= v∗.

The proof of the �rst limit stated in the theorem is achieved.
Let us deal with the second limit. For c = cSIR = 2

√
df ′(0), λ = cSIR

2d
and any given

e ∈ SN−1 and k > 0, the function w(t,X) := ke−λ(X·e−ct) satis�es

∂tw − d∆w − f ′(0)w =
(
cλ− dλ2 − f ′(0)

)
w = 0.

Hence, by the concavity of f , it is a supersolution to (3.2) outside supp I0. We choose k
large enough, independently of e, in such a way that w(0, X) > v(t,X) for all t > 0
and X ∈ supp I0 ∪ supp v(0, ·). Hence, by comparison, v(t,X) < w(t,X) for all t > 0,
X ∈ RN , and therefore, letting e vary in SN−1, we get

v(t, x) 6 ke−λ(|X|−cSIRt),

which gives the desired limit.
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Using the same re�ection argument as in the proof of Theorem 5.1, one can show
that the solution v(t,X) to (3.2) is radially decreasing with respect to X outside the
support of I0.

We conclude this section with a monotonicity result with respect to the di�usion
coe�cient d. We assume now for simplicity that the initial datum v(0, ·) is identically
equal to 0.

Proposition 5.2. Under the assumption that I0 is radially decreasing, the values
v∞(0) and v(t, 0), for any t > 0, are decreasing with respect to the di�usion coe�-
cient d.

Proof. Let v1, v2 be the solutions to (3.2) associated with the coe�cients d = d1 and
d = d2 respectively, with 0 < d1 < d2. The function ṽj(t,X) := vj(t,

√
djX), for

j = 1, 2, satis�es

ṽjt −∆ṽj = f(ṽj) + I0(
√
djX) (t > 0, X ∈ R2).

Thus, owing to the monotonicity of I0, the comparison principle yields ṽ1(t,X) >
ṽ2(t,X) for all t > 0, X ∈ RN , which, evaluated at X = 0, gives v1(t, 0) > v2(t, 0).

Moreover, because vj converges towards the steady state vj∞ as t → +∞, thanks
to Theorem 3.2, one further derives

v1
∞(
√
d1X) = lim

t→+∞
ṽ1(t,X) > lim

t→+∞
ṽ2(t,X) = v2

∞(
√
d2X).

This inequality is actually strict due to the strong maximum principle. We infer that
v1
∞(0) > v2

∞(0).

5.2 The SIRT model

We will make repeatedly use of the weak and strong comparison principles for the
road-�eld system. They are provided by [5, Proposition 3.2] in the case I0 ≡ 0,
and one can check that the presence of the bounded source term I0 does not a�ect
their proofs. When applied to a stationary subsolution (u, v) and supersolution (u, v)
satisfying (u, v) 6 (u, v), the strong comparison principle implies that the inequality
is strict unless (u, v) ≡ (u, v). Here and in the sequel, inequalities are understood
component-wise.

Proof of Theorem 3.4. We start with constructing a stationary supersolution to (3.5).
Take 0 < σ <

√
α/d and de�ne the functions

u := K
2ν + dσ

µ
, v := K

(
1 + e−σy

)
, (5.7)

where K is a positive constant that will be �xed later. The pair (u, v) satis�es the last
equation of (3.5). Moreover, we compute

−D∂xxu− νv(x, 0) + µu = 2dKσ,

−d∆v − f(v) > −Kdσ2 − S0 +Kα,
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We then choose K su�ciently large so that the above right-hand sides are larger than
maxT0 and max I0 respectively. Then (u, v) is a supersolution to (3.5).

The existence of a positive, stationary solution follows from the sub/supersolution
method, applied with (0, 0) as a subsolution and (u, v) as a supersolution. Owing to
the strong maximum principle, this provides us with a solution

(0, 0) < (ur∞, v
r
∞) < (u, v).

We derive the uniqueness result, as well as the limit at in�nity, by distinguishing
the cases R0 6 1 and R0 > 1.

Case R0 > 1.
The positive steady state (ur∞, v

r
∞) is a supersolution to the problem with I0, T0 ≡

0, which reduces to the system studied in [5]. For such system, we know from [5,
Theorem 4.1] that positive solutions converge as t→ +∞ to the steady state (ν/µ, 1)v∗
(v∗ = 1 for the f in [5]), whence by comparison,

(ur∞, v
r
∞) > (ν/µ, 1)v∗. (5.8)

Consider a sequence ((xn, yn))n∈N in R×R+, with (yn)n∈N diverging to +∞. Then,
by elliptic estimates, as n → ∞, vr∞(x + xn, y + yn) converges locally uniformly (up
to subsequences) towards a solution ṽ of the equation −d∆ṽ = f(ṽ) in R2. Moreover,
ṽ > v∗ due to (5.8). Then, as seen in the Proof of Theorem 3.1, we necessarily have
ṽ ≡ v∗. This proves the second limit of the theorem in the case R0 > 1.

Take now a diverging sequence (xn)n∈N in R, and let (ũ(x), ṽ(x, y)) be the limit
of (a subsequence of) (ur∞(x + xn), vr∞(x + xn, y)), whose existence is guaranteed by
elliptic estimates up to the boundary. Thus, (ũ, ṽ) is a stationary solution of (3.5)
with I0, T0 ≡ 0, which is positive due to (5.8). It follows from [5, Theorem 4.1] that
(ũ, ṽ) ≡ (ν/µ, 1)v∗. This proves the �rst limit stated in the theorem (the uniformity
in y following from the �rst limit).

It remains to prove the uniqueness. Let (u1, v1) and (u2, v2) be two pairs of positive,
bounded, stationary solutions to (3.5). Assume by way of contradiction that

k := max

(
sup
R

u1

u2

, sup
R×R+

v1

v2

)
> 1.

Because of the limits we have just proved, one of the following situations necessarily
occurs:

max
R

u1

u2

= k, or max
R×R+

v1

v2

= k.

Suppose we are in the latter case. Then, exactly as in the proof of ..., the concavity
of f prevents the maximum from being achieved in the interior of R×R+. Then, it is
achieved at some point (x̄, 0), and Hopf's lemma yields

∂y(kv2 − v1)(x̄, 0) > 0.

Using the third equation in (3.5), together with v1(x̄, 0) = kv2(x̄, 0), we �nd that

ku2(x̄) = −kd
µ
∂yv2(x̄, 0) +

kν

µ
v2(x̄, 0) < −d

µ
∂yv1(x̄, 0) +

ν

µ
v1(x̄, 0) = u1(x̄),
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which contradicts the de�nition of k. Consider the remaining case:

max
R

u1

u2

= k >
v1

v2

.

Computing the di�erence of the equations satis�ed by ku2 and u1 at a point x̄ where
this maximum is achieved, we derive

0 6 −D∂xx(ku2 − u1)(x̄) = ν(kv2 − v1)(x̄, 0)− µ(ku2 − u1)(x̄) = ν(kv2 − v1)(x̄, 0).

This is impossible because v1 < kv2.
We have thereby shown that k 6 1, that is, (u1, v1) 6 (u2, v2). Exchanging the

roles of the solutions, yields the uniqueness result.

Case R0 6 1.
We start with the uniqueness result. We derive it in the more general framework of
nonnegative solutions, with possibly I0 ≡ 0. We need to show that, for any two pairs
(u1, v1), (u2, v2) of nonnegative, bounded, stationary solutions to (3.5), there holds
that (u1, v1) 6 (u2, v2). Assume by contradiction that, on the contrary,

h := max
(µ
ν

sup
R

(u1 − u2) , sup
R×R+

(v1 − v2)
)
> 0.

Suppose �rst that supR×R+(v1 − v2) = h, and let ((xn, yn))n∈N be a maximizing
sequence. If (yn)n∈N is bounded from below away from 0, then the functions vj(x +
xn, y + yn) converge locally uniformly (up to subsequences) towards two solutions ṽj
of the equation −d∆ṽj = f(ṽj) in a neighbourhood of the origin. Moreover, (ṽ1 −
ṽ2)(0, 0) = max(ṽ1 − ṽ2) = h, and thus

0 6 −d∆(ṽ1 − ṽ2)(0, 0) = f(ṽ1(0))− f(ṽ2(0)) = f(ṽ2(0) + h)− f(ṽ2(0)).

This is impossible, because f ′(0) = α(R0 − 1) 6 0 and hence f is decreasing on R+.
If, instead, yn → 0 (up to subsequences), then the pairs (uj(x + xn), vj(x + xn, y))
converge locally uniformly (up to subsequences) towards two solutions (ũj, ṽj) of the
same system, which is of the form (3.5) with I0 either translated by some vector (ξ, 0),
or replaced by 0. Moreover, (ṽ1− ṽ2)(0, 0) = max(ṽ1− ṽ2) = h. If the maximum is also
attained at some interior point, we get the same contradiction as before. Therefore,
Hopf's lemma yields

0 > d∂y(ṽ1 − ṽ2)(0, 0) = ν(ṽ1 − ṽ2)(0, 0)− µ(ũ1 − ũ2)(0) = hν − µ(ũ1 − ũ2)(0).

This contradicts the de�nition of h.
Suppose now that

h =
µ

ν
sup
R

(u1 − u2) > sup
R×R+

(v1 − v2).

Considering now a maximizing sequence (xn)n∈N for u1 − u2, then the limits (up to
subsequences) (ũj, ṽj) of the translations (uj(x+xn), vj(x+xn, y)), which, once again,
satisfy a system analogous to (3.5). The di�erence ũ1− ũ2 attains its maximum ν

µ
h at

the origin, whence

0 6 −D∂xx(ũ1 − u2)(0) = ν(ṽ2 − ṽ1)(0, 0)− µ(ũ2 − ũ1)(0) = ν(ṽ2 − ṽ1)(0, 0)− νh.
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This contradicts supR×R+(v1 − v2) < h.
The proof of the uniqueness is concluded. Let us pass to the limits at in�nity. The

limit vr∞(x, y)→ 0 as y → +∞, uniformly with respect to x, follows from the negativity
of f , exactly as in the above proof of Theorem 3.1. Consider now a diverging sequence
(xn)n∈N in R. The sequence of translations (ur∞(x+xn), vr∞(x+xn, y)) converges locally
uniformly (up to subsequences) towards a bounded, stationary solution (ũ, ṽ) to (3.5)
with I0 ≡ 0. We have seen above that the Liouville-type result holds for nonnegative
stationary solutions of such system, hence, necessarily, (ũ, ṽ) ≡ (0, 0). This concludes
the proof of the theorem.

We now turn to the set of results on the solution of the Cauchy problem (3.5)-(3.6).

Proof of Theorem 3.5. Since the initial datum (0, 0) is a subsolution to (3.5) which
is not a solution, the comparison principle implies that the solution (u, v) is strictly
increasing in t. It further implies that (u, v) is smaller than the supersolution con-
structed in the proof of Theorem 3.4, de�ned by (5.7). It follows that, as t → +∞,
(u, v) converges locally uniformly to a positive, bounded, stationary solution, which
necessarily coincides with (ur∞, v

r
∞) due to Theorem 3.4.

Proof of Theorem 3.6. In the case I0, T0 ≡ 0, the result reduces to [5, Theorem 1.1],
with the only di�erence that the initial datum there must not be identically equal to
(0, 0) (otherwise the solution remains (0, 0) for all times). In that case, the limit state
is simply (ur∞, v

r
∞) ≡ (ν/µ, 1)v∗. We call cTSIR the speed provided by [5, Theorem 1.1].

Take ε ∈ (0, cTSIR) and consider a sequence (tn)n∈N diverging to +∞ and a sequence
(xn)n∈N in R such that |xn| 6 (cTSIR−ε)tn. If (xn)n∈N is bounded, then the convergence
of (u(xn), v(xn, y)) towards the steady state follows from Theorem 3.5.

Suppose that (xn)n∈N diverges (up to subsequences). By the strong maximum
principle, the solution (u, v) is strictly larger than (0, 0) at, say, t = 1. Fitting a
compactly supported datum below it, and applying the spreading result from [5, The-
orem 1.1] to the solution of (3.5) with I0, T0 ≡ 0, emerging from such datum, we infer
by comparison that

lim inf
n→∞

((
u(tn, xn), v(tn, xn, y)

)
−
(
ur∞(xn), vr∞(xn, y)

))
>
(ν
µ
, 1
)
v∗ −

(ν
µ
, 1
)
v∗ = 0,

where we have also used the limit given by Theorem 3.4. On the other hand, by
comparison, (u, v) 6 (ur∞, v

r
∞), for all t > 0. Thus, the �rst limit in Theorem 3.6 is

proved.
Let us derive the second limit. We restrict to x > 0, the case x < 0 being obtained

by a specular argument. We recall how the asymptotic speed � named here cTSIR �
is obtained in [5]: it is the least c so that the linearised form of (3.5) around (0, 0),
i.e. when f(v) is replaced by f ′(0)v = α(R0− 1)v and when I0, T0 are set to 0, admits
plane wave solutions of the form(

ϕ(t, x), ψ(t, x, y)
)

= e−a(x−ct)(1, γe−by), (a, b, γ) > (0, 0, 0).
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Thus the triple (c, a, b) solves the algebraic system (the coe�cient γ is easily computed
from the exchange condition):−Da2 + ca+

dbµ

ν + db
= 0

−d(a2 + b2) + ca = α(R0 − 1).

Hence, for c = cTSIR, the pair (ϕ, ψ) above is a solution to the linearised system and
therefore, by the concavity of f , it is a supersolution to the original system (3.5) outside
the supports of I0, T0. The second limit in Theorem 3.6 for x > 0 then follows by
comparison with k(ϕ, ψ), with k su�ciently large so that k(ϕ, ψ) > (ur∞, v

r
∞)(> (u, v))

inside the supports of I0, T0.

Proof of Proposition 3.7. For x ∈ R, de�ne τ∗(x) as the �rst time t such that

v(t, x, 0) =
v∗
2
.

This is possible due to Theorem 3.6 and (5.8). These also entail that the function τ∗(x)
is locally bounded and satis�es (3.7). It is also clear that inf τ > 0, because v identically
vanishes at t = 0 and it is uniformly continuous by parabolic estimates. Assume (3.8)
to be false. Namely, there exists a sequence (xn)n∈N in R and a bounded sequence
(yn)n∈N in [0,+∞) such that one of the following situations occurs:

lim
n→∞

I(τ∗(xn), xn, yn) = 0, or lim
n→∞

T (τ∗(xn), xn) = 0. (5.9)

Because τ(x) is bounded from below away from zero and bounded from above, and
I, T are positive for t > 0, we necessarily have that (xn)n∈N diverges. Set

Tn(t, x) := T (τ∗(xn) + t, xn + x), In(t, x, y) := I(τ∗(xn) + t, xn + x, y),

Sn(t, x, y) := S(τ∗(xn) + t, xn + x, y);

from parabolic estimates, a subsequence of (Sn, In, Tn)n∈N (that we may assume with-
out loss of generality to be the whole sequence) converges to an entire (i.e., for all t ∈ R)
solution (S∞, I∞, T∞) of the SIRT system (2.2). We may also assume (yn)n∈N to con-
verge to some y∞ > 0; by (5.9) we have that either I∞(0, 0, y∞) = 0 or T∞(0, 0) = 0. In
the latter case we deduce from the last equation in (2.2) that T∞ ≡ 0 and then I∞ ≡ 0;
in the former case the same conclusion follows from the strong maximum principle and
the Hopf lemma, using the �rst and third equations in (2.2). Set

un(t, x) = u(τ∗(xn) + t, xn + x), vn(t, x, y) = v(τ∗(xn) + t, xn + x, y);

as un = ∂tTn and In = ∂tvn, a subsequence (that we may once again to be the whole
sequence) converges to a t-independent pair (u∞(x), v∞(x, y)), as their time derivatives
converge to 0 as n→∞. So, (u∞, v∞) is a stationary solution of (3.5) with I0, T0 ≡ 0.
But we know from [5, Theorem 4.1] that the Liouville-property holds for such system,
that is, either (u∞, v∞) ≡ (0, 0) or (u∞, v∞) ≡ ( ν

µ
, 1)v∗. This is impossible because

v∞(0, 0) = lim
n→∞

v(τ∗(xn), xn, 0) =
v∗
2
,

by the de�nition of τ∗(x).
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We now prove the result about the rate of decay of the steady state.

Proof of Theorem 4.1. We derive these limits in the case x→ +∞, the limits at −∞
being analogous.

Upper bound.
In order to simultaneously treat the cases R0 6 1 and R0 > 1, we set in the former
v∗ := 0. It follows that f ′(v∗) 6 0 for all R0 > 0. Consider the pair (ũ, ṽ) given
by (4.2), with (a, b, γ) = (a∗, b∗, γ∗) unique positive solution of (4.3) if R0 6= 1, or
(a∗, b∗, γ∗) = (0, 0, µ/ν) if R0 = 1. Namely, (ũ, ṽ) satis�es the linearised problem (4.1).
By the concavity of f , we see that, for h > 0,

f(v∗ + hṽ) 6 −ζhṽ,

and therefore the pair ( ν
µ
v∗+hũ, v∗+hṽ) is a supersolution to (3.5) outside the supports

of T0, I0. We take h large enough so that, inside these supports, such pair is larger
than the supersolution (u, v) used in the proof of Theorem 3.4, de�ned by (5.7). As a
consequence, the pair (

min
(ν
µ
v∗ + hũ , u

)
, min

(
v∗ + hṽ , v

))
is a generalised supersolution to (3.5). Therefore, we can �nd a stationary solution be-
tween (0, 0) and such supersolution, which necessarily coincides with (ur∞, v

r
∞) thanks

to the Liouville result of Theorem 3.4. We have thereby shown that

ur∞ 6
ν

µ
v∗ + hũ, vr∞ 6 v∗ + hṽ,

and thus the desired upper bounds.

Lower bound.
Fix ζ > −f ′(v∗) > 0. We consider now the pair (ũ, ṽ) from (4.4), with 0 < ε < 1
and (a, b, γ) = (aζ,ε∗ , b

ζ,ε
∗ , γ

ζ,ε
∗ ) unique positive solution of (4.5). The function ṽ(x, y)

vanishes at y = yε := − log ε

2bζ,ε∗
, it is bounded in the half-strip

Sε := {x > 0, 0 < y < yε},

and, by construction, satis�es there −d∆ṽ = −ζṽ. Hence, because f(v∗) = 0 and
ζ < −f ′(v∗), the function v∗ + hṽ is a subsolution to the second equation of (3.5)
in Sε provided h > 0 is su�ciently small, depending on ζ. As a consequence, choosing
h = hζ small, we have that the pair

(u, v) :=
(ν
µ
v∗ + hũ, v∗ + hζ ṽ

)
is a subsolution to (3.5) in Sε. Up to replacing hζ with a smaller quantity hζ,ε if need
be, we can also require that

u(0) 6 ur∞(0), max
y∈[0,yε]

v(y) 6 min
y∈[0,yε]

vr∞(y),

and, in addition, that in the half-strip Sε, (u, v) is smaller than the supersolution (u, v)
de�ned by (5.7). Let us consider the solution (u, v) of the evolution problem (3.5)
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having (u, v) as initial datum. We know from the Liouville-type result that (u, v) ↘
(ur∞, v

r
∞) as t→ +∞. It follows that, for all t > 0,

u(t, 0) > ur∞(0) > u(0), ∀y ∈ [0, yε], v(t, 0, y) > vr∞(0, y) > v(0, y),

and moreover v(t, x, yε) > 0 = v(x, yε) for x > 0. We can therefore apply the com-
parison principle for the road-�eld system in the half-strip Sε and deduce that, there,
(u, v) remains larger than (u, v) for all t > 0. Thus, we infer that

∀x > 0, ur∞(x) >
ν

µ
v∗ + hζ,εe−a

ζ,ε
∗ x,

∀x > 0, y ∈ [0, yε], vr∞(x, y) > v∗ + hζ,εγζ,ε∗ e−a
ζ,ε
∗ x
(
e−b

ζ,ε
∗ y − εeb

ζ,ε
∗ y
)
.

Owing to the arbitrariness of ζ > −f ′(v∗) and 0 < ε < 1, one then gets the desired
lower bound using (4.6) and noticing that yε → +∞ as ε→ 0.

We conclude with the comparison between the steady state for the models without
and with the line.

Proof of Theorem 4.2. The existence of the set E+, of the form |x| > ρ, y < h, directly
follows from Theorems 5.1 and 4.1. Let us show the existence of E−.

In the case where I0(x, y) is symmetric with respect to y, the stationary solution v∞
is symmetric with respect to y too, by uniqueness. Instead, if supp I0 ⊂ R× [0,+∞)
then we know that v∞(x, y) is decreasing with respect to y in [0,+∞), for any x ∈ R.
Then, in any case, ∂yv∞(x, 0) 6 0 for all x ∈ R. Thus, integrating the equation
−d∆v∞ = f(v∞) + I0(x, y) on R× (0,+∞) yields∫

R×(0,+∞)

(
f(v∞) + I0(x, y)

)
dx dy = d

∫
R
∂yv∞(x, 0)dx 6 0.

On the other hand, integrating the equations for (ur∞, v
r
∞) shows1∫

R×(0,+∞)

(
f(vr∞) + I0(x, y)

)
dx dy = d

∫
R
∂yv

r
∞(x, 0)dx

=

∫
R

(
νvr∞(x, 0)− µur∞

)
dx = 0.

Subtracting these two integrals we �nd that∫
R×(0,+∞)

f(v∞)dx dy 6
∫
R×(0,+∞)

f(vr∞)dx dy.

Recall that v∞ and vr∞ are larger than v∗, and that f is decreasing on (v∗,+∞). It
follows that ∫

E+
f(v∞)dx dy >

∫
E+
f(vr∞)dx dy,

and therefore ∫
(R×(0,+∞))\E+

f(v∞)dx dy <

∫
(R×(0,+∞))\E+

f(vr∞)dx dy.

This in turn implies that there exists a set E− ⊂ (R× (0,+∞)) \ E+ where v∞ > vr∞.

1 The integrations are justi�ed by Theorems 5.1 and 4.1, together with elliptic estimates.
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6 The in�uence of R0 and other parameters

We wish to understand here how the di�erent coe�cients in our model will in�uence
the speed cTSIR. For that we �rst write (2.2) in non-dimensional form. We then write
the algebraic system that leads to the (non-dimensional) velocity. Finally, we study
how the reduced parameters will contribute to the enhancement of the SIRT velocity.
The space and time variables are non-dimensionalised as

t =
τ

α
, (x, y) =

√
d

α
(ξ, ζ),

while the unknowns T (t, x) and I(t, x, y) are expressed as

T (t, x) = S0T (τ, ξ), I(t, x, y) = S0I(τ, ξ, ζ), S(t, x, y) = S0S(τ, ξ, ζ).

The parameters of importance are then found to be

D =
D

d
, R0 =

βS0

α
, ν̄ =

ν

α
, µ̄ =

µ

α
.

The speed cSIR is expressed as

cSIR =
√
dαwSIR, wSIR = 2

√
R0 − 1.

System (2.2) is then rewritten as
∂τI −∆I + I = R0SI (τ > 0, ξ ∈ R, ζ > 0)

∂τS = −R0SI (τ > 0, ξ ∈ R, ζ > 0)

−∂ζI = µ̄T − ν̄I (τ > 0, ξ ∈ R, ζ = 0)

∂τT − D∂ξξT = ν̄I(τ, ξ, 0)− µ̄T (τ > 0, ξ ∈ R).

The integrated quantities

U(τ, ξ) =

∫ τ

0

T (σ, ξ))dσ, V(τ, ξ, ζ) =

∫ τ

0

I(t, x, y)ds.

will then solve
∂τU − D∂ξξU = ν̄V(τ, ξ, 0)− µ̄U + T0(ξ) (τ > 0, ξ ∈ R)

∂τV −∆V = f(V) + I0(ξ, ζ) (τ > 0, ξ ∈ R, ζ > 0)

−∂ζV(τ, ξ, 0) = µ̄U(τ, ξ)− ν̄V(τ, ξ, 0) (τ > 0, ξ ∈ R).

(6.1)

The function f is given by f(V) = R0(1−e−V)−V , so that, f ′(0) = R0−1 =
w2

SIR

4
. The

initial quantities I0 and T0 have obvious meanings. Now, recall that the the minimal
reduced speed for (6.1), that we name wT

SIR, is shown to be the least w so that the
algebraic system in a, b 

−Da2 + wa+
µ̄b

ν̄ + b
= 0

−(a2 + b2) + wa =
w2

SIR

4
.

(6.2)
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has solutions. Let us discuss how the parameters R0, µ̄, ν̄, D interact so as to yield a
large minimal speed wT

SIR, while wSIR is small. The latter condition just means that R0

is only slightly larger than 1. So, wSIR is now a small parameter. From the second
equation of (6.2) we suspect that a, b and w will scale like wSIR, while the �rst equation
leads us to think that a will additionally scale like D−1/2, and that w will scale like
D1/2. So, we perform a last round of scalings:

a =
wSIR√
D
ā, b = wSIRb̄, w =

√
DwSIRw̄, (6.3)

and we introduce the new parameters

λ =
µ̄

ν̄wSIR

, ρ =
wSIR

ν̄
. (6.4)

This leads to the �nal reduced system
−ā2 + w̄ā+

λb̄

1 + ρb̄
= 0

−(
ā2

D
+ b̄2) + w̄ā =

1

4
,

(6.5)

Recall now that we are interested in a situation where R0 is slightly above 1, that
is, wSIR is small. From the scalings (6.3), enhancement of propagation by the line
should be achieved by a large reduced di�usion coe�cient D. As the parameter ρ
is proportional to wSIR, we anticipate that it will be small. Let ωT

SIR(λ) the minimal
reduced speed in (6.5), we will look for it in the limit D → +∞, ρ→ 0 and wSIR → 0.
This amounts to estimating the minimal speed, still called ωT

SIR(λ) in the simpli�ed
system  −ā

2 + w̄ā+ λb̄ = 0

−b̄2 + w̄ā =
1

4
.

(6.6)

The �rst equation gives an inverted parabola Γ1,λ,w̄:

ā =
w̄ +
√
w̄2 + 4λb̄

2
:= g(w̄, λ, b̄),

starting from the point (b̄ = 0, ā = w̄), while the second equation is the standard
parabola Γ2,w̄

ā =
1

w̄

(
1

4
+ b̄2

)
:= h(w̄, b̄).

And so, we want to make Γ1,λ,w̄ and Γ2,w̄ intersect in the (b̄, ā) plane. Given the
behaviour of g and h for large b̄, the other variables being �xed, we deduce that Γ1,λ,w̄

and Γ2,w̄ always intersect if w̄ >
1

2
. This implies

ωT

SIR(λ) 6
1

2
.
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On the other hand, Γ1,0,1/2 and Γ2,1/2 intersect at their very start, that is b̄ = 0, ā =
1

4
,

so that ωT
SIR(0) =

1

2
. Notice that one way to achieve λ = 0 is to have

wSIR → 0, ν̄wSIR → +∞, µ̄ = O(1),

that is, a very high transmission from the domain to the line and a normal transmission
from the line to the domain. More generally, one may also have

µ̄ ∝ wαSIR, ν̄ ∝ w−1+α
SIR , for any α ∈ (0, 1).

This corresponds to a small transmission from the road to the �eld, yet a large trans-
mission fromm the �eld to the road. This is su�cient to accelerate the epidemics.

Let us now increase λ, while keeping w̄ 6
1

2
. Since g is strictly concave in b̄, while

h is strictly convex in b̄, the two graphs may have zero, one or two intersection points,
the case of one intersection corresponding to the sought for reduced SIRT velocity
ωT
SIR(λ). Since

∂

∂λ

(
∂g

∂b̄

)
=

w̄2 + 4λb̄

(w̄2 + 4λb̄)3/2
> 0,

the function λ 7→ ωT
SIR(λ) is strictly decreasing. One may also easily show that it tends

to 0 as λ → ∞. Summing up, we have proved the existence of a strictly decreasing

function ωT
SIR, with ω

T
SIR(0) =

1

2
, tending to 0 at in�nity, such that

lim
D→+∞,wSIR→0

wT
SIR√
DwSIR

= ωT

SIR(λ), λ =
µ̄

ν̄wSIR

. (6.7)

This means, in particular, that wT
SIR can be quite large even if the reproduction number

R0 is close to 1. If such is the case, then wSIR is small. However, as we saw above, the
speed wT

SIR may be rendered large in several instances.

7 Discussion and conclusions

In this paper, we discuss the e�ects of the presence of a road on the spatial propagation
of an epidemic within the context of a spatial SIR model. The road has speci�c
di�usion and infected can travel faster along it. To this end, we introduce a new model
that we call a SIRT model. In addition to the classical S, I and R compartments, it
involves a compartment T for travelling infected on this road. Here we only discuss
the case of local Brownian di�usion and local interactions. In a forthcoming paper [8],
we carry an analogous analysis for non-local interactions.

By means of a classical transformation, this model can be reduced to a system
involving a non-homogeneous Fisher-KPP type equation. The unknown functions for
this system are

u(t, x) :=

∫ t

0

T (s, x)ds, v(t, x, y) :=

∫ t

0

I(t, x, y)ds.

This allows us to extend previous works and to derive some rather precise properties
of this model. The main outcomes of our work are the following.
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1. We �rst show that the SIRT system in the (u, v) unknowns admits a unique
positive (bounded) steady state, which describes the long-time behaviour of the
solutions of the evolution system. When R0 6 1, this steady state tends to 0
at in�nity. We interpret this as saying that the epidemic does not propagate.
On the contrary, when R0 > 1, the steady state converges to some positive
constant and the epidemic has propagated. Thus, the position of R0 relative
to 1 still governs the propagation or dying out of the epidemic. At this stage,
the scenario is exactly the same as for the standard SIR model.

2. We compute an asymptotic speed of propagation for this model, that we call cTSIR,
and compare it with cSIR, the speed of propagation for the classical SIR model
with di�usion (2.1). We show that cTSIR > cSIR if D > 2d, where D and d are
the di�usion coe�cients on the road and in the rest of the territory respectively.
In the case D 6 2d, then, cTSIR = cSIR. Thus, the presence of a road with fast
di�usion enhances the speed of propagation of the epidemic.

3. We show that the SIRT system is governed by four parameters: the basic repro-
duction number R0 (from which the classical SIR speed of propagation is com-
puted), the reduced transmission coe�cients µ̄ and ν̄, and the ratio D = D/d
between the di�usion on the road and the di�usion in the �eld. We �nd that,
even if R0 is very close to 1, the di�usion on the road may trigger a wave of
contamination spreading at high speed. Even though the growth of the infection
at each location may be slow, the propagation along the road may be fast.

4. We compare the total cumulative number of infected individuals per location,
Itot(x), in the cases with and without the road. We show that, compared with
the standard SIR model, the Itot(x) in the presence of the road is larger in the
range of x large, that is, far from the epicentre of the epidemic. This result is not
intuitive a priori. Indeed, from the enhancement of the speed of spreading of the
epidemic wave by the road, it also follows that at any location the epidemic peak
lasts less than without this enhancement. Therefore, one might have thought
that, moving faster, the total number of infected by the epidemic would go down.
However, far from the epicentre, the contrary happens. We also prove that,
while the total number of infected is higher far away, there is also a region E−,
presumably close to the epicentre, where the total number of infected Itot(x) for
the model with the road is smaller than the corresponding one for the standard
SIR model. It would be interesting to characterise such a set E− in some speci�c
cases, establishing for instance whether it actually contains the epicentre of the
epidemic. We leave this as an open question.

The lower number of infected near the epicenter due to the presence of the road
could be related to another phenomenon that we observe on the standard SIR
model. In Proposition 5.2 above we prove that the quantity Itot(x) evaluated at
the epicentre of the epidemic x = 0 is a decreasing function of the di�usion coef-
�cient d. This re�ects the fact that a higher di�usion coe�cient �scatters� more
quickly the infected individuals far from the epicentre. The same mechanism
could be at work for our model SIRT , where the road allows for more infected
individuals to move away from the center.
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This model and its generalisations open the way to many open problems. For
instance, a similar study would have to be carried out when there is di�usion not only
of the infected but also of the susceptibles. This would lead to a system:

∂tI − d∆I + αI = βSI (t > 0, x ∈ R, y > 0)

∂tS − dS∆S = −βSI (t > 0, x ∈ R, y > 0)

−d∂yI = µT − νI (t > 0, x ∈ R, y = 0)

∂tT −D∂xxT = νI(t, x, 0)− µT (t > 0, x ∈ R, y = 0).

(7.1)

The model we have presented and analysed in this paper sheds light on the e�ect of
a road within an environment of slow di�usion for the spreading of epidemics. It allows
us to explain some observations and to uncover various e�ects. However, of course,
it does not claim to be realistic as such. Yet, it could lend itself to more practical
developments. Indeed, involving a newtork of roads should yield more precise results.
How to take into account roads in a more realistic fashion in discrete models is an
important perspective.
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