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Systems with multistable equilibrium states are of tremendous importance in information science
to conceive logic gates. Here we predict that simple phase-transition oscillators driven by near-
field heat exchanges have a bistable thermomechanical behavior around their critical temperature,
opening so the way to a possible boolean treatment of information from heat flux at microscale.

Processing information with heat rather than with
electrons to perform logical operations is a challenging
problem in modern physics. Several directions have been
explored during the last decade to this end. In 2004
Li et al. [1] have demonstrated the possibility to locally
break the symmetry for the phonon propagation inside
non-linear atomic lattices opening so the door to the con-
trol of heat flow in solid-state elements and consequently
to a possible logical treatment of information carried by
thermal phonons [2–4]. More recently, to overcome the
inherent problems associated with the relatively small
propagation speed of acoustic phonons, solid photonics
systems have been proposed to achieve similar opera-
tions [5–7] in contactless many-body systems [8–15]. Fi-
nally, heat transport mediated by spin waves has also
been considered [16] to rectify heat flux in many-body
systems, paving thus the way to highly-performing quan-
tum devices for thermal computing.

In this Letter we study a thermomechanical oscillator
composed by a bilayer beam made of two different ma-
terials. Such a system has been experimentally studied
in [17], where the dynamic response to a periodic far-
field heating was considered. We consider a beam made
of a metal-insulator transition (MIT) [18] material and
a dielectric, in interaction in near-field regime [19–22]
with a substrate and in far field [23, 24] with a thermal
bath. When the equilibrium temperature along the beam
is close to the critical temperature Tc of the MIT mate-
rial, we predict the existence of a bistable behavior. The
system is depicted in Fig. 1. The beam is recessed in a
wall maintained at temperature Tw by an external power
source, whereas its right end is left free to oscillate.

This cantilever exchanges heat radiatevely with an
environment at temperature Te and in near field with
a substrate at temperature Ts. Moreover, it is made
of two different materials having thicknesses (y axis in
Fig. 1) h1 and h2 (h = h1 + h2). Its length (x axis
in Fig. 1) and width (z axis) are L and δ, respectively.
The bottom layer of the cantilever is made of silicon
dioxide (SiO2) [25], while the upper one of vanadium
dioxide (VO2) which undergoes a first-order transition at
Tc = 340K [26]. The substrate is made of SiO2 and has
length l. The time evolution of the cantilever displace-

FIG. 1. Sketch of thermomechanical oscillator. A bilayered
cantilever is supported at its left end by a wall at temperature
Tw, being kept free at the other end. It interacts through
radiative heat transfer with an environment at temperatures
Te and in near field with a substrate at temperature Ts. Its
displacement is described by u(x, t), while T (x, t) represents
its temperature profile.

ment u(x, t) and temperature profile T (x, t) is governed
by the coupled system of nonlinear differential equations

ρCh∂tT (x, t) = hκ ∂2
xT (x, t) + Φ

(
u(x, t), T (x, t)

)
, (1)

EI ∂4
xu(x, t) = −µ∂2

t u(x, t)−γ ∂tu(x, t)−∂2
xMT (T (x, t)),

(2)
corresponding to the energy-balance and Euler-
Bernoulli [27] equations, respectively. Here ρ, C and κ
are the beam mass density, specific heat capacity and
thermal conductivity, while Φδdx is the energy received
(from the substrate and the far-field environment) per
unit time by the infinitesimal element of the beam
between x and x + dx. EI denotes the beam flexural
rigidity, µ = ρhδ its linear mass density, γ its damping
and MT the thermal moment. Concerning the boundary
conditions, we start by fixing the beam temperature
on its recessed end [T (0, t) = Tw], while adiabatic
conditions are applied on its right end [∂xT (L, t) = 0].
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As for the initial thermal conditions, we assume a given
temperature profile T (x, 0) = f(x). Concerning the
displacement, we also impose a given profile at t = 0,
[u(x, 0) = g(x)], zero displacement and derivative at the
fixed left end [u(0, t) = ∂xu(0, t) = 0] describing the
wall support, zero velocity of any element of the beam
[∂tu(x, 0) = 0], external bending moment at x = L equal
to the thermal moment [∂2

xu(L, t) = MT (T (L, t))] [28],
and zero third derivative at x = L associate with the
absence of a shear force [∂3

xu(L, t) = 0] [29].
For a bimaterial cantilever, the mass dentity ρ, spe-

cific heat capacity C, thermal conductivity κ and flexu-
ral rigidity EI need to be replaced by effective quanti-
ties. More specifically, if the two parts of the beam have
Young’s moduli E1 and E2, densities ρ1 and ρ2 and ther-
mal conductivities κ1 and κ2, ρ, C and κ are defined in
terms of the following weighted averages

a = a1V1 + a2V2

V1 + V2
, C = C1ρ1V1 + C2ρ2V2

ρ1V1 + ρ2V2
, (3)

where a ∈ {ρ, κ}. The effective flexural rigidity EI can
be written as [27, 30]

EI = δh1h2

12
E1h1E2h2

E1h1 + E2h2
K, (4)

with

K = 6 + 4
(
h1

h2
+ h2

h1

)
+
(
E1h

2
1

h2
2

+ E2h
2
2

h2
1

)
. (5)

Finally,MT is the thermal moment that can be expressed
as a function of the beam construction temperature T0
(the one at which the beam is not curved), its tempera-
ture profile T (x, t) and the thermal expansion coefficients
α1 and α2 of the two materials, in the following way [28]

MT (T (x, t)) = 6EI (α2 − α1)
K

(
1
h1

+ 1
h2

)
(T (x, t)− T0).

(6)
The radiative heat flux is described within a

fluctuational-electrodynamics approach, where the sta-
tistical properties of the charges fluctuating inside each
body are accounted for by means of the fluctuation-
dissipation theorem [31], correctly describing the heat
exchange both in far and near field. In this framework,
for small temperature differences the distance-dependent
heat flux per unit surface between two planar substrates
at distance d and temperatures T and T + ∆T , respec-
tively, can be written as Φ(d, T ) = G(d, T )∆T , where
the conductance G(d, T ) is given by a sum over all the
frequencies ω, lateral wavevectors k and polarizations
p = {TE,TM} of the electromagnetic field as

G(d, T ) =
∞∫

0

dω
2πΘ′(ω, T )

∑
p

∞∫
0

d2k
(2π)2 Tp(ω, k, d), (7)

where Θ′(ω, T ) is the T -derivative of the average
thermal energy of a harmonic oscillator Θ(ω, T ) =
~ω/(exp(~ω/kBT ) − 1). The energy transmission coef-
ficient Tp(ω, k, d) between two planar bodies 1 and 2 can
be expressed in terms of the Fresnel coefficients rip and
tip (reflection and transmission coefficients for body i and
polarization p) as [32]

Tp(ω, k, d) =


(1−|r1p|2−|t1p|2)(1−|r2p|2−|t2p|2)

|Dp|2 , ck < ω,
4 Im(r1p)Im(r2p)e−2|kz|d

|Dp|2 , ck > ω,

(8)
kz being the z component of the wavevector and Dp =
1− r1pr2pe

2ikzd a Fabry-Pérot denominator. In order to
simplify the solution of the system of nonlinear differen-
tial equations (1)-(2), we replace the conductanceG(d, T )
by a polynomial expansion with respect to the separation
distance

G(d, T ) = A0 +A1d
−1 +A2d

−2, (9)

where A0 = 10.9Wm−2 K−1, A1 = 0Wm−1 K−1 and
A2 = 3.61× 10−12 WK−1 are the fitting parameters cal-
culated from the exact expression of heat flux.
In order to demonstrate the existence of bistability we

investigate the spatio-temporal evolution of displacement
and temperature profiles by solving numerically the dif-
ferential system (1)-(2). The complexity of this system
does not allow to derive analytically an existence criteria
of bistability. However, it is clear that the equilibrium
temperature of the beam must be close to the critical
temperature of the MIT material. Therefore the temper-
atures of substrate, wall and thermal bath must not be
all above or below Tc. To solve numerically the system of
non-linear coupled differential equation we use a finite-
difference method based on a implicit scheme [33, 34].
Concerning the geometric parameters, we choose values
(δ = 1µm, L = 360µm, h1 = 90nm for the VO2 layer,
h2 = 910 nm for the SiO2 layer, whereas the length of the
substrate is l = 30µm, placed at distance d0 = 200 nm
from the x axis) to ensure a relative balance between the
magnitude of heat flux exchanged in far and near field.
For SiO2 we use E2 = 68GPa, C2 = 730 JK−1 kg−1, ρ2 =
2650 kgm−3, α2 = 8 × 10−6 K−1, and the optical data
given in Ref. [25]. For VO2, we take C1 = 344 JK−1 kg−1,
ρ1 = 4570 kgm−3 and E1 = 85GPa since it does not vary
significantly with the phase [35]. In order to describe the
temperature dependence of the physical property a1 of
VO2 [a1 ∈ {α1, κ1, ε1}, ε1 being the emissivity] around
Tc we use the smoothing function

S(T, Tc, β) = 1
1− e−2β(T−Tc) , (10)

where β is a parameter allowing to adjust the smoothness
in the transition region between the dielectric and the
metallic phases. In terms of this function, the physical
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FIG. 2. Time evolution of the (a) temperature and (b) dis-
placement of the free end of the cantilever. The main part
of the both plots refers to an evolution in air, the right
insets in vacuum. The red-dashed curves are the lower-
temperature solutions obtained for λ = −0.1×108 Km−2, the
blue-solid curves the upper-temperature solutions obtained
for λ = 3 × 108 K m−2. The left inset of panel (a) describes
the time evolution of T (L, t) as a function of the parameter λ
associated to the initial temperature profile (see main text for
details). The left inset of panel (b) gives the time evolution
of u(L, t) in air over a shorter timescale.

quantity a1 is given by

a1(T ) = a1d + S(T, Tc, β)(a1m − a1d), (11)

where a1d and a1m are the properties in the dielectric and
metallic phase, respectively. For film thicknesses of few
dozens of nm the transition generally occurs over a tem-
perature interval of few degrees. We assume here a range
of approximately 10 degrees which corresponds to the
value β = 0.5K−1. As for the physical quantities associ-
ated with VO2 they are [18, 26] α1d

= 26.4× 10−6 K−1,
κ1d

= 3.6Wm−1 K−1, ε1d
= 0.8 in the dielectric phase

and α1m
= 17.1 × 10−6 K−1, κ1m

= 3.6Wm−1 K−1,
ε1m = 0.1 in the metallic phase. Finally, the damping
factor γ is defined in terms of the oscillator quality factor
Q as [36] γ = 3.52Q−1L−2√EIµ. It depends on the sur-
rounding environment and on the first natural frequency
of the cantilever. For a cantiver embedded in vacuum and
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FIG. 3. (a) Phase diagram of the time-dependent tempera-
ture T (L, t) of the free end of the cantilever as a function of
the substrate temperature Ts(t). The three different curves
correspond to different profiles of Ts(t) (see legend). The blue
and orange solid curves correspond the steady-state solutions
for T (L) associated with each value of Ts. (b) Imposed time
dependence of the substrate temperature Ts (see text for func-
tional dependence). The blue segment represents the decay
timescale τc. (c) Time evolution of T (L) as a function of time
[same color scheme as in panel (a)]. The horizontal brown
dashed line represents the critical temperature Tc. (d) Time
evolution of T (L) for constant Ts equal to 353K (solid), 358K
(dashed) and 400K (dot-dashed).

in air the quality factors are Q ≈ 100 and Q ≈ 50000 [36],
respectively.
In Fig. 2 we show the time evolution of T (L, t)

and u(L, t) for the temperatures {Te, Tw, Ts} =
{300, 356, 353}K, with the boundary conditions u(x, 0) =
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g(x) = 135m−1x2 and T (x, 0) = f(x) = λx2−2λLx+Tw,
where λ is an adjustable parameter. Notice that a
parabolic initial temperature profile is similar to the type
of solution we get in steady-state regime. We observe in
Fig. 2 that for two different values of λ [λ = −0.1 ×
108 Km−2 (blue curves) and λ = 3 × 108 Km−2 (red
curves)], that is for two different initial temperature pro-
files, the system evolves to two distinct stable solutions,
thus demonstrating its bistability. More specifically, we
show in the left inset of Fig. 2(a) that, as function of
λ, only two stationary solutions for T (L, t) are obtained.
Since the surrounding medium only affects the oscilla-
tor damping and does not modify its asymptotic behav-
ior, the steady-state solutions are the same both in vac-
uum and in air. We also observe that the steady state is
reached after almost the same time interval (τ∞ ≈ 0.5 s)
in both cases. This time is in agreement with the decay
timescale τc = ρCL2/κ ≈ 0.14 s which can be extracted
from a simple dimensional analysis of the energy-balance
equation. The behavior of the displacement u(L, t) is
more interesting, and contrarily to the temperature evo-
lution it clearly depends on the surrounding medium. Al-
though the time needed both in air and in vacuum to
reach the asymptotic regime is still τ∞, the displacement
oscillates differently in vacuum and in air. As shown in
the left inset of Fig. 2(b), we clearly observe two oscilla-
tion frequencies, corresponding to the first and third nat-
ural frequencies of the cantilever, ω1 = 3.52L−2

√
EI/µ

and ω3 = 61.7L−2
√
EI/µ. Since the decay time τωi

of these oscillations is proportional to the quality fac-
tor (τωi

= 2Q/ωi) the longest decay timescales in air
and vacuum are, respectively, τair

ω1
= 5.1 × 10−3 s, and

τvacuum
ω1

= 2.5 s. As expected, the damping of the oscilla-
tions is stronger in air than in vacuum.

We now explore the possibility of using the bistabil-
ity, identified so far only for a specific configuration, to
produce a hysteretic behavior with respect to an external
control parameter. A natural parameter is the substrate
temperature Ts or the wall temperature Tw (modifiable
tuned using for instance Peltier elements or external laser
sources). Here we will focus on Ts as a control param-
eter. We start by identifying numerically the range for
this temperature over which the bistability is present. To
this aim, we perform numerical calculations keeping all
the parameters, except Ts, unchanged. The steady so-
lutions for T (L) are represented by the blue and orange
solid lines in Fig. 3(a). We clearly see that, when Ts lies
in the range [349, 356.3]K [gray zone in Fig. 3(a)], we ob-
serve a bistable behavior, while for values of Ts outside
this range we only get one stable solution. As suggested
by the curves plotted in Fig. 3(a), a time variation of
Ts allows to switch from one stable solution to the other
one through a hysteresis loop. Of course, this possibility
strongly depends on the specific time dependence of Ts,
and in particular on the comparison between the typi-
cal timescale over which Ts is tuned and the relaxation

time τc of our system. To get a deeper insight into this
aspect, we let Ts vary according to the time-dependent
function represented in Fig. 3(b). We start from a min-
imum temperature Tm = 347K and from t = 0 s to
t = τ1 we increase the value of Ts up to its maximum
TM = 358K through the growing branch of the function
(TM − Tm)(1 − cos[π t/τ1])/2. We then keep Ts = TM
during a time interval τ2 to finally go down to Tm over
a time interval τ1 through the descending branch of the
function (TM − Tm)(1− cos[π(t− τ2)/τ1])/2.
In Fig. 3 we describe the evolution of T (L) as a function

of Ts when this one is modulated at different timescales
[see Fig. 3(b)]. When the period of modulation is smaller
than the time of thermal relaxation of the cantilever,
the latter is not sufficiently heated up to transit into its
metallic phase [dot-long-dashed curve in Fig. 3(c)]. On
the contrary, with a slower thermal excitation the sys-
tem is able to perform the transition and its temperature
switches from the lower stable solution to the upper one
beyond Tc.
The two stable solutions plotted in Fig. 3(a) corre-

spond to a net heat flux which is locally convex in
the (Ts, T (L)) plane. In Fig. 3(d) we also demonstrate
the presence of an unstable solution. The time evo-
lution of T (L, t) is plotted for three fixed values of
Ts = 353, 358, 400K, assuming that the initial temper-
ature profile is T (x, 0) = f(x) with λ = 3 × 108 Km−2.
For Ts = 353K (Ts = 400K) we observe the expected
convergence to the lower (upper) solution on a timescale
≈ τc. Differently, for Ts = 358K we highlight an interme-
diate plateau before the system converges to its unique
steady-state solution. This is a signature of the fact that
Ts is still close to the region where two solutions exist,
and is analogous to the saddle-point behavior already ob-
served in Ref. [6].
A direct application of this thermomechanical bistabil-

ity is the thermal treatment of information. It is straight-
forward to see that such a system can operate as a NOT
gate when the control parameter Ts is the input of the
gate and T (L) its boolean output. If we define a ther-
mal state ‘0’ as the state where Ts is close to Tm and
a thermal state ‘1’ as the state where Ts is close to TM
[by defining appropriate treshold temperatures] and on
the other hand two states ‘1’ and ‘0’ when T (L) < Tc
(larger bending) and T (L) > Tc (smaller bending), then
the cantilever behaves like a NOT gate. The coupling
of such oscillators and their control with multiple input
parameters could allow to define more complex logical
operations.
We have shown that a phase-transition cantilever in a

scenario out of thermal equilibrium may have a bistable
thermomechanical behavior. We have demonstrated that
its temperature profile can be driven by external heat flux
and switched from one stable state to another paving thus
the way to basic logical operations using external thermal
control parameters. Several open questions remain to be
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explored at a fundamental level, including the thermal
prepation of oscillators, their coupling with other oscilla-
tors and their scalability to operate at different time and
spatial scales.

The authors are grateful to Prof. Pietro Salvini for
very fruitful discussions.
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