
HAL Id: hal-02565949
https://hal.science/hal-02565949

Submitted on 6 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Investigations of the Riemann solver with internal
reconstruction (RSIR) for the Euler equations

Alexandre Chiapolino, Richard Saurel, Eleuterio Toro

To cite this version:
Alexandre Chiapolino, Richard Saurel, Eleuterio Toro. Investigations of the Riemann solver with
internal reconstruction (RSIR) for the Euler equations. Communications in Computational Physics,
2021, 29, pp.1059-1094. �10.4208/cicp.OA-2020-0083�. �hal-02565949�

https://hal.science/hal-02565949
https://hal.archives-ouvertes.fr


Investigations of the Riemann solver with internal reconstruction

(RSIR) for the Euler equations

Alexandre Chiapolino1a, Richard Saurel2a,b, Eleuterio Toro3c

aRS2N, Chemin de Gaumin, Saint-Zacharie 83640, France
bAix Marseille Univ, CNRS, Centrale Marseille, LMA, Marseille, France
cLaboratory of Applied Mathematics DICAM, University of Trento, Italy

Abstract

The Riemann solver with internal reconstruction (RSIR) of Carmouze et al. (2019) is inves-
tigated, revisited and improved for the Euler equations. In this reference, the RSIR approach
has been developed to address the numerical resolution of the non-equilibrium two-phase flow
model of Saurel et al. (2017). The main idea is to reconstruct two intermediate states from the
knowledge of a simple and robust intercell state such as HLL, regardless of the number of waves
present in the Riemann problem. Such reconstruction improves significantly the accuracy of
the HLL solution, preserves robustness and maintains stationary discontinuities. Consequently,
when dealing with complex flow models, such as the aforementioned one, RSIR-type solvers are
quite easy to derive compared to HLLC-type ones that may require a tedious analysis of the
governing equations across the different waves. In the present contribution, the RSIR solver of
Carmouze et al. (2019) is investigated, revisited and improved with the help of thermodynamic
considerations, making a simple, accurate, robust and positive Riemann solver. It is also demon-
strated that the RSIR solver is strictly equivalent to the HLLC solver of of Toro et al. (1994)
for the Euler equations when the Rankine-Hugoniot relations are used. In that sense, the RSIR
approach recovers the HLLC solver in some limit as well as the HLL one in another limit and can
be simplified at different levels when complex systems of equations are addressed. For the sake
of clarity and simplicity, the derivations are performed in the context of the one-dimensional
Euler equations. Comparisons and validations against the conventional HLLC solver and exact
solutions are presented.

Keywords: Riemann solver, RSIR, HLL, HLLC, hyperbolic

1alexandre.chiapolino@rs2n.eu
2richard.saurel@univ-amu.fr
3eleuterio.toro@unitn.it

Preprint submitted to Applied Mathematics and Computation May 6, 2020

mailto:alexandre.chiapolino@rs2n.eu
mailto:richard.saurel@univ-amu.fr
mailto:eleuterio.toro@unitn.it


1. Introduction

Derivation of an appropriate Riemann solver for complex flow models is a difficult task.
Many waves may be present, some eigenvalues may have large multiplicity and some of the
equations may be non-conservative. Examples of such models are the MHD equations (Balsara
et al. (2012) [1]), compressible solid-fluid models (Gavrilyuk et al. (2008) [2]), non-equilibrium5

two-phase flow models such as the one of Saurel et al. (2017) [3], as well as the Godunov-
Peshkov-Romenski (GPR) model (Peshkov et al. (2019) [4]). Also, when dealing with material
interfaces, large density jumps may be present and volume fraction as well as density positivity
is mandatory. Same requirement is needed for high speed flows, where vacuum conditions may
appear. It seems that the most appropriate Riemann solver in these conditions is the HLLC10

solver of Toro et al. (1994) [5]. However, for specific models, its derivation may be non-trivial
[6], [7].

In Carmouze et al. (2019) [8] an alternative is given and a new Riemann solver with internal
reconstruction (RSIR) is designed. It relies on the following observation. It is usually quite easy
to derive a single intermediate state solver, such as Rusanov (1961) [9] or HLL (Harten et al.15

(1983) [10]) even for complicated flow models. These solvers are very robust and positive but too
dissipative for transport and stationary contact waves. Extensions of the HLL solver to include
more wave information have been developed in Einfeldt et al. (1991) [11], Toro et al. (1994) [5],
Linde (2002) [12] and Dumbser and Balsara (2016) [13].

In Carmouze et al. (2019) [8] the single intermediate solution is used to rebuild two inter-20

mediate states, thanks to an additional relation. These two intermediate states contain in most
situations enough information to improve significantly accuracy and preserve robustness.

The contribution of Carmouze et al. (2019) [8] was mainly motivated by the numerical ap-
proximation of the non-equilibrium two-phase flow model of Saurel et al. (2017) [3] that involves
a series of theoretical challenges as it is hyperbolic degenerate, presents non-conservative terms25

and exhibit non self-similar solutions. The complexity of the corresponding model prompted the
authors to develop a solver based on internal reconstruction of intermediate states, computed
from a simple and robust intercell state.

Thanks to the RSIR approach, stationary interfaces are maintained and numerical dissipation
is reduced while circumventing the difficulties related to the construction of a HLLC-type solver.30

Chiapolino and Saurel (2020) [14] provide illustrative results of the RSIR solver in this two-phase
flow context.

In Carmouze et al. (2019) [8], thermodynamic considerations have been introduced in the
RSIR solver for the Euler equations and a similar treatment has been developed to address
numerical resolution of Saurel et al. (2017) [3] model.35

The underlying philosophy of this approach relies on the assumption that most of the physics
is present in the two extreme waves and only one contact wave, that has to be identified. If the
contact wave cannot be defined clearly, the method becomes irrelevant. But it seems that in
most flow models such as the Euler equations and the above-mentioned models, identification
of the contact wave is possible and often easy.40

The remaining waves, when present, are captured by the scheme during computations even if
they are omitted in the Riemann problem. This is the same philosophy as the Rusanov and HLL
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solvers, except that an extra intermediate wave is added, preserving stationary discontinuities.
The basic concept of the RSIR approach relies on three ingredients:

– A simple and robust intermediate solution state such as HLL or Rusanov;45

– A consistency relation resulting from the integral form of conservation laws in a control
volume containing a three-wave structure of a Riemann problem (two extreme waves and
one contact wave);

– A heuristic relation linking the jumps of the two intermediate states across the contact
wave.50

The consistency equation is essential for the RSIR approach and is well-established for conser-
vation laws. It links the simple and robust but single-state HLL (or Rusanov) solution and the
two intermediate solution states. Its practical use requires nonetheless the heuristic relation that
offers multiple choices depending on the properties of the governing equations.

In the present paper, the heuristic relation is addressed through thermodynamic considera-55

tions. This approach has been introduced in Carmouze et al. (2019) [8]. It is here investigated,
revisited and improved. Second, it is demonstrated that the RSIR limit recovers the HLLC solver
for the Euler equations when the heuristic relation is addressed through the Rankine-Hugoniot
relations. Computed results confirm this observation. In that sense, the RSIR approach recovers
the HLLC solver in some limit as well as the HLL one in another limit and can be simplified at60

different levels when complex systems of equations are addressed.
For the sake of clarity and simplicity, only the one-dimensional Euler equations are consid-

ered. Comparisons with the conventional HLLC solver and exact solutions are then available.
The aim is to illustrate the simplicity, accuracy, robustness and flexibility of the RSIR solver.

This paper is organized as follows. The 1D Euler equations are briefly introduced in Section65

2 along with the HLL and HLLC solvers as they correspond to the two limits of the RSIR solver.
The RSIR solver is then addressed in Section 3. Its discrete entropy production is addressed
in Section 4. The RSIR limit is then examined in Section 5 showing that the HLLC solver
is recovered. Numerical results are provided in Section 6. They show that the RSIR solver
provides results in close agreement with those of the HLLC solver while being relatively simple70

and flexible. Conclusions are finally given in Section 7.

2. The HLL and HLLC Riemann solvers for the Euler equations

The 1D Euler equations of compressible fluids consist in a system of conservation laws,

∂U

∂t
+

∂F

∂x
= 0, (2.1)

whereU = (ρ, ρu, ρE)T is the vector of conservative variables and F = (ρu, ρu2 + p, (ρE + p) u)
T

the corresponding flux vector. The notations are conventional in fluid dynamics, ρ denotes the75

density, u the velocity and E = e + 1
2
u2 the total energy. The pressure p is given by a convex

equation of state (EOS), as a function for example of internal energy e and density ρ. The ideal-
gas EOS is used in the present contribution as p (ρ, e) = (γ − 1) ρe where γ = 1.4 represents the

3



specific heat ratio. This EOS is retained for the sake of conciseness only. The numerical method
addressed in the present work is valid for any convex EOS. This system is strictly hyperbolic with80

wave speeds λ1 = u, λ2 = u−c and λ3 = u+c. The sound speed is defined as c =

√(
∂p

∂ρ

)

s
where

s denotes the entropy. In the context of the ideal-gas EOS, the sound speed reads c (p, ρ) =
√

γp

ρ
.

The RSIR solver is based on the HLL (Harten et al. (1983) [10]) approximate solution, or
its simplified version due to Rusanov (1961) [9]. It aims to construct a robust Riemann solver
with limited dissipation, producing results similar to those provided by the HLLC solver.85

The HLL and HLLC Riemann solvers are briefly recalled in the following. As will be seen
further, the solutions provided by those two approximate Riemann solvers are precisely the two
limits of the RSIR solver. It is consequently necessary to introduce the HLL and HLLC solvers
beforehand. For a detailed presentation, the reader is referred to Toro’s textbook (2009) [15],
particularly Chapter 10 of this reference.90

HLL and HLLC Riemann solvers

The approximate HLL solver requires estimates for two extreme waves emerging from the
initial discontinuity. It results from the integration of the corresponding equations over a two-
wave Riemann problem.

A more accurate method is the HLLC solver, developed by Toro et al. (1994) [5]. This95

method assumes a three-wave model for the structure of the Riemann problem, resulting in
better resolution of intermediate waves. The two wave structures (HLL and HLLC) of the
Riemann problem are depicted in Fig. 1.
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Figure 1: Schematic representation in the (x, t) diagram of the HLL, HLLC and RSIR solvers. The HLL solver
assumes a two-wave structure (SL and SR) while the intermediate wave SM is restored with the HLLC solver.
The RSIR solver is based on the HLL single state solution complemented by a consistency relation reconstructing
two intermediate states U∗

L
, U∗

R
and a heuristic relation linking the jump of the two intermediate states across

the contact wave SM .

The central idea of the HLL solver is to assume a wave configuration that consists of two
waves separating three constant states. The extreme waves denoted SL and SR are estimated100

following Davis (1988) [16],

SL = min (uL − cL, uR − cR) and SR = max (uL + cL, uR + cR) , (2.2)

where indexes L and R denote the left and right states at a given cell boundary. Note that a
subsonic wave pattern is assumed in the present work, i.e. SL < 0 and SR > 0. These simple
wave speed estimates yield accurate results. Moreover, they are convenient for complicated EOS
and more sophisticated models than the Euler equations.105

Both HLL and HLLC consider waves as discontinuities. Related jump conditions are the
well-known Rankine-Hugoniot (RH) conditions:

F∗

k = Fk + Sk (U
∗

k −Uk) , k = L,R, (2.3)

where Sk denotes the speed of the considered wave k. Note that the states involved in relation
(2.3) are spatial integral averages. So strictly speaking these are not the classical Rankine-
Hugoniot conditions connecting limiting values left and right of a discontinuity but rather the110

“Averaged Rankine-Hugoniot” conditions. However the specification “Averaged” will be omitted
in the rest of the paper.
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In the HLL solver, no distinction is made between states U∗

R and U∗

L. The solution state in
the HLL approximation reads,

U∗

[HLL] =
FR − FL + SLUL − SRUR

SL − SR

. (2.4)

The resulting HLL Riemann solver forms the basis of very efficient and robust approximate115

Godunov-type methods. However, as the intermediate wave is omitted, the HLL solver produces
more dissipation than the HLLC one. This is not problematic for fast flows as discontinuity are
captured and in general maintained sharp enough during sufficiently long time, but becomes
problematic for slower flows. Particularly, the HLL solver is unable to maintain discontinuities
at rest.120

The HLLC scheme is a modification of the HLL scheme, whereby the missing contact in the
Euler equations is restored. The solutions for the two intermediate state vectors U∗

L and U∗

R are
sought. Similarly to the HLL solver, where the Rankine-Hugoniot relations are used across the
two extreme waves, the same jump conditions are used across the intermediate wave yielding
contact discontinuity conditions:125

{

p∗L = p∗R = p∗,

u∗

L = u∗

R = u∗ = SM .
(2.5)

As the extreme waves SL and SR are known from (2.2), algebraic manipulations of the mass and
momentum Rankine-Hugoniot relations (2.3) provide the pressure solutions in the left and right
perturbed states,

p∗k = pk + ρk (Sk − uk) (SM − uk) , k = L,R. (2.6)

The equality of the pressures allows determination of the intermediate speed SM as a function
of speeds SL and SR, namely,130

SM = u∗

L = u∗

R =
pR − pL + (ρu)L (SL − uL)− (ρu)R (SR − uR)

ρL (SL − uL)− ρR (SR − uR)
=

U∗,momentum
[HLL]

U∗,mass
[HLL]

. (2.7)

The two intermediate solution states are computed with the help of the Rankine-Hugoniot
relations (2.3) and the corresponding values p∗L and p∗R. The solutions can be written concisely
as,

U∗

k [HLLC] =
SkUk − Fk + p∗kD

Sk − SM

with D =
[
0, 1, SM

]T
, k = L,R. (2.8)

The numerical fluxes, solution of the Riemann problem, are provided by Eq. (2.3) according to
the Rankine-Hugoniot relations across the left SL or right SR wave depending on the sign of the135

contact wave SM speed.
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Unlike the HLL solver, the HLLC solver is able to maintain stationary discontinuities. How-
ever, the construction of a HLLC-type solver may be quite difficult for more sophisticated equa-
tion systems such as two-phase flow models or magnetohydrodynamics equations where many
waves are present in the Riemann problem.140

Recently, the authors developed in Carmouze et al. (2019) [8] a Riemann Solver with Internal
Reconstruction (RSIR). It is based on the HLL single state solution, a consistency relation
reconstructing two intermediate states U∗

L, U
∗

R and a heuristic relation linking the jump of the
two intermediate states across the contact wave SM . In the present paper, the heuristic relation
is revisited and improved.145

3. Riemann Solver with Internal Reconstruction (RSIR)

The RSIR solver is based on internal reconstruction of intermediate states, computed from a
simple and robust intercell state, such as Rusanov (1961) [9] or HLL (Harten et al. (1983) [10]).
The HLL solution state U∗

[HLL] is known from Eq. (2.4) and the contact wave speed SM is also
known from the HLL solution (Eq. (2.7)). The extreme waves SL and SR are known with the150

help of Davis’ estimates (2.2).
The aim is now to construct two intermediate states U∗

L and U∗

R as illustrated in Fig. 1. The
average HLL state and the two intermediate solution states are linked through the consistency
relation (illustrated in Fig. 1),

(SR − SL)U
∗

[HLL] = (SR − SM)U∗

R + (SM − SL)U
∗

L. (3.1)

This consistency relation can be rewritten as,155

U∗

[HLL] = ωRU
∗

R + ωLU
∗

L. (3.2)

with

ωR =
SR − SM

SR − SL

and ωL =
SM − SL

SR − SL

. (3.3)

Relation (3.2) involves two unknown states, U∗

L and U∗

R. Consequently an extra relation, linking
the jumps of the two intermediate states across the contact wave, is needed.

First let us introduce the heuristic of Linde (2002) [12],

U∗

R −U∗

L = β (UR −UL) . (3.4)

In this relation, β represents a viscosity parameter, 0 ≤ β ≤ 1. When β is taken equal to zero,160

the HLL approximation is recovered. When β = 1 the reconstruction tends to the HLLC repre-
sentation but is not equivalent, as interface conditions (2.5) are ignored in the Linde approach.

Relation (3.4) is then combined with Relation (3.2) resulting in,

{

U∗

L [Linde] = U∗

[HLL] − ωRβ (UR −UL) ,

U∗

R [Linde] = U∗

[HLL] + ωLβ (UR −UL) .
(3.5)
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With the help of Relation (3.5), corresponding fluxes are computed thanks to the RH relations
(2.3). As shown in Carmouze et al. (2019) [8], Eq. (3.5) sometimes yield correct results but165

large spurious oscillations may appear as well depending on the initial conditions.
This observation motivated reconsideration of the heuristic relation, now based on thermo-

dynamic considerations, resulting in significant improvements and yielding robust and accurate
solutions. The heuristic relation now reads,

U∗

R −U∗

L = Ψ, (3.6)

where Ψ is the jump vector linking the two intermediate state U∗

L and U∗

R. As previously,170

Relation (3.6) is combined with Eq. (3.2) resulting in,

{

U∗

L [RSIR] = U∗

[HLL] − ωRΨ,

U∗

R [RSIR] = U∗

[HLL] + ωLΨ.
(3.7)

Relation (3.7) is the cornerstone of the RSIR approach. It results from the combination of
the consistency relation and the jump vector linking the two intermediate states. Equation (3.7)
provides the solution of the two intermediate states, built upon the HLL solution. However,
its practical use requires knowledge of the jump vector Ψ. This task offers multiple choices175

depending on the properties of the governing equations.
It is important to note that only an approximate jump vector Ψ is needed to improve the

HLL solution through Eq. (3.7). As will be seen further, the different components of the
jump vector may sometimes be expressed directly, for example (ρ∗R − ρ∗L), or two approximate
variables may be obtained separately, for example ρ∗R and ρ∗L, giving the jump by subtracting180

the two quantities. However, in the latest case, approximate variables such as ρ∗R and ρ∗L are not
to be used as solutions but only as an approximation of the jump Ψ, to be combined with the
consistency relation.

Regardless the way the jump vector Ψ is computed, the two solution states U∗

L and U∗

R

are determined through Eq. (3.7). The solutions are then built upon the HLL one and the185

approximation of the jump vector.
In the following, crude knowledge of the governing equations’ properties is assumed in the

aim to address complex flow models. The aim is then to approximate the jump vector Ψ from
relations as simple and general as possible while involving relevant physics. As will be seen
later in Section 5, when more details of the governing equations are available, the RSIR solver190

recovers the HLLC one through the introduction of the Rankine-Hugoniot relations in the jump
vector Ψ

The approximation of the jump vector Ψ derived hereafter is based on two ingredients:

– Quasi-isentropic or barotropic variations across right- and left-facing waves;

– Insertion of interface conditions across the contact wave.195

Although not strictly correct, in particular across strong shocks, thermodynamic evolutions
through right-and left-facing waves are approximated as quasi-isentropic.
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Mass relation

Thermodynamic evolutions across the right- and left-facing waves are approximated through

sound speed definition c2 =
(

∂p

∂ρ

)

s
as,200

c̄2 =
p∗L − pL
ρ∗L − ρL

=
p∗R − pR
ρ∗R − ρR

. (3.8)

Such approximation has been used for example in Appendix A of [17] to approximate isentropes
in tank boundary conditions, when dealing with sophisticated equations of state. The average
square sound speed c̄2 is estimated as,

c̄2 = max
[
c2L, c

2
R

]
. (3.9)

As will be seen in Section 4, this estimate guarantees discrete entropy production. Note that
this is different from the original RSIR solver introduced in Carmouze et al. (2019) [8] where205

the average sound speed is computed with the help of a rough trapezoidal approximation, c̄ =
1
2
(cL + cR).
Across the contact wave SM , the interface pressure condition reads,

p∗L = p∗R = p∗. (3.10)

Thus Eq. (3.8) becomes,

{

p∗ = pR + c̄2 (ρ∗R − ρR) ,

p∗ = pL + c̄2 (ρ∗L − ρL) ,
(3.11)

Taking the difference of these two relations, the following one is obtained:210

ρ∗R − ρ∗L = ρR − ρL −
pR − pL

c̄2
. (3.12)

Relation (3.12) corresponds to a modification of the first component of the Linde’s approximation
(3.4). To maintain flexibility of the reconstruction method, parameter β is reintroduced as,

ρ∗R − ρ∗L = β

(

ρR − ρL +
pL − pR

c̄2

)

= Ψmass. (3.13)

Parameter β seems convenient to control numerical viscosity, for example to remove the
contact wave when dealing with computations in extreme conditions. In all examples considered
in the present paper, β = 1, corresponding to the least dissipative version.215

Equation (3.13) is an approximation of the mass jump between the two intermediate states.
The solution densities are now determined with the help of the mass jump and the consistency
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relation (3.7),







ρ∗L = ρ∗[HLL] − ωRβ

(

ρR − ρL +
pL − pR

c̄2

)

,

ρ∗R = ρ∗[HLL] + ωL β

(

ρR − ρL +
pL − pR

c̄2

)

︸ ︷︷ ︸

Ψmass

.
(3.14)

Momentum relation

Similar relations are deduced to approximate the momentum jump across the contact wave.220

As u∗

L = u∗

R = SM , Eq. (3.13) implies the following relation,

(ρu)∗R − (ρu)∗L = β

(

ρR − ρL +
pL − pR

c̄2

)

SM = Ψmomentum. (3.15)

The solution momenta consequently read,







(ρu)∗L = (ρu)∗[HLL] − ωRβ

(

ρR − ρL +
pL − pR

c̄2

)

SM ,

(ρu)∗R = (ρu)∗[HLL] + ωL β

(

ρR − ρL +
pL − pR

c̄2

)

SM

︸ ︷︷ ︸

Ψmomentum

.
(3.16)

Energy relation

As quasi-isentropic variations across right- and left-facing waves are supposed, the approx-
imation of the energy jump is determined with the help of the first law of thermodynamics,225

expressed under the form of Gibbs’ relation,

de = T ds
︸︷︷︸
=0

−pdv, (3.17)

where T denotes the temperature, s the entropy and v = 1/ρ the specific volume. Thanks to
the quasi-isentropic assumption, Gibbs’ relation is approximated as,

{

e∗L = eL − p̄L (v
∗

L − vL) ,

e∗R = eR − p̄R (v∗R − vR) ,
(3.18)

where v∗L = 1/ρ∗L and v∗R = 1/ρ∗R are known from Eq. (3.14). In Relation (3.18), p̄k is an
estimate of the average pressure across the corresponding wave. Multiple choices are available230

at this point. The most obvious ones are p̄k = pk with k = L,R or p̄k = p∗ or a combination of
them p̄k = pk+p∗

2
. As will be seen further, the analysis of the entropy production reports that

only p̄k = p∗ is an admissible estimate. This estimate is determined from the average square
sound speed as,

p∗ = pL + c̄2 (ρ∗L − ρL) = pR + c̄2 (ρ∗R − ρR) . (3.19)
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This is another difference with the original RSIR solver introduced in Carmouze et al. (2019)235

[8] where the EOS e∗k (p
∗

k, ρ
∗

k) is used to compute directly the energy jump.
In the present paper, the quasi-isentropic assumption is approximated through both sound

speed definition and Gibbs’ relation. The total energy jump is finally expressed thanks to Eqs.
(3.14) and (3.18),

(ρE)∗R − (ρE)∗L = β

[

ρ∗R

(

e∗R +
1

2
S2
M

)

− ρ∗L

(

e∗L +
1

2
S2
M

)]

= Ψenergy, (3.20)

where the β parameter is reintroduced for the sake of generality. The solutions for total energies240

are now built upon the HLL ones as,







(ρE)∗L = (ρE)∗[HLL] − ωRβ

[

ρ∗R

(

e∗R +
1

2
S2
M

)

− ρ∗L

(

e∗L +
1

2
S2
M

)]

,

(ρE)∗R = (ρE)∗[HLL] + ωL β

[

ρ∗R

(

e∗R +
1

2
S2
M

)

− ρ∗L

(

e∗L +
1

2
S2
M

)]

︸ ︷︷ ︸
Ψenergy

.
(3.21)

The intermediate solution states are then fully determined for the Euler equations. They are
computed upon the HLL solution with the help of the consistency relation and the jump vector,

{

U∗

L [RSIR] = U∗

[HLL] − ωRΨ,

U∗

R [RSIR] = U∗

[HLL] + ωLΨ.
(3.22)

Solution fluxes

Once states U∗

L and U∗

R are determined through (3.22) the various fluxes are computed245

through the Rankine-Hugoniot relations, according to the sign of SM ,

{

F∗

R = FR + SR (U∗

R −UR) ,

F∗

L = FL + SL (U
∗

L −UL) .
(3.23)

The Riemann solver thus consists in Eq. (2.4) to compute the simple and robust HLL state,
Eqs. (3.13), (3.15), (3.20) to approximate the jumps across the intermediate wave SM and Eq.
(3.22) to construct the two intermediate states. Note that the solver does not require explicit
formulation of the EOS.250

4. Entropy production

The discrete entropy production of the RSIR solver is now addressed. During the con-
struction of the jump vector Ψ and particularly the energy component Ψenergy, the following
thermodynamic path is used,

de = −p̄dv, (4.1)
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where p̄ is an estimate of the average pressure.255

The choice of p̄ is dictated by the second law of thermodynamics. Let us insert the present
thermodynamic path into Gibbs’ relation,

Tds = de+ pdv = −p̄dv + pdv. (4.2)

The integration of the previous relation over the unperturbed state (k=L,R) and the solution
state (∗k) reads,

∫
∗k

k

Tds =

∫
∗k

k

(p− p̄) dv. (4.3)

The right-hand side of Relation (4.3) represents the discrete entropy production across the260

extreme waves SL and SR. With the RSIR solver, the pressure evolves across the extreme waves
as,

p (ρ) = pk + c̄2 (ρ− ρk) . (4.4)

Equation (4.3) consequently transforms to,

∫
∗k

k

Tds =

∫
∗k

k

(
pk + c̄2 (ρ− ρk)− p̄

)
dv. (4.5)

The discrete entropy production is satisfied if the right hand-side of Eq. (4.5) is non-negative.
Let us now introduce the pressure estimate as p̄ = p∗. Relation (4.5) becomes,265

∫
∗k

k

Tds =

∫
∗k

k

(pk − p∗) dv+c̄2
∫

∗k

k

(
1

v
−

1

vk

)

dv = (pk − p∗) (v∗k − vk)+c̄2
(

ln

(
v∗k
vk

)

−
v∗k
vk

+ 1

)

.

(4.6)

However, the RSIR star pressure reads p∗ = pk + c̄2
(

1
v∗
k

− 1
vk

)

. The preceding relation conse-

quently transforms to,

∫
∗k

k

Tds = c̄2

(

(v∗k − vk)
2

v∗kvk
+ ln

(
v∗k
vk

)

−
v∗k
vk

+ 1

)

. (4.7)

For the sake of simplicity, let us introduce X =
v∗
k

vk
. The discrete entropy production is then

satisfied if,

f (X) =
(X − 1)2

X
+ ln (X)−X + 1 ≥ 0. (4.8)

A simple mathematical function analysis shows that f (X) ≥ 0 ∀X ∈]0,+∞[ with a minimum270

corresponding to f (X = 1) = 0.
The estimate p̄ = p∗ consequently satisfies the discrete entropy production making the RSIR

solver entropy preserving. It is interesting to emphasize that the amount of discrete entropy is
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quantified by the averaged sound speed c̄2. For the sake of robustness, it is preferable to use the
largest value of c̄2. For this reason, the average sound speed is estimated as,275

c̄2 = max
[
c2L, c

2
R

]
, (4.9)

as seen in Section 3.
It is also important to emphasize that the previous calculations lead to f (X) ≤ 0 ∀X ∈

]0,+∞[ if p̄ = pk and f (X) ≥ 0 for X ∈]0, 1] if p̄ = pk+p∗

2
. Those estimates are consequently

rejected.
Note that the latest result is not surprising as it indicates that the discrete entropy production280

is satisfied only for X =
v∗
k

vk
= ρk

ρ∗
k

< 1 corresponding to a compression. Indeed the introduction of

p̄ = pk+p∗

2
into Gibbs’ relation de = −p̄dv leads to e∗k− ek+

pk+p∗

2
(v∗k − vk) = 0 which is precisely

the Hugoniot adiabat, valid for compressions only.
It consequently appears that p̄ = p∗ (computed with the help of Eq. (3.19)) is the only

admissible estimate among the ones examined. Numerical experiments with the present RSIR285

solver are provided in Section 6 showing efficiency and robustness. However, before analyzing
the corresponding results, let us address the limit of the RSIR solver. When more details of the
equations are used, meaning they are available, the jump vector Ψ can be approximated with
the help of the Rankine-Hugoniot relations. This task is addressed hereafter showing that the
HLLC limit is recovered.290

5. Limit of the RSIR solver

The RSIR solution relies on Eq. (3.7), recalled hereafter,

{

U∗

L [RSIR] = U∗

[HLL] − ωRΨ,

U∗

R [RSIR] = U∗

[HLL] + ωLΨ.
(5.1)

Unlike Section 3 where quasi-isentropic evolutions are assumed, the construction of the jump
vector Ψ is now addressed through the set of Rankine-Hugoniot relations.

Mass relation295

The Rankine-Hugoniot mass relations read,

{

ρ∗L (SM − SL) = ρL (uL − SL) ,

ρ∗R (SM − SR) = ρR (uR − SR) .
(5.2)

The following jump relation consequently arises,

ρ∗R − ρ∗L = ρR
uR − SR

SM − SR

− ρL
uL − SL

SM − SL

. (5.3)

Parameter β is introduced as before for the sake of generality,

ρ∗R − ρ∗L = β

(

ρR
uR − SR

SM − SR

− ρL
uL − SL

SM − SL

)

= Ψmass. (5.4)
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Momentum relation

Thanks to the previous mass jump and the interface condition across the intermediate wave300

SM , the momentum jump directly reads,

(ρu)∗R − (ρu)∗L = β

(

ρR
uR − SR

SM − SR

− ρL
uL − SL

SM − SL

)

SM = Ψmomentum. (5.5)

Energy relation

Combination of the mass, momentum and energy Rankine-Hugoniot relations provide after
some algebraic manipulations,







(ρE)∗L =
(ρE)L (uL − SL) + pLuL − p∗LSM

SM − SL

,

(ρE)∗R =
(ρE)R (uR − SR) + pRuR − p∗RSM

SM − SR

,

(5.6)

where the star pressure is provided by the HLL solution, Eq. (2.6). With the help of these305

relations, a jump relation across the contact wave is obtained,

(ρE)∗R−(ρE)∗L = β

(
(ρE)R (uR − SR) + pRuR − p∗RSM

SM − SR

−
(ρE)L (uL − SL) + pLuL − p∗LSM

SM − SL

)

= Ψenergy.

(5.7)
The jump vector Ψ across the contact wave is now approximated with the help of Rankine-

Hugoniot relations. The solution vectors (5.1) are then to be compared to the HLLC solutions.
Let us first recall the solution of HLLC solver for the Euler equations (see [15] for details),

U∗

k [HLLC] =
SkUk − Fk + p∗kD

Sk − SM

with D =
[
0, 1, SM

]T
, k = L,R (5.8)

with310

p∗k = pk + ρk (Sk − uk) (SM − uk) , (5.9)

and

SM = u∗

L = u∗

R =
pR − pL + (ρu)L (SL − uL)− (ρu)R (SR − uR)

ρL (SL − uL)− ρR (SR − uR)
=

U∗,momentum
[HLL]

U∗,mass
[HLL]

. (5.10)

With the RSIR solver, solution states are given by,

{

U∗

L [RSIR] = U∗

[HLL] − ωRΨ,

U∗

R [RSIR] = U∗

[HLL] + ωLΨ.
(5.11)

Examination of the RSIR solution state vector U∗

L [RSIR] is now addressed,
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Mass solution

The mass solution reads,315

ρ∗L [RSIR] =

(
ρRuR − ρLuL + SLρL − SRρR

SL − SR

)

︸ ︷︷ ︸

ρ∗
[HLL]

−

(
SR − SM

SR − SL

)

︸ ︷︷ ︸
ωR

β

(

ρR
uR − SR

SM − SR

− ρL
uL − SL

SM − SL

)

︸ ︷︷ ︸
Ψmass

.

(5.12)
Equation (5.12) may be written as,

ρ∗L [RSIR] =
ρR (uR − SR)

SL − SR

−
ρL (uL − SL)

SL − SR

− β
ρR (uR − SR)

SL − SR

+ β

(
SR − SM

SR − SL

)

ρL
uL − SL

SM − SL

. (5.13)

When β = 0, the HLL solution is recovered. When β = 1, Eq. (5.13) reduces to,

ρ∗L [RSIR] =
ρL (uL − SL)

SM − SL

, (5.14)

which is precisely ρ∗L [HLLC] according to Eq. (5.8). The density solution is consequently merged
with the HLLC solver one.

Momentum solution320

Combination of Eqs. (5.8) and (5.9) gives for the momentum,

(ρu)∗L [HLLC] =
ρL (uL − SL)

SM − SL

SM = ρ∗L [HLLC]SM . (5.15)

RSIR formula is now expanded for comparison with the HLLC solution,

(ρu)∗L [RSIR] =
(ρu)R (uR − SR)− (ρu)L (uL − SL) + pR − pL

SL − SR
︸ ︷︷ ︸

(ρu)∗[HLL]

−

(
SR − SM

SR − SL

)

︸ ︷︷ ︸
ωR

β

(

ρR
uR − SR

SM − SR

− ρL
uL − SL

SM − SL

)

SM

︸ ︷︷ ︸

Ψmomentum

.

(5.16)

After some simplifications it becomes,

(ρu)∗L [RSIR] =

(
ρR (uR − SR)

SL − SR

)

(uR + βSM)−

(
ρL (uL − SL)

SL − SR

)(

uL + βSM

SR − SM

SM − SL

)

+
pR − pL
SL − SR

.

(5.17)
The last term expresses as,

pR − pL
SL − SR

=
ρL (SL − uL) (SM − uL) + ρR (SR − uR) (uR − SM)

SL − SR

, (5.18)
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determined from the contact wave speed estimate formula (5.10). The RSIR star left momentum325

jump relation now becomes,

(ρu)∗L [RSIR] =
ρR (uR − SR)

SL − SR

[

uR−βSM−(uR − SM)
]

−
ρL (uL − SL)

SL − SR

(

uL + βSM

SR − SM

SM − SL

+ (SM − uL)

)

.

(5.19)
We now introduce β = 1,

(ρu)∗L [RSIR] =
ρL (uL − SL)

SL − SR

SM

(

−
SR − SM

SM − SL

− 1

)

,

(ρu)∗L [RSIR] =
ρL (uL − SL)

SL − SR

SM

(
SL − SR

SM − SL

)

.

(5.20)

Finally, the HLLC formulation is recovered,

(ρu)∗L [RSIR] =
ρL (uL − SL)

SM − SL

SM = (ρu)∗L [HLLC] . (5.21)

Energy solution

The RSIR energy solution reads,330

(ρE)∗L [RSIR] = (ρE)∗L [HLL] − ωRΨ
energy, (5.22)

with

(ρE)∗L [HLL] =

[
(ρE + p) u

]

R
−
[
(ρE + p)u

]

L
+ SL (ρE)L − SR (ρE)R

SL − SR

, (5.23)

and

Ψenergy = β

(
(ρE)R (uR − SR) + pRuR − p∗RSM

SM − SR

−
(ρE)L (uL − SL) + pLuL − p∗LSM

SM − SL

)

, (5.24)

and

ωR =
SR − SM

SR − SL

. (5.25)

16



The combination of these relations leads to,

(ρE)∗L [RSIR] =
[

(ρE + p) u
]

R

=0 if β=1
︷ ︸︸ ︷
(

1

SL − SR

− β
SR − SM

SR − SL

1

SM − SR

)

−

[

(ρE + p) u
]

L

(
1

SL − SR

− β
SR − SM

SR − SL

1

SM − SL

)

+ (ρE)L

(
SL

SL − SR

− β
SR − SM

SR − SL

SL

SM − SL

)

− (ρE)R

(
SR

SL − SR

− β
SR − SM

SR − SL

SR

SM − SL

)

︸ ︷︷ ︸

=0 if β=1

−β
SR − SM

SR − SL

(
p∗LSM

SM − SL

−
p∗RSM

SM − SR

)

.

(5.26)

HLL solutions appears recovered when β = 0. However for β = 1, the solution becomes,335

(ρE)∗L [RSIR] = −

[

(ρE + p) u
]

L

1

SL − SR

(

1 +
SR − SM

SM − SL

)

+ (ρE)L
SL

SL − SR

(

1 +
SR − SM

SM − SL

)

−
SR − SM

SR − SL

(
p∗LSM

SM − SL

−
p∗RSM

SM − SR

)

.

(5.27)

Thus,

(ρE)∗L [RSIR] =

[
(ρE + p)u

]

L
− SL (ρE)L

SM − SL

−
SM (SR − SM)

SR − SL

(
p∗L

SM − SL

−
p∗R

SM − SR

)

. (5.28)

As the Euler equations are considered in this paper, equality of the star pressures is now used,
p∗L = p∗R = p∗. Relation (5.28) results in,

(ρE)∗L [RSIR] =

[
(ρE + p) u

]

L
− SL (ρE)L − p∗SM

SM − SL

= (ρE)∗L [HLLC] , (5.29)

which is once more the HLLC solution.
Similar manipulations regarding the right solution state vector provide the same conclusion,340

U∗

R [RSIR] = U∗

R [HLLC]. (5.30)

It consequently appears that the reconstruction method based on,

{

U∗

L [RSIR] = U∗

[HLL] − ωRΨ,

U∗

R [RSIR] = U∗

[HLL] + ωLΨ,
(5.31)
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is equivalent to the HLLC solver when the jump vector Ψ is determined through Rankine-
Hugoniot relations. The following computed results confirm this observation. Consequently, it
seems that RSIR recovers the HLLC solver (or the HLL one as another limit case) and can be
degraded at different levels when complex systems of equations are considered, for example when345

Rankine-Hugoniot relations are not trivial, or contact wave conditions are intricate (this is true
for example with two-phase flow equations). In the content of the Euler equations, the RSIR
solver based on approximate thermodynamics (Section 3) provide results in close agreement with
the HLLC solver as shown in the next section.

6. Numerical results350

Comparison with the HLLC solver and exact solution is now addressed on various test prob-
lems. Let us recall that β = 1 in all computations. The following test problems are given in
Toro (2009) [15] (page 334). In addition, the blast wave test problem of Colella and Woodward
(1984) [18] is also addressed (see also [15], page 612).

In these computations all variables are dimensionless as done in [15], [19]. Note that these355

test problems are quite severe except tests 6 and 7 that involve a stationary discontinuity and
transport of a discontinuity. Those two last tests are nonetheless mandatory to assess methods’
accuracy.

All results are provided by the Godunov (1959) [20] first-order scheme,

Un+1
i = Un

i −
∆t

∆x

(

F∗

i+ 1
2
− F∗

i− 1
2

)

, (6.1)

where n + 1 and n denote two consecutive time steps and superscript ∗ denotes the Riemann360

problem solution provided by the RSIR and HLLC solvers. Indexes i and i± 1
2
denote respectively

the center of the current numerical cell and its corresponding boundaries.
Obviously, higher-order extensions can be considered but add complexity to examine Rie-

mann solvers’ accuracy. Note that the Godunov scheme is stable under the conventional CFL
condition. For proper assessment, all results are computed using CFL = 0.9 and a coarse mesh365

made of 100 regular cells. The initial conditions are provided in Table 1.
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Test x0 ρL uL pL ρR uR pR

1 0.3 1.0 0.75 1.0 0.125 0.0 0.1
2 0.5 1.0 −2.0 0.4 1.0 2.0 0.4
3 0.5 1.0 0.0 1000.0 1.0 0.0 0.01
4 0.4 5.99924 19.5975 460.894 5.99242 −6.19633 46.0950
5 0.8 1.0 −19.59745 1000.0 1.0 −19.59745 0.01
6 0.5 1.4 0.0 1.0 1.0 0.0 1.0
7 0.5 1.4 0.1 1.0 1.0 0.1 1.0

Table 1: Initial conditions of the 7 test problems of Toro (2009) [15] page 334. The computational domain is the
interval [0, 1] for all tests. An initial discontinuity is located at x0. All initial conditions are dimensionless. The
initial conditions of the Colella and Woodward (1984) [18] test problem are given in Fig. 9 (see also [15], page
612).

In the following figures, the RSIR solver based on approximate thermodynamics (Section 3)
is compared to the exact and HLLC solutions. In addition, the RSIR solution based on Rankine-
Hugoniot relations is plotted as well and is referred as “RSIR RH”. The solution of the original
RSIR solver introduced in Carmouze et al. (2019) [8] is also plotted and is referred as “RSIR370

orig.”. Note that the exact solution is computed with an exact solver and then plotted with
1000 points.

19



0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Initial

Exact

HLLC

RSIR

RSIR orig.

RSIR RH

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2

2.2

2.4

2.6

2.8

3

3.2

3.4

xx

ρ u

p e

Figure 2: Test 1 of [15] page 334 (shock tube test). Comparison of the RSIR, HLLC and exact solutions. The
computational domain involves 100 cells and the Godunov first-order scheme is used with CFL = 0.9. Results
are shown at time t = 0.2. The initial discontinuity is located at x0 = 0.3. Non-reflective boundary conditions
are considered. All methods show comparable accuracy.
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Figure 3: Test 2 of [15] page 334 (double expansion test). Comparison of the RSIR, HLLC and exact solutions.
The computational domain involves 100 cells and the Godunov first-order scheme is used with CFL = 0.9.
Results are shown at time t = 0.15. The initial discontinuity is located at x0 = 0.5. Non-reflective boundary
conditions are considered. All methods produce unphysical overheating at the center of the domain regarding
the internal energy. The other flow variables are computed correctly. Issues related to overheating do not seem
related to the Riemann solver’s accuracy but more to the computation of the kinetic energy (Cocchi et al. (1998)
[21]). Improvement of the present version of the RSIR solver is clearly visible in the internal energy plot, showing
comparison to the original version introduced in Carmouze et al. (2019) [8].
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Figure 4: Test 3 of [15] page 334 (strong shock tube test). Comparison of the RSIR, HLLC and exact solutions.
The computational domain involves 100 cells and the Godunov first-order scheme is used with CFL = 0.9.
Results are shown at time t = 0.012. The initial discontinuity is located at x0 = 0.5. Non-reflective boundary
conditions are considered. All methods show comparable accuracy.
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Figure 5: Test 4 of [15] page 334 (double shock test). Comparison of the RSIR, HLLC and exact solutions. The
computational domain involves 100 cells and the Godunov first-order scheme is used with CFL = 0.9. Results
are shown at time t = 0.035. The initial discontinuity is located at x0 = 0.4. Non-reflective boundary conditions
are considered. All methods show comparable accuracy.
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Figure 6: Test 5 of [15] page 334 (strong shock tube test of Test 3 with non-zero initial velocity). Comparison of
the RSIR, HLLC and exact solutions. The computational domain involves 100 cells and the Godunov first-order
scheme is used with CFL = 0.9. Results are shown at time t = 0.012. The initial discontinuity is located at
x0 = 0.8. Non-reflective boundary conditions are considered. All methods show comparable accuracy.
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Figure 7: Test 6 of [15] page 334 (stationary contact discontinuity). Comparison of the RSIR, HLLC and
exact solutions. The computational domain involves 100 cells and the Godunov first-order scheme is used with
CFL = 0.9. Results are shown at time t = 2. The initial discontinuity is located at x0 = 0.5. Non-reflective
boundary conditions are considered. All methods maintain stationary contact discontinuity.
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Figure 8: Test 7 of [15] page 334 (moving contact discontinuity). Comparison of the RSIR, HLLC and exact
solutions. The computational domain involves 100 cells and the Godunov first-order scheme is used with CFL =
0.9. Results are shown at time t = 2. The initial discontinuity is located at x0 = 0.5. Non-reflective boundary
conditions are considered. All methods show comparable accuracy.
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Figure 9: Woodward and Colella (1984) [18] blast wave test (see also Toro (2009) [15] page 612). Comparison of
the RSIR and HLLC solutions. The computational domain involves 100 cells and the Godunov first-order scheme
is used with CFL = 0.9. Results are shown at time t = 0.038. All methods show comparable accuracy. This test
problem has no exact solution, but computed results with the HLLC solver and 3000 cells are shown as reference
solution. The computational domain is the interval [0, 1]. The initial condition in pressure consists of three
constant states separated by two discontinuities, namely p(x, 0) = pL = 1000 for x < 1/10, p(x, 0) = pM = 0.01
for 1/10 < x < 9/10 and p(x, 0) = pR = 100 for x > 9/10. Particle velocity and density are constant, with
u(x, 0) = 0 and ρ(x, 0) = 1. Reflective boundary conditions are imposed. Note that for the sake of clarity the
scale is adapted.

All tests lead to the same observations. The RSIR solver provides excellent and oscillation-
free results in addition to being robust and positive. Its limit based on Rankine-Hugoniot
relations provides results in perfect agreement with the HLLC solver. This observation confirms375

the analysis of Section 5.
The present RSIR solver is an improvement of the original version introduced in Carmouze et
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al. (2019) [8] as clearly seen in Fig. 3 where the unphysical overheating of the internal energy is
significantly reduced, providing results in close agreement with those of the HLLC solver. This
improvement is due to the introduction of Gibbs identity in the form (3.18) when computing380

the energy jump.
Unlike the HLLC solver, the RSIR one is based on thermodynamics and internal reconstruc-

tion. The discrete entropy production is satisfied and is quantified by the average sound speed
c̄2. In all previous tests, c̄2 = max

[
c2L, c

2
R

]
in order to maximize the discrete entropy production

for the sake of robustness. This flexibility is an interesting feature. For instance tests 3, 4, 5 and385

8 fail if c̄2 = min
[
c2L, c

2
R

]
(Figs. 4, 5, 6 and 9) while tests 1, 2 ,6 and 7 provide similar results

(Figs. 2, 3, 7 and 8).
Flexibility and simplicity of the RSIR solver are of particular interest for complicated flow

models. In the context of the Euler equations, the RSIR solver recovers the HLL solver in some
limit and the HLLC one in another limit.390

7. Conclusion

The Riemann solver with internal reconstruction (RSIR) of Carmouze et al. (2019) [8] has
been investigated, revisited and improved for the Euler equations. While the RSIR solver based
on approximate thermodynamics produces accurate and robust results, similar to those provided
by the HLLC solver of Toro et al. (1994) [5], its limit using all set of Rankine-Hugoniot relations395

appears strictly equivalent to the HLLC solver.
RSIR-type solvers seem flexible for many applications where most of the physics is governed

by two extreme waves and an intermediate one as they can be simplified at different levels when
complex systems of equations are addressed. Two-phase flow models are for instance part of
those applications as seen in Carmouze et al. (2019) [8] and Chiapolino and Saurel (2020) [14].400
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AppendixA. Summary of the RSIR solver

The present appendix summarizes the RSIR formulas for a straightforward implementation.405

The two extreme wave speeds are first computed. Davis’ estimates are used in the present
contribution,

SL = min (uL − cL, uR − cR) and SR = max (uL + cL, uR + cR) . (A.1)

The HLL solution state is then computed,

U∗

[HLL] =
FR − FL + SLUL − SRUR

SL − SR

. (A.2)
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The contact wave speed SM is now required. In the context of the Euler equations, it reads,

SM = u∗

L = u∗

R =
pR − pL + (ρu)L (SL − uL)− (ρu)R (SR − uR)

ρL (SL − uL)− ρR (SR − uR)
=

U∗,momentum
[HLL]

U∗,mass
[HLL]

. (A.3)

The two “weights” ωR and ωR are then computed,410

ωR =
SR − SM

SR − SL

and ωL =
SM − SL

SR − SL

. (A.4)

The solution densities are now determined with the help of the mass jump and the consistency
relation,







ρ∗L = ρ∗[HLL] − ωRβ

(

ρR − ρL +
pL − pR

c̄2

)

,

ρ∗R = ρ∗[HLL] + ωL β

(

ρR − ρL +
pL − pR

c̄2

)

︸ ︷︷ ︸

Ψmass

,
(A.5)

where the average sound speed reads,

c̄2 = max
[
c2L, c

2
R

]
. (A.6)

The solution momenta are similarly obtained,







(ρu)∗L = (ρu)∗[HLL] − ωRβ

(

ρR − ρL +
pL − pR

c̄2

)

SM ,

(ρu)∗R = (ρu)∗[HLL] + ωL β

(

ρR − ρL +
pL − pR

c̄2

)

SM

︸ ︷︷ ︸

Ψmomentum

.
(A.7)

The total energies solutions are then computed,415







(ρE)∗L = (ρE)∗[HLL] − ωRβ

[

ρ∗R

(

e∗R +
1

2
S2
M

)

− ρ∗L

(

e∗L +
1

2
S2
M

)]

,

(ρE)∗R = (ρE)∗[HLL] + ωL β

[

ρ∗R

(

e∗R +
1

2
S2
M

)

− ρ∗L

(

e∗L +
1

2
S2
M

)]

︸ ︷︷ ︸

Ψenergy

,
(A.8)

where ρ∗R and ρ∗L are given by Eq. (A.5) and e∗R and e∗R are provided by,

{

e∗L = eL − p∗ (v∗L − vL) ,

e∗R = eR − p∗ (v∗R − vR) ,
(A.9)
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where v∗L = 1/ρ∗L and v∗R = 1/ρ∗R and,

p∗ = pL + c̄2 (ρ∗L − ρL) = pR + c̄2 (ρ∗R − ρR) . (A.10)

The intermediate solution states are then fully determined for the Euler equations. They are
computed upon the HLL solution with the help of the consistency relation and the jump vector,

{

U∗

L [RSIR] = U∗

[HLL] − ωRΨ,

U∗

R [RSIR] = U∗

[HLL] + ωLΨ.
(A.11)

The various fluxes are finally computed through the Rankine-Hugoniot relations, according to420

the sign of SM ,

{

F∗

R = FR + SR (U∗

R −UR) ,

F∗

L = FL + SL (U
∗

L −UL) .
(A.12)

The flux solution is then sampled according to the procedure,

F∗ =







FL if SL > 0,

F∗

L if SL < 0 and SM > 0,

F∗

R if SM < 0 and SR > 0,

FR otherwise.

(A.13)
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