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Abstract

In mammals, goal-directed and planning processes support flexible behaviour usable to
face new situations or changed conditions that cannot be tackled through more efficient
but rigid habitual behaviours. Within the Bayesian modelling approach of brain and
behaviour, probabilistic models have been proposed to perform planning as a
probabilistic inference. Recently, some models have started to face the important
challenge met by this approach: grounding such processes on the computations
implemented by brain spiking networks. Here we propose a model of goal-directed
behaviour that has a probabilistic interpretation and is centred on a recurrent spiking
neural network representing the world model. The model, building on previous
proposals on spiking neurons and plasticity rules having a probabilistic interpretation,
presents these novelties at the system level: (a) the world model is learnt in parallel
with its use for planning, and an arbitration mechanism decides when to exploit the
world-model knowledge with planning, or to explore, on the basis of an entropy-based
confidence on the world model knowledge; (b) the world model is a hidden Markov
model (HMM) able to simulate sequences of states and actions, thus planning selects
actions through the same neural generative process used to predict states; (c) the world
model learns the hidden causes of observations, and their temporal dependencies,
through a biologically plausible unsupervised learning mechanism. The model is tested
with a visuomotor learning task and validated by comparing its behaviour with the
performance and reaction times of human participants solving the same task. The
model represents a further step towards the construction of an autonomous architecture
bridging goal-directed behaviour as probabilistic inference to brain-like computations.

Author summary

Goal-directed behaviour relies on brain processes supporting planning of actions based
on the prediction of their consequences before performing them in the environment. An
important computational modelling approach of these processes sees the brain as a
probabilistic machine implementing goal-directed processes relying on probability
distributions and operations on them. An important challenge for this approach is to
explain how these distributions and operations might be grounded on the brain spiking

December 2, 2019 1/28

.CC-BY 4.0 International licensenot certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which wasthis version posted December 6, 2019. . https://doi.org/10.1101/867366doi: bioRxiv preprint 

https://doi.org/10.1101/867366
http://creativecommons.org/licenses/by/4.0/


neurons and learning processes. Here we propose a hypothesis of how this might happen
by presenting a computational model of goal-directed processes based on artificial
spiking neural networks. The model presents three main novelties. First, it can plan
even while it is still learning the consequences of actions by deciding if planning or
exploring the environment based on how confident it is on its predictions. Second, it is
able to ‘think’ alternative possible actions, and their consequences, by relying on the
low-level stochasticity of neurons. Third, it can learn to anticipate the consequences of
actions in an autonomous fashion based on experience. Overall, the model represents a
novel hypothesis on how goal-directed behaviour might rely on the stochastic spiking
processes and plasticity mechanisms of the brain neurons.

Introduction 1

In mammals, the acquisition and consolidation of instrumental behaviour involves two 2

sets of processes, one underlying flexible goal-directed behaviour, used in particular to 3

find solutions to new problems or face changing conditions, and the other one related to 4

habits, forming stimulus-response behaviour used to efficiently but inflexibly face 5

familiar conditions [1–3]. As also highlighted in the computational literature [4], 6

goal-directed processes are model based ; that is, they rely on an internal representation 7

of the external world (world model) to internally simulate (planning) the consequences 8

of actions, or action sequences, usable to achieve desired world states (goals) before 9

executing them in the environment [4–7]. When the agent has a model of the relevant 10

part of the world and has to accomplish a new goal, goal-directed behaviour allows it to 11

solve the task on the basis of planning and the world model. This thanks to the fact 12

that the world model represents the general dynamics of the world, in particular how it 13

responds to the agent’s actions, and so it can be used to pursue any goal (in particular, 14

goal independent). The simulated achievement of the new goal might be possibly 15

marked by an internal reward [8]. To an external observer the agent appears to solve 16

the new task ‘on the fly’ or ‘by ‘insight’. Instead, habitual behaviour is model free, in 17

the sense that it relies on actions directly triggered by stimuli (habits) and does not 18

require a world model anticipating their outcomes [4, 6, 9]. Habits are task dependent as 19

they rely on stimulus-responses associations that can lead the agent to specific desired 20

world states. Given a new desired state, the agent thus needs a repeated experience of 21

such state to discover and learn by trial and error the new stimulus-response 22

associations leading to it. 23

When a goal-directed system encounters a new task that involves an unknown part 24

of the environment, or a part of the environment that changed, it first needs to learn a 25

model of it (or to update the existing model) before using it for planning. In this 26

respect, goal-directed behaviour involves two subsets of processes, which tend to 27

characterise two successive phases when a new problem or a changed environmental 28

condition are faced. The first subset of processes are directed to the exploration of the 29

environment to form the internal model of it, while the second subset of processes are 30

directed to the exploitation of the acquired knowledge to plan and execute actions 31

successfully accomplishing the desired goal [10, 11]. Here we consider the early phases of 32

the solution of a new task, involving either a new environment or a new goal, and hence 33

we focus on goal-directed behaviour and its exploration/exploitation processes. 34

In brain, goal-directed behaviour relies on ventral/associative basal ganglia and 35

frontal cortex supporting the anticipation of the world dynamics and action 36

consequences; instead, habitual behaviour relies on motor basal ganglia and 37

sensorimotor/premotor cortices able to acquire stimulus-response associations by 38

reinforcement learning [9, 12–14]. The brain processes underlying goal-directed 39

behaviour have been interpreted within different computational frameworks. A current 40
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influential view of brain, rooted in Helmholtz’ pioneering contributions on 41

perception [15], considers it a probabilistic or Bayesian machine that copes with the 42

uncertainties of the world by representing it in terms of probability distributions and 43

probability inferences on them pivoting on the Bayes rule [16,17]. This view of brain 44

has been progressively extended to cover all aspects of cognition, from perception to 45

action and decision making (e.g., [18, 19]). 46

Within this framework, it has been proposed that brain also implements 47

goal-directed behaviour and planning through probabilistic representations and 48

inferences, and this has been shown with specific models (e.g., [20–22]). These models 49

rely on various probabilistic processes to represent the world, some of which are shown 50

in Fig 1 through their corresponding graphical models. 51

Fig 1. Graphical models of some probabilistic models usable to represent
the dynamics of the world in planning systems. Nodes represent probability
distributions and directional links represent dependencies between conditional
probabilities. (a) Hidden Markov Models (HMM): these are formed by state nodes ‘s’
and observation nodes ‘o’. (b) Partially Observable Markov Decision Processes
(POMDP): these are also formed by action nodes ‘a’ and reward nodes ‘r’ (different
versions of these model are possible based on the chosen nodes and their dependencies).
(c) The HMM considered here, where both states and actions are considered as
‘observed events’ by the planner.

Hidden Markov Models (HMM) are one important means used to represent the 52

world dynamics [23,24]. A HMM assumes that the agent cannot directly access the 53

states of the world (they are ‘hidden’ to it) but only infer them on the basis of noisy 54

information from sensors. The model thus internally represents the states of the world 55

as probability distributions over possible hidden causes of observations, in particular 56

with a different distribution for each time step. The probability distribution over states 57

at each time step is assumed to depend only on the state of the previous time step 58

(Markov property). The model also internally represents the probability distribution 59

over the possible observations and assumes that it depends only on the current state. 60

An agent can use a HMM representing the world dynamics to internally simulate 61

possible sequences of states that the environment might traverse; the model is also 62

generative in the sense that it can simulate the possible observations caused on the 63

sensors by the internal activation of the internal representatios of the world states. 64

Partially Observable Markov Decision Processes (POMDP) again assume that the 65

agent can access the states of the world only indirectly through noisy sensors (they are 66

‘partially observable’) but also consider the agent’s behaviour, in particular as 67

probability distributions over actions at different times. The probability distributions 68

over actions are conditioned on internal representions of states (thus forming 69

probabilistic policies), and over perceived rewards. Rewards are considered as additional 70

observations and as such are assumed to depend on other events such as the world 71

states (different models can vary on their assumptions on rewards). POMDPs can be 72

used to implement planning by conditioning probability distributions on a high reward 73

(or a reached goal state), and then by inferring the probability distributions of the 74
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state-action sequences causing them with a high likelihood (planning as 75

inference [20–22]). 76

Probabilistic models have the strength of capturing the uncertain nature of the 77

world and the possible probabilistic representations and inferences that the brain might 78

employ to represent them. However, their use as models of the brain, and not only of 79

behaviour, encounters an important challenge; namely, the fact that the probability 80

distributions that these models commonly use directly involve abstract/high-level 81

aspects of cognition and behaviour, such as the probability distribution over 82

world-states, actions, and observations, and so this opens up the problem of explaining 83

how such distributions and the inferences on them could rely on the firing of brain 84

neurons [17,25,26]. 85

One important possibility is that the needed probability distributions could rely on 86

the probability distributions of spikes of neurons, sampled by the actual spikes, and that 87

the connections between neural populations, undergoing experience-dependent plasticity, 88

supports the conditional probabilities underlying the needed probabilistic 89

inferences [21,27–30]. An interesting approach to implement this idea, on which we 90

build here, proposes mechanisms to ground important building blocks of probabilistic 91

models on spiking neural networks similar to those of the brain, on some typical 92

connectivity patterns of cortex, and on biologically plausible plasticity rules [24, 31–33]. 93

This approach proposes how spiking networks and spike-timing dependent plasticity 94

(STDP) could model the learning of hidden causes of observations [32]. In particular, 95

the spikes of neurons in different trials can represent probability distributions over 96

internal representations of stimuli and a typical connectivity pattern found in cortex 97

(the winner-take-all pattern relying on lateral inhibition), and STDP, can lead to the 98

emergence of circuits able to identify the hidden causes of observations. Moreover, 99

STDP can also support the formation of probabilistic dependencies between such 100

hidden causes, capturing their relations in time. This can instantiate an HMM usable to 101

internally represent the perception of sequences of events [24,32,33]. 102

Recently, mechanisms as these have been used in recurrent spiking neural network 103

models to implement planning [34–36]. These models are the state-of-the-art in the 104

realisation of probabilistic models of planning grounded on biologically plausible spiking 105

neural networks. In these models, a two-dimensional neural map of spiking neurons 106

with lateral connectivity is used as a model of the world, with the world consisting in a 107

scenario involving navigation or robot motion tasks. The lateral connectivity network 108

implementing the model of the world, pre-trained with supervised learning, encodes 109

information about which locations in space are linked to which other locations. The 110

unconditioned spikes of the world model sample the prior probability of the state 111

sequences followed by the agent if it explores the environment randomly, and of the 112

rewards associated to the sequence (e.g., a reward of 1 when the target state is 113

achieved). A second neural layer of spiking neurons that encodes ‘context’, intended as 114

the task target state (e.g., in a navigation task), has all-to-all connections to the world 115

model and can condition the probability distribution expressed by it. The neural 116

solution to the inference problem relies on the update of the connections linking the 117

context to the world model so that the distance (Kullback-Leibler divergence) between 118

the prior probability distribution of the sequences converges to the desired posterior 119

probability maximising the reward. The actions needed to follow the state sequences 120

sampled from the posterior distribution are inferred, after the sampling, by inverse 121

kinematics, either offline [35] or using a dedicated layer [36]. 122

Here we propose a neural spiking architecture for probabilistic planning that builds 123

on previous contributions, overcomes some of their limitations, and introduces some 124

novelties relevant for modelling biologically plausible planning. At the low level, the 125

model relies on the neural mechanisms and the unsupervised learning plasticity rule 126
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proposed in [24] (plus a reinforcement learning rule) to implement a HMM with a 127

spiking recurrent neural network. A recurrent spiking neural network to implement the 128

world model and planning was also used in [35,36]. With respect to these previous 129

models, our architecture presents a number of structure and functioning novelties at the 130

system level. 131

A first novelty of the architecture is that the learning of the world model is 132

intermixed with its use in planning, as it is required by the fact that goal-directed 133

behaviour often tackles tasks involving new or changed parts of the world. This implies 134

the non-trivial challenge that planning must be performed on the basis of a partial 135

model of the world. To face this problem, the model uses an arbitration component, 136

inspired by the mechanisms proposed in [37,38] for the arbitration between 137

goal-directed and habitual control, that decides between the exploitation of the world 138

model knowledge and the exploration of the environment. To this purpose, the 139

arbitration measures the uncertainty of the world model based on the entropy of its 140

probability distributions. When this uncertainty is low, planning continues, otherwise 141

the exploration component selects an action based on previous experiences or randomly. 142

A second novelty of the architecture is that the world model is a HMM that 143

‘observes’, learns, and predicts sequences formed not only by states but also actions. 144

These actions are ‘observed’ by the world model when executed in the world after being 145

selected by the planning process or the exploration component. This allows the model 146

to predict states and actions through the same neural probabilistic generative 147

mechanisms. Given the observation of the current world state, the world model 148

produces a probability distribution over the state-action sequences that favour the event 149

sequences actually observed in the world. Each sampling hence tends to select one of 150

these sequences. The world model however also receives connections from a neural 151

representation of the pursued goal. When the architecture experiences a successful 152

achievement of the goal in the environment, those connections are updated so that the 153

likelihood of selecting the sequence leading to the goal progressively increases. 154

A third novelty of the architecture is that the lateral connections within the 155

world-model neural network, instantiating the probabilistic time dependencies between 156

the hidden causes of the HMM, are learned in an unsupervised fashion, in particular on 157

the basis of the STDP mechanism proposed in [24]. This is an advancement with 158

respect to biological plausibility of the architecture, with respect to using supervised 159

learning as done in previous spiking network models of goal-directed behaviour [35,36], 160

as the system is able to autonomously learn internal representations of the observed 161

events and event-sequences without the need of an external ‘teacher’ suggesting them. 162

A last contribution of this work is the use of the architecture to reproduce and 163

interpret the results of the experiment presented in [12] where human participants learn 164

to solve a visuomotor learning task. This allowed the validation of the model, in 165

particular to check if the learning processes of the world model lead to match human 166

performance, and if the arbitration mechanism employing a variable time planning lead 167

to reproduce the reaction times exhibited by human participants. This target 168

experiment was also investigated by the model proposed in [38]. Although this model 169

did not aim to bridge probabilistic modelling to neural mechanisms as here, it used an 170

interesting mechanism of arbitration between goal-directed and habitual behaviour 171

based on entropy as done here. 172

The rest of the paper is organised as follows. Section 1 describes the model 173

architecture and functioning and the visuomotor learning task used to validate it. 174

Section 2 presents and discusses the results of the model tests, in particular by 175

comparing the model performance and reaction times with those of human participants 176

of the visuomotor task, and by showing the mechanisms that might underlie such 177

performance. Finally, Section 3 draws the conclusions. 178
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1 Materials and methods 179

This section explains the model architecture and functioning and the visuomotor task 180

used to test it [12]. Although the main objective of this work is to propose the novel 181

spiking neural model of goal-directed behaviour, the section starts by illustrating the 182

visuomotor task to use it as an example while illustrating the model. 183

1.1 Target experiment 184

In the task proposed in [12], the participants are supposed to discover the correct 185

associations between three different stimuli and three, out of five, possible motor 186

responses. During the experiment, three different colours are projected on a screen in a 187

pseudo-randomised order, in particular through sixty triplets each involving each colour 188

once in a random order. After each colour perception, the participants have to press one 189

of the five buttons of a keyboard with their right hand. Once the action is performed, a 190

feedback on the screen informs the participants if the association between the colour 191

and the performed action was correct or wrong. Unbeknown to the participants, a fixed 192

number of errors is used to dynamically consider the action performed at a certain time 193

steps as correct for the particular colour: the correct action for S1 comes after one error 194

(so at the second attempt), for S2 after three errors (fourth attempt), and S3 after four 195

errors (fifth attempt). The activity of the participants is supposed to be organised in 196

two phases: an initial exploratory phase where they the correct associations and a 197

second exploitation phase where should repeat the found correct associations until the 198

end of the task (Fig 2). The participants are thus not supposed to explore all the 199

possible colour-action associations since their objective is to discover and exploit one 200

correct association per colour. 201

Fig 2. The visuomotor learning task used to validate the model. Three
colour stimuli are presented to the participants in a pseudo-random order, in particular
in triplets containing all three colours once in a random order. The action consists in
pressing one out of five possible buttons with the right hand. The figure shows four
triplets of an ideal participant that never repeats an error for a certain colour and does
not forget a found correct action. The colour receiving the first action in the second
triplet is marked as the first stimulus (S1), and such action is considered the correct one
for it. The colour different from S1 receiving the first action in the fourth triplet is
marked as the second stimulus (S2), and such action is considered the correct one for it.
The colour different from S1 and S2 receiving the first action in the fifth triplet is
marked as the second stimulus (S3), and such action is considered the correct one for it.

1.2 Goal-directed behaviour model: overview of the 202

architecture and functioning 203

1.2.1 Architecture 204

The model is composed of a spiking neural network for planning formed by four 205

different layers, a spiking neural network for exploration formed by two neural layers, 206

and an arbitration component. Fig 3 gives an overview of the structure and functioning 207
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of the architecture. The planning neural network instantiates a HMM and is formed by 208

four layers of neurons now considered in more detail. 209

Fig 3. Components and information flow of the spiking neural-network
architecture. Blue arrows represent information flows travelling stable connections
between units while red arrows represent information flows travelling connections that
are updated in the considered phase. The main loop of a single trial can be divided in
four different phases: planning, (possibly) exploration, action execution, and learning
(see text).

Input layer. The input layer contains ten neurons, three encoding the stimuli 210

(colours), five encoding the actions (different possible finger presses), and two encoding 211

the outcome (positive or negative feedback). The input layer sends all-to-all afferent 212

connections to the neurons of the associative layer. 213

Goal layer. The goal layer can be composed of a variable number of neurons 214

corresponding to the goals to achieve (two goals in the visuomotor task: ‘obtain a 215

positive feedback’ and ‘obtain a negative feedback’). When the agent commits to a goal 216

it activates its corresponding unit on the basis of internal mechanisms not simulated 217

here. Goal neurons send all-to-all efferent projections to the associative neurons. 218

Associative layer. The associative layer, forming the core of the model, is composed 219

of 400 neurons, all connected to each other but without self-connections. The 220

associative layer receives the mentioned afferent connections from the input and goal 221

layers, and sends all-to-all efferent connections to the neurons of the output layer. 222

Output layer. As the input layer, the output layer is composed of ten neurons each 223

one representing one of the stimuli, actions, and outcomes of the task. The output layer 224

receives the mentioned afferent connections from the associative layer. 225

Together the four layers instantiate a neural HMM implementing the system’s world 226

model used for planning. In particular, the input and output layer together form the 227

observation part of the HMM, and have an identical structure. Given the one 228

directional nature of brain connections, we used the two layers to implement separately 229

the two functions played by the observation part of the HMM, namely the input from 230

the external environment and the possible generative reconstruction of such input based 231

on internal causes. The associative layer implements the probability distribution over 232

the hidden causes of the observations and the probabilistic temporal dependencies 233

between them. The goal layer can condition the latter distributions to possibly increase, 234

with learning, the probability of sampling simulated stimulus-action-outcome sequences 235

that lead to the desired goal. 236
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Alongside the planning components, the system was formed by the following 237

additional components used for exploration and arbitration. 238

Exploration component. This component is also formed by two layers of spiking 239

neurons: (a) the input layer encodes the combinations of stimuli and goals (3× 2 240

neurons corresponding to 3 colours and 2 goals), and (b) the action layer composed of 241

five neurons (the five possible finger presses). 242

Arbitration component. This component decides when to plan, to explore, or to act 243

in the world. Currently the component has not a neural implementation. The decision 244

is made on the basis of the knowledge of the world model, measured as the average 245

entropy of its probability distribution during a planning cycle. When entropy is lower 246

than a threshold, and a goal has not been found, planning continues, whereas if a goal 247

has been found the corresponding action is performed in the environment. If entropy is 248

above the threshold then the control is passed to the exploration component that selects 249

the action to perform in the world. 250

1.2.2 Functioning 251

The functioning of the model is summarised in Algorithm 1. The model experiences 252

multiple trials of the task: 60 (20 colour triplets) with the goal set to ‘achieve a positive 253

feedback’ (this reflects the target experiments) and 60 (other 20 colour triplets) with 254

the goal set to ‘achieve a negative feedback’ (we shall see these additional trials are used 255

to produce a prediction of the model). A certain number of discrete time steps of the 256

simulation (here 15) is assumed to correspond to one trial duration. Each trial involves 257

four phases of functioning of the architecture: the planning phase, (possibly) the 258

exploration phase, the action execution phase, and the learning phase. 259

At the beginning of each trial, and of the planning phase, the system observes a 260

colour. During the planning phase, only the input units encoding the colour are 261

activated, while the actions and feedback units are activated in a later phase. During 262

each trial, a variable number of planning cycles is performed. A planning cycle 263

represents the internal simulation of the trial events (colour, action, ation-outcome). 264

The input layer is activated with the observed colour for a certain portion of the 265

planning cycle (here 1/3 of its duration lasting 15 steps: for simplicity one planning 266

cycle is assumed to last a number of steps as the actual trial, as done in [24]). 267

During one planning cycle, the arbitration mechanism operates as follows. The 268

sequence sampling causes a certain activation of the neurons of the associative layer and 269

a certain entropy averaged over the sampling steps. This entropy is considered a 270

measure of the uncertainty of the world model. If this uncertainty is higher than a 271

threshold, the arbitration component stops planning as not enough confident on the 272

knowledge of the world model. Instead, if the uncertainty is lower than the threshold 273

the arbitration component checks if the sampled sequence produced a state (read out in 274

the output layer) that matched the goal, and if this is the case it stops planning and 275

performs the action in the environment. Instead, if the arbitration component is 276

confident on the world model but the sampling did not produce a sequence that 277

matched the goal, it performs two operations before starting a new planning cycle. 278

First, it updates the goal-associative connections so as to lower the goal-conditioned 279

probability of the wrong sampled sequence. Second, it lowers the entropy threshold of a 280

certain amount, thus ensuring that with time the probability of terminating the 281

planning processes increases and the system does not get stuck in planning. 282

After planning terminates, if the system has not found an action that leads to a goal 283

matching, the action is produced by the exploration component. The action selected 284

either by the planning process or by the exploration component is performed in the 285

environment. 286
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Algorithm 1 Pseudo-code of the model functioning.

1: loop VisuoMotorTrials ∈ {1, 2, ... , 120}
2: if (VisuoMotorTrials ≤ 60) then Goal ← AchievePositiveFeedback
3: else Goal ← AchieveNegativeFeedback

4: EntropyThreshold ← EntropyMax, Planning ← TRUE, Action = NULL
5: Input ← Observe(Environment)
6: while Planning do . Planning
7: ForwardSampling(Input)
8: Entropy ← ComputeEntropy(AssociativeLayerActivation) . Arbitration
9: if (Entropy > EntropyThreshold) then

10: Planning ← FALSE
11: else
12: if (SampledOutcome = Goal) then
13: Action ← SimulatedAction()
14: Planning ← FALSE
15: else
16: UpdateGoalAssociationConnections()
17: LowerEntropyThreshold()

18: if (Action = NULL) then . Exploration
19: Action ← ComputeExplorationAction()

20: PerformActionInEnvironment() . Action
21: Outcome ← Observe(Environment)
22: TrainWorldModel(Input, Action, Outcome) . Learning
23: if (Outcome = Goal) then
24: UpdateGoalAssociationConnections()
25: else
26: TrainExplorationComponent(Input, Action, Outcome)
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After action execution, the world model observes the feedback from the environment 287

and also the action that caused it. Based on the observation of the stimulus (colour), 288

action (finger press), and action-outcome (positive or negative feedback) from the 289

environment, the world model learns. In particular, it learns the internal representation 290

(hidden causes) of the observations (input-association connections), the possible time 291

dependencies between them (association-layer internal connections), and the generation 292

of the observations (association-output connections). Moreover, if the action led to 293

actually reach the goal it increases the goal-conditioned probability of the sampled 294

successful sequence (goal-associative connections). Instead, if the action failed only the 295

exploration component is trained to avoid to produce the performed action in the 296

experienced input-goal condition. 297

Note that when a trial starts, the architecture performs a planning cycle to evaluate 298

entropy: this hypothesis is based on the fact that the task is novel. In a more general 299

case where tasks could be familiar, a common habit/planning arbitration process might 300

evaluate if a habit is available before triggering planning and the planning/exploration 301

arbitration process considered here. 302

Note also that in case of goal-failure the goal-associative connections are updated 303

during planning to exclude the multiple sampling of the same wrong sequence and 304

action; instead, in the case of goal-achievement such connections are updated after the 305

action is successfully performed in the world, rather than during planning, to avoid a 306

training based on the possible false-positive errors of planning (false-negative errors are 307

less likely during planning as the world model learns on the basis of the ground-truth 308

information from the world). The exploration component is instead trained after the 309

failure of the action executed in the world to avoid multiple explorations of actions 310

found to be wrong (this hypothesis is inspired by the ’inhibition-of-return’ mechanism of 311

visual exploration, leading to exclude from exploration already explored items [39]); the 312

component is instead not trained in case of success as this would amount to habitual 313

learning not possible in few trials. These hypotheses were isolated through the search of 314

the conditions for the correct reproduction of the target human data of the visuomotor 315

task while fulfilling the challenging constraint that planning has to take place while 316

learning the neural world model. 317

Based on these mechanisms, at the beginning of the visuomotor test the model tends 318

to sample random stimulus-action-outcome sequences because the world model has no 319

knowledge. The arbitration component thus quickly passes the control to the 320

exploration component which decides which action to execute, and this is performed in 321

the environment. With the accumulation of experience trials, the world model improves 322

by learning the hidden causes of observations (colours, actions, feedback) and the time 323

dependencies between them. This leads the arbitration component to measure a higher 324

confidence in the world model, so planning continues and samples with a higher 325

probability (hidden causes of) colour-action-feedback sequences that actually exist in 326

the world. When one of these sequences leads to an action that predicts a goal 327

achievement in the output layer, and the action is actually successful when performed in 328

the environment, this leads to increase the goal-conditioned probability of sampling such 329

sequence so that the next time the same colour is encountered the sequence is readily 330

selected by the planning process. 331

1.3 Goal-directed behaviour model: detailed functioning 332

1.3.1 The hidden Markov model represented by the world model 333

In this section we illustrate the aspects of a probabilistic HMM that are implemented by 334

the spiking neural network world model. The HMM considers the hidden causes of 335

world states, ht, and observations of them, ot, as random variables at the time steps 336
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t ∈ {0, 1, ..., T} forming the sequences H = {h0, h1, ..., hT } and 337

O = {o0, o1, ..., oT }. The joint probability of these sequences can be expressed and 338

factorised as follows given the assumptions on the probability independencies of the 339

model shown in Fig 1A: 340

p(H,O) = p(h0) · p(o0) ·
T∏
t=1

[p(ot|ht) · p(ht|ht−1)] (1)

This formula highlights the two key elements of the HMM, namely the generative model 341

of how the world states (hidden causes) cause the observations, p(ot|ht), and the 342

prediction model of how a world state causes the following state p(ht|ht−1) (in the 343

neural implementation of the HMM we will equivalently consider p(ht|ot−1) and 344

p(ot|ht−1) to follow the general rule of the dependency of the state of any part of the 345

neural network from the state of other neural parts at the previous time step). 346

The HMM has parameters θ that are adjusted on the basis of collected data 347

(observations) so that the probability distribution p(O|θ) converges towards the 348

empirical distribution from the world, P ∗(O): 349

θ∗ = arg min
θ

DL(p∗(O)||p(O|θ)) (2)

where DL(.||.) is the Kullback-Leibler divergence between the two distributions and θ∗ 350

are the searched optimal parameter values. This problem cannot be solved in a close 351

form and so θ∗ are commonly searched numerically, in particular through an 352

expectation-maximisation (EM) algorithm. Here we refer to how this is done in 353

stochastic versions of HMMs [24,40], most similar to the neural implementation of the 354

HMM considered here. For these problems, the EM algorithm converges towards the 355

solution by alternating an estimation step (E-step) and a maximisation step (M-step): 356

the E-step samples a sequence of hidden causes H ′ based on the posterior distribution 357

p(H|O′, θ) dependent on the actual observations (O′); the M-step adjusts θ to increase 358

p(H ′|O′, θ). In the E-step, the sampling of H ′ given O′ can be approximated by forward 359

sampling [41], i.e. by sampling the ht distributions in sequence, staring from h0, given 360

the {o′0, o′1, , ... o′t} values observed until t. 361

1.3.2 The spiking neural-network world model 362

The neural implementation of the world model instantiating the HMM is based on two 363

learning processes. The first learning process, involving the input-associative 364

connections, expresses and learns the hidden causes of observations as probability 365

distributions of the spikes of the neurons of the association component at different time 366

steps. The second learning process, involving the connections internal to the associative 367

component, expresses and learns the temporal dependencies between the hidden causes 368

of observations, reflecting the temporal dependencies between the states of the world, as 369

conditional probability distributions of the spikes of the neurons of the association 370

component at succeeding time steps. 371

The membrane potential of each neuron of the associative layer reflects the 372

activation that would result from the typical connectivity pattern of cortex and other 373

areas of brain, formed by neurons that reciprocally inhibit through inhibitory 374

interneurons. This connectivity pattern tends to keep constant the overall firing rate of 375

the layer. More in detail, the membrane potential uk of a neuron of the model is: 376

uk(t) = (ûk(t)/τ)− i(t) (3)

where τ is a scaling factor, i(t) is the common inhibition received by all neurons caused 377

by the inhibitory interneurons to which they project, and ûk(t) is the total activation 378
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received from other neurons: 379

ûk(t) =
I∑
i=1

wki · si(t− 1) +
G∑
g=1

wkg · sg(t− 1) +
A∑
a=1

wka · sa(t− 1) + n (4)

where wki are the input-associative connection weights, wkg are the goal-associative 380

connection weights, wka are the internal associative connection weights, si(t), sg(t), and 381

sa(t) are the incoming spike signals (s ∈ 0, 1) from the neurons of respectively the 382

input, goal, and associative layer, and n is a Gaussian noise component with a standard 383

deviation ν. 384

We then assume, as in [42], that the firing rate vk(t) of a neuron k, reflecting its 385

spiking probability, is exponentially dependent on the membrane potential: 386

vk(t) = v · euk(t) (5)

where v is a constant scaling the firing rate. This implies the following dependency of 387

the neuron firing rate on the activation received by all neurons of the layer: 388

vk(t) = v · e(ûk(t)/τ)−i(t) = v · e
ûk(t)/τ

ei(t)
= v · eûk(t)/τ∑L

l=1 e
ûl(t)/τ

(6)

where i(t) was assumed to be: 389

i(t) = ln

L∑
l=1

eûl(t)/τ (7)

While the model on which we built assumed a continuous time and an inhomogeneous 390

Poisson process to produce the actual spikes of the layer [24], we considered a discrete 391

time, a fully Markov dependence between succeeding events, and a constant firing rate 392

at each time step, assumed to be v = 1 without loss of generality. These assumptions 393

simplified the analysis of the system and did not alter the core functioning of the model, 394

in particular with respect to the effects of the core unsupervised learning rule illustrated 395

below. With these assumption, Eq 6 becomes a soft-max function where
∑K
k=1 v(k) = 1 396

is the layer constant total firing, and v(t) can be interpreted as v(t) = pt(k), with pt(k) 397

being a categorical probability distribution indicating the likelihood that the neuron 398

with index k is the one to fire a spike at time t while the other neurons remain silent. 399

The neurons of the output layer, receiving afferent connections from the associative 400

layer, have the same activation as the neurons of the associative layer. 401

The weights of the connections linking the input-associative layers, the associative 402

neurons between them, and the associative-output layers are updated through a 403

Spike-Timing Dependent Plasticity (STDP) rule [43–46]. In particular, we used the 404

following STDP learning rules from [24,35] to update a connection weight wpost,pre 405

linking the pre-synaptic neuron pre to the post-synaptic neuron post: 406

∆wpost,pre(t) = ζ · spost(t) ·
(
e−wpost,pre · spre(t− 1)− c

)
(8)

where ζ is a learning rate parameter, ∆wpost,pre is the size of the connection weight 407

update, spre(t− 1) and spost(t) is the spike activation (s ∈ {0, 1}) of respectively the 408

pre-synaptic neuron in the current time step and post-synaptic neuron in the last time 409

step, and c is a constant (c ∈ [0, 1]). The formula operates as follows. The rule updates 410

the weight only when the post-synaptic neuron fires (spost(t) = 1). When this happens, 411

but the pre-synaptic neuron does not fire (spre(t− 1) = 0), then wpost,pre decreases of 412

−ζ · c. This leads the post-synaptic neuron to form negative connections with all the 413

pre-synaptic neurons that tend to not fire before it fires. Instead, if the pre-synaptic 414
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neuron fires before the post-synaptic neuron (spre(t− 1) = 1), then wpost,pre increases if 415

c < e−wpost,pre and decreases otherwise. This implies that wpost,pre will tend to converge 416

to the positive attractor point w∗post,pre = −ln(c) reached when e−wpost,pre = c. Overall, 417

for a given neuron the rule tends to form positive incoming connections from neurons 418

that fire just before it fires, and negative connections from all other neurons. 419

The connections that form are the means through which the system implements 420

conditional probabilities. For example, initially the associative units k, each 421

representing possible hidden causes of observations, tend to fire with a certain prior 422

probability distribution, say p(k). The formation of input-associative connections allows 423

an observation i to generate the posterior conditional probability distribution p(k|i) 424

that for example implies an increased probability of selection of the hidden cause k. 425

Within the associative network, the learning rule leads to form a connectivity that 426

supports a sequential activation of the neurons encoding the hidden causes of the 427

observations, where the sequence reflects the temporal order in which the observations, 428

reflecting the world states, are experienced by the HMM. The reason is that once the 429

hidden causes are formed, based on the input-associative connections, then they tend to 430

fire in sequence under the drive of the observations. As a consequence, the learning rule 431

leads each associative neuron to connect with the associative neurons that fired before it 432

and to form negative connections with those that did not fire. In this way, the 433

connections within the associative network tend to form chain-like neural assemblies. 434

These connections are hence able to represent the temporal dependencies between 435

hidden causes, e.g. between a and k corresponding to two succeeding observations, as 436

conditional probabilities p(k|a). Importantly, if the system observes different events 437

following the initial observation of the trial (e.g., different actions and different 438

outcomes after a certain initial colour), the world model will exploit its stochastic neural 439

processes to represent such possible alternative sequences of events. This is at the core 440

of the architecture’s capacity to internally simulate alternative courses of actions and 441

events and hence to plan in a goal-directed manner. 442

The same learning rule is also used to train the associative-output connections. 443

Initially, the output layer expresses a probability distribution, say p(o), that tends to be 444

uniform and so when sampled generates unstructured observations. With learning, the 445

world model strengthens some connections between the spiking sequences sampled 446

within the associative network and the observations activating the output layer. When 447

the world model samples an internal sequence within the associative network, this leads 448

to generate the observations on the basis of the reconstruction probability p(o|k). 449

Overall, the neural HMM plus the output layer act as an auto-encoder returning as 450

output the input, and able to capture in its internal states the hidden causes of 451

observations: this is similar to what happens in variational auto-encoder [47], a 452

probabilistic version of auto-encoder [48], with the difference that the model considered 453

here generates sequences of patterns rather than single patterns. In this respect, the 454

output layer acts similarly to the reading-out layer of a dynamic reservoir 455

network [49,50] which is however deterministic. 456

When the planning process has to generate an action to perform, or a predicted 457

feedback to compare with the goal, the generated event at the output layer is considered 458

to be the one that fired the most during the planning cycle. If the system had to 459

generate sequences of events involving multiple actions and predicted states, one should 460

consider other ’reading out’ mechanisms, for example that an event is generated each 461

time the unit encoding it fires a minimum number of spikes in sequence. 462

The goal-associative connection weights are updated on the basis of the success or 463

failure to achieve the goal during planning or when the action is performed in the 464

environment. In particular, the update is done on the basis of the following 465
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reinforcement learning rule: 466

∆whg = η ·m · ET ·
(
wmax − |whg|

wmax

)
(9)

where η represents the learning rate, m is the reward, equal to 1 if the sequence resulted 467

in a successful goal matching and −1 otherwise, ET is the Eligibility Trace, equal to 1 468

for units that have fired at least once during the planning cycle/trial and to 0 otherwise, 469

and wmax is the maximum absolute value that the weight can reach (wmax = 0.5). The 470

goal-associative connections allow the goal g to condition the probability distribution 471

over the hidden causes, p(k|i, a, g). With learning, this allows the goal to condition the 472

probability of the sampled hidden causes sequences so as to increase the likelihood of 473

those that involve the correct action. Moreover, when the goal changes, the system is 474

able to modify the conditioned probability of the sequences so as to increase the 475

probability of sampling a new sequence, based on the same world model, achieving the 476

new desired goal. 477

1.3.3 Arbitration system 478

The arbitration component decides if continuing to plan or to pass the control to the 479

exploration component and/or perform the action selected by either the planning or the 480

exploration process. The component pivots these decisions on a key information, namely 481

an estimation of the level of knowledge of the world model for the given trial initial 482

observation (here the colour). This knowledge is related to the fact that the world 483

model has possibly learned some sequences of events (action-feedback) that might follow 484

the initial observation. A good level of knowledge means that the probability mass of 485

the distribution pt(k|i, a, g) during the planning cycle steps t is concentrated on few 486

possible hidden causes. The measure of this knowledge is in particular based on the 487

entropy of the probability distribution at each time step t: 488

Ht(k|i, a, g) = −
K∑
k=1

pt(k|i, a, g) · ln(pt(k|i, a, g)) (10)

and the maximum value of such entropy is Hmax = ln(K) corresponding to a uniform 489

probability distribution where each k neuron of the layer has the same probability of 490

firing p(k) = 1/K. The measure of the uncertainty H of the world model in a given 491

planning cycle lasting T time steps is in particular defined as: 492

H =
1

T

T∑
t=1

(
Ht(k|i, a, g)

Hmax

)
(11)

At the end of each planning cycle, the arbitration component computes H, compares 493

it with an entropy threshold HTh(t), compares the action-outcome z with the pursued g, 494

and selects one of three possible functioning modes of the architecture: 495

• H < HTh(t) and z 6= g. The goal-associative connections are updated and a new 496

planning cycle starts. 497

• H < HTh(t) and z = g. Planning stops and the action of the last planning cycle 498

that caused the anticipation of the goal is executed in the world (without 499

activating the exploration component). 500

• HTh(t) < H. Planning stops and control is passed to the exploration component. 501
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The entropy threshold decreases linearly at each planning cycle so that the 502

exploration component is eventually called if the planning process fails to match the 503

goal within a certain time: 504

HTh(t) = ε− (t · δ) (12)

where ε is the value to which the entropy threshold is set at the beginning of the trial 505

(and the planning process), and δ is its linear decrease. 506

The exploration component is a neural network formed by two layers. The first is an 507

input layer formed by 6 neurons encoding the elements of the Cartesian product 508

between the possible three colours and two goals. The second is an output layer formed 509

by 5 neurons representing the possible actions, receiving all-to-all connections from the 510

input layer. When the exploration component is called to select the action, the input 511

layer is activated according to the current colour-goal combination (hot-vector 512

activation), the activation potential of the second layer units is computed as usual as 513

the sum of the weighed inputs, and an action is chosen on the basis of a soft-max 514

function (Eq 6). When the action leads to a negative reward, the connection weights of 515

the component are updated using the same reinforcement learning rule used for the goal 516

layer (Eq 9). This leads to exclude actions that are not useful for the current state-goal 517

combination, thus fostering exploration. Note that an additional slow-learning 518

component similar to the exploration component might be used to model the formation 519

of habits in experiments involving long learning periods. 520

1.4 Search of the model parameters 521

The model functioning depends on seven important parameters, indicated in Tab 1. We 522

searched the best values of those parameters by fitting the model behaviour to the 523

corresponding data of the human participants. In particular, we randomly sampled and

Table 1. Parameters identified with the grid search technique. In particular,
parameter names, minimum and maximum range, and values found by the search.

Name Range min Range max Found value
STDP learning rate (ζ) 0.1 1.0 0.96

STDP threshold (c) 0.1 1.0 0.67
Planner learning rate (η) 0.001 1.0 0.008
Softmax temperature (τ) 0.01 0.1 0.02

Neural noise (ν) 0.01 0.1 0.02
Entropy max threshold (ε) 0.3 1.0 0.74

Entropy decrease (δ) 0.01 0.2 0.12

524

evaluated 100,000 parameter combinations. For each combination, we recorded and 525

averaged the behaviour of 20 ‘simulated participants’, in particular their performance in 526

the 20 trials with the stimuli S1, S2, and S3, and the average reaction times over colours 527

on the same trials (this because the original data on the reaction times of humans were 528

not separated). Such three performance datasets and one reaction-time dataset were 529

compared with the corresponding average data from 14 human participants through a 530

Pearson correlation coefficient Rd,m computed as: 531

Rd,m =
Cd,m√
Vd ∗ Vm

(13)

where Cd,m is the covariance between the data from humans, d, and data from the 532

model, m; Vd and Vm is their respective variance. In particular, the coefficient was 533

computed separately for the different data sets (performances and reaction times) and 534

then averaged. 535
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The range of the parameters explored by the search, and the best parameter values 536

that it found, are shown in Tab 1. The best parameter values, that had a correlation 537

coefficient of 0.72, were used in all the simulations illustrated here. 538

2 Results and Discussion 539

This section illustrates the behaviour and functioning of the model when tested with the 540

visuomotor learning task proposed in [12] and described in Sec 1.1. The reported results 541

refer to twenty replications of the simulations each representing a simulated participant 542

performing the task. The results are also discussed from the perspective of the current 543

state-of-the art on probabilistic and spiking neural-network models of goal-directed 544

behaviour. 545

2.1 Behavioural analysis 546

Fig 4 shows that the model exhibits a performance similar to the human participants. 547

The performance is in particular very similar to the humans’ one for the colours whose 548

correct action is found after one or three errors whereas it is slightly lower for the colour 549

whose correct action is found after four errors. 550

Once the model finds the correct action for one colour, when it encounters the same 551

colour again it reproduces the correct action with a high probability. The architecture 552

however takes more cycles to converge to such a high probability for S3 because the 553

planner has a larger number of wrong sequences and so has a higher probability of 554

wrongly anticipating a positive feedback. This problem is less impairing for S1, and in 555

part for S2, involving fewer wrong sequences during planning. 556

Fig 4. Comparison of the performance of the human and simulated
participants. The performance (y-axis) is measured as the proportion of correct
response over the trials (x-axis), separately for the three different colour stimuli (S1, S2,
S3). Curves indicate the values averaged over 14 human participants and 20 artificial
participants; error bars indicate the standard error. The data of human participants are
from [38].

The arbitration component decides to implement a different number of planning 557

cycles (each involving the generation of colour-action-feedback sequences) depending on 558

the knowledge stored in the world model. If a larger number of planning cycles is 559

performed, the reaction times of the architecture are considered to be longer. These 560

reaction times can be compared with those of the human participants (Fig 5). The 561

reproduction of the human reaction times is particularly interesting and challenging as 562

it has an inverted ‘U’ shape. 563

In the first trials, for each stimulus the entropy (uncertainty) of the world model is 564

high as the associative layer expresses a rather uniform probability distribution. Indeed, 565
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Fig 5. Comparison of the reaction times of the humans and simulated
participants. (A) Reaction times of human participants averaged over S1, S2, and S3
(y-axis) for the ‘representative steps’ (x-axis); the ‘representative steps’ allow the
alignment of the reaction times of the three stimuli so as to separate the exploration
phase (first 5 steps) and the exploitation phase (6 steps onward); to this purpose, the
reaction times for S1 obtained in succeeding trials from the first onward is assigned the
steps (used to compute the averages shown in the plot) ‘1, 2, 6, 7, ...’, whereas S2 is
assigned the steps ‘1, 2, 3, 4, 6, 7, ...’, and S3 is assigned the steps ‘1, 2, 3, 4, 5, 6, 7, ...’;
data are taken from [38]; (B) Reaction times of the model plotted in the same way.

the component has still to identify the hidden causes of stimuli and actions, so the 566

neurons forming it tend to spike with a similar rate. As the entropy is high, the 567

arbitration component tends to quickly pass the control to the exploration component 568

and so the reaction times are low. After the following trials in the environment, the 569

world model start to form representations of the experienced colour-action-feedback 570

sequences and to assigning to them a higher posterior probability with respect to other 571

patterns. The arbitration component thus tends to compute a lower entropy, the 572

architecture plans for longer, and so the reaction times get longer. During this planning, 573

the associative component tends to sample the learned sequences with a high 574

probability conditioned to the observed colour. If none of the sequences leads to predict 575

an event that matches the pursued goal through the output layer, the probability of 576

such sequences is however decreased under the conditioning of the goal and the control 577

is again passed to the exploration component. When the action performed in the world 578

manages to produce the desired goal, the system learns the corresponding sequence and 579

assigns to it a high posterior probability. When the colour of such sequence is observed 580

again, the sequence is sampled with a higher probability and results in a successful 581

match. The arbitration component stops planning and the action is performed in the 582

world. The reaction times are hence short again. 583

In summary, the inverted ‘U’ shape of the reaction times is caused by these 584

processes: (a) initially the world model has learned no sequences, entropy is high and 585

overcomes the threshold, and so the arbitration component passes the control to the 586

exploration component: the reaction times are low; (b) when the world model has 587

learned some sequences but these are wrong, planning implements several cycles to 588

explore such sequences and to lower their goal-conditioned probability, so the 589

arbitration component takes time to pass the control to the exploration component: the 590

reaction times are high; (c) when the world model has learned the correct sequence, 591

entropy is low but the planning process samples such sequence with a high probability, 592

obtains a successful matching of the goal, and the found successful action is performed: 593

the exploitation of the found solution starts and the reaction times become low again. 594

The results on the performance and reaction times of the model allow us to discuss 595
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two of the key features of the model with respect to the existing literature about 596

probabilistic planning models based on spiking neural networks. The first feature is that 597

the world model is learnt in parallel with its use for planning, and an arbitration 598

mechanism decides when to explore or to plan on the basis of an entropy-based 599

confidence on the world model. Previous models of probabilistic planning based on 600

spiking neural networks did not consider the possibility of using approximate world 601

models (as these were trained before the solution of tasks) and a mechanism of 602

arbitration to decide if planning or exploring [35,36]. One of the first models that 603

studied arbitration [37], but that did not rely on spiking neural network, learned the 604

dynamics of the world as a Bayesian decision tree for planning and in parallel also 605

learned habitual behaviour based on reinforcement learning (Q-learning). The 606

arbitration system decided if using planning or habitual behaviour on the basis of the 607

variance of the state-action values of the two components. Since the model used here is 608

grounded on neural computations, we could compute the confidence on the world model 609

through a measure directly linked to those neural computations, namely the entropy of 610

the probability distributions of the world-model neural network spikes. In future work, 611

this could allow the computation of such measure through a biologically plausible neural 612

mechanism. 613

Another model [38] used an entropy-based measure as a means to decide to give 614

control to a goal-directed component or to a habitual component. Here the 615

goal-directed component was based on a Bayesian Working Memory (a memory of the 616

one-step time-dependent state probabilities, and of the one-step transition-function and 617

reward-function probabilities) and the habitual behaviour was based on Q-learning. The 618

model was validated with the same visuomotor task used here. The model reproduced 619

the reaction times of the target experiment by making them dependent on the sum of 620

two elements: (a) the logarithm of the number of items in working-memory, 621

corresponding to the performed trials (this affected reaction times only when planning); 622

(b) the entropy of the action probabilities. The inverted ‘U’ shape of reaction times was 623

produced by the fact that the first component of reaction times tended to increase with 624

experience accumulating items in working memory, and the second component tended 625

to decrease with the decrease of the variance of the action probability distribution. 626

Instead, here the inverted ‘U’ shape is an emergent effect of the change of knowledge of 627

the world model traversing three phases: (a) no knowledge: fast reaction times; (b) 628

ample knowledge on the world functioning, but little knowledge on which part of it is 629

relevant for the goal: slow reaction times; (c) ample knowledge on the world functioning, 630

and specific knowledge on which part of it should be used to accomplish the goal: fast 631

reaction times. The empirical and computational implications of the two different 632

hypotheses deserve further study. 633

Another difference of our model with respect to the models of [37, 38] is that it uses 634

arbitration to select between exploration (attempts of different actions serving the 635

world-model learning) vs. exploitation of the acquired knowledge (planning), rather than 636

between goal-directed behaviour and habitual behaviour. This was done as habitual 637

behaviour takes long to form and so it seems to be ruled out during the first attempts 638

to solve new problems [3]. Instead, the first phase of solution of a new task involves the 639

learning of the model of the world based on the exploration of how the world responds 640

to actions, and the possible exploitation of the collected knowledge by the goal-directed 641

components. In this respect, the arbitration component proposed here makes decisions 642

at a finer time granularity with respect to other models, namely during planning cycles, 643

rather than at the coarser granularity of the trials, as in the other models. Future work 644

could investigate how to add to the exploration/exploitation processes used here the 645

contribution of an habitual component that would slowly form with experience. This 646

component might have an architecture similar to the exploration component, and learn 647
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on the basis of positive reward from experience in the world. This would require an 648

interesting integration of the exploration/exploitation arbitration mechanisms used here 649

and the goal-directed/habitual arbitration mechanism used in previous models. 650

Another difference linked to the previous point is that the model presented here used 651

an explicit representation of the goal to directly (learn to) condition the probability 652

distributions of the world model, rather than to generate a reward corresponding to the 653

desired state and used it to perform reinforcement learning based on the world model 654

(model-based reinforcement learning) as in [37,38]. Our different approach was also uses 655

in [35] who however conflated the goal, initial state, and environment conditions into a 656

whole ‘context’ representation. Instead, in the model presented here the initial state and 657

goal have factored representations, and the ‘environment condition’ is considered as part 658

of the world model state. Thus the model is able to express the goal-free probability 659

distributions representing the ‘objective dynamics’ of the world, or to express the 660

‘goal-based probability distributions’ due to the agent’s action to accomplish the goal. 661

The implications of this shift of perspective deserves further study, in particular to infer 662

possibly different empirical predictions and understand the possible computational 663

advantages/disadvantages. 664

2.2 Model dynamics 665

Fig 6 shows how the activation of the associative layer evolves during the planning 666

trials, across the succeeding trials of the test due to the increased knowledge of the 667

world model (recall that planning might involve a different number of forward 668

samplings). Initially (trials T1-T3), the prior probability of activation of the neurons of 669

the associative layer tends to be uniform, thus resulting in a random sampling (spiking) 670

of the neurons. This means that the model has still not identified specific hidden causes 671

of the observations. 672

Fig 6. Evolution of the spiking activity of the associative units during
planning. The three rows of graphs correspond to different succeeding sets of trials
(T1-T3, T4-T15, T16-T20) used to compute the average activation of the units shown in
the graphs (the colour indicates such average, normalised in [0, 1]), and the three
columns of graphs refer to the three possible colour stimuli (S1, S2, S3). Each graph
shows the average activation of the 400 units of the associative network (x-axis) during
the planning forward samples (y-axis). Recall that each trial involves: the perception of
the stimulus colour, planning (involving a different number of forward simulations of the
trial events: the graphs show the firing of the associative neurons during these
sequences), (possibly) the activation of the exploration component, and finally the
performance of the action in the world.

With the experience of the input stimuli, the STDP acting on the input-associative 673

connections and on the internal associative connections leads the associative layer to 674
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form an internal representation of the hidden causes of the observations, namely of the 675

colour, the action, the feedback, and the elapse of time (the latter due to the fact that 676

each observation lasts multiple time steps). At the same time, the plasticity of the 677

associative layer leads it to form a HMM that represents in an increasingly accurate 678

fashion the time-related probabilistic dependencies between the discovered hidden 679

causes. Finally, once some possible sequences are encoded by the associative component 680

starting from the current colour, the STDP acting on the goal-associative connections 681

progressively increase the probability of sampling sequences that lead to achieve the 682

goal and to decrease the probability of those that do not. The effect of these processes 683

can be seen in the figure graphs, in particular with respect to S1 for which a successful 684

sequence is discovered after two trials (three graphs at the left). For this stimulus, 685

during trials T4-T15 some specific neurons start to fire in sequence more strongly than 686

other neurons, meaning that the system has learnt to represent the hidden causes, and 687

their time dependencies, of the events of the first successful colour-action-feedback 688

sequence. 689

During T4-T15 and T16-T20, the world model also learns the hidden causes, and 690

their temporal dependencies, of the events of the other two sequences corresponding to 691

S2 and S3 (second and third column of graphs in the figure). Here, learning of the world 692

model and its correct exploitation takes more trials with respect to S1 as the goal 693

(successful feedback) is achieved after a larger number of sequences (four and five for 694

respectively S2 and S3). This implies that the architecture takes longer to first learn the 695

hidden causes of all such sequences and then to decrease the probability of the wrong 696

ones based on the pursued goal. 697

Importantly, during these experiences the world model, which tends to record any 698

aspects of the world dynamics independently of the fact that it is useful to pursue the 699

currently goal or not, also learns sequences leading to a negative feedback. The next 700

section shows how this knowledge might become useful to accomplish other goals. 701

Overall, the figure shows that the operation of STDP leads to these effects: (a) the 702

system’s world model learns to represent the elements and time relations of the 703

observed sequences of events independently of the pursued goal; (b) when event 704

sequences are learned, they can be sampled by the planning process to figure out the 705

actions to use to pursue the desired goal; (c) the successful achievement of the goal later 706

leads, when the goal is active, to increase the probability of sampling the sequences of 707

events involving the correct actions. 708

Fig 7 shows, with analogous graphs, how the activation of the output layer during 709

the planning trials evolves in time due to the increasing knowledge acquired by the 710

world model. The firing of the output layer during planning expresses the predictions of 711

the events that might happen starting from the observed trial colour. Such predictions 712

are based on the simulation of the possible evolution of the world events based on the 713

HMM instantiated by the associative layer. Regarding S1 (left three graphs of the 714

figure), during the first trials (T1-T3) the world model has no/little knowledge on the 715

dynamics of the world, so the activation of the units in the output layer reflect a 716

uniform probability distribution leading to random predictions of the trial events. With 717

additional experiences of trials involving S1 (T4-T15), the world model starts to learn 718

to represent the trial events and, under the conditioning of the current goal, to assign a 719

high probability to the correct colour-action-feedback sequence. As a consequence, the 720

probability distribution of the output layer starts to correctly predict such correct 721

sequence. 722

During trials T4-T15 and T16-T20 the same process happens for the correct 723

sequences of the two colours S2 and S3. Also for these stimuli, towards the end of all 724

trials (T16-T20) the probability distribution expressed by the output layer, conditioned 725

to the associative layer activation, has converged to a probability close to 1 for the 726

December 2, 2019 20/28

.CC-BY 4.0 International licensenot certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which wasthis version posted December 6, 2019. . https://doi.org/10.1101/867366doi: bioRxiv preprint 

https://doi.org/10.1101/867366
http://creativecommons.org/licenses/by/4.0/


Fig 7. Evolution of the activation of the output layer units encoding the
predicted observations and actions. The three rows of graphs correspond to
different succeeding sets of trials (T1-T3, T4-T15, T16-T20) used to compute the
average activation of the units shown in the graphs (the colour indicate such average,
normalised in [0, 1]), and the three columns of graphs refer to the three colour stimuli.
Each graph shows the activation of the 10 units (x-axis; units 1-3 encode the three
colours, units 4-8 encode the 5 actions, and units 9-10 encode the positive/negative
feedback) during the 15 steps of the trials (y-axis).

correct sequences. 727

These results allow the discussion of a novel feature of the model with respect to 728

other systems implementing planning as inference based on spiking neural 729

networks [35,36]. In these systems, the world model considers possible sequences of 730

states while abstracting over the actions that might lead to them: actions are computed 731

‘off-line’ with respect to the planning processes searching possible state sequences to the 732

goal. Moreover, the world model is trained during a random exploration of the 733

environment where actions are chosen according to a uniform probability distribution. 734

As a consequence, the world model can only reflect this probability distribution: given a 735

new goal, the system has thus to infer the probabilities of new possible sequence of 736

states and actions from scratch. Instead, the world model used here is a HMM that 737

observes states and actions as similar events, independently of the fact that they are 738

produced by the environment or by another part of brain (e.g., the actions produced by 739

the exploration component used here, or by a future habitual component). This allows 740

the world model to learn state-transition probabilities that are sensitive to the 741

probability of action selection. This might allow two possible advantages. First, it could 742

support the biasing of the action selection probabilities, and hence the state 743

probabilities, in favour of actions that lead to potentially useful effects from a given 744

state, rather than any action in any state. This might be used to bias the world model 745

to produce sequences of events involving only actions that are useful to accomplish 746

states relevant for the agent’s typical goals (this might capture the important concept of 747

affordance used in cognitive sciences [51], see [52]). Moreover, the use of state-action 748

sequence probabilities might allow goals to bias only the probabilities of action elements 749

of the HMM rather than also the probabilities of the state elements, that could thus 750

usefully reflect the actual physics of the world. If a distributed representation of goals is 751

used that allows generalisation over them, this would for example allow new goals 752

similar to previously goals to immediately bias the action probability distribution, and 753

hence the state probability distribution, expressed by the HMM in favour of potentially 754

relevant actions and states. 755

A further novelty of the model presented here with respect to neural probabilistic 756
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models [35,36] is that the world model is more realistically learned during the solution 757

of the novel task, rather than before the task solution. This caused the challenge of 758

using a partial model of the world for planning, faced with the novel 759

exploration/exploitation arbitration mechanism proposed here (this same challenge was 760

faced by previous models, [37, 38], but these used goal-directed/habitual arbitration, 761

and were not grounded on spiking neural networks). 762

Another novelty of the world model presented here is that it learns on the basis of a 763

biologically-plausible unsupervised neural learning mechanism [24], rather than based on 764

the indication of the internal desired activation patterns by an external ‘teacher’ [35, 36]. 765

Computationally, finding the conditions for the successful functioning of such 766

unsupervised learning process, together with the acquisition of the world model while 767

using it for planning, represented the hardest challenge for the construction of the 768

architecture proposed here. 769

2.3 Model empirical prediction 770

An important advantage of planning is that the world model can store general 771

knowledge on the dynamics of the world that can be used to accomplish different goals. 772

It was thus interesting to check to which extent the current architecture preserved this 773

capacity since it incrementally acquires a partial world model while solving the 774

visuomotor task. To this purpose, after the architecture underwent the experiences 775

reported in the previous section, it was required to perform additional trials to pursue 776

the different goal of ‘obtaining a negative feedback’ in correspondence to the three 777

colours. As shown in Fig 8A, when the goal is switched, the architecture is able to 778

quickly change behaviour and choose the sequences that lead to the desired new goal 779

given the colour. What happens is indeed that, under the conditioning of the observed 780

colour, the world model already represents the hidden causes of the elements of the 781

sequences and also assign a high probability to these sequences. In particular, since the 782

previous goal unit is now off, the probability of the different sequences tends to be 783

similar, and so the system tends to sample all of them equally during planning. This 784

allows the architecture to rapidly discover a sequence that leads to the desired new goal, 785

to solve the new version of the task through it, and then to increase the probability of 786

such sequence conditioned to the new goal. 787

Regarding the reaction times (Fig 8B), the model shows a transient increase of their 788

size in correspondence to switch of the goal. This is due to the fact that with the new 789

goal the system needs to perform the sampling of some sequences before finding the 790

successful ones. The reaction time is higher for S1 than for S2 and S3 as for it the 791

model has less sequences available to reach the new ‘negative feedback’ goal and 792

constantly one sequence to achieving the ‘positive feedback’. 793

These results represent a prediction of the model that might be tested in future 794

experiments with human participants resembling the simulated test performed here 795

(never performed with humans). In particular, the model predicts a certain performance 796

and reaction times (Fig 8), possibly distinct for stimuli S1/S2/S3, that might be 797

measured and compared with those of humans. 798

Overall, these results show how once the world model has acquired goal-independent 799

knowledge on the environment dynamics the architecture can use it to pursue different 800

goals. This feature is the hallmark of the flexibility of goal-directed behaviour and is 801

shared with the other neural probabilistic models [34,36]. These, however, were not 802

validated with specific empirical data and were not used to produce specific empirical 803

predictions as here. 804

December 2, 2019 22/28

.CC-BY 4.0 International licensenot certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which wasthis version posted December 6, 2019. . https://doi.org/10.1101/867366doi: bioRxiv preprint 

https://doi.org/10.1101/867366
http://creativecommons.org/licenses/by/4.0/


Fig 8. Behaviour of the system when the goal is switched to a new one,
averaged over 20 simulated participants. (A) Performance measured as
probability of selection of the ‘positive feedback’ goal: the pursued goal is switched from
‘getting a positive feedback’ to ‘getting a negative feedback’ at trial 20. (B) Average
reaction times measured during the same experiment shown in ‘A’.

3 Conclusions 805

Goal-directed processes represents a key process supporting flexible behaviour based on 806

general-purpose knowledge of the world. In recent years, it has been proposed that 807

planning processes are based on probabilistic representations of the world and inferences 808

on them. This proposal is very interesting but it encounters the great challenge of 809

explaining how such representations and processes might be grounded on the actual 810

neural computations of the brain. Recently, some models have been proposed to ground 811

some probability inference mechanisms, such as Hidden Markov Models and Partially 812

Observable Markov Decision Processes, on the spiking stochastic events exhibited by the 813

brain neurons, and on some typical brain connectivity patterns and plasticity 814

mechanisms. 815

Here we contributed to bridge probabilistic planning to brain mechanisms by 816

proposing a goal-directed model that implements planning based on probabilistic 817

representations and inferences grounded on spiking neural networks. The model was 818

tested with data on human participants engaged in solving a visuomotor behavioural 819

test that requires to discover the correct actions to associate to some stimuli [12]. The 820

model reproduced the target behaviour, furnished an explanation of the mechanisms 821

possibly underlying it, and presented predictions testable in future empirical 822

experiments. 823

The model has three novelties with respect to existing probabilistic planning 824

systems, in particular with respect to models relying on brain-like mechanisms. First, 825

the model is able to perform generative planning using a partial model of the world, as 826

commonly happens when a new task is solved. The model can do this based on an 827

arbitration mechanism that decides to plan if relevant knowledge has been acquired by 828

the world model, or to explore the environment to acquire further knowledge. Second, 829

the world model is based on a Hidden Markov Model that predict states as well as 830

actions, and can bias the probability with which spikes sample such items on the basis 831

of the pursued goals. Last, the learning of the hidden causes of observations and their 832

temporal dependencies are learned through an unsupervised STDP mechanism that 833

enhances the possibilities of linking the model to brain. 834

Various aspects of the model might be improved in future work. A first one concerns 835

the passage from neurons firing at discrete times to neurons firing in continuous time. 836

This might be done using the not homogeneous Poisson process used in [24]. Although 837

this would not change the theoretical contribution of the model, it might simplify a 838
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comparison of the model functioning with real data from brain at a finer temporal level 839

with respect to the one considered here. 840

A further issue to face would be to use other tasks with respect to the one 841

considered here [12], so as to develop the model to tackle longer sequences of states and 842

actions, e.g. as in [35,36]. As done in these works, it would also be interesting to 843

employ the model as the controller of autonomous robots to test its robustness and 844

versatility when facing more complex tasks. 845

Another improvement might involve the full development of a habitual component. 846

Here we did not introduce such component as the target data seemed to not require it, 847

so we focused on considering the exploration/exploitation phases involved in the 848

learning of the new task. Future work might also consider habits, e.g. by referring to 849

additional target experiments involving a long ‘over-training’ of behaviour. The current 850

exploration component of the model has already an architecture suitable for this. The 851

addition of habitual processes would however also require a more sophisticated 852

arbitration mechanism, e.g. by integrating ideas from [37,38]. 853

A further possible improvement of the model concerns the goals. These are now 854

selected externally and represented in a simple way. Goals could instead be represented 855

in more realistic ways, e.g. through mechanisms mimicking working memory [53], and 856

could be selected in autonomous ways, e.g based on motivational mechanisms [54]. 857

A last improvement concerns the possibility of testing and constraining the model 858

not only at the behavioural level, as done here, but also at the neural level, for example 859

based on data collected on the same experiment [55,56]. This might for example be 860

done through analysis techniques such as Representational Similarity Analysis [57] that 861

maps the components of neural models to areas of brain possibly performing similar 862

functions, on the basis of brain-imaging data. 863

Notwithstanding these possible improvements, the model represents a further step 864

towards the development of an architecture implementing goal-directed behaviour that 865

on one side is able to take into consideration the stochastic nature of the world, as in 866

probabilistic planning, and on the other relies on the functioning and plasticity 867

mechanisms that can be linked to those of brain. 868
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