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Abstract 

 

Despite being the focus of a thriving field of research, the biological mechanisms that underlie 

information integration in the brain are not yet fully understood. A theory that has gained a lot of 

traction in recent years suggests that multi-scale integration is regulated by a hierarchy of mutually 

interacting neural oscillations. In particular, there is accumulating evidence that phase-amplitude 

coupling (PAC), a specific form of cross-frequency interaction, plays a key role in numerous 

cognitive processes. Current research in the field is not only hampered by the absence of a gold 

standard for PAC analysis, but also by the computational costs of running exhaustive 

computations on large and high-dimensional electrophysiological brain signals. In addition, 

various signal properties and analyses parameters can lead to spurious PAC. Here, we present 

Tensorpac, an open-source Python toolbox dedicated to PAC analysis of neurophysiological data. 

The advantages of Tensorpac include (1) higher computational efficiency thanks to software 

design that combines tensor computations and parallel computing, (2) the implementation of all 

most widely used PAC methods in one package, (3) the statistical analysis of PAC measures, 

and (4) extended PAC visualization capabilities. Tensorpac is distributed under a BSD-3-Clause 

license and can be launched on any operating system (Linux, OSX and Windows). It can be 

installed directly via pip or downloaded from Github (https://github.com/EtienneCmb/tensorpac). 

By making Tensorpac available, we aim to enhance the reproducibility and quality of PAC 

research, and provide open tools that will accelerate future method development in neuroscience. 

 

 

 

Keywords: phase-amplitude coupling, PAC, cross-frequency coupling, open-source software, 

tensor, python, parallel computing, electrophysiology 
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Introduction 

 

 

The study of electrophysiology is innately challenging due to the immense complexity of 

oscillatory phenomena organized at many distinct spatial and temporal scales. While common 

assays for measuring brain function like fMRI are able to considerably reduce the temporal 

complexity of functional brain dynamics, scientists interested in electrophysiology must grapple 

with a dizzying array of plausibly meaningful features in the spectral domain. For decades, 

neuroscientists have sought to isolate cognitive and task-related changes in brain oscillations by 

examining spectral features such as power, amplitude, and phase across frequencies and brain 

regions.  However, increasing attention has been given to more complex and dynamic properties 

of neural oscillations [1]. A prominent example of such dynamic oscillatory phenomena is Cross-

Frequency Coupling (CFC) [2] which has been observed both at the phase-level [3–5], and at the 

amplitude level [6–8]. A slightly more recent, and arguably less well characterised phenomenon, 

Phase-Amplitude Coupling (PAC), provides a metric to identify and quantify synchronization 

between the phase of low-frequency oscillations and the amplitude of high-frequency oscillations.  

 

Over the last decade, PAC has been shown to mediate a variety of task-related and 

cognitive functions including attention and decision making [9,10], learning and memory [11–18], 

motor and visuomotor tasks [5,19–25], as well as mental disorders such as Parkinson disease 

and schizophrenia [26–33]. It has been proposed that PAC reflects the regulation of high 

frequency local computations by a larger network, oscillating at lower frequencies [34]. PAC might 

therefore contribute to coordinate neural activity by using a “hold and release” mechanism of 

gamma oscillations [25].  

 

In order to quantify PAC, a number of methodologies and implementations have been 

proposed [35–44] and compared [43,44]. Until now, there is still no gold standard on which method 

is the best alternative, even though the Kullback-Leibler Distance [44] is probably the most widely 

adopted due to its noise tolerance and amplitude independence. In addition, it has been shown 

that PAC can be computed in an event-related manner [45]. Nevertheless, there is still no 

consensus on the minimal data length (i.e. the number of cycles) that is required or the most 

appropriate filtering methods [46,47]. It has also recently been shown that spurious PAC can 

occur for a variety of reasons that may be difficult to systematically control [48–51]. Among them 

we can mention the absence of a clear peak in the power spectrum density (PSD) of the phase, 

the choice of the filter bandwidth or the nonstationarity.  

 

To date, a handful of established brain data analysis toolboxes provide built-in 

functionalities to compute PAC, these include Matlab-based packages such as Fieldtrip [52], 

Brainstorm [53] and EEGLAB [54]. The open-science Python research community has also 

proposed a few PAC tools, including pacpy (https://github.com/voytekresearch/pacpy/) or pactools 

[38], with the latter supporting MNE-Python inputs [55]. While extremely valuable, each of the 
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available tools covers a limited choice of PAC computations and visualization options. In addition, 

computational time remains a challenge that can severely limit PAC analyses at a time where 

data dimensionality is drastically increasing in neuroscience research.  

 

Here, we present Tensorpac, a cross-platform open-source Python toolbox, distributed 

under a BSD-3-Clause license, dedicated to the measurement of phase-amplitude relationships. 

This includes an array of functions to compute PAC and event-related PAC (ERPAC) alongside 

innovative features such as the estimation of the preferred-phase with polar plotting and 

exhaustive exploratory analysis across the full frequency space.  Tensorpac also ships with 

additional tools in order to assess the reliability of the estimation such as power spectral density 

(PSD), Phase-Locking Value [56] and statistics. Crucially, what distinguishes Tensorpac even 

more from other available tools, is the combination of parallel computing and tensor-based 

implementation of the algorithms which drastically reduces computation time and opens up the 

possibility to compute PAC on large multidimensional arrays. 

 

Design, implementation and results 

 

In principle, estimating PAC consists in quantifying the coupling between slow-wave phase 

with the amplitude of higher frequency signals. As a bidirectional coupling measure, however, it 

is impossible to say whether PAC high-amplitude rhythms are led by slow oscillations or the 

contrary. Accordingly, we denote by 𝑓1 < −>  𝑓2 the PAC between a phase centered in 𝑓1and 

the amplitude centered in𝑓2. 

1. Estimation of a corrected phase-amplitude coupling 

 

Estimating PAC is usually assessed in four steps, illustrated in Figure 1. First, the 

instantaneous phases of slower oscillations and amplitudes of faster oscillations are extracted. 

Second, the true coupling measure between those phases and amplitudes is computed. Third, a 

null distribution of surrogate values of the measure in the absence of coupling is estimated. This 

is usually assessed by swapping either amplitude or phase time-blocks, cut at a random time-

point. Finally, the true coupling measure is corrected by subtracting the mean and dividing by the 

standard deviation of the surrogate null distribution. This step improves the robustness and the 

sensibility of the measure. 
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Figure 1 : Estimation process of a corrected 10<->100 hz PAC. For illustration, here simulated raw data 

contains a coupling between a 10 hz phase and a 100 hz amplitude. First, the raw data is respectively 

filtered with bandpass filters centered on 100hz and 10hz. Then, the complex analytic form of each signal 

is obtained using the Hilbert transform. The phase is extracted from the 10Hz signal (angle of analytic 

signal) and power from the 100Hz signal (amplitude of analytic signal). An uncorrected PAC measure is 

obtained from these two signals. To estimate the null distribution of the measure in the absence of any 

genuine coupling, the amplitude signal is split into two blocks at a random time point and the temporal order 

of those two blocks is swapped. Then, the PAC is estimated using this swapped version of amplitude and 

the originally extracted phase. By repeating this process and cutting at a random point, for example 200 

times, we can obtain a distribution of surrogate values for which there is no genuine coupling. Finally, a 

corrected PAC estimate is obtained through z-score normalization of the uncorrected PAC using this 

distribution. 

1.1 Generating coupled signals 

For the implementation and validation of coupling methods, we used synthetic signals with 

controllable coupling frequencies. To this end, we included in the toolbox two ways to simulate 

synthetic signals that can be imported from tensorpac.signals : pac_signals_tort which is a 

method based on pure sines summation and modulation [43] and  

pac_signals_wavelet which extract the phase from a random distribution leading to more complex 

signals  [37]. Both methods, illustrated in Figure 2, provide fine-grained control over the coupling 

frequency pair of (phase, amplitude), the amount of coupling and noise such as data length and 

sampling frequency. 
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Figure 2 : Illustration of synthetic signals that can be generated to simulate phase-amplitude coupling (left 

column) and associated comodulogram (right column). First row shows an example of a signal that contains 

a 5<->120 hz coupling defined as proposed by Tort et al.  [44]. Bottom signal (B) also contains a 5<->120 

hz coupling but defined as proposed in Dupré la Tour et al. [38]. 

1.2 Extracting the instantaneous phase and the amplitude 

Since there is no consensus about whether the Hilbert or wavelet transforms constitutes 

a gold standard for extracting the phase and the amplitude, Tensorpac implements both. The 

Hilbert transform has to be applied on pre-filtered signals. For filtering, we implemented a Python 

equivalent to the two-way zero-phase lag finite impulse response (FIR) Least-Squares filter 

implemented in the EEGLAB toolbox [54]. Filter orders are frequency dependent and are defined 

as a function of the number of cycles (by default 3 cycles are used for the phase and 6 cycles for 

the amplitude [57]). Extracting the phase and the amplitude using the absolute value and the 

phase of the Hilbert transform applied on these filtered signals. Both components can also be 

obtained by convolving with a Morlet’s wavelets [58] with a default width of 7, a default value 

broadly used in electrophysiological data analyses.  
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1.3 Implemented PAC methodologies 

Here, we describe the main PAC estimation methods currently available in Tensorpac, 

which include the Mean Vector Length, Modulation Index (KL-divergence), Height-Ratio, 

normalized direct-PAC and phase-synchrony (new validated methods will be continually added 

and documented online). In the following, we denote by 𝑥(𝑡) a time-series of length 𝑁, 𝑓𝜙 =

[𝑓𝜙1 , 𝑓𝜙2 ] and  𝑓𝐴 = [𝑓𝐴1, 𝑓𝐴2] the frequency bands respectively for extracting the phase 𝜙(𝑡) 

and the amplitude 𝑎(𝑡). 

 

Mean Vector Length: The Mean Vector Length (MVL) was introduced by Canolty et al. [35] and 

is defined as the modulus of the average complex vector formed by combining the phase and 

amplitude signals: 

𝑀𝑉𝐿 = |∑ 𝑎(𝑘)𝑒𝑗𝜙(𝑘)

𝑁

𝑘=1

| .
1

𝑁
 

Note that authors also proposed to normalize the MVL by computing surrogates using a time lag. 

 

Kullback-Leibler distance: Originally the Kullback-Leibler distance (or divergence) (KLD) is 

used in information theory to measure dissimilarities between two probability distributions. Tort et 

al. 2010 [44] elegantly proposed an adaptation for measuring PAC which consists of defining a 

probability distribution of amplitudes as a function of phase and then comparing this distribution 

to a uniform one. To this end, the phase 𝜙(𝑡) is first cut into 𝑛 slices. For example, if 𝑛 = 18, the 

phase is binned into 18 bins of 20° each. Then, the mean of the amplitude 𝑎(𝑡) is taken inside 

each bin and is denoted by < 𝑎 >𝜙. Through this binning operation, the phase and the amplitude 

are linked and can be said to  be coupled. Finally, the probability distribution 𝑃 is obtained by 

dividing the amplitude inside each bin by the sum over the bins, 

𝑃(𝑗) =
< 𝑎 >𝜙 (𝑗)

∑ < 𝑎 >𝜙 (𝑘)𝑛
𝑘=1

 

where ∀𝑗 ∈ [|1, 𝑛|], 𝑃(𝑗) represent the normalized amplitude inside a bin. This distribution is then 

used to compute PAC using either the KLD. 

 

The modulation index (MI) is obtained using the distance of Kullback-Leibler which 

measure how the probability distribution of amplitudes 𝑃diverges from a uniform distribution 𝑄: 

𝑀𝐼 =
𝐷𝐾𝐿(𝑃,𝑄)

𝑙𝑜𝑔(𝑛)
 where 𝐷𝐾𝐿(𝑃, 𝑄) = ∑ 𝑃(𝑘)𝑙𝑜𝑔(

𝑃(𝑘)

𝑄(𝑘)
)𝑛

𝑘=1  . 

Note that for a uniform distribution, ∀𝑘[|1, 𝑛|], 𝑄(𝑘) = 1/𝑛 and therefore the 𝑀𝐼formula can be 

written to : 

𝑀𝐼 = 1 +
1

𝑙𝑜𝑔(𝑛)
∑ 𝑃(𝑘)𝑙𝑜𝑔(𝑃𝑘)

𝑛

𝑘=1

 

 

Height-Ratio: Starting from the same probability density distribution of amplitudes, the Height-

Ration (HR) [39] is defined by: 

𝑀𝐼 =
ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛

ℎ𝑚𝑎𝑥
 

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted April 18, 2020. . https://doi.org/10.1101/2020.04.17.045997doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?9YFqYH
https://www.zotero.org/google-docs/?VMep79
https://www.zotero.org/google-docs/?o0FeTT
https://doi.org/10.1101/2020.04.17.045997
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

where ℎ𝑚𝑎𝑥and ℎ𝑚𝑖𝑛are respectively the maximum and the minimum of the distribution. 

 

Normalized direct PAC: The ndPac [42] is similar to the MVL with two exceptions. First, this 

method uses a z-scored normalized amplitude and secondly, includes a statistical test. This test 

uses a closed-form statistical threshold given by: 

𝑥𝑙𝑖𝑚 = 2 × (𝑒𝑟𝑓(1 − 𝑝)−1)2 

with 𝑝the confidence level and 𝑒𝑟𝑓−1 the inverse error function. 

 

Phase synchrony 

The phase synchrony (PS) [9,43] is a derivative of the Phase Locking Value (PLV) [56]. 

Originally, the PLV looks only at the phase consistency across trials. The PS adaptation consists 

of extracting the phase of the amplitude 𝜙𝑎, subtracting it from the phase of slower oscillations, 

projecting the resultant time series into the complex circle and finally, calculating the mean of the 

length vector : 

𝑃𝑆 = |
1

𝑁
∑ 𝑒𝑖(𝜙(𝑘)−𝜙𝑎(𝑘))

𝑁

𝑘=1

| 

 

The main PAC methods implemented in Tensorpac are presented in Figure 3. 

 
 

Figure 3 : Comparison of the main PAC methods currently implemented in Tensorpac. The comodulograms 

were computed using the MVL, KLD, HR, ndPac and PS, from 100 trials of simulated data containing a 10 

<-> 100 hz phase-amplitude coupling. The data is available in Tensorpac and can be used to validate and 

benchmark other methods.  
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1.4 Statistical analysis of PAC 

The absence of PAC in a signal could be related to several parameters that have been 

previously described [43]. Each one of the proposed PAC methodologies presents some 

advantages or limitations and may not be appropriate for all types of analysis. These methods 

exhibit differences in terms of robustness to noise, as well as modulation width, neither of which 

are necessarily amplitude independent [44]. In addition, PAC estimations may be biased due to 

limited amounts of data being available. 

Generally, these limitations can be taken into account by computing a surrogate null 

distribution and using this to correct or normalize the PAC measure. To this end, several methods 

exist, all based on a common idea: introducing a small change into the data such that the temporal 

characteristics of the time-series are preserved but the relationship between the phase and the 

amplitude is disrupted. Among existing methods, [35] introduced a time lag to the amplitude, while 

[44] swap amplitude and phase trials and [57] swap time blocks, cut at a random point. The latter 

method, with only two blocks, has been described as the most conservative  strategy to generate 

the distribution of PAC that can be observed by chance [47]. Finally, this null distribution is then 

used to perform non-parametric inference or to correct the measure estimated from the data 

(usually by subtracting the mean and divide by the deviation of this distribution). An example of a 

corrected PAC is presented in Figure 4. 

 

 
 

Figure 4 : Comparison between corrected and uncorrected PAC. (A) PAC comodulogram is computed for 

several (phase, amplitude) pairs. (B) For each of those pairs, we estimate the distribution of surrogates and 

plot the mean comodulogram of these permutations. Note that both uncorrected and surrogate PAC 

comodulograms exhibit a spurious peak in the very low frequency phase. (C) The true 10<->100 hz coupling 

is finally retrieved by subtracting the mean of the surrogate distribution (panel B) from the uncorrected PAC 

(panel A). 

1.5 Event-related phase-amplitude coupling (ERPAC) 

One issue that has been raised is that, since PAC is computed across time, non-stationary 

signals can cause the appearance of spurious coupling [47]. An illustrative example taken from 

the same study explains that if there is an induced phase locking of lower frequencies and 

simultaneously a high frequency power increase, a coupling between them is going to be 

observed. Interestingly, a complementary approach to the time-averaged PAC has been 

proposed and consists of computing time-resolved PAC across trials [44]. Accordingly, the Event-

Related PAC (ERPAC) measure is based on a circular-linear correlation [59] which evaluates the 

Pearson correlation, across trials, of the amplitude 𝑎𝑡 and with the sine and cosine of the phase 
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𝜙𝑡. We denote by 𝑐(𝑥, 𝑦)the Pearson correlation between two variables 𝑥 and 𝑦, 𝑟𝑠𝑥 =

𝑐(𝑠𝑖𝑛(𝜙𝑡), 𝑎𝑡), 𝑟𝑐𝑥 = 𝑐(𝑐𝑜𝑠(𝜙𝑡), 𝑎𝑡) and 𝑟𝑠𝑐 = 𝑐(𝑠𝑖𝑛(𝜙𝑡), 𝑐𝑜𝑠(𝜙𝑡)) hence, the circular-linear 

correlation 𝜌𝑐𝑙is defined as: 

 

𝜌𝑐𝑙 = √
𝑟𝑠𝑥

2 + 𝑟𝑐𝑥
2 − 2𝑟𝑠𝑥𝑟𝑐𝑥𝑟𝑠𝑐

1 − 𝑟𝑠𝑐
2

 

 
In contrast to the original Matlab version [45], we implemented a tensor-based version of 

the ERPAC (tensorpac.EventRelatedPac) illustrated in the Fig 5. It is noteworthy that a 

measure of event-related PAC has been proposed using a mutual information framework [39]. 

In addition, it has also been proposed to compute PAC using the power spectrum on sliding 

windows [60]. 

 

 
 

Figure 5 : Example of Event-Related Phase-Amplitude Coupling (ERPAC). We first generate 300 one-

second trials each containing a 10<->100hz coupling. Next, one-second of random noise is appended to 

these signals. The depicted ERPAC represents time-resolved PAC estimation over the two-second window, 

computed with a phase between [9, 11] hz and for multiple amplitudes. 

 

2. Additional cross-frequency tools 

2.1 Distribution of amplitudes and preferred phase 

 

The preferred-phase (PP) is defined as the phase for which the distribution of amplitudes 

is maximum. This can be used to find out if amplitudes are aligned at a specific phase angle [24]. 

To compute the PP (tensorpac.PreferredPhase), the probability density distribution of amplitudes 
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is first generated according to a number of phase slices (just as KLD and HR). Then, the phase 

bin for which the amplitude is maximum is defined as the preferred phase. Usually, the preferred 

phase is reported using a histogram (see Fig 6A), where a specific phase and a specific amplitude 

band have been used. Here, we introduce a new plotting method where, still for a single phase, 

but now binned amplitudes in consecutive frequency bands can be observed using a polar 

representation (Fig 6B). This provides a more fine-grained representation where the preferred 

phase can be observed with a wide range of amplitude frequencies. Both methods and 

visualizations are available in Tensorpac (tensorpac.PreferredPhase.pacplot and 

tensorpac.PreferredPhase.polar). 

 

 

 
 

Figure 6 : Illustrative example of the preferred phase estimation based on 100 trials generated with coupling 

between 6hz<->100hz and where the amplitude is locked to the 6hz phase at 45° (pi/4). (A) The 100 hz 

amplitude is first binned according to the phase using 18 slices of 20° each. The sum of the amplitude 

inside each slice is plotted as a histogram and the preferred phase is identified as the phase for which the 

amplitude is maximum (45°). (B) An alternative polar visualisation available in Tensorpac displays the 

strength across multiple amplitude frequency bands. Phase is binned as before, but now multiple amplitude 

signals from different bands are calculated for each phase bin. In these polar plots, the angle represents 

the phase of the low-frequency (here 6Hz), and the radial axis represents different frequencies considered 

for the amplitude signal. The color depicts the average value of the amplitude of a given frequency inside 

the corresponding phase bin. The preferred 45° phase for the 6hz<->100hz PAC is clear in this 

representation. 

2.2 Phase / amplitude frequency interval optimization 

 

When choosing the parameters to use in PAC analysis, researchers are often confronted 

with important decisions related to parameter selection. Even if the frequency bands for phase 

and amplitude are chosen based on a scientific hypothesis or previous reports in the literature, it 

is often impossible to know what the optimal frequency intervals are in the data one is analyzing. 

One might argue that it makes little sense to compute theta-gamma coupling in canonical 
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frequency bands for example using 4-7 Hz (theta phase) and 30-70 Hz (gamma amplitude) if 

these bands don’t really capture key oscillatory modulations in the data at hand. We therefore 

reasoned that it would be useful to (a) be able to check for the presence of peaks in the power 

spectrum to potentially guide the choice of the bandwidth for filtering [48], and (b) to automatically 

search for the best frequency intervals in a data-driven manner. Tensorpac provides 

functionalities that can help address these issues. First of all, a standard tool to compute the 

Power Spectrum Density (PSD) is available and adapted for standard electrophysiological data 

formats, i.e. datasets organized as an array with the number of epochs as rows and the number 

of time points as columns (See example in Fig 7A). This can be used to identify prominents peaks 

either for the low or high frequency components. More importantly, in order to address the 

question of how to optimize the selection of the starting and ending frequencies for the intervals 

to use for PAC computation, Tensorpac allows for the possibility of defining triangular vectors and 

computing PAC for a range of starting and ending frequencies (𝑃𝐴𝐶(𝐹𝑚𝑖𝑛, 𝐹𝑚𝑎𝑥)). In addition, this 

triangular search can be used to find the best interval for the amplitude or for the phase. The 

visualization of the results (tensorpac.Pac.triplot) can be used to determine the hotspots within a 

triangular representation of PAC, i.e. determining the Fmin/Fmax combination that corresponds 

to PAC peak (see Fig 7B): The x-axis determines the starting frequency (𝐹𝑚𝑖𝑛) and the y-axis the 

ending frequency (𝐹𝑚𝑎𝑥). The maximum coupling that emerges from this triangular representation 

can be taken a an indication for the optimal frequency interval to use [𝐹𝑚𝑖𝑛, 𝐹𝑚𝑎𝑥]. Note here that 

the standard comodulogram often used in PAC analyses is obtained by computing PAC in 

successive (phase, amplitude) pairs of bands with pre-defined bandwidths. While useful for 

identifying  coupling the comodulogram is not suitable for identifying the optimal starting and 

ending frequencies to use. Taken together, the PSD tool and this exhaustive Fmin/Fmax search 

for best frequency bounds are valuable tools that can guide decisions regarding parameter 

selection in PAC analyses. 

As a side note, the choice of the filter bandwidth for the phase and amplitude is still 

debated. While some previous studies recommended filtering the amplitude with a bandwidth 

twice as large as the one used for phase (2:1 ratio) [48], a recent study suggests that a 1:1 ratio 

might be better as this could prevent smearing [61].  
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Figure 7 : Investigation of the presence of a phase peak and data-driven exploration of the optimal 

bandwidth. In this example, we first generated a 6 <-> 70hz phase-amplitude coupling. (A) The PSD 

retrieves the presence of the phase peak around 6hz. (B) For a fixed phase filtered in [5, 7] hz, we search 

for the optimal amplitude band, defined as the bandwidth for which the PAC is maximum. The triangular 

freq-freq representation depicts coupling strength across many possible combinations of amplitude 

frequency bounds, where the x-axis corresponds to the starting frequency and the y-axis to the ending 

frequency. Here, the PAC is maximum for an amplitude range of [61, 79] hz.  

2.4 Statistically tests of stationarity 

 

As mentioned earlier, stationary signals are a prerequisite for calculating phase-amplitude 

coupling. Tensorpac includes a function (tensorpac.stats.test_stationarity) to perform an 

Augmented Dickey-Fuller test (ADF) [62] to test the stationarity of time-series. The null hypothesis 

of the ADF test is that there is a unit root in the time-series. Said differently, H0 represents a non-

stationary signal. Tensorpac uses the Statsmodels Python package [63] and returns a dataframe 

that contains, for each epoch, the p-values, a boolean if H0 has been accepted or rejected, the 

statistical test and critical values at 0.05 and 0.01. 

3. Tensor-based implementation 

 

Traditionally, phase-amplitude coupling measures are implemented in a vector fashion 

where only a single time-series is processed at a time. This is the most straightforward 

implementation and the easiest to read, however computing PAC on relatively large datasets can 

be dramatically slow, especially when the number of dimensions increases (i.e the number of 

trials, phases and amplitudes). In Tensorpac, all of the implemented PAC methods have been 

adapted in order to support multidimensional computations and thereby decrease computing time. 

This was made possible by using the NumPy function einsum which uses the Einstein summation 

convention in order to perform linear algebraic array operations. In order to illustrate the gains in 

terms of computing time, we compared the vector-based and the tensor-based implementations 

on simulated data (100 trials and 3000 time points). We then computed a comodulogram with 26 

phases and 24 amplitudes. Figure 8 presents the comparison of computing time per method (Fig 

8A) and the ratio (Fig 8B). The tensor-based implementation is between 6 times to more than 12 

times faster than the vector-based one depending on the PAC method that is used. This gain in 

terms of computation time would be obviously even larger when considering an increasing 

number of phases and amplitudes or if the permutations for assessing statistics have to be 

measured. 
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Figure 8 : Computation time of the vector and tensor-based implementations. We first generate a relatively 

small dataset composed of 100 trials of 3000 time points each. We then evaluated the comodulogram by 

extracting 26 phases and 24 amplitudes. The comodulogram is then either computed using one-

dimensional time-series (vector-based) or directly using multidimensional arrays (tensor-based). 

Computing time is compared as a function of PAC method (A) or as a ratio where the computing time using 

tensors is divided by the one using vectors (B). 

 

4. Documentation and API provision 

 

Tensorpac is a Python 3 package and is distributed under a BSD-3-Clause license. This 

package relies on NumPy [64], SciPy [65], Joblib for parallel computing and Matplotlib for plotting. 

In addition, Pandas [66] and Statsmodels [63] is required if the stationarity test is to be performed. 

We also provide full documentation for the package (https://etiennecmb.github.io/tensorpac) 

which is automatically built using sphinx. This documentation also explains how to install 

Tensorpac. An API tab is accessible from this documentation and describes the most up-to-date 

implemented functions and descriptions (using NumPy doc convention). It also feature a gallery 

of examples, built with sphinx-gallery, which illustrate all classes and functions of Tensorpac. For 

beginners or non-python users that want to cross the open-source bridge, we added a public 

Gitter chat for answering questions. Finally, the code follows PEP8 and Flake8 guidelines for code 

readability. We also added a suite of unit-tests that are systematically launched on Linux and 

Windows systems. 

 

Availability and Future Directions 

This paper introduces the workflow and functionalities of Tensorpac, a free and open-

source Python toolbox with a tensor-based implementation of both time-averaged and trial-

averaged phase-amplitude coupling measures. In addition to those most frequently used methods 
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we also presented some unique features such as the preferred phase or an exhaustive research 

of frequency bounds. As spurious coupling can be observed in many scenarios, we also provide 

additional tools and statistics to control both the reliability of an estimation. The latest version of 

Tensorpac is hosted on Github (https://github.com/EtienneCmb/tensorpac) but can also be 

installed via the pip command from a regular terminal. Tensorpac comes with an online 

documentation that describes installation options, also for contributors, the functionalities and 

illustrative examples. We plan to continue adding new methods to the toolbox and we encourage 

collaborative development and contributions from the community. In particular, we welcome 

contributions of new methods of PAC estimation but also tools that can help control the reliability 

of PAC metrics and reduce spurious detections. 
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