

## Antimicrobial peptide arrays for wide spectrum sensing of pathogenic bacteria

Éric Pardoux, Agnès Roux, Raphaël Mathey, Didier Boturyn, Yoann Roupioz

## ▶ To cite this version:

Éric Pardoux, Agnès Roux, Raphaël Mathey, Didier Boturyn, Yoann Roupioz. Antimicrobial peptide arrays for wide spectrum sensing of pathogenic bacteria. Talanta, 2019, 203, pp.322-327. 10.1016/j.talanta.2019.05.062 . hal-02565818

## HAL Id: hal-02565818 https://hal.science/hal-02565818v1

Submitted on 23 Sep 2020

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

# Antimicrobial peptide arrays for wide spectrum sensing of pathogenic bacteria

Éric Pardoux<sup>a,b</sup>, Agnès Roux<sup>a</sup>, Raphaël Mathey<sup>a</sup>, Didier Boturyn<sup>b</sup>, Yoann Roupioz<sup>a,\*</sup>

<sup>a</sup>Univ. Grenoble Alpes, CNRS, CEA, INAC-SyMMES, 38000 Grenoble, France

<sup>b</sup>Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France

\*Corresponding author: yoann.roupioz@cea.fr

9

5

6

7

8

## 10 Abstract

11 Fast detection of bacteria in samples presumed to be un-contaminated, such as blood, is of great 12 importance. Indeed, rapid diagnosis allows the set-up of appropriate antibiotic treatment. Besides clinical 13 issues, there are many other domains, such as food processing or drug manufacturing, where the strict 14 absence of any bacteria has to be assessed. Because the bacterial load found in most contaminated 15 samples is often below the limit of detection for currently validated assays, a preliminary enrichment step 16 is required to allow bacterial multiplication before proceeding to the analysis step, whatever it might be -17 cultural, immunological or molecular methods. In this study, we describe the use of a biosensor for single-18 step bacteria detection. The whole analysis is performed in less than 20 hours, during the growth phase of the micro-organisms, using an array of antimicrobial peptides (AMPs) coupled with a surface plasmon 19 20 resonance imager (SPRI). A wide range of bacterial strains are assayed, showing differentiated affinity 21 patterns with the immobilized peptides, which are confirmed by multivariate analysis. This work 22 establishes the evidence that antimicrobial peptides, mostly used so far in the antibiotic drug industry, are 23 suited for the wide-spectrum detection of unknown bacteria in samples, even at very low initial loads. 24 Moreover, the small set of AMPs that were assayed provided a specific affinity profile for each pathogen, 25 as confirmed by multivariate analyses. Furthermore, this work opens up the possibility of applying this 26 method in more complex and relevant samples such as foodstuff, urine or blood.

27

28

## 29 Keywords

30 Antimicrobial Peptides; Bacteria Detection; Pathogens; Surface Plasmon Resonance imaging

31

## **Introduction**

34 The presence of bacteria in a normally sterile environment is a huge issue for human health. 35 since it can cause severe infections. Whether they originate in foodstuffs or bodily fluids such as blood or urine, the rapid and sensitive detection of pathogenic microorganisms is thus of great 36 importance. Although fast diagnosis is vital during an infection, the early detection of pathogens 37 38 is made difficult because of their low concentrations. For this reason, all samples drawn from 39 patients are first diluted and cultured in a liquid medium to increase the bacterial concentration, before proceeding to the analysis of the enriched samples. So far, culture-based techniques 40 41 have remained the gold standard in the process of diagnosing bacterial infections, though 42 several alternative methods have emerged in recent decades to devise faster and more sensitive ways to achieve bacterial detection [1]. Assays based on DNA amplification have 43 44 paved their way to a large use in clinics [2]. In spite of their faster response, these assays are 45 still time-consuming, quite expensive, and require a high level of skills. Moreover, such methods 46 may give false-positive results due to the presence of residual DNA, released from killed 47 pathogenic bacteria in some samples, for instance after antibiotic treatment. Mass spectrometry has also become widely used for the precise identification of strains [3]. However, it requires 48 49 isolated colonies of the pathogen to be grown on a solid medium and thus can only be performed several days after enrichment of the sample. Owing to these considerations, new 50 51 technologies enabling faster diagnostics are still emerging, promising simple and low-cost on-52 field implementation [4,5]. Amongst other alternatives under research, biosensors able to detect whole viable cells directly from a suspect sample are very promising. Nevertheless, each of 53 54 these exciting alternatives still require a preliminary enrichment step to increase the initial bacterial concentration above their limit of detection  $(10^3 \text{ to } 10^6 \text{ CFU.ml}^{-1})$ , depending on the 55 method). Surprisingly, only a few approaches couple the enrichment step with the detection 56 57 step. From this perspective, surface plasmon resonance imaging (SPRI) is a promising method. 58 Indeed, this technique is based on the optical detection of interactions at the surface of a 59 metallic layer, thus enabling the monitoring of molecular interactions without labels. Although 60 SPRI-based molecular detections are less sensitive than ELISA for biomolecular interaction studies, SPRI has been used in versatile applications from molecular studies to whole cell or 61 62 living bacteria detection, taking advantage of its real-time and label-free multiplexing abilities 63 [6,7]. This optical method has already proven its ability to successfully detect and identify pathogens starting from food matrices or blood spiked with low bacterial concentrations (few 64 CFU.ml<sup>-1</sup>), using arrays of proteins and antibodies [8–11]. Such one-step approach enables 65 sensitive detection during the enrichment phase, with a wide range of probes used in parallel 66 that hence allow a high selectivity. However, although antibodies or other protein probes have 67 been proven to have high efficiency as ligands (enabling strain or even serotype identification) 68 69 they are known to present several difficulties such poor stability, difficulty of production, high 70 cost, and/or burdensome handling. It is the reason why new sets of probes have been benched 71 by researchers, the most prominent being aptamers, molecularly imprinted polymers, and 72 peptides [12]. Aptamers and molecularly imprinted polymers usually show high specificity and 73 reliability [13,14]. Nevertheless, to achieve wide spectrum detection, the multiplexing of large 74 series of probing ligands remains an issue, which limits the extent of wide spectrum detection.

- 75 Antimicrobial peptides (AMPs) are a subset of peptides presenting outstanding bactericidal
- activity [15,16]. Their binding to bacteria mainly relies on physico-chemical interactions, due to
- their polycationic or amphiphilic characteristics. Hence, they can easily attach to negatively
- charged lipopolysaccharides (LPS) anchored in the membrane of Gram-negative bacteria via
- relectrostatic interactions [17,18]. Conformational changes of their structure can also mediate the
- attachment to bacterial outer walls [19]. Although AMPs have so far mainly been investigated to
- design new drugs or antimicrobial applications [20], they are also promising ligands as potential
- alternatives to antibodies as large spectrum recognition elements towards bacteria [21,22].
   Indeed, they have naturally evolved to interact with a wide range of pathogenic bacteria and they
- are not only easy to synthesize but also easier to handle than antibodies for instance, since they
- 85 can resist harsh chemical conditions and air-drying for storage.
- 86 Surprisingly, the use of AMPs as recognition elements has only rarely been commented on in 87 the literature [23–26]. Those studies relied on the specific recognition of particular groups of bacteria, for instance targeting either a bacterial genus or a Gram class. Herein, we demonstrate 88 89 the use of AMPs in a multiplexed fashion, with several different peptidic probes exposed to a 90 contaminated sample. Thanks to the development of antimicrobial peptides arrays, we expand 91 the spectrum of detectable bacterial strains in a single one-step assay. Wide-spectrum sensing 92 of bacterial pathogens would hence be achieved. A set of AMPs inspired by previous works on 93 biosensors (see Table 1), has been produced by solid-phase synthesis and arrayed on the gold 94 surface of SPRI prisms. Such arrays were then assayed with a series of samples spiked with 95 pathogenic bacteria at low levels. Those strains are representative of major species encountered 96 in both foodborne infections and bacteremia. We were thus able to assess the performance of 97 such peptide-based sensors for wide-spectrum detection of bacteria.
- 98 Material and methods
- 99 Reagents

100 Phosphate Buffered Saline (PBS), Dimethyl Sulfoxide (DMSO), Bovine Serum Albumin (BSA),

- 101 glycerol and Tryptic Soy Broth (TSB) culture medium were purchased from Sigma-Aldrich (Saint
- 102 Quentin Fallavier, France). The solid culture medium Tryptone Soy Agar (TSA) was bought from
- bioMérieux (Lyon, France). Ultra-pure water (18,2  $M\Omega$  of resistivity) was obtained from an ELGA
- 104 PURELAB flex dispenser (Veolia Water, France).
- 105 Peptides
- 106

| Name          | Sequence                                         | Targets                                | Technique                   | Ref. |
|---------------|--------------------------------------------------|----------------------------------------|-----------------------------|------|
| Clavanin A    | VFQFLGKIIHHVGNFVHGFSHVF-spacer-C-NH <sub>2</sub> | E. coli, S. aureus<br>& S. Typhimurium | Electrochemical impedance   | [27] |
| Magainin 1    | $GIGKFLHSAGKFGKAFVGEIMKS\text{-}spacer-C-NH_2$   | E. coli & S.<br>Typhimurium            | Fluorescence                | [28] |
|               |                                                  | E. coli &<br>Salmonella                | Electrochemical capacitance | [24] |
|               |                                                  | E. coli                                | Fluorescence                | [29] |
|               |                                                  | E. coli                                | Field-effect<br>transistor  | [30] |
| Pediocin Ped3 | GKATTCIINNGAMA-spacer-C-NH2                      | Listeria                               | Microcantilevers            | [31] |

|                 |                                          | monocytogenes                          |                                     |             |
|-----------------|------------------------------------------|----------------------------------------|-------------------------------------|-------------|
| PGQ             | $GVLSNVIGYLKKLGTGALNAVLKQ-spacer-C-NH_2$ | E. coli                                | Fluorescence                        | [32]        |
| Leucocin A 24   | C-spacer-SVNWGEAFSAGVHRLANGGNGFW-OH      | Listeria<br>monocytogenes &<br>E. coli | Electrochemical impedance           | [25,<br>33] |
| Control peptide | C-spacer-RGEWFWGNLVVSAASFGNHNAGG-OH      | Scrambled version in                   | n of Leucocin A 24 (ne<br>troduced) | ewly        |

## Table 1. Set of arrayed antimicrobial peptides. Sequences are listed along with the bacteria they can detect, the detection techniques that they were used in and literature references for each. Spacer is corresponding to AEEA.

### 110

All peptides were synthesized by Smart Bioscience (Saint Égrève, France) through standard

112 Fmoc solid-phase method. A (2-(2-(amino)ethoxy)ethoxy)acetic acid (AEEA) spacer was

inserted between the peptide sequence and the additional terminal cysteine. When this cysteine

amino acid was added at the C-terminus, the supplier amidated this latter to achieve higher

synthesis yields, otherwise the terminal amino acid was left free. The sequences of the chosen

116 peptides are listed in *Table 1*. The certificates of analysis furnished by Smart Bioscience are

given in the Electronic Supplementary Information to confirm peptide purities and molecular

118 weights.

## 119 Bacterial strains

120 The Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimirium),

121 CIP104474, was obtained from the Pasteur Institute (Paris, France). Listeria monocytogenes

strain belonging to the molecular serotype IVc was acquired from the Institut Scientifique

d'Hygiène et d'Analyse (ISHA, Massy, France). It had been isolated from chicken meat. The

124 methicillin-resistant *Staphylococcus aureus* subspecies *aureus* (MRSA), ATCC43300, the

125 Staphylococcus epidermidis strain, ATCC12228, and the Escherichia coli serovar O1:K1:H7

126 (isolated from urine), ATCC11775, were all purchased from the American Type Culture

127 Collection (Manassas, Virginia, USA).

128 Culture conditions

129 Prior to each experiment, an individual bacterial colony was isolated on a TSA plate and

130 resuspended in 4 mL of sterile TSB. This bacterial culture was then incubated for 18 hours at

131 37°C under constant agitation (180 rpm). Ten-fold serial dilutions of the bacterial suspension

132 were then performed in TSB. 100  $\mu$ L of one of the ten-fold dilution series was used for sample

spiking. The  $10^{-5}$  and  $10^{-6}$  dilutions were plated (100  $\mu$ L on TSA plates, in triplicates) to

determine the initial bacterial concentration through manual colony counting. For each assay,

- 135 sterility controls were performed.
- 136 Peptide arraying

137 Lyophilized peptides were resuspended in DMSO at 1  $mg.mL^{-1}$  and stored at -80C. Each

138 peptide sequence was diluted at 100  $\mu$ M in PBS 1x, with 5% (v/v) of glycerol ahead of arraying

- 139 biochips. SPRi-biochips bought from Horiba Scientific (Palaiseau, France) consisted of glass
- prisms coated with a thin gold layer for direct functionalization using thiol moieties (see fig. S1 in
- 141 the Electronic Supplementary Information for more details). Peptide biochips were prepared

using a sciFLEXARRAYER (Scienion, Berlin, Germany), a piezo-dispenser allowing arraying of

- 143 4 *nL* droplets per spot. Each array resulted in 12 spots with a 450  $\mu m$  diameter, and a 800  $\mu m$
- pitch between each spot. All peptides were systematically arrayed in duplicate. This step was
- 145 performed at room temperature under a humid atmosphere (75% relative humidity). After
- arraying, prisms were incubated for 18 hours at 25°C, under 94% humidity, to allow the
- 147 complete formation of self-assembled monolayers of peptides onto gold. Chips were then rinsed
   148 with ultra-pure water, dried under an argon flow for a few seconds, and stored up to several
- 149 weeks at +4°C until experiments. Effective surface functionalization was assessed by AFM
- 150 comparison with bare gold surfaces (supplemental figure S2).
- 151 Biochip conditioning and sample processing
- 152 Prisms were systematically incubated with a sterile solution of PBS+1% BSA before each
- 153 experiment to mimic interfering proteins of complex media such as blood, and to block non-
- specific interactions with gold. The surface of the prism was then rinsed with 3 mL of sterile PBS,
- before loading the biochip in the Surface Plasmon Resonance imager. 900  $\mu$ L of sterile TSB
- were then injected in the culture chamber containing the AMP-array, followed by 100  $\mu$ L of the
- 157 bacterial dilution used for spiking. Interactions of bacteria on the surface of the prisms were
- observed in real-time with the SPRi-Lab+ system (Horiba Scientific, Palaiseau, France), at 37°C.
- 159 The AMP-array was positioned so that its surface was vertical, on the sidewall of the culture
- 160 chamber. This avoids any non-specific signal from sedimenting bacteria. Sensors were
- 161 systematically discarded after use.
- 162 SPR data analysis

163 Real-time monitoring of the SPR signal began when the bacteria were spiked into the sample. 164 Regions of interest (ROI) were defined on each duplicate of AMP spots, in order to monitor the temporal change of reflectivity. Kinetics data were directly collected and processed in R 165 166 programming language. Duplicate spots of each peptide were averaged, corrected with respect 167 to the reference signal, and plotted. Peptide-free gold ROIs, coated with BSA, were chosen as 168 reference signals for non-specific interactions. Reflectivity shifts as a function of time for each 169 ROI allowed the assessment of the presence of bacteria in samples without further processing of 170 the data, by the observation of a temporal response shift. Kinetics data were used to generate a 171 database of interaction patterns between peptides and bacteria. For each spot, the first 172 derivative of the smoothed temporal data was calculated. The maximum value of this derivative. 173 as well as the corresponding smoothed reflectivity shift, were recorded. Unsupervised 174 multivariate analysis was performed on this database thanks to the FactomineR package. 175 embedded in the R software [34]. Names of targeted bacteria were used as a descriptive 176 variable, and therefore did not affect the results of the Principal Components Analysis (PCA). As 177 data were heterogeneous, they were centered and reduced. On one hand, PCA score plots were 178 used to distinguish results from one bacterial strain to another. On the other hand, they also 179 permitted a high level of repeatability of the process from different duplicates of the same assay. Hierarchical Clustering on Principal Components (HCPC) was also performed on the outcome of 180 181 the PCA. This statistical method ensured that targeted bacteria were indeed discriminated from 182 each other, based on the Euclidean distance separating the replicates in the PCA results.

183

## 184 Results and discussion

185 Bacterial growth monitoring by SPRI

186 The set of five bacterial strains to be detected with the peptide array has been chosen to

187 represent the diversity of pathogens frequently involved in bloodstream or urinary tract

188 infections, as well as food poisoning. The set also reflects microbial morphological diversity, with

189 both Gram-positive and negative species, including bacilli and cocci.

190 Growth kinetics monitored by SPRI of the bacteria are depicted in fig. 1, datasets retrieved from

191 those results allow defining characteristic detection times of bacteria (Supplemental Table S1)

- and affinity patterns with the peptides.
- 193





Figure 1. SPR kinetic data of the bacterial growth for five different bacterial strains cultured in tryptic soy broth at 37°C. Each curve is the average of duplicate spots for a given peptide

197 arrayed on the sensor, with subtraction of the reference signal taken on peptide free gold.

198 AMP-based arrays have permitted the detection of pathogens present at low initial concentration 199 in all samples, at most in 19 hours, and in even less than 12 hours in the majority of cases. All 200 culture conditions being the same, variations of detection signal can come from dissimilarities in 201 generation times of the different strains. Shortest detection times were for S. aureus and S. 202 epidermidis, in about 6 to 7 hours. Similar conclusions with solid based culture methods are 203 hitherto obtained in at least 24 hours. Compared to other biosensing methods using AMPs to 204 analyze pre-enriched samples, we obtained a very low limit of detection of virtually one live 205 bacterium per sample. The coupling of the enrichment step in our one-step process, not only 206 improved the safety for the operator, but also significantly improved both the overall processing 207 time and the limit of detection, by comparison to the two-steps methods described so far. 208 Naturally, the lower limit of detection comes with a longer detection time to get bacterial 209 concentrations sufficient for SPRI detection.

210 Individual peptide responses for bacterial pathogens detection

211 Peptides showed very distinct profiles of response depending on the targeted bacterial strains. 212 Individual examination of their performances is thus interesting to understand underlying 213 interactions with bacteria. Interestingly, Leucocin A 24 interacted strongly with all tested bacterial 214 strains. Nonetheless, the scrambled version of Leucocin A 24, here used as a control peptide, 215 displayed only weak to no interactions at all with any bacterial pathogen, suggesting that 216 interactions of bacteria with tethered peptides are not only governed by physico-chemical 217 mechanisms but more probably by structural interactions between peptides and bacterial 218 membranes. Such observation has already been described for therapeutic peptides [35]. 219 Clavanin A functionalized surfaces exhibited stronger SPRI responses with Staphylococci spp., 220 which are Gram-positive bacteria, although this peptide also enabled to successfully detect 221 Salmonella Typhimurium and E. coli, although with weaker interactions. With our method, 222 Magainin I only displayed mild interactions with all the tested bacteria, whatever their Gram 223 coloration (except for S. aureus which gave a very low shift). On the contrary, Ped3, a Pediocin 224 fragment, exhibited a moderate ability to detect Listeria monocytogenes, as previously described 225 [31], but surprisingly Ped3 also displayed a potent interaction with MRSA in our assay. In the 226 meantime it did not interact with S. epidermidis, although they belong to the same genus. This selective response might be caused by an association of the peptide with a peculiar receptor 227 228 specific to the membrane of MRSA. PGQ displayed interactions with E. coli, which is consistent 229 with the literature [32]. However it detected S. aureus, which is a Gram-positive strain, and had 230 no apparent interactions with Salmonella, another Gram-negative bacterium, that also displays 231 LPS, which is a hint that the interactions between PGQ and bacteria is not only mediated by 232 interacting with the latter.

These results tend to show that AMPs keep a wide spectrum of affinity towards bacteria after tethering on a surface. Moreover, association of AMPs enabled to obtain various kinetic profiles depending on the bacterial strain. Interestingly, our SPRI detection method allowed to unravel interactions which remained unobserved with other methods [25]. This could be explained by the establishment of weaker interactions between bacteria and AMPs thanks to their longer exposure time to the cultured bacteria.

239 Multivariate analyses of kinetic results

Multivariate analyses were performed to objectively assess the discrimination values of our method. To do so, PCA was performed based on reflectivity shift and sensitivity values at the

242 maximum of the first derivative for each peptide (Figure 2A). Each bacterial strain was 243 processed once on an AMP micro-array, giving 64 sets of values, from all possible combinations 244 of peptide duplicates responses at the surface. This combinatorial analyzing method ensured 245 that statistical variability of the overall response was totally represented, and that cherry picking 246 of data was avoided. Experiments on different bacterial strains with the same set of AMPs gave 247 clustered results in the PCA 2D-score plot. Moreover, those clusters of data points were well 248 segregated from each other according to the monitored pathogen: results were repeatable 249 regardless of the set of replicates in the same monitoring. The first two principal components represented only 70.3% of the total variance. This meant that the data were of high 250 251 dimensionality, thus explaining why such a good discrimination between bacterial strains could 252 be obtained. However, those first two components were sufficient in our case to clearly 253 distinguish between distinct bacterial strains. Such results underlined potential identification 254 ability of the method, although more experiments would be required to create an even more 255 exhaustive database. Results of the PCA were also used to perform a Hierarchical Clustering on 256 Principal Components (fig. 2B), leading again to a satisfying separation of the different strains in separate clusters. Such discriminated profiles came from the variety of affinities displayed by the 257 258 peptides towards the tested bacteria. Due to different physicochemical properties and structures, 259 each peptide interacted differently to Gram or genera, hence the overall combination 260 discriminated the tested strains. Multivariate analyses with appropriate databases thus allow 261 pathogen identification methods to be derived from the usual key-lock principle and enable cross-reactivity sensors as demonstrated by [36]. 262

263



264

Figure 2. Multivariate data analyses for 5 bacterial strains processed on AMP-arrays. (A) 2Dscore plot of the database generated from the kinetics of SPRI bacterial growth monitoring.
Ellipses were annotated to represent the 95% confidence interval. (B) Hierarchical Clustering on
Principal Components (HCPC) performed on the data from Fig. 2a. Distances between points
are Euclidean.

270

271 In this work, we demonstrated the suitability of AMP-arrays as powerful ligands of bacterial

272 pathogens. Traditionally studied in the field of pharmacology and antimicrobial applications,

- AMPs were revealed to be potent ligands for pathogens in biosensing applications. Not only they
- are well-adapted for the detection of bacteria in a standard culture medium such as tryptic soy

broth, but compared to antibodies, the biochip functionalization and operation were less tedious,
thanks to peptide resistance to air-drying without loss of activity in the process.

277 The use of AMPs in a multiplexed fashion allowed a fast and simple assessment of the presence 278 of pathogens even at low concentrations. Detection times ranged from 6 to 19 hours, in a one-279 step assay. This is shorter than standard methods in blood or foodstuffs, which require 280 enrichment times of usually 24 hours before confirmation of the culture positivity. Each tested 281 bacterial strain resulted in different kinetic responses on the part of the AMP-array. Ped3 even 282 exhibited a near-specific behavior, interacting almost uniquely with MRSA. Further studies could assess this point, which would be of importance in the detection of this prominent pathogen. Our 283 284 results, for instance for Leucocin A24 and its scrambled version, showed that the recognition of bacteria by AMPs is not uniquely driven by physico-chemical interactions, but also by their 285 286 secondary structuration. Moreover, tethering of the AMPs on the surface of our sensor did not 287 seem to alter this interaction with bacteria in solution. The study of the whole set of AMPs 288 interacting with live bacteria gave clearly different affinity profiles. This combined approach was 289 preferred to a biomolecular study to enable the identification of several bacterial pathogens, with 290 a single AMP set. The response to polymicrobial infections, which represent only 10% of 291 bloodstream infections [37,38], is still to be investigated to check how AMPs responses might be 292 deciphered to identify two, or more, pathogenic strains present in the same sample.

Furthermore, the small set of AMPs we used provided very distinct affinity profiles towards different pathogens, as multivariate analysis confirmed. Arrays presenting a larger collection of peptides could hence enable the possibility to create interaction profile libraries and therefore the identification of bacterial genus, species or strain of the infecting pathogen in a sample.

To the extent of our knowledge, the system we described is the first one-step biosensor assay using different multiplexed AMPs and enabling detection of several viable bacterial strains in biomedically relevant concentrations along with a discrimination capacity in a label-free assay. In the near future, this approach could be applied for the detection of any pathogen in samples such as foodstuff, urine or blood without any pre-requisite knowledge of the threat.

If these auspicious results are confirmed on a larger scale, it could permit the development of a
 one-step assay – not only able to detect common pathogens overnight – but also to identify
 them in reference to a database of affinity patterns.

- 305
- 306

Color should be used for any figures in print

- 307
- 308

## 309 Acknowledgements

310 EP thanks the Labex ARCANE and CBH-EUR-GS program (ANR-17-EURE-0003) for his

doctoral fellowship.

312

## 313 Competing interests statement

- 314 The authors declare no financial or non-financial competing interests.
- 315

## 316 References

[1] A. van Belkum, G. Durand, M. Peyret, S. Chatellier, G. Zambardi, J. Schrenzel, D. Shortridge,
A. Engelhardt, W.M. Dunne, Rapid clinical bacteriology and its future impact, Ann. Lab. Med. 33
(2012) 14. https://doi.org/10.2242/clm.2012.224.14

319 (2013) 14, https://doi.org/10.3343/alm.2013.33.1.14.

320 [2] O. Opota, K. Jaton, G. Greub, Microbial diagnosis of bloodstream infection: Towards

molecular diagnosis directly from blood, Clin. Microbiol. Infec. 21 (2015) 323–331,
 https://doi.org/10.1016/j.cmi.2015.02.005.

- 323 [3] A.E. Clark, E.J. Kaleta, A. Arora, D.M. Wolk, Matrix-assisted laser desorption ionization-time
- 324 of flight mass spectrometry: A fundamental shift in the routine practice of clinical microbiology,
- 325 Clin. Microbiol. Rev. 26 (2013) 547–603, https://doi.org/10.1128/cmr.00072-12.
- 326 [4] M. Guido Marcello, M.R. Tumolo, A. De Donno, T. Verri, F. Serio, F. Bagordo, A. Zizza, In
- 327 vitro diagnosis of sepsis: A review, Pathol. Lab. Med. Int. (2016) 1,
- 328 https://doi.org/10.2147/plmi.s49800.
- 329 [5] D.C. Vanegas, C.L. Gomes, N.D. Cavallaro, D. Giraldo-Escobar, E.S. McLamore, Emerging
- biorecognition and transduction schemes for rapid detection of pathogenic bacteria in food,
  Compr. Rev. Food Sci. F. (2017), https://doi.org/10.1111/1541-4337.12294.
- [6] E. Suraniti, E. Sollier, R. Calemczuk, T. Livache, P.N. Marche, M.-B. Villiers, Y. Roupioz,
- Real-time detection of lymphocytes binding on an antibody chip using SPR imaging, Lab Chip. 7
  (2007) 1206, https://doi.org/10.1039/b708292d.
- 335 [7] J.B. Fiche, J. Fuchs, A. Buhot, R. Calemczuk, T. Livache, Point mutation detection by surface
- plasmon resonance imaging coupled with a temperature scan method in a model system, Anal.
- 337 Chem. 80 (2008) 1049–1057, https://doi.org/10.1021/ac7019877.
- [8] S. Bouguelia, Y. Roupioz, S. Slimani, L. Mondani, M.G. Casabona, C. Durmort, T. Vernet, R.
  Calemczuk, T. Livache, On-chip microbial culture for the specific detection of very low levels of
  bacteria, Lab Chip. 13 (2013) 4024, https://doi.org/10.1039/c3/c50473e.
- 341 [9] L. Mondani, Y. Roupioz, S. Delannoy, P. Fach, T. Livache, Simultaneous enrichment and
- 342 optical detection of low levels of stressed *Escherichia coli* O157:H7 in food matrices, J. Appl.
- 343 Microbiol. 117 (2014) 537–546, https://doi.org/10.1111/jam.12522.
- [10] A. Morlay, A. Duquenoy, F. Piat, R. Calemczuk, T. Mercey, T. Livache, Y. Roupioz, Label-
- free immuno-sensors for the fast detection of listeria in food, Measurement. 98 (2017) 305–310, https://doi.org/10.1016/j.measurement.2016.06.038.

- 347 [11] V. Templier, T. Livache, S. Boisset, M. Maurin, S. Slimani, R. Mathey, Y. Roupioz, Biochips
- 348 for direct detection and identification of bacteria in blood culture-like conditions, Sci. Rep. 7 349 (2017), https://doi.org/10.1038/s41598-017-10072-z.
- [12] V. Templier, A. Roux, Y. Roupioz, T. Livache, Ligands for label-free detection of whole 350
- 351 bacteria on biosensors: A review, TrAC Trend. Anal. Chem. 79 (2016) 71-79,
- 352 https://doi.org/10.1016/j.trac.2015.10.015.
- 353 [13] R. Singh, M.D. Mukherjee, G. Sumana, R.K. Gupta, S. Sood, B. Malhotra, Biosensors for 354 pathogen detection: A smart approach towards clinical diagnosis, Sensor. Actuat. B-Chem. 197 (2014) 385-404, https://doi.org/10.1016/j.snb.2014.03.005.
- 355
- 356 [14] M. Shahdordizadeh, S.M. Taghdisi, N. Ansari, F.A. Langroodi, K. Abnous, M. Ramezani, 357 Aptamer based biosensors for detection of *Staphylococcus aureus*, Sensor. Actuat. B-Chem.
- 358 241 (2017) 619-635, https://doi.org/10.1016/j.snb.2016.10.088.
- 359 [15] M. Zasloff, Antimicrobial peptides of multicellular organisms, Nature. 415 (2002) 389–395, https://doi.org/10.1038/415389a. 360
- 361 [16] H.G. Boman, Antibacterial peptides: Basic facts and emerging concepts, J. Intern. Med. 254 (2003) 197-215, https://doi.org/10.1046/j.1365-2796.2003.01228.x. 362
- 363 [17] M.R. Yeaman, Mechanisms of antimicrobial peptide action and resistance, Pharmacol. Rev. 55 (2003) 27–55, https://doi.org/10.1124/pr.55.1.2. 364
- [18] L.T. Nguyen, E.F. Haney, H.J. Vogel, The expanding scope of antimicrobial peptide 365
- 366 structures and their modes of action, Trends Biotechnol. 29 (2011) 464-472,
- 367 https://doi.org/10.1016/j.tibtech.2011.05.001.
- 368 [19] M. Torrent, J. Valle, M.V. Nogués, E. Boix, D. Andreu, The generation of antimicrobial 369 peptide activity: A trade-off between charge and aggregation?, Angew. Chem. Int. Edit. 50
- 370 (2011) 10686–10689, https://doi.org/10.1002/anie.201103589.
- 371 [20] A.K. Marr, W.J. Gooderham, R.E. Hancock, Antibacterial peptides for therapeutic use:
- 372 Obstacles and realistic outlook, Curr. Opin. Pharmacol. 6 (2006) 468-472,
- 373 https://doi.org/10.1016/j.coph.2006.04.006.
- 374 [21] R.R. Silva, K.Y.P.S. Avelino, K.L. Ribeiro, O.L. Franco, M.D.L. Oliveira, C.A.S. Andrade,
- 375 Optical and dielectric sensors based on antimicrobial peptides for microorganism diagnosis. 376 Front. Microbiol. 5 (2014), https://doi.org/10.3389/fmicb.2014.00443.
- 377 [22] M. Hoyos-Nogués, F.J. Gil, C. Mas-Moruno, Antimicrobial peptides: Powerful biorecognition 378 elements to detect bacteria in biosensing technologies, Molecules. 23 (2018) 1683,
- 379 https://doi.org/10.3390/molecules23071683.
- 380 [23] N. Kulagina, K. Shaffer, F. Ligler, C. Taitt, Antimicrobial peptides as new recognition 381 molecules for screening challenging species, Sensor. Actuat. B-Chem. 121 (2007) 150-157, 382 https://doi.org/10.1016/j.snb.2006.09.044.
- 383 [24] M.S. Mannoor, S. Zhang, A.J. Link, M.C. McAlpine, Electrical detection of pathogenic
- 384 bacteria via immobilized antimicrobial peptides, P. Natl. Acad. Sci USA. 107 (2010) 19207-385 19212, https://doi.org/10.1073/pnas.1008768107.

- [25] H. Etayash, L. Norman, T. Thundat, K. Kaur, Peptide-bacteria interactions using engineered
- surface-immobilized peptides from class IIa bacteriocins, Langmuir. 29 (2013) 4048–4056,
  https://doi.org/10.1021/la3041743.
- [26] C.A. Andrade, J.M. Nascimento, I.S. Oliveira, C.V. de Oliveira, C.P. de Melo, O.L. Franco,
- 390 M.D. Oliveira, Nanostructured sensor based on carbon nanotubes and clavanin A for bacterial
- 391 detection, Colloid. Surface. B. 135 (2015) 833–839,
- 392 https://doi.org/10.1016/j.colsurfb.2015.03.037.
- 393 [27] A.G.S. Junior, M.D. Oliveira, I.S. Oliveira, R.G. Lima-Neto, S.R. Sá, O.L. Franco, C.A.
- 394 Andrade, A simple nanostructured impedimetric biosensor based on clavanin A peptide for
- bacterial detection, Sensor. Actuat. B-Chem. 255 (2018) 3267–3274,
- 396 https://doi.org/10.1016/j.snb.2017.09.153.
- [28] N.V. Kulagina, M.E. Lassman, F.S. Ligler, C.R. Taitt, Antimicrobial peptides for detection of
- 398 bacteria in biosensor assays, Anal. Chem. 77 (2005) 6504–6508,
- 399 https://doi.org/10.1021/ac050639r.
- 400 [29] M.-S. Chang, J.H. Yoo, D.H. Woo, M.-S. Chun, Efficient detection of *Escherichia coli*
- 401 O157:H7 using a reusable microfluidic chip embedded with antimicrobial peptide-labeled beads, 402 Analyst. 140 (2015) 7997–8006, https://doi.org/*10.1039/c5an01307k*.
- [30] Y. Chen, Z.P. Michael, G.P. Kotchey, Y. Zhao, A. Star, Electronic detection of bacteria using
  holey reduced graphene oxide, ACS Appl. Mater. Inter. 6 (2014) 3805–3810,
  https://doi.org/10.1021/am500364f.
- [31] S. Azmi, K. Jiang, M. Stiles, T. Thundat, K. Kaur, Detection of *Listeria monocytogenes* with
  short peptide fragments from class IIa bacteriocins as recognition elements, ACS Comb. Sci. 17
  (2015) 156–163, https://doi.org/10.1021/co500079k.
- 409 [32] S. Arcidiacono, P. Pivarnik, C.M. Mello, A. Senecal, Cy5 labeled antimicrobial peptides for
  410 enhanced detection of *Escherichia coli* O157:H7, Biosens. Bioelectron. 23 (2008) 1721–1727,
  411 https://doi.org/10.1016/j.bios.2008.02.005.
- [33] H. Etayash, L. Norman, T. Thundat, M. Stiles, K. Kaur, Surface-conjugated antimicrobial
- 413 peptide leucocin A displays high binding to pathogenic Gram-positive bacteria, ACS Appl. Mater.
  414 Inter. 6 (2014) 1131–1138, https://doi.org/10.1021/am404729c.
- 415 [34] S. Lê, J. Josse, F. Husson, FactoMineR: An R package for multivariate analysis, J. Stat.
  416 Softw. 25 (2008), https://doi.org/10.18637/jss.v025.i01.
- [35] C.D. Fjell, J.A. Hiss, R.E.W. Hancock, G. Schneider, Designing antimicrobial peptides: Form
  follows function, Nat. Rev. Drug Discov. (2011), https://doi.org/10.1038/nrd3591.
- 419 [36] J.R. Carey, K.S. Suslick, K.I. Hulkower, J.A. Imlay, K.R.C. Imlay, C.K. Ingison, J.B. Ponder,
- 420 A. Sen, A.E. Wittrig, Rapid identification of bacteria with a disposable colorimetric sensing array,
- 421 J. Am. Chem. Soc. 133 (2011) 7571–7576, https://doi.org/10.1021/ja201634d.
- 422 [37] M. Pavlaki, G. Poulakou, P. Drimousis, G. Adamis, E. Apostolidou, N.K. Gatselis, I. Kritselis,
- 423 A. Mega, V. Mylona, A. Papatsoris, A. Pappas, A. Prekates, M. Raftogiannis, K. Rigaki, K.
- 424 Sereti, D. Sinapidis, I. Tsangaris, V. Tzanetakou, D. Veldekis, K. Mandragos, H. Giamarellou, G.

- 425 Dimopoulos, Polymicrobial bloodstream infections: Epidemiology and impact on mortality, J Glob Antimicrob Re. 1 (2013) 207-212, https://doi.org/10.1016/j.jgar.2013.06.005.
- 426
- [38] C. Royo-Cebrecos, C. Gudiol, C. Ardanuy, H. Pomares, M. Calvo, J. Carratalà, A fresh look 427
- at polymicrobial bloodstream infection in cancer patients, PLoS One, 12 (2017), 428
- https://doi.org/10.1371/journal.pone.0185768. 429

## Supplementary Information: Antimicrobial peptide arrays for wide spectrum sensing of pathogenic bacteria

Éric Pardoux<sup>a,b</sup>, Agnès Roux<sup>a</sup>, Raphaël Mathey<sup>a</sup>, Didier Boturyn<sup>b</sup>, Yoann Roupioz<sup>a,\*</sup>

<sup>a</sup>Univ. Grenoble Alpes, CNRS, CEA, INAC-SyMMES, 38000 Grenoble, France

<sup>b</sup>Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France

\*Corresponding author: yoann.roupioz@cea.fr

Table S1. Detection times of the presence of the different bacterial strains are determined by the timestamp of the kinetics first derivative highest value. It thus corresponds to the middle of the jump between the baseline signal and the plateau. It is given for the shortest time for each bacterial strain, associated with the peptide giving this result. Only peptides giving a strong positive signal are included in the analysis. Times are given as the average over duplicates of each peptide.

| Bacterial<br>strain         | Initial concentration<br>(CFU.mL <sup>-1</sup> ) | Shortest detection<br>time (min) | Peptide       |
|-----------------------------|--------------------------------------------------|----------------------------------|---------------|
| <i>E. coli</i><br>ATCC11775 | 51                                               | 677                              | Clavanin A    |
| S. Typhimurium<br>CIP104474 | 6                                                | 537                              | Magainin I    |
| S. aureus<br>ATCC43300      | 16                                               | 433                              | Leucocin A 24 |
| S. epidermidis<br>ATCC12228 | 2.5·10 <sup>3</sup>                              | 374                              | Leucocin A 24 |
| L.<br>monocytogenes<br>IVc  | 2.6·10 <sup>3</sup>                              | 1160                             | Leucocin A 24 |

Figure S1. (A) Scaled scheme showing characteristic dimensions of the SPRi-biochip, including a representation of the observable field of view with the SPRi-Lab+. (B) Picture of a SPRi-biochip right after a spotting.





Figure S2. AFM images of monolayers of peptides prepared in the same conditions as SPRI biochips: (A) bare gold as a reference; (B) Magainin I; (C) Leucocin A 24; (D) Control peptide. They were recorded in air using the peak force mode of a Dimension Icon AFM (from Bruker, Santa Barbara, CA). The cantilevers were triangular and using a force contact of 0.1 N/m at a 70 kHz frequency and a 0.5 Hz scan rate. Image processing was performed using the Gwyddion microscopy software.



|                                          |                                                                     | <b></b>          | <b>.</b>         |                  |                   |              |
|------------------------------------------|---------------------------------------------------------------------|------------------|------------------|------------------|-------------------|--------------|
|                                          |                                                                     | Certificate      | e of analysis    |                  |                   |              |
|                                          |                                                                     |                  |                  |                  | •                 |              |
|                                          | Date                                                                | 14/03/2016       |                  | Batch            | 849_s1p4f2        |              |
| Smartov                                  | Product name                                                        | Magainin 1-Ncy   | /S               | Catalog #        |                   |              |
| Biotechnology                            | -                                                                   | -                |                  | -                | -                 |              |
|                                          |                                                                     |                  |                  |                  |                   |              |
| Product specifications                   |                                                                     |                  |                  |                  |                   |              |
|                                          |                                                                     |                  |                  |                  |                   |              |
| AA sequence                              | C-AEEA-GIGKFL                                                       | HSAGKFGKAFV      | GEIMKS-OH        |                  |                   |              |
| Disulfide bond                           | 0                                                                   |                  |                  |                  |                   |              |
| Formula                                  | C <sub>121</sub> H <sub>193</sub> N <sub>31</sub> O <sub>32</sub> S | 5 <sub>2</sub>   |                  |                  |                   |              |
| Appearance                               | White powder                                                        |                  |                  |                  |                   |              |
| Theoritical average weight 2658,14 g/mol |                                                                     |                  |                  |                  |                   |              |
| CAS number                               |                                                                     |                  |                  |                  |                   |              |
| Source                                   | Synthetic                                                           |                  |                  |                  |                   |              |
| Counterion                               | TFA                                                                 |                  |                  |                  |                   |              |
| Solubility (recommendation)              | 10% acetonrile                                                      | solution         |                  |                  | 1 mg/mL           |              |
|                                          | •                                                                   |                  |                  |                  |                   |              |
|                                          |                                                                     |                  |                  |                  |                   |              |
| Handling & Storage                       |                                                                     |                  |                  |                  |                   |              |
|                                          |                                                                     |                  |                  |                  |                   |              |
| Storage                                  | Shipped at amb                                                      | pient temperatu  | re under lyoph   | ilized powder. S | tore at -20°C (-4 | ↓°F). Do not |
|                                          | freeze-thaw.                                                        |                  |                  |                  |                   |              |
|                                          | Aliquot sample                                                      | if required and  | store at -80°C   | (-112°F).        |                   |              |
| Expiry date                              | Not defined                                                         |                  |                  |                  |                   |              |
| Handling and use restriction             | Use with caution                                                    | on. Might be tox | ic. Product inte | ented for resear | ch use only. not  | for use in   |
|                                          | diagnostic or th                                                    | nerapeutic proce | edures.          |                  | ,,                |              |
|                                          |                                                                     |                  |                  |                  |                   |              |
|                                          |                                                                     |                  |                  |                  |                   |              |
| Analytical results                       |                                                                     |                  |                  |                  |                   |              |
|                                          |                                                                     |                  |                  |                  |                   |              |
| Observed purity rate                     | 97,60%                                                              |                  | Observed mon     | oisotopic mass   | [M+H+]+           | 2657,407 Da  |
|                                          |                                                                     |                  | Theoritical mo   | noisotopic mass  |                   | 2656,38 Da   |
|                                          |                                                                     |                  |                  |                  |                   |              |

#### Chromatogram

 Sample Name :
 Sample #: 023
 Page 1 of 1

 FileName :
 C:\totalchrom\\data\Peptide cea\linjer AEEA
 Fevrier 2016\160308 magainin ncys 849s1p4f2.raw

 Date :
 3/14/2016 10:52:10 AM
 M

 Method :
 cchromolith 5-65 en 10 min.mth
 Time of Injection: 3/8/2016 11:55:35 PM

 Start Time :
 0.00 min
 End Time :
 13.00 min

 Plot Offset: -71.31 mAU
 Plot Scale: 2773.5 mAU
 High Point : 2702.15 mAU



Smartox Biotechnology 570 rue de la chimie 38400 St Martin d'Hères France

**☎** +33 (0) 456 520 869
 금 +33 (0) 456 520 868
 ⊡ contact@smartox-biotech.com

| Peak<br># | Time<br>[min] | Area<br>[µV·s] | Height<br>[µV] | Area<br>[%] | Norm. Area<br>[%] | BL  | Area/Height<br>[s] |
|-----------|---------------|----------------|----------------|-------------|-------------------|-----|--------------------|
| -         | 0.001         | 0.00           | 0.00           | 0.00        | 0.00              |     |                    |
| 1         | 0.002         | 33.34          | 325.09         | 0.00        | 0.00              | BV  | 0.1025             |
| 2         | 0.005         | 39.66          | 338.72         | 0.00        | 0.00              | VV  | 0.1171             |
| 3         | 0.007         | 18.23          | 286.91         | 0.00        | 0.00              | VV  | 0.0636             |
| 4         | 0.010         | 29.97          | 341.26         | 0.00        | 0.00              | VB  | 0.0878             |
| 5         | 0.012         | 24.20          | 256.27         | 0.00        | 0.00              | BV  | 0.0944             |
| 6         | 0.015         | 19.32          | 190.70         | 0.00        | 0.00              | VB  | 0.1013             |
| 7         | 0.017         | 8.71           | 188.02         | 7e-05       | 7e-05             | BV  | 0.0463             |
| 8         | 0.018         | 11.78          | 221.95         | 0.00        | 0.00              | VB  | 0.0531             |
| 9         | 7.444         | 13.25          | 278.45         | 0.00        | 0.00              | BV  | 0.0476             |
| 10        | 7.447         | 67.80          | 709.43         | 0.00        | 0.00              | VV  | 0.0956             |
| 11        | 7.450         | 161.57         | 1440.70        | 0.00        | 0.00              | VV  | 0.1121             |
| 12        | 7.530         | 11494288.40    | 2.54e+06       | 97.60       | 97.60             | VE  | 4.5342             |
| 13        | 7.645         | 80123.98       | 70666.35       | 0.68        | 0.68              | EV  | 1.1338             |
| 14        | 7.647         | 9323.03        | 72519.37       | 0.08        | 0.08              | VV  | 0.1286             |
| 15        | 7.650         | 11590.99       | 72555.12       | 0.10        | 0.10              | VV  | 0.1598             |
| 16        | 7.653         | 12378.38       | 72682.91       | 0.11        | 0.11              | VV  | 0.1703             |
| 17        | 7.655         | 11828.25       | 72501.87       | 0.10        | 0.10              | VV  | 0.1631             |
| 18        | 7.657         | 156665.19      | 72211.00       | 1.33        | 1.33              | VE  | 2.1695             |
| 19        | 7.749         | 482.05         | 363.95         | 0.00        | 0.00              | *EB | 1.3245             |
|           |               | 11777108.11    | 2 97e+06       | 100.00      | 100.00            |     |                    |

Smartox Biotechnology 570 rue de la chimie 38400 St Martin d'Hères France



|                              |                                                                     | Certificat      | e of analysis    |                 |                    |                       |
|------------------------------|---------------------------------------------------------------------|-----------------|------------------|-----------------|--------------------|-----------------------|
|                              |                                                                     |                 |                  |                 |                    |                       |
|                              | Date                                                                | 21/03/2016      |                  | Batch           | 847_s1p1f1         |                       |
| Smartov                      | Product name                                                        | clavaninA       |                  | Catalog #       |                    |                       |
| Biotechnology                |                                                                     |                 |                  |                 |                    |                       |
|                              |                                                                     |                 |                  |                 |                    |                       |
| Product specifications       |                                                                     |                 |                  |                 |                    |                       |
|                              | 1                                                                   |                 |                  |                 |                    |                       |
| AA sequence                  | VFQFLGKIIHHV                                                        | GNFVHGFSHVF     | -AEEA-C-NH2      |                 |                    |                       |
| Disulfide bond               | 0                                                                   |                 |                  |                 |                    |                       |
| Formula                      | C <sub>140</sub> H <sub>201</sub> N <sub>37</sub> O <sub>30</sub> S | 5               |                  |                 |                    |                       |
| Appearance                   | White powder                                                        |                 |                  |                 |                    |                       |
| Theoritical average weight   | 2914,39                                                             | g/mol           |                  |                 |                    |                       |
| CAS number                   |                                                                     |                 |                  |                 |                    |                       |
| Source                       | Synthetic                                                           |                 |                  |                 |                    |                       |
| Counterion                   | TFA                                                                 |                 |                  |                 |                    |                       |
| Solubility (recommendation)  | 50% of Acetoni                                                      | trile solution  |                  |                 | 1 mg/mL            |                       |
|                              |                                                                     |                 |                  |                 |                    |                       |
|                              |                                                                     |                 |                  |                 |                    |                       |
| Handling & Storage           |                                                                     |                 |                  |                 |                    |                       |
| Storage                      | Shinned at am                                                       | ient temperati  | ire under lyonh  | ilized powder   | Store at 20°C (-/  | 1°E) Do not           |
| Storage                      | freeze-thaw                                                         |                 |                  |                 | 51010 01 20 01     | + 1 <i>J</i> . Do not |
|                              | Aliquot sample                                                      | if required and | store at -80°C   | (_112°E)        |                    |                       |
| Expiry date                  | Not defined                                                         | in required and |                  | ( 112 1 ).      |                    |                       |
| Handling and use restriction | Use with cautio                                                     | n Might he to   | xic Product inte | ented for resea | urch use only not  | for use in            |
|                              | diagnostic or th                                                    | nerapeutic proc | edures.          |                 | iren use only, not |                       |
|                              |                                                                     |                 | 2001201          |                 |                    |                       |
|                              |                                                                     |                 |                  |                 |                    |                       |
| Analytical results           |                                                                     |                 |                  |                 |                    |                       |
|                              |                                                                     |                 |                  |                 |                    |                       |
| Observed purity rate         | 93,47%                                                              |                 | Observed mon     | oisotopic mass  | 5 [M+H+]+          | 2913,41 Da            |
|                              |                                                                     |                 | Theoritical mo   | noisotopic mas  | SS                 | 2912,50 Da            |





☎ +33 (0) 456 520 869
 용 +33 (0) 456 520 868
 contact@smartox-biotech.com

Smartox Biotechnology 570 rue de la chimie 38400 St Martin d'Hères France

| Peak<br># | Time<br>[min] | Area<br>[µV·s] | Height<br>[µV] | Area<br>[%] | Norm. Area<br>[%] | BL | Area/Height<br>[s] |
|-----------|---------------|----------------|----------------|-------------|-------------------|----|--------------------|
| -         | 0.001         | 0.00           | 0.00           | 0.00        | 0.00              |    |                    |
| 1         | 8 477         | 16.06          | 278 50         | 0.00        | 0.00              | BB | 0.0577             |
| 2         | 8 479         | 31.83          | 387.81         | 0.00        | 0.00              | BB | 0.0821             |
| 3         | 8 482         | 35.38          | 401.57         | 0.00        | 0.00              | BV | 0.0881             |
| 4         | 8 485         | 44.93          | 382.61         | 0.00        | 0.00              | Ŵ  | 0 1174             |
| 5         | 8 487         | 33.96          | 351.45         | 0.00        | 0.00              | VB | 0.0966             |
| ĕ         | 8 4 9 0       | 42.92          | 404 71         | 0.00        | 0.00              | BV | 0.1061             |
| 7         | 8 4 9 3       | 46.59          | 505.61         | 0.00        | 0.00              | Ŵ  | 0.0921             |
|           | 8 4 9 5       | 68.36          | 631 11         | 0.00        | 0.00              | ŵ  | 0.1083             |
| ğ         | 8 4 9 8       | 87.27          | 771.69         | 0.00        | 0.00              | ŵ  | 0.1131             |
| 10        | 8 501         | 142.81         | 1074 51        | 0.00        | 0.00              | ŵ  | 0.1329             |
| 11        | 8 503         | 172.67         | 1511.97        | 0.00        | 0.00              | ŵ  | 0.1020             |
| 12        | 8 506         | 275.47         | 2096.31        | 0.00        | 0.00              | ŵ  | 0.1314             |
| 13        | 8 509         | 392.05         | 2721 50        | 0.00        | 0.00              | ŵ  | 0 1441             |
| 14        | 8 511         | 450.27         | 3376.96        | 0.00        | 0.00              | ŵ  | 0 1333             |
| 15        | 8 514         | 645.48         | 4216 42        | 0.01        | 0.01              | ŵ  | 0.1531             |
| 16        | 8 5 1 9       | 1552.63        | 5894 62        | 0.02        | 0.02              | ŵ  | 0.2634             |
| 17        | 8 522         | 1010.98        | 6789 15        | 0.01        | 0.01              | ŵ  | 0 1489             |
| 18        | 8 525         | 1162.84        | 7819 38        | 0.01        | 0.01              | vv | 0 1487             |
| 19        | 8 527         | 1327 63        | 8878 12        | 0.02        | 0.02              | Ŵ  | 0 1495             |
| 20        | 8 530         | 1510.31        | 10089 78       | 0.02        | 0.02              | Ŵ  | 0 1497             |
| 21        | 8 552         | 21521.76       | 23881.49       | 0.26        | 0.26              | Ŵ  | 0.9012             |
| 22        | 8.554         | 3916.28        | 25032.12       | 0.05        | 0.05              | Ŵ  | 0.1565             |
| 23        | 8.557         | 4627.25        | 25713.31       | 0.06        | 0.06              | Ŵ  | 0.1800             |
| 24        | 8.559         | 4379.62        | 26019.79       | 0.05        | 0.05              | Ŵ  | 0.1683             |
| 25        | 8.562         | 9901.71        | 25954.16       | 0.12        | 0.12              | VV | 0.3815             |
| 26        | 8.567         | 8309.68        | 25070.62       | 0.10        | 0.10              | VV | 0.3315             |
| 27        | 8.572         | 1915.96        | 24033.86       | 0.02        | 0.02              | VV | 0.0797             |
| 28        | 8.575         | 3368.81        | 23805.12       | 0.04        | 0.04              | VV | 0.1415             |
| 29        | 8.578         | 3689.36        | 23908.68       | 0.04        | 0.04              | VV | 0.1543             |
| 30        | 8.581         | 3922.28        | 24271.94       | 0.05        | 0.05              | VV | 0.1616             |
| 31        | 8.583         | 3398.55        | 24902.34       | 0.04        | 0.04              | VV | 0.1365             |
| 32        | 8.586         | 4054.49        | 25875.04       | 0.05        | 0.05              | VV | 0.1567             |
| 33        | 8.589         | 4230.50        | 27041.78       | 0.05        | 0.05              | VV | 0.1564             |
| 34        | 8.594         | 9099.73        | 29860.21       | 0.11        | 0.11              | VV | 0.3047             |
| 35        | 8.605         | 21091.32       | 35763.97       | 0.25        | 0.25              | VV | 0.5897             |
| 36        | 8.607         | 6816.61        | 36658.49       | 0.08        | 0.08              | VV | 0.1859             |
| 37        | 8.610         | 4935.51        | 36876.89       | 0.06        | 0.06              | VV | 0.1338             |
| 38        | 8.612         | 48075.96       | 36873.03       | 0.58        | 0.58              | VV | 1.3038             |
| 39        | 8.639         | 2164.07        | 19942.86       | 0.03        | 0.03              | VV | 0.1085             |
| 40        | 8.642         | 2768.11        | 20291.31       | 0.03        | 0.03              | VV | 0.1364             |
| 41        | 8.661         | 28708.81       | 32007.54       | 0.35        | 0.35              | VV | 0.8969             |
| 42        | 8.663         | 5225.54        | 33395.14       | 0.06        | 0.06              | VV | 0.1565             |
| 43        | 8.666         | 5435.57        | 34540.10       | 0.07        | 0.07              | VV | 0.1574             |
| 44        | 8.669         | 5611.25        | 35652.13       | 0.07        | 0.07              | VV | 0.1574             |
| 45        | 8.671         | 5802.05        | 36885.86       | 0.07        | 0.07              | VV | 0.1573             |
| 46        | 8.757         | 7759165.19     | 2.05e+06       | 93.47       | 93.47             | VE | 3.7797             |
| 47        | 8.857         | 68344.03       | 66184.49       | 0.82        | 0.82              | EV | 1.0326             |
| 48        | 8.860         | 11164.51       | 69517.84       | 0.13        | 0.13              | VV | 0.1606             |

| Peak<br># | Time<br>[min] | Area<br>[µV·s] | Height<br>[µV] | Area<br>[%] | Norm. Area<br>[%] | BL  | Area/Height<br>[s] |
|-----------|---------------|----------------|----------------|-------------|-------------------|-----|--------------------|
| 49        | 8.863         | 9991.57        | 69834.22       | 0.12        | 0.12              | vv  | 0.1431             |
| 50        | 8.866         | 11781.87       | 70390.71       | 0.14        | 0.14              | Ŵ   | 0.1674             |
| 51        | 8.869         | 9892.04        | 70958.47       | 0.12        | 0.12              | VV  | 0.1394             |
| 52        | 8.871         | 11412.92       | 71800.34       | 0.14        | 0.14              | VV  | 0.1590             |
| 53        | 8.874         | 11541.86       | 72583.86       | 0.14        | 0.14              | VV  | 0.1590             |
| 54        | 8.877         | 12634.93       | 73338.95       | 0.15        | 0.15              | VV  | 0.1723             |
| 55        | 8.879         | 12356.59       | 73858.97       | 0.15        | 0.15              | VV  | 0.1673             |
| 56        | 8.882         | 12926.44       | 74076.95       | 0.16        | 0.16              | VV  | 0.1745             |
| 57        | 8.884         | 137569.02      | 73814.29       | 1.66        | 1.66              | VB  | 1.8637             |
| 58        | 8.958         | 47.52          | 258.37         | 0.00        | 0.00              | BV  | 0.1839             |
| 59        | 8.962         | 16.14          | 314.76         | 0.00        | 0.00              | VB  | 0.0513             |
| 60        | 8.964         | 43.00          | 243.67         | 0.00        | 0.00              | BV  | 0.1764             |
| 61        | 8.967         | 30.23          | 408.93         | 0.00        | 0.00              | VB  | 0.0739             |
| 62        | 8.970         | 14.32          | 207.22         | 0.00        | 0.00              | BB  | 0.0691             |
| 63        | 8.975         | 11.93          | 226.30         | 0.00        | 0.00              | BB  | 0.0527             |
| 64        | 8.978         | 18.48          | 265.82         | 0.00        | 0.00              | BB  | 0.0695             |
| 65        | 8.980         | 8.50           | 159.61         | 0.00        | 0.00              | BB  | 0.0533             |
| 66        | 8.983         | 25.92          | 318.15         | 0.00        | 0.00              | BB  | 0.0815             |
| 67        | 8.985         | 7.18           | 168.91         | 9e-05       | 9e-05             | BV  | 0.0425             |
| 68        | 8.986         | 13.73          | 261.55         | 0.00        | 0.00              | VB  | 0.0525             |
| 69        | 8.988         | 56.86          | 272.05         | 0.00        | 0.00              | BV  | 0.2090             |
| 70        | 8.993         | 31.48          | 272.06         | 0.00        | 0.00              | VB  | 0.1157             |
| 71        | 8.996         | 51.16          | 213.86         | 0.00        | 0.00              | BV  | 0.2392             |
| 72        | 8.999         | 10.67          | 333.89         | 0.00        | 0.00              | VB  | 0.0320             |
| 73        | 9.004         | 25.92          | 269.75         | 0.00        | 0.00              | BB  | 0.0961             |
| 74        | 9.006         | 25.22          | 193.51         | 0.00        | 0.00              | BB  | 0.1303             |
| 75        | 9.009         | 20.37          | 176.06         | 0.00        | 0.00              | BB  | 0.1157             |
| 76        | 9.012         | 12.69          | 261.76         | 0.00        | 0.00              | BV  | 0.0485             |
| 77        | 9.012         | 18.72          | 330.46         | 0.00        | 0.00              | VB  | 0.0567             |
| 78        | 9.015         | 16.03          | 188.59         | 0.00        | 0.00              | *BB | 0.0850             |
|           |               |                |                |             |                   |     |                    |

8301308.27 3.62e+06 100.00 100.00



|                              |                                                                     | Certificat       | e of analysis    |                 |                    |              |
|------------------------------|---------------------------------------------------------------------|------------------|------------------|-----------------|--------------------|--------------|
|                              |                                                                     | Certificati      | e or unurysis    |                 |                    |              |
|                              | Date                                                                | 22/03/2016       |                  | Batch           | 850 s2p1r1         |              |
|                              | Product name                                                        | peptide Contrô   | le               | Catalog #       |                    |              |
| Smartox.<br>Biotechnology    |                                                                     |                  |                  |                 | <u> </u>           |              |
|                              |                                                                     |                  |                  |                 |                    |              |
| Product specifications       |                                                                     |                  |                  |                 |                    |              |
|                              |                                                                     |                  |                  |                 |                    |              |
| AA sequence                  | C-AEEA-RGEWF                                                        | WGNLVVSAASF      | GNHNAGG-OH       | l               |                    |              |
| Disulfide bond               | 0                                                                   |                  |                  |                 |                    |              |
| Formula                      | C <sub>119</sub> H <sub>194</sub> N <sub>36</sub> O <sub>34</sub> S | 5                |                  |                 |                    |              |
| Appearance                   | White powder                                                        |                  |                  |                 |                    |              |
| Theoritical average weight   | 2681,89                                                             | g/mol            |                  |                 |                    |              |
| CAS number                   |                                                                     |                  |                  |                 |                    |              |
| Source                       | Synthetic                                                           |                  |                  |                 |                    |              |
| Counterion                   | TFA                                                                 |                  |                  |                 |                    |              |
| Solubility (recommendation)  | 50 % of Aceton                                                      | itrile solution  |                  |                 | 1 mg/mL            |              |
|                              |                                                                     |                  |                  |                 |                    |              |
| Handling & Storage           |                                                                     |                  |                  |                 |                    |              |
|                              |                                                                     |                  |                  |                 |                    |              |
| Storage                      | Shipped at amb                                                      | pient temperatu  | ire under lyoph  | ilized powder.  | Store at -20°C (-4 | l°F). Do not |
|                              | freeze-thaw.                                                        |                  |                  |                 |                    |              |
|                              | Aliquot sample                                                      | if required and  | store at -80°C   | (-112°F).       |                    |              |
| Expiry date                  | Not defined                                                         |                  |                  |                 |                    |              |
| Handling and use restriction | Use with caution                                                    | on. Might be tox | ic. Product inte | ented for resea | rch use only, not  | for use in   |
|                              | diagnostic or th                                                    | nerapeutic proce | edures.          |                 |                    |              |
|                              |                                                                     |                  |                  |                 |                    |              |
| Analytical results           |                                                                     |                  |                  |                 |                    |              |
|                              |                                                                     |                  |                  |                 |                    |              |
| Observed purity rate         | 90,49%                                                              |                  | Observed mon     | oisotopic mass  | [M+H+]+            | 2681,17 Da   |
|                              |                                                                     |                  | Theoritical mo   | noisotopic mas  | S                  | 2680,22 Da   |
|                              |                                                                     |                  |                  |                 |                    |              |

#### Chromatogram

 Sample Name :
 Sample #: 020
 Page 1 of 1

 FileName : C:\totalchrom\data\Peptide ceal\injer AEEA fevrier 2016\160314 peptide controle 850 s2p1r1.raw

 Date : 3/21/2016 2:42:49 PM

 Method : cchromolith 5-95 en 10 min.mth

 Start Time : 0.00 min
 End Time : 13.00 min

 Low Point : -126.41 mAU
 Plot Scale: 2528.2 mAU



+33 (0) 456 520 868 contact@smartox-biotech.com

=

Smartox Biotechnology 570 rue de la chimie 38400 St Martin d'Hères France

| Peak<br># | Time<br>[min] | Area<br>[µV·s] | Height<br>[µV] | Area<br>[%] | Norm. Area<br>[%] | BL  | Area/Height<br>[s] |
|-----------|---------------|----------------|----------------|-------------|-------------------|-----|--------------------|
| -         | 0.001         | 0.00           | 0.00           | 0.00        | 0.00              |     |                    |
| 1         | 0.002         | 42.54          | 245.68         | 0.00        | 0.00              | BV  | 0.1732             |
| 2         | 0.007         | 28.29          | 356.69         | 0.00        | 0.00              | VB  | 0.0793             |
| 3         | 4.869         | 86010.57       | 65647.89       | 1.35        | 1.35              | BV  | 1.3102             |
| 4         | 4.874         | 7756.18        | 59133.80       | 0.12        | 0.12              | VV  | 0.1312             |
| 5         | 4.898         | 154870.24      | 83562.89       | 2.43        | 2.43              | VV  | 1.8533             |
| 6         | 4.944         | 271621.09      | 161956.69      | 4.27        | 4.27              | *VB | 1.6771             |
| 7         | 5.002         | 18420.50       | 16740.93       | 0.29        | 0.29              | BB  | 1.1003             |
| 8         | 5.045         | 49368.87       | 34018.14       | 0.78        | 0.78              | BV  | 1.4513             |
| 9         | 5.085         | 8310.72        | 14378.72       | 0.13        | 0.13              | VV  | 0.5780             |
| 10        | 5.086         | 8566.17        | 14587.51       | 0.13        | 0.13              | *VB | 0.5872             |
| 11        | 5.215         | 5755579.60     | 2.20e+06       | 90.49       | 90.49             | *BB | 2.6139             |
|           |               |                |                |             |                   |     |                    |
|           |               | 6360574.77     | 2.65e+06       | 100.00      | 100.00            |     |                    |



|                              |                                                                   | Cortificato of                | Fanalysis       |                  |                   |               |
|------------------------------|-------------------------------------------------------------------|-------------------------------|-----------------|------------------|-------------------|---------------|
|                              |                                                                   | Certificate of                | allalysis       |                  |                   |               |
|                              | Date<br>Product name                                              | 21/03/2016<br>Magainin 1-Ccvs | Ba              | atch<br>atalog # | 851_s1p1f1        |               |
| Smartox.<br>Biotechnology    |                                                                   |                               |                 |                  | _ <u>I</u>        |               |
| Product specifications       |                                                                   |                               |                 |                  |                   |               |
|                              | 1                                                                 |                               |                 |                  |                   |               |
| AA sequence                  | GIGKFLHSAGKF                                                      | GKAFVGEIMKS-AEE               | EA-C-NH2        |                  |                   |               |
| Disulfide bond               | 0                                                                 |                               |                 |                  |                   |               |
| Formula                      | C <sub>121</sub> H <sub>194</sub> N <sub>32</sub> O <sub>31</sub> | 52                            |                 |                  |                   |               |
| Appearance                   | White powder                                                      |                               |                 |                  |                   |               |
| Theoritical average weight   | 2657,16                                                           | g/mol                         |                 |                  |                   |               |
| CAS number                   |                                                                   |                               |                 |                  |                   |               |
| Source                       | Synthetic                                                         |                               |                 |                  |                   |               |
| Counterion                   | TFA                                                               |                               |                 |                  |                   |               |
| Solubility (recommendation)  | 10% acetonrile                                                    | solution                      |                 |                  | 1 mg/mL           |               |
|                              |                                                                   |                               |                 |                  |                   |               |
| Handling & Storage           |                                                                   |                               |                 |                  |                   |               |
|                              |                                                                   |                               |                 |                  |                   |               |
| Storage                      | Shipped at aml                                                    | pient temperature ι           | under lyophiliz | ed powder.       | Store at -20°C (  | -4°F). Do not |
|                              | freeze-thaw.                                                      |                               |                 |                  |                   |               |
|                              | Aliquot sample                                                    | if required and sto           | re at -80°C (-1 | 12°F).           |                   |               |
| Expiry date                  | Not defined                                                       |                               |                 |                  |                   |               |
| Handling and use restriction | Use with caution                                                  | on. Might be toxic. I         | Product intent  | ed for resea     | arch use only, no | t for use in  |
|                              | diagnostic or t                                                   | nerapeutic procedu            | res.            |                  |                   |               |
|                              |                                                                   |                               |                 |                  |                   |               |
| Analytical results           |                                                                   |                               |                 |                  |                   |               |
|                              |                                                                   | <u>.</u>                      |                 |                  |                   | -             |
| Observed purity rate         | 95,61%                                                            | Obs                           | served monois   | otopic mas       | s [M+H+]+         | 2656,39 Da    |
|                              |                                                                   | The                           | eoritical monoi | isotopic ma      | SS                | 2655,40 Da    |

# ☎ +33 (0) 456 520 869 용 +33 (0) 456 520 868 ⊆ contact@smartox-biotech.com

Smartox Biotechnology 570 rue de la chimie 38400 St Martin d'Hères France



#### Chromatogram

| Peak<br># | Time<br>[min] | Area<br>[µV·s] | Height<br>[µV]    | Area<br>[%] | Norm. Area<br>[%] | BL       | Area/Height<br>[s] |
|-----------|---------------|----------------|-------------------|-------------|-------------------|----------|--------------------|
| 199       | 7.359         | 37.65          | 431.30            | 0.00        | 0.00              | BV       | 0.0873             |
| 200       | 7.362         | 62.26          | 593.15            | 0.00        | 0.00              | VV       | 0.1050             |
| 201       | 7.365         | 132.78         | 1181.71           | 0.00        | 0.00              | VV       | 0.1124             |
| 202       | 7.367         | 219.66         | 1/20.05           | 0.00        | 0.00              | VV       | 0.1277             |
| 203       | 7 373         | 322.40         | 2423.05           | 0.01        | 0.01              | Ŵ        | 0.1331             |
| 205       | 7.375         | 581.18         | 3759.34           | 0.01        | 0.01              | ŵ        | 0.1546             |
| 206       | 7.378         | 628.47         | 4262.35           | 0.01        | 0.01              | Ŵ        | 0.1474             |
| 207       | 7.381         | 722.46         | 4530.80           | 0.01        | 0.01              | VV       | 0.1595             |
| 208       | 7.383         | 667.64         | 4561.89           | 0.01        | 0.01              | VV       | 0.1464             |
| 209       | 7.386         | 652.02         | 4427.26           | 0.01        | 0.01              | VV       | 0.1750             |
| 210       | 7 391         | 985.33         | 3528.49           | 0.01        | 0.01              | ŵ        | 0.1008             |
| 212       | 7.396         | 476.71         | 2308.35           | 0.01        | 0.01              | Ŵ        | 0.2065             |
| 213       | 7.399         | 89.65          | 1576.89           | 0.00        | 0.00              | VV       | 0.0569             |
| 214       | 7.401         | 183.94         | 1213.24           | 0.00        | 0.00              | VV       | 0.1516             |
| 215       | 7.405         | 88.98          | 771.10            | 0.00        | 0.00              | VV       | 0.1154             |
| 210       | 7 4 10        | 47.38          | 250.60            | 0.00        | 0.00              | VR       | 0.1230             |
| 218       | 7.413         | 22.68          | 281.60            | 0.00        | 0.00              | BB       | 0.0805             |
| 219       | 7.415         | 16.74          | 252.52            | 0.00        | 0.00              | BB       | 0.0663             |
| 220       | 7.418         | 20.51          | 300.09            | 0.00        | 0.00              | BV       | 0.0683             |
| 221       | 7.421         | 48.42          | 514.08            | 0.00        | 0.00              | W        | 0.0942             |
| 222       | 7.423         | 97.45          | 822.22            | 0.00        | 0.00              | VV       | 0.1185             |
| 223       | 7 4 20        | 122.00         | 990.43<br>1445.47 | 0.00        | 0.00              | Ŵ        | 0.1225             |
| 225       | 7.431         | 260.02         | 1923.75           | 0.00        | 0.00              | ŵ        | 0.1352             |
| 226       | 7.434         | 314.22         | 2168.52           | 0.01        | 0.01              | Ŵ        | 0.1449             |
| 227       | 7.437         | 380.62         | 2620.35           | 0.01        | 0.01              | VV       | 0.1453             |
| 228       | 7.439         | 440.35         | 2809.65           | 0.01        | 0.01              | VV       | 0.1567             |
| 229       | 7.442         | 428.67         | 2836.71           | 0.01        | 0.01              | VV<br>VV | 0.1511             |
| 230       | 7 445         | 363 58         | 2070.04           | 0.01        | 0.01              | ŵ        | 0.1055             |
| 232       | 7.449         | 304.55         | 2000.89           | 0.01        | 0.01              | ŵ        | 0.1522             |
| 233       | 7.452         | 108.39         | 1481.06           | 0.00        | 0.00              | VV       | 0.0732             |
| 234       | 7.452         | 113.68         | 1357.36           | 0.00        | 0.00              | VV       | 0.0838             |
| 235       | 7.454         | 45.28          | 776.93            | 0.00        | 0.00              | VV       | 0.0583             |
| 230       | 7.455         | 40.84          | 072.88            | 0.00        | 0.00              | RB       | 0.0681             |
| 238       | 7.460         | 7.43           | 151.63            | 0.00        | 0.00              | BV       | 0.0490             |
| 239       | 7.460         | 18.64          | 318.54            | 0.00        | 0.00              | VB       | 0.0585             |
| 240       | 7.482         | 7.09           | 184.32            | 0.00        | 0.00              | BB       | 0.0384             |
| 241       | 7.484         | 14.11          | 191.15            | 0.00        | 0.00              | BB       | 0.0738             |
| 242       | 7 4 9 1       | 24.33          | 280.00            | 0.00        | 0.00              | BU       | 0.0801             |
| 244       | 7.493         | 86.36          | 687.81            | 0.00        | 0.00              | Ŵ        | 0.1256             |
| 245       | 7.495         | 129.47         | 1159.81           | 0.00        | 0.00              | VV       | 0.1116             |
| 246       | 7.498         | 199.49         | 1744.68           | 0.00        | 0.00              | VV       | 0.1143             |
| 247       | 7.501         | 342.53         | 2635.92           | 0.01        | 0.01              | VV.      | 0.1299             |
| 248       | 7.504         | 487.35         | 3000.54           | 0.01        | 0.01              | Ŵ        | 0.1331             |
| 240       | 7 538         | 11995 69       | 26686 43          | 0.30        | 0.30              | ŵ        | 0 4495             |
| 251       | 7.541         | 4898.89        | 27627.31          | 0.08        | 0.08              | Ŵ        | 0.1773             |
| 252       | 7.543         | 3932.89        | 28745.32          | 0.07        | 0.07              | VV       | 0.1368             |
| 253       | 7.641         | 5583836.78     | 1.60e+06          | 95.61       | 95.61             | VB       | 3.4968             |
| 254       | 7 702         | 44.38          | 133.65            | 0.00        | 0.00              | BB       | 0.3321             |
| 256       | 7 799         | 9 21           | 165.21            | 0.00        | 0.00              | BB       | 0.2558             |
| 257       | 7.804         | 8.21           | 159.30            | 0.00        | 0.00              | BB       | 0.0515             |
| 258       | 7.810         | 23.68          | 256.80            | 0.00        | 0.00              | BB       | 0.0922             |
| 259       | 7.812         | 7.74           | 133.23            | 0.00        | 0.00              | BB       | 0.0581             |
| 260       | 7.814         | 18.66          | 206.72            | 0.00        | 0.00              | BR       | 0.1077             |
| 262       | 7 820         | 38.38          | 330 73            | 0.00        | 0.00              | VB       | 0.0014             |
| 263       | 7.823         | 33.27          | 345.67            | 0.00        | 0.00              | BV       | 0.0962             |
| 264       | 7.826         | 24.46          | 242.86            | 0.00        | 0.00              | VB       | 0.1007             |
| 265       | 7.828         | 13.35          | 179.63            | 0.00        | 0.00              | BB       | 0.0743             |
| 266       | 7.831         | 25.25          | 331.23            | 0.00        | 0.00              | BB       | 0.0762             |
| 267       | 7.834         | 20.37          | 229.47            | 0.00        | 0.00              | BV       | 0.0888             |
| 269       | 7.836         | 7 44           | 187.96            | 0.00        | 0.00              | VB       | 0.0429             |
| 270       | 7.839         | 29.06          | 310.31            | 0.00        | 0.00              | BV       | 0.0936             |
| 271       | 7.842         | 23.68          | 282.79            | 0.00        | 0.00              | VB       | 0.0837             |
| 272       | 7.844         | 27.16          | 287.98            | 0.00        | 0.00              | BB       | 0.0943             |
| 2/3       | 1.847         | 34.04          | 353.19            | 0.00        | 0.00              | ВV       | 0.0964             |



|                              |                                                                                                                    | • ····           |                |                 |            |            |  |  |  |  |
|------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------|----------------|-----------------|------------|------------|--|--|--|--|
|                              |                                                                                                                    | Certificate      | e of analysis  |                 |            |            |  |  |  |  |
|                              |                                                                                                                    |                  |                |                 | 1          |            |  |  |  |  |
|                              | Date                                                                                                               | 21/03/2016       |                | Batch           | 852_s1p1f2 |            |  |  |  |  |
| Smartov                      | Product name                                                                                                       | peptide PGQ      |                | Catalog #       |            |            |  |  |  |  |
| Biotechnology                |                                                                                                                    |                  |                |                 |            |            |  |  |  |  |
| Droduct coocifications       |                                                                                                                    |                  |                |                 |            |            |  |  |  |  |
|                              |                                                                                                                    |                  |                |                 |            |            |  |  |  |  |
| AA sequence                  | GVLSNVIGYLKK                                                                                                       | LGTGALNAVLKC     | AEEA-C-NH2     |                 |            |            |  |  |  |  |
| Disulfide bond               | 0                                                                                                                  |                  |                |                 |            |            |  |  |  |  |
| Formula                      | C <sub>121</sub> H <sub>211</sub> N <sub>33</sub> O <sub>34</sub>                                                  | 5                |                |                 |            |            |  |  |  |  |
| Appearance                   | White powder                                                                                                       |                  |                |                 |            |            |  |  |  |  |
| Theoritical average weight   | 2704,23                                                                                                            | 2704.23 g/mol    |                |                 |            |            |  |  |  |  |
| CAS number                   | ,                                                                                                                  | 0,               |                |                 |            |            |  |  |  |  |
| Source                       | Synthetic                                                                                                          |                  |                |                 |            |            |  |  |  |  |
| Counterion                   | TFA                                                                                                                |                  |                |                 |            |            |  |  |  |  |
| Solubility (recommendation)  | Water 1 mg/mL                                                                                                      |                  |                |                 |            |            |  |  |  |  |
|                              |                                                                                                                    |                  |                |                 |            |            |  |  |  |  |
| Handling & Storage           |                                                                                                                    |                  |                |                 |            |            |  |  |  |  |
|                              | -                                                                                                                  |                  |                |                 |            |            |  |  |  |  |
| Storage                      | Shipped at ambient temperature under lyophilized powder. Store at -20°C (-4°F). Do not                             |                  |                |                 |            |            |  |  |  |  |
|                              | freeze-thaw.                                                                                                       |                  |                |                 |            |            |  |  |  |  |
|                              | Aliquot sample if required and store at -80°C (-112°F).                                                            |                  |                |                 |            |            |  |  |  |  |
| Expiry date                  | Not defined                                                                                                        |                  |                |                 |            |            |  |  |  |  |
| Handling and use restriction | lling and use restriction Use with caution. Might be toxic. Product intented for research use only, not for use in |                  |                |                 |            |            |  |  |  |  |
|                              | diagnostic or th                                                                                                   | nerapeutic proce | edures.        |                 |            |            |  |  |  |  |
|                              |                                                                                                                    |                  |                |                 |            |            |  |  |  |  |
| Analytical results           |                                                                                                                    |                  |                |                 |            |            |  |  |  |  |
|                              |                                                                                                                    |                  |                |                 |            |            |  |  |  |  |
| Observed purity rate         | 97,92%                                                                                                             |                  | Observed mon   | oisotopic mass  | [M+H+]+    | 2703,59 Da |  |  |  |  |
|                              |                                                                                                                    |                  | Theoritical mo | noisotopic mass |            | 2702,55 Da |  |  |  |  |

#### Chromatogram

 Sample Name :
 Sample #: 026
 Page 1 of 1

 FileName : C:\totalchrom\data\Peptide cea\linjer AEEA fevrier 2016\160304 pgg 852s1p1f2.raw

 Date : 3/22/2016 9:26:22 AM

 Method : cchromolith 5-55 en 10 min.mth

 Time of Injection: 3/4/2016 11:22:27 PM

 Start Time : 0.00 min End Time : 13.00 min

 Plot Offset: 48.26 mAU

 Plot Scale: 301.3 mAU



☎ +33 (0) 456 520 869
 ♣ +33 (0) 456 520 868
 ☑ contact@smartox-biotech.com

Smartox Biotechnology 570 rue de la chimie 38400 St Martin d'Hères France

| Peak<br># | Time<br>[min] | Area<br>[µV·s] | Height<br>[µV] | Area<br>[%] | Norm. Area<br>[%] | BL  | Area/Height<br>[s] | Peak<br># | Time<br>[min] | Area<br>[µV·s] | Height<br>[µV] | Area<br>[%] | Norm. Area<br>[%] | BL       | Area/Height<br>[s] |
|-----------|---------------|----------------|----------------|-------------|-------------------|-----|--------------------|-----------|---------------|----------------|----------------|-------------|-------------------|----------|--------------------|
| -         | 0.001         | 0.00           | 0.00           | 0.00        | 0.00              |     |                    | 49        | 10.829        | 24.04          | 263.16         | 0.00        | 0.00              | BV       | 0.0914             |
| 1         | 0.003         | 26.52          | 301.71         | 0.00        | 0.00              | BV  | 0.0879             | 50        | 10.832        | 26.03          | 335.05         | 0.00        | 0.00              | VB       | 0.0777             |
| 2         | 0.005         | 29.05          | 300.47         | 0.00        | 0.00              | VB  | 0.0967             | 51        | 10.837        | 24.58          | 307.76         | 0.00        | 0.00              | BV       | 0.0799             |
| 3         | 0.008         | 24.28          | 289.71         | 0.00        | 0.00              | BV  | 0.0838             | 52        | 10.840        | 30.64          | 345.61         | 0.00        | 0.00              | VB       | 0.0886             |
| 4         | 0.011         | 22.94          | 211.76         | 0.00        | 0.00              | VB  | 0.1083             | 53        | 10.843        | 9.97           | 170.24         | 0.00        | 0.00              | BA       | 0.0586             |
| 5         | 0.014         | 28.98          | 347.00         | 0.00        | 0.00              | ΒV  | 0.0835             | 54        | 10.846        | 29.15          | 328.11         | 0.00        | 0.00              | VB       | 0.0888             |
| 6         | 0.016         | 22.64          | 288.75         | 0.00        | 0.00              | VB  | 0.0784             | 55        | 10.848        | 130.09         | 337.24         | 0.02        | 0.02              | ND<br>ND | 0.4053             |
| 7         | 0.019         | 21.52          | 304.84         | 0.00        | 0.00              | BB  | 0.0706             | 57        | 10.007        | 20.30          | 200.40         | 0.00        | 0.00              | RV<br>BV | 0.0923             |
| 8         | 0.022         | 22.65          | 211.65         | 0.00        | 0.00              | BV  | 0.1070             | 58        | 10.872        | 20.12          | 300.86         | 0.00        | 0.00              | VB       | 0.0669             |
| 9         | 0.024         | 16.55          | 272.74         | 0.00        | 0.00              | VV  | 0.0607             | 59        | 10.875        | 52 51          | 312.16         | 0.00        | 0.00              | ΒV       | 0 1682             |
| 10        | 0.027         | 18.71          | 212.36         | 0.00        | 0.00              | VB  | 0.0881             | 60        | 10.880        | 22.81          | 265.18         | 0.00        | 0.00              | VB       | 0.0860             |
| 11        | 10.520        | 19.13          | 255.53         | 0.00        | 0.00              | BB  | 0.0749             | 61        | 10.883        | 17.27          | 225.33         | 0.00        | 0.00              | BB       | 0.0767             |
| 12        | 10.522        | 23.27          | 169.37         | 0.00        | 0.00              | BA  | 0.1374             | 62        | 10.885        | 25.49          | 158.79         | 0.00        | 0.00              | BV       | 0.1606             |
| 13        | 10.520        | 15.88          | 243.23         | 0.00        | 0.00              | VB  | 0.0653             | 63        | 10.887        | 21.14          | 160.78         | 0.00        | 0.00              | VV       | 0.1315             |
| 14        | 10.528        | 25.54          | 305.91         | 0.00        | 0.00              | BB  | 0.0835             | 64        | 10.891        | 30.08          | 353.87         | 0.00        | 0.00              | VB       | 0.0850             |
| 10        | 10.551        | 10.40          | 203.72         | 0.00        | 0.00              |     | 0.0023             | 65        | 10.894        | 37.96          | 366.72         | 0.01        | 0.01              | BV       | 0.1035             |
| 17        | 10.534        | 22.07          | 281.86         | 0.00        | 0.00              | ŵ   | 0.0904             | 60        | 10.896        | 106.50         | 405.85         | 0.01        | 0.01              | VV<br>VV | 0.2624             |
| 18        | 10.538        | 20.20          | 159.49         | 0.00        | 0.00              | VR  | 0.0323             | 10        | 10.902        | 78.88          | 712.83         | 0.01        | 0.01              | Ŵ        | 0.1229             |
| 19        | 10.542        | 26.52          | 341 29         | 0.00        | 0.00              | BV  | 0.0777             | 69        | 10.004        | 123.82         | 952.87         | 0.01        | 0.01              | vv       | 0.1273             |
| 20        | 10.544        | 31.06          | 340.05         | 0.00        | 0.00              | vv  | 0.0913             | 70        | 10,910        | 156 64         | 1079 11        | 0.02        | 0.02              | vv       | 0 1452             |
| 21        | 10.547        | 29.26          | 292.68         | 0.00        | 0.00              | vv  | 0 1000             | 71        | 10.912        | 181.51         | 1279.32        | 0.02        | 0.02              | Ŵ        | 0.1419             |
| 22        | 10.550        | 42.07          | 413.02         | 0.01        | 0.01              | vv  | 0.1019             | 72        | 10.915        | 204.72         | 1426.92        | 0.03        | 0.03              | VV       | 0.1435             |
| 23        | 10.552        | 38.50          | 376.56         | 0.01        | 0.01              | VV  | 0.1022             | 73        | 10.917        | 235.91         | 1479.75        | 0.03        | 0.03              | VV       | 0.1594             |
| 24        | 10.555        | 62.27          | 409.42         | 0.01        | 0.01              | VV  | 0.1521             | 74        | 10.920        | 273.92         | 1858.63        | 0.04        | 0.04              | VV       | 0.1474             |
| 25        | 10.558        | 32.11          | 364.78         | 0.00        | 0.00              | VV  | 0.0880             | 75        | 10.922        | 281.59         | 1868.97        | 0.04        | 0.04              | VV       | 0.1507             |
| 26        | 10.560        | 41.41          | 404.20         | 0.01        | 0.01              | VV  | 0.1024             | /6        | 10.926        | 352.73         | 2232.73        | 0.05        | 0.05              | VV       | 0.1580             |
| 27        | 10.563        | 36.64          | 364.94         | 0.01        | 0.01              | VV  | 0.1004             | 70        | 10.928        | 317.93         | 2428.64        | 0.04        | 0.04              | VV<br>VV | 0.1309             |
| 28        | 10.566        | 37.36          | 416.20         | 0.01        | 0.01              | VV  | 0.0898             | 70        | 10.931        | 310.00         | 2020.02        | 0.08        | 0.08              | Ŵ        | 0.2247             |
| 29        | 10.568        | 44.15          | 421.07         | 0.01        | 0.01              | VV  | 0.1048             | 80        | 10.936        | 390.51         | 2838.37        | 0.04        | 0.04              | vv       | 0.1376             |
| 30        | 10.571        | 54.39          | 527.65         | 0.01        | 0.01              | VV  | 0.1031             | 81        | 10.939        | 408.08         | 2942.89        | 0.06        | 0.06              | vv       | 0.1387             |
| 31        | 10.574        | 67.34          | 543.85         | 0.01        | 0.01              | VV  | 0.1238             | 82        | 10.942        | 560.08         | 3054.82        | 0.08        | 0.08              | VV       | 0.1833             |
| 32        | 10.576        | 61.73          | 545.19         | 0.01        | 0.01              | VV  | 0.1132             | 83        | 10.944        | 448.63         | 3033.79        | 0.06        | 0.06              | VV       | 0.1479             |
| 33        | 10.578        | /2./6          | 450.51         | 0.01        | 0.01              | VV  | 0.1615             | 84        | 10.947        | 474.21         | 3067.70        | 0.07        | 0.07              | VV       | 0.1546             |
| 34        | 10.582        | 96.41          | 172.89         | 0.01        | 0.01              | VV. | 0.1247             | 85        | 10.950        | 409.57         | 3020.90        | 0.06        | 0.06              | VV       | 0.1356             |
| 35        | 10.584        | 140.43         | 1023.12        | 0.02        | 0.02              | VV. | 0.1373             | 86        | 10.952        | 425.28         | 2909.80        | 0.06        | 0.06              | VV       | 0.1462             |
| 30        | 10.587        | 169.01         | 1280.76        | 0.02        | 0.02              | ~~~ | 0.1320             | 87        | 10.954        | 1651.34        | 2754.66        | 0.23        | 0.23              | VV.      | 0.5995             |
| 20        | 10.590        | 220.00         | 2100 72        | 0.03        | 0.03              | Ŵ   | 0.1332             | 00<br>90  | 10.905        | 324.40         | 2294.14        | 0.04        | 0.04              | Ŵ        | 0.1414             |
| 30        | 10.595        | 385 55         | 2803.13        | 0.04        | 0.04              | ŵ   | 0.1275             | 90        | 10.900        | 200.95         | 1192.57        | 0.13        | 0.13              | ŵ        | 0.1685             |
| 40        | 10.659        | 713376.20      | 177068 23      | 97.92       | 97.92             | VĒ  | 4 0288             | 91        | 10.984        | 457.77         | 1108.28        | 0.06        | 0.06              | VB       | 0.4130             |
| 41        | 10 778        | 480.16         | 541 27         | 0.07        | 0.07              | έV  | 0.8871             | 92        | 10.998        | 77.21          | 366.21         | 0.01        | 0.01              | BB       | 0.2108             |
| 42        | 10.784        | 52.68          | 487.43         | 0.01        | 0.01              | VB  | 0.1081             | 93        | 11.003        | 33.23          | 397.56         | 0.00        | 0.00              | BV       | 0.0836             |
| 43        | 10,789        | 72.49          | 350.17         | 0.01        | 0.01              | BV  | 0.2070             | 94        | 11.006        | 124.41         | 388.92         | 0.02        | 0.02              | VB       | 0.3199             |
| 44        | 10.795        | 126.34         | 335.42         | 0.02        | 0.02              | VB  | 0.3767             | 95        | 11.019        | 31.35          | 261.11         | 0.00        | 0.00              | ΒV       | 0.1201             |
| 45        | 10.805        | 92.42          | 355.28         | 0.01        | 0.01              | BB  | 0.2601             | 96        | 11.024        | 44.46          | 289.73         | 0.01        | 0.01              | VB       | 0.1535             |
| 46        | 10.813        | 25.22          | 318.08         | 0.00        | 0.00              | BB  | 0.0793             | 97        | 11.030        | 54.36          | 333.48         | 0.01        | 0.01              | BV       | 0.1630             |
| 47        | 10.816        | 34.37          | 379.36         | 0.00        | 0.00              | BB  | 0.0906             | 98        | 11.035        | 18.22          | 232.92         | 0.00        | 0.00              | VB       | 0.0782             |
| 48        | 10.819        | 91.53          | 314.50         | 0.01        | 0.01              | BB  | 0.2910             | 100       | 11.038        | 33.04          | 335.20         | 0.00        | 0.00              |          | 0.1000             |
|           |               |                |                |             |                   |     |                    | 100       | 11.043        | 21.65          | 279.85         | 0.00        | 0.00              | BV       | 0.0003             |
|           |               |                |                |             |                   |     |                    | 102       | 11.045        | 33.30          | 347.73         | 0.00        | 0.00              | VB       | 0.0958             |
|           |               |                |                |             |                   |     |                    | 103       | 11.051        | 29.02          | 369.13         | 0.00        | 0.00              | BB       | 0.0786             |
|           |               |                |                |             |                   |     |                    | 104       | 11.054        | 28.70          | 373.50         | 0.00        | 0.00              | BV       | 0.0768             |
|           |               |                |                |             |                   |     |                    | 105       | 11.056        | 31.06          | 291.98         | 0.00        | 0.00              | VV       | 0.1064             |
|           |               |                |                |             |                   |     |                    | 106       | 11.059        | 25.19          | 342.14         | 0.00        | 0.00              | VB       | 0.0736             |
|           |               |                |                |             |                   |     |                    | 107       | 11.062        | 43.11          | 273.54         | 0.01        | 0.01              | BB       | 0.1576             |
|           |               |                |                |             |                   |     |                    | 108       | 11.067        | 10.15          | 148.59         | 0.00        | 0.00              | BV       | 0.0683             |
|           |               |                |                |             |                   |     |                    | 110       | 11.070        | 13.50          | 249.00         | 0.00        | 0.00              | RD<br>RD | 0.0043             |
|           |               |                |                |             |                   |     |                    | 110       | 11.071        | 17.04          | 140.82         | 0.00        | 0.00              | 00       | 0.1100             |

109 11.070 110 11.071 111 11.074 112 11.077 113 11.083 114 11.086 146.92 122.07 176.29 308.59 0.00 0.00 BB 16.24 14.82 25.45 0.00 0.00 0.00 0.00 0.00 0.00 BB BB BV 15.50 173.15 0.00 0.00 \*VB 728513.35 264018.78 100.00 100.00

0.0543 0.1160 0.1330 0.0841 0.0825

0.0895



**☎** +33 (0) 456 520 869
 ♣ +33 (0) 456 520 868
 ⓓ contact@smartox-biotech.com

|                                                                     |                                                                                          | Contificat      | a of analysis  |                |            |             |  |  |
|---------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------|----------------|----------------|------------|-------------|--|--|
|                                                                     |                                                                                          | Certificat      | e of analysis  |                |            |             |  |  |
|                                                                     | Data                                                                                     | 22/02/2016      |                | Datah          | 052 -1-1-2 |             |  |  |
|                                                                     | Date                                                                                     | 22/03/2016      |                | Batch          | 853_s1p1r2 |             |  |  |
| Smartox                                                             | Product name                                                                             | Leucocin A 24   |                | Catalog #      |            |             |  |  |
| Biotechnology                                                       |                                                                                          |                 |                |                |            |             |  |  |
| Product specifications                                              |                                                                                          |                 |                |                |            |             |  |  |
|                                                                     |                                                                                          |                 |                |                |            |             |  |  |
| AA sequence                                                         | C-AEEA-SVNW0                                                                             | GEAFSAGVHRLA    | NGGNGFW-OH     |                |            |             |  |  |
| Disulfide bond                                                      | 0                                                                                        |                 |                |                |            |             |  |  |
| Formula                                                             | C <sub>119</sub> H <sub>170</sub> N <sub>36</sub> O <sub>34</sub> S                      | 5               |                |                |            |             |  |  |
| Appearance                                                          | White powder                                                                             |                 |                |                |            |             |  |  |
| Theoritical average weight                                          | 2681,89                                                                                  | g/mol           |                |                |            |             |  |  |
| CAS number                                                          |                                                                                          |                 |                |                |            |             |  |  |
| Source                                                              | Synthetic                                                                                |                 |                |                |            |             |  |  |
| Counterion                                                          | TFA                                                                                      |                 |                |                |            |             |  |  |
| Solubility (recommendation)                                         | ommendation) 50% of Acetonitrile solution 1 mg/mL                                        |                 |                |                |            |             |  |  |
|                                                                     |                                                                                          |                 |                |                |            |             |  |  |
| Handling & Storage                                                  |                                                                                          |                 |                |                |            |             |  |  |
|                                                                     |                                                                                          |                 |                |                |            |             |  |  |
| Storage Shipped at ambient temperature under lyophilized powder. St |                                                                                          |                 |                |                |            | °F). Do not |  |  |
|                                                                     | freeze-thaw.                                                                             |                 |                |                |            |             |  |  |
|                                                                     | Aliquot sample if required and store at -80°C (-112°F).                                  |                 |                |                |            |             |  |  |
| Expiry date                                                         | Not defined                                                                              |                 |                |                |            |             |  |  |
| Handling and use restriction                                        | Use with caution. Might be toxic. Product intented for research use only, not for use in |                 |                |                |            |             |  |  |
|                                                                     | diagnostic or th                                                                         | nerapeutic proc | edures.        |                |            |             |  |  |
|                                                                     |                                                                                          |                 |                |                |            |             |  |  |
| Analytical results                                                  |                                                                                          |                 |                |                |            |             |  |  |
|                                                                     |                                                                                          |                 |                |                |            |             |  |  |
| Observed purity rate                                                | 90,34%                                                                                   |                 | Observed mon   | oisotopic mass | [M+H+]+    | 2681,12 Da  |  |  |
|                                                                     |                                                                                          |                 | Theoritical mo | noisotopic mas | S          | 2680,22 Da  |  |  |
|                                                                     |                                                                                          |                 |                |                |            |             |  |  |

#### Chromatogram

 Sample Name :
 Sample #: 027
 Page 1 of 1

 FileName : C:\totalchrom\data\Peptide cea\linjer AEEA fevrier 2016\160314 leucocin a24 aeea 853 s1p1r2.raw

 Date : 3/21/2016 2:59:05 PM

 Method : cchromolith 5-95 en 10 min.mth

 Start Time : 0.00 min End Time : 13.00 min

 Plot Offset: -162.95 mAU

 Plot Scale: 3259.0 mAU



**☎** +33 (0) 456 520 869 **∃** +33 (0) 456 520 868

38400 St Martin d'Hères France

contact@smartox-biotech.com

| Peak<br># | Time<br>[min] | Area<br>[µV·s] | Height<br>[µV] | Area<br>[%] | Norm. Area<br>[%] | BL  | Area/Height<br>[s] |
|-----------|---------------|----------------|----------------|-------------|-------------------|-----|--------------------|
| -         | 0.001         | 0.00           | 0.00           | 0.00        | 0.00              |     |                    |
| 1         | 0.002         | 13.20          | 202.92         | 0.00        | 0.00              | BB  | 0.0650             |
| 2         | 0.004         | 24.09          | 271.87         | 0.00        | 0.00              | BV  | 0.0886             |
| 3         | 0.007         | 26.34          | 302.68         | 0.00        | 0.00              | VB  | 0.0870             |
| 4         | 0.010         | 17.32          | 234.24         | 0.00        | 0.00              | *BB | 0.0739             |
| 5         | 6.270         | 170379.05      | 81098.26       | 1.60        | 1.60              | *BB | 2.1009             |
| 6         | 6.426         | 195125.07      | 117045.40      | 1.84        | 1.84              | *BB | 1.6671             |
| 7         | 6.498         | 304319.96      | 145871.10      | 2.87        | 2.87              | *BB | 2.0862             |
| 8         | 6.594         | 355984.87      | 202441.13      | 3.35        | 3.35              | *BB | 1.7585             |
| 9         | 6.708         | 9591283.16     | 2.79e+06       | 90.34       | 90.34             | *BB | 3.4412             |
|           |               |                |                |             |                   |     |                    |
|           |               | 10617173.06    | 3.33e+06       | 100.00      | 100.00            |     |                    |

