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Abstract

This paper studies if adaptive grid refinement combined with finite-volume

simulation of the incompressible RANS equations can be used to obtain grid-

independent solutions of realistic flow problems. It is shown that grid adap-

tation based on metric tensors can generate series of meshes for grid con-

vergence studies in a straightforward way. For a two-dimensional airfoil and

the flow around a tanker ship, the grid convergence of the observed forces

is sufficiently smooth for numerical uncertainty estimation. Grid refinement

captures the details of the local flow in the wake, which is shown to be grid

converged on reasonably-sized meshes. Thus, grid convergence studies using

automatic refinement are suitable for high-Reynolds incompressible flows.

Keywords: grid adaptation, grid convergence, uncertainty estimation,

hydrodynamic flows

Email address: jeroen.wackers@ec-nantes.fr (Jeroen Wackers)

Preprint submitted to J Comput Phys May 3, 2017



1. Introduction1

One of the trends in computational fluid dynamics today is the high-2

fidelity simulation of more and more complex flows. For example, simulations3

for realistic geometries such as ships with their propellers and appendages4

have become possible. Physical flow features such as flow separation, vortex5

shedding and vortex breakup are simulated in unprecedented detail. Finally,6

multiphysics computations like fluid-structure interaction or the modelling7

of cavitation become common.8

The results of such simulations depend on the physical models being9

used, such as the turbulence model in the Reynolds-averaged Navier-Stokes10

(RANS) equations. Often, such models are applied in situations which are far11

more complex than the ones for which they were developed and which may12

be outside their range of validity. Research of physical modelling, specifically13

for today’s realistic simulations, is therefore of prime importance.14

To accurately assess the precision of a physical model, we need to know15

a numerical solution in which the numerical errors are small with respect to16

the modelling errors: a solution that is close to grid convergence. In simple17

cases, it is possible for an experienced user to generate meshes which provide18

sufficiently small numerical errors. However, for more and more complex19

flows, the grid resolution needed to resolve the flow phenomena, as well as20

the precise position of these features, is uncertain. Therefore, it is impossible21

to know beforehand what mesh size is needed where, in order to obtain grid22

convergence.23

The key to the study of physical flow modelling in complex cases may24

be the adaptive refinement of the grid. Mesh adaptation is the technique25
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of modifying locally the mesh density during a computation, in order to26

optimise the mesh for the flow being simulated. Such techniques are well27

established, see for example [1]. For the modelling of complex flows, adap-28

tation techniques can detect where relevant flow features occur, so fine cells29

can be placed only around these features. This allows the creation of locally30

very fine meshes if these are needed to get grid convergence for flow details,31

while the total number of cells is kept reasonable.32

In this paper, we see if today’s grid refinement techniques can assure that33

the solution of an incompressible flow problem is grid-independent. This34

means not only obtaining a solution, but also proving that its numerical35

errors are small enough. For the paper, steady flows are considered and36

iterative convergence errors are minimised by setting strict tolerances for37

convergence. Thus, we concentrate on errors due to the spatial discretisation,38

i.e. interpolation errors and approximate integration.39

In the absence of single-grid error estimation procedures like [2], estimat-40

ing spatial discretisation errors requires simulations on several coarse to fine41

grids. Therefore, we wish to know if grid refinement studies can be performed42

with adaptive refinement. Specifically, we investigate the following: (a) Can43

grid adaptation create geometrically similar grids, where the local ratio of44

cell sizes between two grids is constant and the cell shapes and orientations45

are the same? (b) Are the results suitable for use with established uncer-46

tainty estimation methods? (c) Can the global and local flow be computed so47

accurately that the numerical errors become much smaller than the physical48

modelling errors?49
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Simulations and grid refinement are performed with the ISIS-CFD un-50

structured finite-volume incompressible RANS solver developed by the au-51

thors from ECN-CNRS. This code is used for the realistic simulation of52

industrial-type flows, it is available as the flow solver of the FINETM/Marine53

computing suite. Its adaptation method is based on the refinement of un-54

structured hexahedral grids by subdivision of the cells [3, 4]. Anisotropic55

refinement, where the cells are adapted to the flow both in size and in aspect56

ratio, is handled with the metric tensor approach introduced by George and57

Borouchaki [5], modified for the refinement of hexahedrals.58

The tests in this paper are therefore based on the type of computations59

usually performed with ISIS-CFD: incompressible RANS flows, unstructured60

hexahedral grids, refinement by subdivision, and refinement criteria based61

on second spatial derivatives. However, the proposed method of uncertainty62

evaluation is not limited to this type of simulations. To complete the tests,63

we evaluate if the conclusions reached are also valid for other grid adaptation64

methods.65

The flow solver is presented briefly in section 2, the refinement method66

and its use of metric tensors as refinement criteria are discussed in section67

3. Section 4 investigates how such a refinement method can be used to68

produce geometrically similar series of meshes for convergence studies. A69

two-dimensional airfoil is simulated in section 5, to test whether these se-70

ries can produce asymptotic convergence of the computed forces and useful71

estimations of the numerical uncertainty. Furthermore, we search the grid72

density needed to obtain grid independence for the solution in the wake. Fi-73

nally, the flow around the KVLCC2 tanker is computed to see how close one74
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can get to grid convergence for a realistic ship flow test case (section 6). The75

conclusion (section 7) discusses the generality of the results and evaluates76

the limitations and perspectives of the proposed grid convergence method.77

2. The ISIS-CFD flow solver78

ISIS-CFD is an incompressible unsteady multifluid Navier-Stokes solver79

[6, 7, 8]. The solver is based on the finite volume method to build the spatial80

discretisation of the transport equations. Pressure-velocity coupling is ob-81

tained through a Rhie & Chow SIMPLE-type method [9]. The discretisation82

is face-based, so cells with an arbitrary number of arbitrarily-shaped faces83

are accepted; most computations are performed on unstructured hexahedral84

meshes. The code is fully parallel using the MPI (Message Passing Interface)85

protocol.86

Turbulence is principally modelled with the Reynolds-averaged Navier-87

Stokes (RANS) equations and advanced turbulence closures, such as the88

anisotropic EASM model [6]. Furthermore, several Detached-Eddy Simu-89

lation (DES) models are available. If a free surface is present, it is captured90

with a mixture-model approach [7]. Finally, techniques such as mesh de-91

formation allow the 6 DOF resolution of body motion, rotation of bodies is92

achieved through sliding interfaces, and coupling with other fluid or structure93

solvers is possible. For brevity, these options are not further described here.94

3. Grid refinement method95

An adaptive grid refinement technique is included in the solver ISIS-CFD96

[3, 4]. The method performs isotropic and anisotropic refinement of unstruc-97
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tured hexahedral meshes. Adapted meshes are created by dividing the cells98

of a coarse original grid into finer cells; this division can be repeated sev-99

eral times until the desired cell sizes are obtained. Anisotropy is introduced100

by splitting cells in one direction only. The grid refinement is performed in101

parallel and includes an automatic dynamic load balancing in order to redis-102

tribute the refined grid over the processors when some partitions have been103

refined more than the others. The mesh is adapted regularly during the com-104

putation in order to follow the convergence of the flow; earlier refinements105

can be undone to account for the changes in the flow as it converges. Recent106

developments of the technique include the treatment of this derefinement in107

an anisotropic way [10] and the flux-component Hessian criterion described108

below. The remainder of this section gives an overview of the refinement cri-109

teria which are used, followed by a description of two measures which ensure110

the quality of the refined grid.111

3.1. Metric-based refinement112

To obtain anisotropic grid refinement, we use metric tensors as refinement113

criteria. This technique was introduced for the generation of anisotropic114

tetrahedral cells [5], it has later been used successfully for the adaptive re-115

finement of such meshes [11, 12]. The technique also provides a practical and116

flexible framework for the refinement of hexahedral meshes.117

In our procedure, the refinement of the cells is decided as follows. First,118

the 3× 3 criterion tensors Ci in each cell i are computed (in some way) from119

the flow solution. In a hexahedral cell, let the cell sizes di,j (j = 1, 2, 3) be120

the vectors between the opposing face centres in the three cell directions.121

The goal of the grid refinement is then to create a grid which is uniform122
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under the transformation C, which implies that:123

‖Cidi,j‖ = Tr ∀i, j, (1)

where Tr is a constant. In the refinement procedure, this is obtained in the124

following way. Each time the procedure is called, the criterion Ci and the cell125

sizes di,j are computed on the current grid. A cell i is refined in the direction126

j when ‖Cidi,j‖ exceeds the constant Tr, while a previously refined group of127

cells can be derefined in the direction j if ‖Cidi,j‖ is lower than Tr/d for all128

cells in the group. The constant d is chosen slightly larger than 2, to prevent129

cells being alternately derefined and re-refined. Equation(1) implies that the130

tensors C are direct specifications of the desired cell sizes: in a converged131

refined grid, the cell sizes are inversely proportional to the magnitude of the132

C.133

3.2. Refinement criteria134

The refinement criteria are based on the Hessian matrix of second spatial135

derivatives. Hessian matrices can be interpreted as rough error indicators,136

since they are linked to interpolation errors for linear interpolation [11]. Thus,137

they provide some measure of the truncation error for a second-order finite-138

volume discretisation.139

Initially, we based the criterion on the Hessian of the pressure [4], using140

the rationale that the pressure is important for the computation of forces141

on bodies and also a good indicator of waves and vortices. However, the142

pressure criterion is unable to track wakes. To adapt the mesh to pressure-143

based flows but also to boundary layers, wakes, and shear layers, a new144

criterion is introduced based on the Hessians of both the pressure and the145
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velocity. To give equal importance to the different Hessian matrices, they146

are weighted in the way in which they appear in the flux.147

The Hessian criterion based on the pressure p (PH criterion) is computed148

as:149

CPH =
(

‖H(p)‖
)α
, (2)

where H is the Hessian operator and the absolute value of a matrix ‖ · ‖150

corresponds to a matrix having the same eigenvectors as the original one and151

the absolute values of its eigenvalues. In the same way, the power α of a152

matrix is obtained by taking its eigenvalues to the power α while keeping153

the eigenvectors. For second-order reconstructions, the interpolation errors154

are proportional to the Hessian, times the cell size squared. Thus, to get an155

approximate equidistribution of the interpolation errors, we choose α = 1

2
156

[3].157

The new flux-component Hessian (FCH) criterion is computed from Hes-158

sians of the pressure and velocity components. To derive a general refine-159

ment criterion, we want to get as close as possible to an indication of the160

truncation error. For finite-volume discretisations, this error comes mainly161

from interpolation errors in the fluxes, so it contains all the different state162

variables (pressure, velocity, turbulent viscosity). However, from a compu-163

tational point of view it is desirable to have a simple refinement criterion.164

Therefore, as a first step, only the convective and pressure part of the flux is165

used and the turbulence modelling is ignored. Furthermore, we do not take166

into account all the different products of velocity terms which appear in the167

fluxes but assign a common weight ρV to all the velocity Hessians, where ρ168
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is the density and V =
√
u2 + v2 + w2. Thus, the criterion is chosen as:169

CFCH =
(

max
(

‖H(p)‖, ρV ‖H(u)‖, ρV ‖H(v)‖, ρV ‖H(w)‖
)

)α

. (3)

The maximum of two tensors is computed using the approximative procedure170

defined by [3]. Further testing has to determine if this criterion is adequate,171

or if diffusive and turbulence terms must also be added.172

3.3. Boundary layer protection and minimum cell size173

Two measures are available to improve the regularity of the adaptively174

refined meshes. The first (figure 1) is a protection of the boundary layer175

grid, which on the original grid consists of several layers of wall-aligned cells.176

For these layers, the refinement method contains an option to forbid any177

refinement in the wall normal direction (which would locally increase the178

number of layers). Furthermore, in all cases the refinement parallel to the179

wall is made the same in each column of cells from the wall to the outer layer:180

if one of the cells in a column needs to be refined, all the cells are refined.181

Thus, the column / layer structure of the boundary layer grid is preserved.182

a) b)

Not OKOK

Figure 1: Boundary layer protection: preventing normal refinement (a) and copying par-

allel refinement in a column (b).
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A second measure is to impose a minimum cell size: cells smaller than this183

size are no longer refined. This option prevents spurious refinement if locally184

large errors appear in the computation of the refinement criterion, which may185

appear for example in the high aspect-ratio cells of the near-wall boundary186

layer grid. Also, it prevents infinite refinement around flow singularities.187

4. Using grid refinement for convergence studies188

Metric-based grid adaptation methods like the one described in section189

3 provide a simple and elegant way to create series of meshes for grid con-190

vergence studies. This section describes such grids and the way they can191

be created adaptively, plus it highlights certain theoretical limitations of the192

method proposed. The discussion is completed in section 5, which tests the193

effectiveness of the approach for obtaining grid-converged solutions in prac-194

tice.195

4.1. Geometrically similar grids196

To allow extrapolation towards the grid-independent solution, grid con-197

vergence studies require a series of computations on different meshes for198

which the local truncation errors have the same spatial distribution and199

vary proportionally to a single global mesh size parameter (see for exam-200

ple [13, 14]). Since truncation errors in general depend on the shapes and201

orientations of the cells as well as on their size, this puts two requirements202

on the meshes:203

1. The ratio of the cell sizes between two meshes must be constant through-204

out the mesh,205
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2. In any given position, the meshes need to have cells of similar shape206

and orientation.207

For a user, creating such meshes is much easier with structured than with208

unstructured grid generators. In the former, the cell orientation is given by209

the shape of the grid block(s), the cell size can be varied freely by changing210

the number of cells in each direction. For the latter, the cell orientations211

are often not explicitly imposed. Also, it may require great care to obtain212

fine cells in exactly the same zones for all meshes, since the mesh generation213

algorithm does not ensure this naturally. In practice, this limits the use of214

refinement studies with unstructured grids.215

4.2. Series of meshes with grid adaptation216

Metric-based anisotropic grid refinement methods such as the one out-217

lined in section 3 can create series of geometrically similar unstructured218

meshes naturally. Thanks to the use of metric tensors, the threshold Tr219

globally specifies the fineness of the grid: if the refinement criterion remains220

constant as the mesh is refined, the mesh size everywhere is proportional221

to Tr (equation 1). This is the case for any refinement criterion, local or222

integral-based, which is computed from the flow without explicitly taking223

into account the mesh. The Hessian criteria are an example. Furthermore,224

if the refined grids are created by cell division, the refined cells conserve the225

shape and orientation of the cells in the original grid, so two meshes refined226

from the same original grid have similar cell shapes. Thus, the two require-227

ments of section 4.1 are satisfied. This means that series of geometrically228

similar meshes can be created by starting from the same original grid and229

simply varying Tr.230
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A limitation of this approach is that the refinement procedure cuts cells231

in half, so the cell sizes in the original grid can only be reduced by a power of232

two. Thus, if Tr is reduced by anything other than a power of two between233

subsequent meshes, the cell sizes are divided by the nearest power of two and234

the zones with cells of the same size become larger or smaller (see figure 3235

for an example). While such meshes still resemble each other closely, they236

are not formally geometrically equivalent.237

Furthermore, the mesh size is not proportional to Tr in those regions238

where the original grid is not refined at all. To obtain grids that are similar239

in these zones, one could make a different original grid for each threshold.240

However, if such grids are unstructured, they are rarely exactly similar close241

to the walls, where the grid is deformed to follow the walls. Thus, to improve242

the similarity in the unrefined parts of the mesh which are by definition the243

least interesting for the flow, one would reduce the similarity in the most244

critical parts of the mesh, the near-wall regions. Therefore, we base our245

convergence studies on the same original mesh for all grids.246

4.3. Effects of protective measures247

Protective measures also break the proportionality of the mesh size to Tr.248

Suppressing boundary layer refinement in the wall-normal direction results249

in the same cell sizes normal to the wall for all meshes. This is often the250

desired behaviour. For example in refinement studies with law-of-the-wall251

boundary conditions it is common practice to keep the boundary grids the252

same between meshes, since the gradient in the first layer of cells on the253

boundary (and therefore the solution) depends on the thickness of this layer.254

However, one must be aware of introducing a component to the numerical255
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error which does not disappear on grid refinement.256

Imposing a minimum cell size has the same effect. Once the finest parts257

of the mesh have reached this size, they are no longer refined when Tr is258

reduced, so the truncation errors remain constant in these parts. A solution259

for this problem is to vary the minimum cell size on the different meshes,260

proportional to Tr. However, the minimum cell size only exists to counteract261

occasional large errors in the refinement criterion, it should have the least262

possible effect on the meshes. Therefore, we keep the minimum mesh size263

constant and we choose it as small as possible.264

5. Two-dimensional case: Nakayama B airfoil265

The objective of this section is to test the proposed method for grid-266

independence studies on a two-dimensional test case, for which very fine267

meshes can be produced if needed. Three different series of meshes with low-268

Reynolds and wall-law boundary conditions are created (section 5.1). The269

adaptively refined meshes are analysed in section 5.2, the convergence of the270

global forces and the related uncertainty estimation is studied in section 5.3.271

Section 5.4 considers the grid-independence of two local flow features, the272

pressure on the foil and the wake. The final section 5.5 gives estimations of273

the equivalent three-dimensional grid sizes for the grids obtained here.274

5.1. Test case and computations275

The test case is the Nakayama B airfoil [15]. This case is of particular276

interest since detailed measurements of the velocity and the turbulence in-277

tensity have been performed both in the boundary layers and in the wake,278

up to 2 chord lengths behind the trailing edge. The airfoil is a supercritical279
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profile with chord c = 61 cm, placed at α = 4o in the centre of a 137 cm high280

test section. The flow is incompressible and Re = 1.2 · 106. Simulations are281

performed with the k − ω SST turbulence model and with the AVLSMART282

scheme [16] for all convective terms.283

Three series of computations have been performed. The first two series284

use a low-Reynolds (no-slip) boundary condition on the airfoil and serve285

to compare the pressure (LR PH) and flux-component (LR FCH) refinement286

criterion. The original mesh for these computations has 5755 cells and y+ ≈ 1287

on the walls. A minimum cell size is imposed but this limit is kept low288

(0.0002c). The last series uses the FCH criterion with a wall-law boundary289

condition, for which the original grid has 2623 cells and y+ ≈ 30. For this290

series (WL FCH), the minimum cell size is 0.001c, the size of the first layer291

of boundary cells. As seen in section 4.3, these cells cannot be refined.292

All series consist of ten meshes. For each mesh, the refinement threshold293

Tr is divided by
√
2 with respect to the previous mesh (thus, the cell sizes294

are halved every two meshes). The Tr go from 0.5000 to 0.0221.295

5.2. Refined meshes296

This section studies the series of adapted meshes to see if they have the297

characteristics described in sections 3 and 4. The difference between the298

three series is illustrated by figure 2. For the pressure criterion (figure 2a),299

the refinement is concentrated around the leading edge where the variations300

in the pressure are the largest. The same refinement is created by the flux-301

component criterion (figure 2b), since this criterion includes the pressure302

Hessian. However, the boundary layer and the wake are also refined, which303

is not the case for the pressure criterion. Contrary to the accepted practice304
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Figure 2: Refined meshes for the Nakayama airfoil with Tr = 0.125. Low-Reynolds condi-

tions with the PH criterion (a) and FCH criterion (b), wall law with FCH (c). The right

figures show a close-up around the trailing edge.

for boundary layer grids, fine cells are concentrated near the outside of the305

boundary layer. Finally, the wall-law FCH grids (figure 2c) are generated306

with the same criterion, the difference comes from the larger minimum cell307

size and the coarser near-wall grid in the original mesh. The figures show308

that even in the refined meshes, the difference with the LR FCH meshes309

remains limited to the near-wall region.310

Are the meshes in one series geometrically similar? Figure 3 shows a311

detail of three successive meshes in the LR PH series. The threshold for the312

third mesh is twice smaller than for the first one and these two meshes indeed313
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Figure 3: A detail of the LR PH meshes, for progressively finer thresholds. Left to right:

Tr = 0.0625, Tr = 0.0442, and Tr = 0.0313.

have refinement in the same places (see section 4.2). For example, regions of314

cells with the same size start at x/c = −0.14 and x/c = −0.07 in both grids.315

The anisotropic refinement is also the same, as shown by the similar regions316

of vertically oriented cells above and below the regions of fine cells. Thus,317

the first and third grids are geometrically similar.318

For the middle grid, the threshold has a ratio of
√
2 with respect to the319

other ones. Thus, the regions of fine cells are not the same, they start at320

x/c = −0.1 and x/c = −0.05 for example. Furthermore, the cells have321

the same size in the second mesh that they have in either the first or in322

the third mesh, so when going from a ‘coarser’ to a ‘finer’ mesh, in many323

places the cell sizes do not change! Locally, the second mesh is therefore not324

geometrically similar to the first and third ones. However, globally the three325

meshes resemble each other. The cell orientations are the same, the shape of326

the fine-cell regions is the same even down to the distribution of anisotropic327

refinement. The three meshes still form a series.328
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Figure 4: Number of cells in the three series of grids. The vertical axis shows the number

of cells to the power −0.5, the corresponding number of cells is indicated to the right.

Finally, with the cell sizes proportional to the threshold (equation (1)),329

the number of cells should scale with T−2
r . Figure 4 shows that for the330

Nakayama case, this is only asymptotically true as Tr goes to zero. On the331

coarser grids, in most of the domain the original grid is not refined. In332

these regions the number of cells does not change between grids; geometrical333

similarity is therefore not satisfied. However, even the coarsest grid is refined334

in those regions which are the most important for the simulation of the flow.335

Thus, in these regions the grids are geometrically similar. If this is enough336

for convergence studies, will be seen below.337

5.3. Grid convergence of forces338

For all computations, the convergence of the force coefficients Cd =339

Fx/(
1

2
ρV 2cb) and Cl = Fy/(

1

2
ρV 2cb) is studied, where the forces are com-340

puted on a wing segment of unit span b = 1. Uncertainty estimations are341
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performed following Eça and Hoekstra [14]. A power law:342

C(Tr) = C0 + α(Tr)
p, (4)

with an unknown order p is least-squares fitted through the force coefficients343

obtained on the five grids considered. This fit is used to compute the es-344

timated error ǫ = α(Tr1)
p which is the difference between the value on the345

finest of these grids and the extrapolation to Tr = 0. Furthermore, the corre-346

lation error σ is computed as the standard deviation of the difference between347

the actual values on all grids and the power-law values obtained for the Tr of348

these grids. Then the uncertainty on the finest grid is estimated as 1.25ǫ+σ.349

The safety factor 1.25 due to Roache [17] is meant to ensure that the uncer-350

tainty interval contains the actual error with a 95% probability. When no351

satisfactory fit is found, new fits are computed with fixed-power laws and the352

factor of safety is increased. For details, the reader is referred to the original353

paper [14].354

Other uncertainty estimation techniques such as those by Stern et al. [18]355

or Celik et al. [19] would probably also work with our data. However, the356

advantage of the Eça and Hoekstra approach for the current work is, that the357

standard deviation σ provides a measure of the quality of the fit. Thus, σ can358

be used to see how well our series of meshes produce asymptotic convergence.359

5.3.1. Estimated uncertainties360

The dependence of Cd and Cl on Tr is shown in figure 5; starting from the361

third grid, estimated uncertainties are included. To resemble the usual type362

of convergence study where a large number of grids is not always available,363

the uncertainties on each grid are computed from not more than five grids:364
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Figure 5: Convergence of drag coefficient Cd and lift coefficient Cl for the Nakayama

airfoil, with respect to the threshold Tr. FCH with low-Reynolds grid (a) and wall-law

grid (b), PH with low-Reynolds grid (c). The two vertical axes are scaled such that error

bars of the same length for Cd and for Cl indicate the same relative uncertainty.
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the grid itself and the previous four, if these exist.365

The low-Reynolds grids with the FCH criterion provide the most com-366

plete simulation of the flow, since the wake and the boundary layer are fully367

resolved. Figure 5a shows a convergence for Cd that appears asymptotic368

with some superimposed high-frequency noise. The uncertainty estimation369

works well here: all the uncertainty intervals contain the actual converged Cd370

and those computed with five or four grids (Tr ≤ 0.1768) are not excessively371

large. For Cl, even on the coarsest grids, the computed values are close to the372

solution on the finest grid. Unfortunately, this means that the convergence373

is dominated by noise so the estimated uncertainties are high; the estimation374

cannot show how good the coarse-grid solutions really are. Realistic error375

bars are obtained for Tr ≤ 0.0625. Similar results are obtained for the WL376

FCH series (figure 5b), so the use of the wall law does not perturb the grid377

convergence.378

However, the PH series shows a different convergence behaviour (figure379

5c). First, Cl varies much more over the grids. And second, the shape of380

the convergence curve for both forces does not resemble a power law, which381

means that the uncertainty intervals on coarser grids do not contain the382

true converged values. So even though the lift is predominantly a pressure383

force, the pressure-based refinement criterion is not the optimal choice for384

computing it. On the contrary, a fine resolution of the boundary layers and385

the near wake is required.386

Finally, the convergence behaviour on coarse grids is not much worse than387

on fine grids, even though these coarse grids are mostly equal to the original388

grid (see section 5.2): the convergence for Cd is smooth, while the values for Cl389
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rapidly approach the converged one. Thus, geometrically similar refinement390

of the most crucial regions is enough to get acceptable convergence.391

5.3.2. Asymptotic convergence and noise392

To see if the series of adaptively refined meshes produce asymptotically393

convergent solutions, we perform different power-law fits for the LR FCH394

series. For the least-squares method, the bias towards the finest grids sug-395

gested by Eça and Hoekstra is used. The coefficients p and C0 for each fit,396

as well as the extrapolated error ǫ and correlation error σ (see equation (4)397

and its discussion) are gathered in table 1.398

Table 1: Fits of the power law (4) to the forces on the Nakayama wing, using the results

on different sets of grids. A symbol – indicates that no fit could be found. Percentages

are expressed w.r.t. D = 1.2714 · 10−2 (Cd) and D = 0.8070 (Cl).

Finest Tr grds. Cd.10
2 p C0.10

2 ǫ%D σ%D Cl p C0 ǫ%D σ%D

All grids

0.0884 6 1.3326 1.52 1.2659 2.38% 0.92% 0.8063 –

0.0442 8 1.2963 1.56 1.2714 0.76% 0.57% 0.8069 0.68 0.8036 0.36% 0.23%

0.0221 10 1.2778 1.56 1.2714 0.26% 0.37% 0.8077 1.22 0.8070 0.03% 0.18%

5 grids

0.0221 5 ” 1.36 1.2698 0.36% 0.04% ” 1.00 0.8082 0.05% 0.05%

Every 2nd

0.0221 5 ” 1.49 1.2697 0.33% 0.19% ” 1.48 0.8072 0.01% 0.19%

To eliminate noise in the convergence curves, Eça and Hoekstra recom-399

mend to use computations on as many grids as possible. Therefore, for the400
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first trial fits, the data on a grid and all the preceding ones is used. The re-401

sulting fit for Cd converges rapidly and is fully established with Tr = 0.0442402

as the finest grid; adding the finest two grids does not change the fit, even403

though these points receive the largest weight in the fit. Furthermore a fit404

through the finest 5 grids, while not identical to the first fits, is good as405

shown by its low value of σ. This indicates that Cd actually behaves as a406

power law, perturbed only by small-scale noise.407

This is different for Cl: the power-law fit has no solution for Tr = 0.0884,408

the coefficients vary for each added point, and Cl0 is always lower than Cl,409

even though Cl on the finest grids increases with further refinement. The fit410

on the finest five grids looks more reasonable, however. It is plausible that411

the data for Cl contains a higher-order error term as well as high-frequency412

noise, so that fine grids are needed to reach the asymptotic range.413

The noise in the data may be created because subsequent grids are not414

geometrically similar (section 5.2); indeed, figure 5 shows that most of the415

perturbations are positive for one point, negative for the next, etc. To elim-416

inate this effect, a last fit was made using only every second grid, so each417

grid is twice finer than the previous one. For Cd, this fit is better than the418

one using all meshes since its σ is lower, but the improvement is small. For419

both forces, the fits are comparable. Thus, in practice it is possible to use420

the intermediate, not strictly similar meshes for data fitting.421

5.3.3. Accuracy422

What grid size is needed to accurately evaluate modelling errors? Fig-423

ure 5 shows that a typical modelling error, switching from low-Reynolds to424

wall-law boundary conditions, creates a change in Cd of about 7%. For a425
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reliable comparison of the LR FCH and WL FCH computations, the numer-426

ical uncertainties for the two computations should be small compared to this427

modelling error. For example, an uncertainty of the order of 1% gives a 1.4%428

combined uncertainty for their difference; five times less than the modelling429

error. The results in figure 5 show that 1% estimated uncertainty for both430

Cl and Cd is reached around Tr = 0.0313, i.e. on very fine meshes.431

However, 1% uncertainty is a very strict requirement which may not be432

necessary in practice for all computations. Comparing the computed values433

on each grid with the extrapolated value for the finest grid, we see that 1%434

error for Cd is reached around Tr = 0.0442 and for Cl around Tr = 0.25!435

And for Cd, using Richardson extrapolation, 1% error in Cd0 is obtained436

from Tr = 0.125. Thus, modelling errors can be evaluated with results on437

coarser grids than the uncertainty estimates indicate, if one accepts these438

results without formal proof of their accuracy.439
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Figure 6: The difference in pressure coefficient Cp with respect to the finest grid Tr =

0.0221, for four coarser grids. LR FCH (a) and LR PH (b). Note that the vertical scale

of the two figures is different.
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5.4. Grid-independence of the local flow440

Much of the interest of grid adaptation is in the precise computation441

of local flow details. This section studies the grid convergence of two such442

features: the pressure on the airfoil and the flow in the wake. For the distri-443

bution of Cp = p/(1
2
ρV 2) on the profile, figure 6 shows the difference in the444

solution between four coarser grids and the finest one. For the LR FCH series445

(figure 6a), although the pressure signal is noisy, the distance between solu-446

tions decreases as the grids become finer. The main differences are found in447

the stagnation point and the suction peak on the leading edge, so the regions448

of fine cells created at the leading edge (see figures 2 and 3) are justified.449

From Tr = 0.0884 on, the pressure difference with the finest grid is less than450

1% of the stagnation pressure everywhere.451

The result for the LR PH series is different (figure 6b). The distance452

between solutions decreases for finer grids, but the difference with the finest453

grid is almost uniform over the entire profile and the differences between454

grids are larger. This confirms what was found in section 5.3.1: even for455

computing the pressure, the accurate resolution of the boundary layer flow456

is a necessity.457

The second feature studied is the near and far wake. Figure 7 gives the458

velocity and one component of the turbulent fluctuation for the two FCH459

series (with the PH criterion, the wake is completely diffused). Judging460

visually from the distance between the curves, on the Tr = 0.0442 grid the461

solution is converged, the Tr = 0.0884 grid is close, and the Tr = 0.1768 grid462

already gives the right tendencies.463

The results are not the same for low-Reynolds and wall-law boundary464
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Figure 7: Velocity V (left lines) and fluctuation correlation u′u′ (right lines) in the wake

of the Nakayama airfoil, at 0.01c (a, c) and 2.0c (b, d) behind the trailing edge. LR FCH

(a, b) and WL FCH (c, d).
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conditions. The most notable effect of the wall law is the attenuation of the465

turbulence peak at the trailing edge in the near wake, which corresponds to466

the position where the grids differ most (figures 2b and c). However, even in467

the far wake a reduction in the velocity defect and the turbulence intensity468

can be seen due to the wall law.469

Compared with the experiments [15], the shape of the turbulence profiles470

is well captured in both cases but the intensity is too low, so the wake and471

the boundary layer are too thin. Also, unlike the experiments, the edges472

of the wake are sharp in the numerical solutions. This is only observed473

because of the extra-fine grid around the edge of the wake (figure 2b); on474

coarser refined grids and therefore on standard boundary layer grids also,475

the numerical solution is closer to the experiments. This modelling error is476

therefore only visible thanks to the adaptive refinement.477

Thus, from the Tr = 0.0884 grids on, the differences between the solutions478

in one series are small compared with the difference between low-Reynolds479

and wall-law solutions. Both these differences are small with respect to the480

distance between the simulations and the experiments. Thus, the Tr = 0.0884481

grid and all finer grids indicate modelling errors in the wake reliably.482

5.5. Equivalent three-dimensional grid sizes483

The preceding sections have established that grid convergence for the484

Nakayama wing can be obtained using adaptive refinement. 1% proven un-485

certainty in the forces is obtained for Tr = 0.0313, while the far wake is486

converged for Tr = 0.0884. A reasonable approximation of both is already487

obtained when Tr = 0.1768. To generalise these conclusions, the thresh-488

olds should be translated to numbers of cells, or even better, to an order of489
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magnitude for the number of cells in an equivalent three-dimensional grid.490

To estimate the number of cells in a 3D case which resembles the Na-491

kayama airfoil, we suppose that the number of cells in the third direction492

(the spanwise direction for a wing) is of the same order as the number of493

cells in the flow direction. For want of something better, this number is494

approximated by the number of cells on the surface of the airfoil. Multiplying495

the number of surface cells by the total number of 2D cells therefore gives a496

rough indication of an equivalent 3D grid size. These numbers are given in497

table 2; they indicate that the grids for Tr = 0.0884 correspond to habitually498

used grid sizes, while those for Tr = 0.0221 are much finer than what is used499

in practice.500

Table 2: Nakayama airfoil: estimated number of cells in three-dimensional grids.

Tr 0.3536 0.1768 0.0884 0.0442 0.0221

Low-Re FCH 2.1M 5.6M 26M 164M 983M

Low-Re PH 1.1M 1.6M 3.4M 12M 60M

WL FCH 0.7M 1.8M 8.1M 38M 188M

For low-Reynolds FCH computations, getting less than 1% uncertainty501

for the forces with our procedure requires more than 100M cells. However,502

these grids resolve the wake with very fine cells, which may not be necessary503

for obtaining only the forces; also, 1% uncertainty is often too strict (section504

5.3.3). For reliable LR FCH predictions of the near and far wake, 20M to505

50M cells are needed, so such simulations can be easily envisaged.506

With the wall law and FCH, less than 1% uncertainty requires around507

50M cells while the far wake can be captured accurately with about 10M508
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cells; both objectives are therefore possible. The LR PH computations are509

efficient, but to obtain 1% uncertainty in the forces they need even finer510

thresholds than those tested here. Furthermore, the wake is not resolved.511

Therefore, these computations may be of little interest despite their apparent512

low number of cells. Note that these are indications only, actual numbers513

of cells will depend on the real 3D geometry and the flow characteristics, as514

well as the quality of the original grid and the exact choice of the refinement515

strategy.516

6. The step to 3D: KVLCC2 tanker517

A representative three-dimensional case is the flow around the KVLCC2518

tanker ship. We wish to see if this three-dimensional case confirms the find-519

ings for the Nakayama airfoil. The KVLCC2 hull has a complex aftbody520

flow with boundary layer separation and different vortical structures; figure521

8 gives a global view of the flow field, with the thickening and separation of522

the boundary layer.523

The flow is computed for a model of the ship with length L = 5.571m,524

which gives Re = 4.6 · 106. Since the flow is symmetric, only half the hull525

is simulated. Free-surface effects are ignored: the water surface is treated as526

a symmetry plane, like the vertical centreplane. Windtunnel measurements527

are available from Postech [20], Larsson et al. [21] give a complete description528

of the test case.529

The flow is simulated here with a wall-law approach and the anisotropic530

EASM turbulence model including rotation correction, since this model rep-531

resents flows dominated by longitudinal vorticity better than the standard532
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Figure 8: KVLCC2: the (half) hull and the axial velocity field.

k−ω SST model [6]. Convective terms are discretised with a blended central533

/ upwind scheme. FCH is used as refinement criterion with the minimum534

cell size equivalent to the first-layer thickness in the boundary layer grid (see535

sections 4.3 and 5.1).536

Table 3: KVLCC2: thresholds and mesh sizes.

Tr 3.0 2.0 1.5 1.0 0.75

nb. cells 247k 613k 1.34M 5.02M 10.18M

6.1. Refined meshes537

For the convergence study five different thresholds are used (table 3),538

with a factor 4 between the cell sizes of the coarsest and finest mesh. This539
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Figure 9: Meshes in the propeller plane x/L = 0.9825 of the KVLCC2, Tr = 2.0 (a),

Tr = 1.5 (b), Tr = 1.0 (c), and Tr = 0.75 (d).
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represents a more realistic study than the 10-grid Nakayama case, whose540

coarsest grids would be insufficient to capture the details of the more com-541

plex KVLCC2 flow, while the finest grids would be too expensive in three542

dimensions.543

The refined meshes in the propeller plane (the aftmost cut plane on the544

hull in figure 8) are shown in figure 9 for the four finest thresholds. These545

meshes are refined around the principal features of the flow, such as the546

main aft-body vortex whose centre is near (0.01, -0.04). This vortex creates547

an open-type separation on the hull, with an associated ear-shaped shear548

layer that is captured with fine cells. A second shear layer starting at (0.0, -549

0.065) separates the boundary layer flow around the vortex from the flow550

outside. Finally, like for the 2D wing, the outer edge of the boundary layer551

attracts grid refinement everywhere.552

The pairs of grids in figures 9a and c, as well as b and d, have thresholds553

Tr which differ by a factor two, so the pairs should be geometrically similar.554

This is mostly the case; the centre of the vortex with its vertically elongated555

cells is an example. However, there is a perturbing effect here that was not556

encountered before: as the mesh is refined, the flow field changes so the re-557

finement criterion is modified, which leads to non-similar meshes. This effect558

is stronger than for the 2D case, because the KVLCC2 flow has more shear559

layers and discontinuities in the velocity gradients, which become sharper on560

fine meshes. Thus, especially on the outer edge of the boundary the grid561

size decreases more than linearly with Tr. This is not necessarily a problem,562

since the sharp resolution of these features improves the quality of the local563

flow on the fine meshes, while globally seen the four grids form a reasonable564
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series.565

6.2. Convergence of the flow566

The convergence of the resistance force CT = Fx/(
1

2
ρV 2S), with S =567

0.2682L2, is monotone (figure 10a). Numerical uncertainties were again es-568

timated with the method of Eça & Hoekstra (section 5.3). The error bars569

computed with 3, 4 and 5 grids overlap, which is an indication that the570

procedure works well. On the finest grid, the uncertainty is 1.69% with an571

order p = 1.7. However, more noise is present than for the Nakayama case,572

which may be due to the irregularities in the mesh noted above. Due to the573

complexity of the case, it is also possible that a higher-order error is present.574

The convergence of the pressure force coefficient CTp and the viscous575

force coefficient CTv are given in figures 10b and 10c respectively. While576

the viscous force is about four times larger than the pressure force, their577

variation across the grids and the computed uncertainties are of the same578

magnitude. Both figures show that the forces are not in the asymptotic range,579

but the estimated uncertainties are reasonable, especially for the viscous580

forces where the uncertainty intervals overlap. The pressure force has some581

more irregularity. The estimated uncertainties are 6.47% with order p = 1.51582

for CTp and 1.11% with p = 2.26 for CTv.583

The grid convergence of the local flow is good (figure 11). Even though584

the overlapping isolines of the Nakayama case are not obtained, the velocity585

and turbulence isolines for the finest grids are very close throughout the586

aft-body flow and also in the near wake. Even the 0.9 axial velocity isoline587

which represents the outer boundary layer, often underresolved in KVLCC2588

simulations, is close to convergence thanks to the adaptive refinement. The589
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turbulence kinetic energy in the shear layer is the same on the two finest590

grids. And finally, the differences between the two finest meshes are small591

compared to their difference with the wind-tunnel measurements from [20].592

Thus, the solution on the finest mesh is sufficiently precise to assess modelling593

errors accurately.594

These results agree with the findings of the Nakayama case (section 5.5).595

Convergence of the local flow in the wake is indeed obtained at 10M cells.596

Furthermore, we expect a 1% uncertainty in the forces around Tr = 0.5597

judging from figure 10. Such a grid would have around 40M cells (eight598

times the number of cells in the Tr = 1.0 grid), which also corresponds to the599

Nakayama estimate. This confirms the soundness of the 2D-based orders of600

magnitude for the number of cells, although the KVLCC2 is not a wing so601

the nearly exact agreement is due to coincidence.602

7. Conclusion603

7.1. Evaluation of the results604

To use adaptive grid refinement for computing grid-independent solutions,605

the introduction identified three requirements: grid adaptation should create606

geometrically similar grids, these have to work with established uncertainty607

estimation methods, and the resulting global and local computed quantities608

must indeed be accurate. Can these requirements be met?609

In principle, the adaptive refinement of a coarse, unstructured hexahedral610

grid using a procedure based on metric tensors is ideal for grid convergence611

studies. It ensures that cells in all meshes have the same shapes and orienta-612

tions, while the cell sizes in a mesh are proportional to the global refinement613
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Figure 11: Grid convergence for the KVLCC2 in cut planes at x/L = 0.9 (a), in the

propeller plane x/L = 0.9825 (b), and behind the ship at x/L = 1.1 (c): axial velocity

(left) and turbulence kinetic energy (right).35



threshold Tr. The refined meshes should therefore be similar.614

However, the possible grid sizes are limited by the refinement method,615

since refined cells are created by dividing existing cells in half. Thus, if the616

threshold is reduced by a factor less than 2, the cell sizes are not reduced617

by this factor; instead, the same cell sizes are kept and the zones of fine618

cells are enlarged. Furthermore, geometric similarity is perturbed when the619

flow contains discontinuities and sharp features. These are better resolved620

on finer grids so the refinement criterion is increased locally, which leads to621

more refinement than expected on the finest grids. Finally, on coarse meshes622

the original grid is conserved over much of the domain, while on fine meshes,623

the refinement may be limited by an imposed minimum cell size.624

Despite these limitations, series of grids are produced which are globally625

similar. The consistent orientations of the cells, as well as the equal position626

of the boundary layer mesh in each grid, are useful to ensure smooth con-627

vergence. Finally, for cases where the flow is well resolved and the threshold628

is varied by a factor 2, local geometric similarity has been confirmed by our629

tests.630

A least-squares based uncertainty estimation technique was applied to the631

computed forces, with success. Oscillations in the results are observed when632

the thresholds between meshes do not vary by a factor 2. However, the least-633

squares approach removes these oscillations if enough meshes are used. Using634

only meshes which vary by a factor 2 improves the fits, but the improvement635

is small. Thus, series of adaptively refined meshes that are not locally similar636

can be used for uncertainty estimation.637
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The original grid which is not refined everywhere for coarse meshes, does638

not deteriorate the convergence. The mesh is refined there where this is639

crucial for the flow, which is enough to ensure grid convergence of the forces.640

The lift of an airfoil converges quickly with grid adaptation, because the641

leading-edge pressure peak and the boundary-layer displacement are well642

resolved on adapted meshes. Finally, the KVLCC2 case shows that the643

forces are indeed perturbed when the refinement criterion is resolved better644

on fine meshes. However, this probably means that the flow is not yet in the645

asymptotic range, so perturbations in the convergence can be expected even646

if the grids were perfectly similar.647

The convergence of local flow features, studied by visual inspection of648

isoline plots, is good. For the two-dimensional airfoil, the computed wake on649

the finest grids is identical, even far behind the trailing edge. In the more650

complicated flow around the KVLCC2, the velocity and the turbulence are651

nearly identical on the finest grids; the differences are small with respect to652

the distance between computations and experiments.653

7.2. Limitations and perspectives654

This final section discusses the practical usefulness of grid convergence655

studies using adaptive refinement. First of all, how large is their field of656

application? The tests performed here use the ISIS-CFD flow solver and657

grid adaptation, so they are limited to high-Reynolds incompressible RANS658

solutions, hexahedral grids, and Hessian-based refinement criteria. How-659

ever, the idea that series of grids with geometrically similar cell sizes can660

be obtained by varying a refinement threshold is valid for all metric-based661

adaptation techniques which use solution-based refinement criteria (i.e. crite-662
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ria with weak mesh dependence). This approach is not even limited to fluid663

dynamics, it could be used for the simulation of structures etc.664

Obtaining identical cell orientations between grids requires adaptive grid665

refinement by subdivision of an original grid, which is typically associated666

with mesh adaptation for hexahedral cells. However, as shown above, exact667

local similarity may not be required for convergence studies. Therefore, the668

proposed technique could also work for tetrahedral mesh generation, espe-669

cially for anisotropic meshes where the element orientation between meshes670

is similar, since it is guided by the anisotropy.671

Thus, any combination of a flow solver, an adaptive mesher and a metric-672

based refinement criterion can potentially be used to perform convergence673

studies. The exact procedure needs to be determined for each method.674

For incompressible flows, we have shown that the technique can produce con-675

verged local-flow solutions: the numerical accuracy of the computed wake676

flows is sufficient to assess modelling errors due to turbulence models, wall677

laws, etc., on meshes with acceptable numbers of cells. Therefore, the tech-678

nique can be used for research in turbulence modelling of complex flows.679

For the computation of forces, useful uncertainty estimations are pro-680

duced. However, some perturbations are generated because the meshes are681

not perfectly similar. Low uncertainties for wall-law meshes can be obtained682

with reasonable numbers of cells, while the same is costly for wall-resolved683

boundary layers. This is because the grid refinement method resolves all684

the details of the wake, which may not be necessary if the only objective685

is to compute forces. Thus, convergence studies on structured, non-adapted686
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grids are to be preferred for force computations, if these grids can actually687

be generated. Otherwise, the proposed procedure is a valid option.688

Using adaptive meshing for grid convergence studies has a final advantage:689

it is simple to perform. Once a first computation is set up, simulations on690

different meshes are obtained by changing only the refinement threshold.691

Furthermore, a grid convergence study is not expensive, since one is inter-692

ested in the results on the finest grid. Therefore, with respect to a one-grid693

computation only coarser grids are added. In three dimensions, the com-694

putations on all coarser grids together need little more than half the time695

for the finest grid. Finally, unstructured grids can be used without added696

difficulty.697

It is perhaps this aspect, as well as the ability to resolve the details of698

complex flows, which makes the idea of fundamental importance. Adaptive699

refinement can make grid convergence studies so straightforward that they700

become accessible for everyday CFD simulation.701
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