
HAL Id: hal-02565549
https://hal.science/hal-02565549

Submitted on 6 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Behavioral interfaces for executable DSLs
Dorian Leroy, Erwan Bousse, Manuel Wimmer, Tanja Mayerhofer, Benoit

Combemale, Wieland Schwinger

To cite this version:
Dorian Leroy, Erwan Bousse, Manuel Wimmer, Tanja Mayerhofer, Benoit Combemale, et al.. Be-
havioral interfaces for executable DSLs. Software and Systems Modeling, 2020, 19 (4), pp.1015-1043.
�10.1007/s10270-020-00798-2�. �hal-02565549�

https://hal.science/hal-02565549
https://hal.archives-ouvertes.fr


Software and Systems Modeling
https://doi.org/10.1007/s10270-020-00798-2

REGULAR PAPER

Behavioral interfaces for executable DSLs

Dorian Leroy1 · Erwan Bousse2 ·Manuel Wimmer1,3 · Tanja Mayerhofer2 · Benoit Combemale4 ·
Wieland Schwinger1

Received: 19 March 2019 / Revised: 17 January 2020 / Accepted: 21 March 2020
© The Author(s) 2020

Abstract
Executable domain-specific languages (DSLs) enable the execution of behavioral models.While an execution is mostly driven
by the model content (e.g., control structures), many use cases require interacting with the running model, such as simulating
scenarios in an automated or interactive way, or coupling the model with other models of the system or environment. The
management of these interactions is usually hardcoded into the semantics of the DSL, which prevents its reuse for other
DSLs and the provision of generic interaction-centric tools (e.g., event injector). In this paper, we propose a metalanguage
for complementing the definition of executable DSLs with explicit behavioral interfaces to enable external tools to interact
with executed models in a unified way. We implemented the proposed metalanguage in the GEMOC Studio and show how
behavioral interfaces enable the realization of tools that are generic and thus usable for different executable DSLs.

Keywords Language engineering · Domain-specific language · Model execution

1 Introduction

A large amount of domain-specific languages (DSLs) are
used to represent behavioral aspects of systems in the form
of behavioral models (e.g., [4,13,16,29,31]). To enable the
dynamic analysis of such models, a lot of efforts have been
made to facilitate the design of so-called executable DSLs

Communicated by Perry Alexander.

B Dorian Leroy
dorian.leroy@jku.at

Erwan Bousse
erwan.bousse@tuwien.ac.at

Manuel Wimmer
manuel.wimmer@jku.at

Tanja Mayerhofer
mayerhofer@big.tuwien.ac.at

Benoit Combemale
benoit.combemale@irisa.fr

Wieland Schwinger
wieland.schwinger@jku.ac.at

1 JKU Linz, Linz, Austria

2 TU Wien, Vienna, Austria

3 CDL-MINT, Linz, Austria

4 UT2J, Toulouse, France

(xDSLs) (e.g., [3,9,12,17,24,38,42]), which enable the exe-
cution of conformingmodels. Twoapproaches are commonly
used to define execution semantics, namely operational
semantics (i.e., interpretation) and translational semantics
(i.e., compilation). In this paper, we focus on operational
semantics and more precisely on discrete-event operational
semantics.

While the execution of a behavioralmodel ismostly driven
by its content (e.g., conditionals, transitions, method calls),
many cases require to interactwith the runningmodel [8]. For
instance, simulating a specific execution scenario requires
sending stimuli to the model (e.g., sending signals to a UML
activity diagram) and checking whether the model reacts as
expected. Likewise, coupling a behavioral model with mod-
els representing other parts of the system or its environment
requires stimuli originating from these additional models. In
addition, dependingon the circumstances, it canbepreferable
to send stimuli to a model in an automated way (e.g., pro-
grammatically through a test runner) or in a manual way
(e.g., using an event injector).

In order to interact with the execution of a model, the
operational semantics (i.e., the interpreter) of the xDSL
must fulfill at least two requirements. First, the semantics
must define how conforming models may react to incoming
stimuli, and when outgoing stimuli are emitted to external
tools. This can include defining the possible types of stimuli

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-020-00798-2&domain=pdf


D. Leroy et al.

(e.g., the notion of signal in UML) and defining the handling
logic for each type of stimuli (e.g., what happens when a sig-
nal occurs). Second, some form of messaging architecture
must be in place to enable the passing of stimuli to and from
a running model. For instance, external tools can be allowed
to modify some parts of the execution state of the running
model or can trigger stimuli using some API exposed by the
interpreter.

However, the form of both the stimuli and the handling
logic may vary greatly from one DSL to another. Conse-
quently, these requirements are in practice fulfilled on a
language basis, each xDSL having its own set of tools inter-
acting with running models (e.g., see Papyrus1 for UML
and SysML). Yet, specifying in a unified way the interac-
tion capabilities of xDSLs would yield several benefits. First,
it would enable the definition of generic interaction-centric
tools (e.g., a test runner, an event injector). Second, it opens
the possibility of defining a hierarchy of more abstract events
that can be implemented by similar DSLs, hence enabling the
definition of generic tools for DSL families, or what we ref-
erence to as genericity through abstraction.

To unlock these benefits, we introduce a new metalan-
guage to complement the definition of xDSLs with behav-
ioral interfaces. A behavioral interface defines a set of events
specifying how external tools can interact with models that
conform to xDSLs implementing the interface. Additionally,
we define two types of relationships involving behavioral
interfaces: the implementation and the subtyping relation-
ships. An implementation relationship ties a behavioral
interface to a given operational semantics implementation.
Subtyping relationships allow to build event abstraction
hierarchies, indicating that events from one interface can
be abstracted or refined as events from another interface.
Through subtyping relationships, a given behavioral inter-
face can be subtyped by several xDSLs, enabling the reuse of
tools specific to this interface across these DSLs. The seman-
tics of the proposed metalanguage for behavioral interfaces
is defined by a generic, yet configurable, event manager.
At runtime, this event manager leverages the definition
of subtyping and implementation relationships to translate
event occurrences from external tools into actual behavior,
and conversely reacts to observable behavior by emitting
event occurrences to external tools. Tools can then automat-
ically discover which behavioral interfaces are implemented
by an xDSL—both through implementation and subtyping
relationships—and thus how to interact with conforming
models.

To evaluate our contribution, we fixed a list of require-
ments for the different aspects of the approach. To test
whether the proposed approach fulfills these requirements,
we implemented the behavioral interface metalanguage as

1 https://www.eclipse.org/papyrus/.

part of the execution frameworkof theGEMOCStudio [5], an
Eclipse-based language andmodelingworkbench for xDSLs.
We evaluate the approach with three demonstration cases. In
the first one, we show that the proposed metalanguage can
be used to define the behavioral interface of two xDSLs. In
the second one, we show that behavioral interfaces enable the
definition of generic tools and their use across several xDSLs.
In the third one,we show that a single behavioral interface can
be subtyped by several xDSLs, allowing to interact with and
reason about the execution of conforming models through a
common behavioral interface.

The remainder of this paper is structured as follows. Sec-
tion 2 presents the background and the motivation for this
work, as well as the requirements for the approach. Sec-
tion 3 provides an overview of our contributions. Section 4
presents the definition of behavioral interfaces and of imple-
mentation and subtyping relationships. Section 5 presents a
possible strategy for realizing implementation and subtyping
relationships, managing event occurrences and integrating
the approach with metalanguages for defining the execution
semantics of xDSLs. Section 6 presents the evaluation of
the approach. Section 7 discusses the related work. Finally,
a conclusion and future research directions are presented in
Sect. 8.

2 Background andmotivation

In this section, we precisely scope the xDSLs considered
in our approach and then motivate our approach using an
illustrative example.

2.1 Background on executable DSLs

An xDSL is composed of an abstract syntax defining the con-
cepts of the considered domain and an execution semantics
defining the meaning of these concepts. In this paper, we
focus on DSLs where (1) the abstract syntax is provided
as a metamodel defined using a metamodeling language
(e.g., MOF [32] or Ecore [40]) and (2) the execution
semantics is provided as an operational semantics (i.e., an
interpreter).

In addition to the metamodel defining its abstract syntax,
an xDSL can expose several structural language interfaces
constituting its available model types [11,15,39]. These
model types define a set ofmetaclasses and structural features
that are guaranteed to be present in the metamodel constitut-
ing the abstract syntax of the DSL and thus supported by its
conforming models.

The considered operational semantics are those composed
of a data structure representing the model state and a set of
execution rules altering this model state.

123

https://www.eclipse.org/papyrus/


Behavioral interfaces for executable DSLs

Definition 1 Wedefine the operational semantics of an xDSL
as a tuple 〈DM,ER〉 where DM is its dynamic metamodel
and ER its set of execution rules.

Themodel state is defined in an executionmetamodel extend-
ing the abstract syntax metamodel using a non-intrusive
extension mechanism, such as package merge [30] or aspect
weaving [20]. The execution rules perform an in-place
endogenous transformation on this model state. This model
transformation effectively results in the execution of the
model and can be implemented by various means (e.g., pro-
gramming languages, model transformation languages). The
scheduling of the execution rules is defined by the language
engineer and can be influenced by the metalanguage used
to write them. For instance, it can be implicit, if the meta-
language works in a more declarative way (e.g., Henshin).
Alternatively, it can be explicitly defined in the execution
semantics, if execution rules are directly calling other execu-
tion rules, following an imperative programming style.While
the operational semantics can handle time (e.g., through a
central clock), the proposed approach is time-agnostic.

Definition 2 We define an xDSL as a tuple 〈AS,OS〉 where
AS is its abstract syntax and OS its operational semantics.

Figure 1 shows the definition of the Arduino xDSL, which
will be used as a running example throughout this paper. The
abstract syntax of the DSL is defined as a metamodel (a in
Fig. 1). A Project contains a Board and a Sketch. Theboard
of the project represents the physicalArduino board onwhich
the sketch of the project is executed. A Board contains
Modules, which have an id attribute. A Module can either
be an OutputModule, such as a Led, or an InputModule,
such as a PushButton. Being a program to be executed on a
Board, a Sketch contains a Block of Instructions that can be
Control,ModuleSet,Delay orWaitFor instructions. Control
instructions come in the usual forms of If andWhile instruc-
tions. They contain a Block (or potentially two for the If
instruction) and a condition in the form of an Expression.
For the sake of brevity, the whole class diagram of Expres-
sion is not shown here, except for the ButtonGet and LedGet
classes,which, respectively, point to a PushButton and a Led.
TheModuleSet class is further specialized for each Output-
Module: Here, SetLed is a ModuleSet instruction for Led
modules, setting the level attribute of its associated Led
to the result of the evaluation of its value expression. The
Delay instruction suspends the execution for the specified
amount of milliseconds. TheWaitFor instruction points to an
InputModule and suspends the execution until the level
of the referenced module reaches the provided value.

The bottom part of Fig. 1 shows the two parts of the
operational semantics of the Arduino DSL. The execution
metamodel (b in Fig. 1) extends the Module class with the
level integer attribute, indicating the logic level of the sig-
nal transiting between a Module and its containing Board.

For Led modules, the level represents whether the LED
is lit or not, whereas for PushButton modules, it indicates
whether the button is currently pressed or not. The execu-
tion rules (c in Fig. 1) import this execution metamodel and
consist of model transformations defining how the state of a
runningmodel is altered. In the case of theArduinoDSL, only
thelevel attributes of Led and PushButton elements canbe
changed, either by the SetLed.execute rule for Ledmodules,
or PushButton.press and PushButton.release for PushBut-
ton modules. As the execution semantics of the Arduino
DSL is implemented as a visitor, the scheduling of the execu-
tion rules is determined internally. The Sketch.run rule is the
entry point rule of theDSL: It starts themodel transformation
resulting in the execution of conforming models. To this end,
it calls the Block.execute rule of its contained Block, thereby
starting the visit of the containment tree of the runningmodel.
The Block.execute rule sequentially calls the execute rule
of the instructions it contains. The If.execute rule calls
the Block.execute rule on its block (resp. elseBlock),
if its condition evaluates to true (resp. false). Simi-
larly, theWhile.execute rule calls the Block.execute rule on
its block, while its condition evaluates to true. The
remaining execution rules are dedicated to the the implemen-
tation of the behavior of the SetLed instruction and of the
waiting mechanism of the Delay and the WaitFor instruc-
tions. The complete definition of the DSL is available on
Github.2

2.2 Motivation and requirements

Figure 2 shows an examplemodel conforming to theArduino
DSL. This model represents an Arduino circuit with one but-
ton and one LED, where the LED blinks while the button is
pressed and remains off otherwise.

If we consider an execution of this model where the button
is pressed in the initial state and remains pressed in all states,
we observe that the LEDblinks as defined in themodel. How-
ever, such an execution scenario does not show whether the
LED eventually stops blinking when the button is released,
or more generally how the LED behaves with different sce-
narios of button pressings. To test more complex execution
scenarios, the modeler must be able to change the state of the
button during the execution of the model.

Since our operational semantics does not provide any
explicit way to interact with a running model, one possibility
is for the modeler to directly modify the state of the model
during its execution, effectively resulting in a form of stim-
ulus. Figure 3 shows an execution trace where two changes
(my_button.level = 1 andmy_button.level = 0) are made dur-
ing the execution, the first changing the level attribute of
the PushButton to 1 and the second changing it to 0. The

2 https://github.com/tetrabox/examples-behavioral-interface.

123

https://github.com/tetrabox/examples-behavioral-interface


D. Leroy et al.

Fig. 1 Arduino executable DSL definition

Fig. 2 Example Arduino model

modeler can thus effectively observe that the LED not only
blinks when the button is pressed, but also stops blinking
when the button is released. While this solution does allow
the execution of specific scenarios, it has several limitations,
which can be divided into two categories.

Fig. 3 Execution of the Arduino model (Fig. 2) where the PushButton
is only pressed between states 2 and 5

The first category of limitations relates to the way the
possible stimuli that can be sent to models are defined.
Manipulating these stimuli as model changes is both a cum-
bersome process and error-prone process for modelers. For
instance, issuing the model changes corresponding to a given
stimuli and interpreting observed model changes both neces-
sitate extensive knowledgeof the operational semantics of the
DSL, which modelers are not assumed to have. In addition,
it can result in unsound behavior with regard to the opera-
tional semantics of the DSL. For example, the semantics of
a language may restrict the subset of the execution state of a
conforming model that can be affected by an external stimu-
lus (e.g., the status of an InputModule of an Arduino board),
while the remainder of the state should only be affected by
the inner operational semantics (e.g., the status of anOutput-

123



Behavioral interfaces for executable DSLs

Module).Oneway to circumvent these problems is to provide
a clearly defined way for language engineers to define the
behavioral types of xDSLs. The purpose of these behavioral
types is to expose the domain-specific stimuli of an xDSL as
first-class entities that are part of the language definition. A
widely adopted approach for the reification of stimuli types
is to consider such stimuli as occurrences of well-defined
events (i.e., their type). This would allow language engineers
to attribute a type to the stimuli received and sent by models
and thus facilitate both their manipulation by modelers and
sound interaction with models. For example, in Fig. 3, the
two model changes made by the stimuli during the execution
correspond to a particular button being pressed and released.
From the perspective of the modeler, this is not strikingly
clear. The language engineer can improve this by defining
two types for these stimuli: the pressed and released stimuli
types, which both convey more domain semantics than low-
level model changes. From these limitations, we can define
a first requirement for the approach as follows:

Req. 1 “Provide an explicit and unified way to define the
behavioral type of an xDSL, i.e., how to soundly
interact with any model conforming to the DSL.”

The second category of limitations relates to the way stim-
uli are sent to and received from the runningmodel and to the
soundness of the resulting behavior. For example, the oper-
ational semantics may only allow some stimuli to affect the
execution state at certain points in time or when it is in a spe-
cific state. Since arbitrary transformations may break these
constraints, it appears important to control which and when
changes of themodel state are allowed, e.g., by only allowing
specific execution rules to be called in reaction to stimuli and
under specific circumstances. Another limitation is related to
the concurrent execution of multiple transformations on the
samemodel state,which can quickly lead to undefined behav-
iorswhen somevalues are simultaneously changed externally
and by the operational semantics. It appears therefore impor-
tant to also control when stimuli-triggered changes can be
applied to the model state, e.g., by delaying their application
until the currently executing rule yields back control if it is
a run-to-completion rule call. Moreover, xDSLs are only as
useful as the richness of the ecosystem of tools defined for
them. One limitation of the solution proposed in Fig. 3 is
that it does not provide a unified way to send stimuli to the
model. This hampers the definition of tools interacting with
running models. Conversely, this solution does not provide
a clear way for the model to emit stimuli of its own toward
external tools. Both cases thus require ad hoc techniques to
either inspect observable parts of the state of a runningmodel
(e.g., to detect when a LED is switched on or off), or send
stimuli to running models. From these limitations, we can
define a second requirement on the approach as follows:

Req. 2 “Provide a unified way to interact soundly with
models conforming to xDSLs implementing one or
several behavioral types.”

However, in model-driven engineering, parts of a system
can be modeled using various DSLs fitting different needs
such as model checking, simulation, animation and so on.
Due to their individual particularities, such DSLs potentially
accept and expose different events. This prevents modelers
from using the same events to interact with models conform-
ing to differentDSLs despite representing the samepart of the
system. One way to answer this problem is to allow language
engineers to define a set of events abstracting various events
defined for each of these DSLs. From there, language engi-
neers can define how this set of abstract events maps to other
sets of events, effectively defining overlapping event abstrac-
tion hierarchies. Using thesemappings at runtime to translate
event occurrences would enable modelers to interact with
models conforming to any of the covered DSLs through this
single set of abstract events. In addition, language engineers
would foster the emergence of families of xDSLs support-
ing a shared set of abstract events. For example, the Arduino
model shown in Fig. 2 could be the realization of a specifi-
cation available as a model conforming to a State Machine
DSL. By defining how events supported by State Machine
models can be mapped to events supported by Arduino mod-
els, a language engineer would enable interaction with both
kinds of models using the same set of events. From this sce-
nario, a third and last requirement on the approach can be
formulated:

Req. 3 “Support the definition of overlapping event abstrac-
tion hierarchies for xDSLs.”

To support these scenarios, we propose a new metalan-
guage to specify in a unified way the behavioral types of
xDSLs under the form of behavioral interfaces, thereby ful-
filling Req. 1. Implementation relationships can then be
established between xDSLs and their implemented behav-
ioral interfaces. At runtime, these relationships configure a
generic event manager to enable safe interaction with the
running model, while keeping a clear separation between the
implementation of an xDSL and its interfaces. In turn, this
event manager exposes the available behavioral interfaces of
the running model, thereby enabling the definition of generic
interaction-centric tools and fulfilling Req. 2. Finally, we
introduce subtyping relationships between behavioral inter-
faces, allowing to define event abstraction hierarchies and
thus fulfill Req. 3. We provide an overview of the complete
approach in the following section.

123



D. Leroy et al.

3 Approach overview

We provide in this section an overview on both the design of
the approach and its envisioned use by developers.

3.1 Design overview

Figure 4 depicts an overview of the proposed approach. On
the top right corner, the xDSL complies with the definition
given in Sect. 2.1. As such, it contains an abstract syntax as
a metamodel and an operational semantics with both a set of
execution rules and a data structure defining the model state.
On the bottom right corner is shown a running model whose
static content conforms to the abstract syntax and whose
dynamic state conforms to the execution metamodel. Next
to it, the execution engine is able both to apply any execution
rule of the operational semantics on the runningmodel and to
notify execution observers when execution rules are applied.
Such an execution engine is based on our previous work on
decoupling operational semantics from execution observers
[5,6].

On the left, examples of external tools that require inter-
acting with the running model are represented.

– A coordination engine managing the communication
with other models—representing some part of the envi-
ronment or other parts of the system—during an execu-
tion.

– A test runner executing a specific scenario model, alter-
nating between sending sequences of stimuli to themodel
and checking whether a proper sequence of stimuli are
received from the model in return.

– An event injection GUI complementing the classic step-
ping operators of interactive debuggers (e.g., step into,
step over) with the capability to manually send domain-
specific stimuli to the running model, and to observe the
stimuli produced in reaction.

For language engineers, developing such tools as needed
for each new xDSL is both a tedious process and error-prone
process. Providing to language engineers a unified way to
define the possible interactions with models conforming to
any xDSL would allow them to define generic tools instead.
To achieve this for any xDSL included in our scope (see
Sect. 2), we introduce behavioral interfaces as behavioral
types of xDSLs.

Using the proposed approach, language engineers can
define behavioral interfaces, or reuse existing ones, to type
their xDSLs based on the runtime interaction capabilities
offered by their conformingmodels.When external tools dis-
cover the behavioral interfaces of an xDSL, they are informed
of the kind and form of stimuli that can be emitted and/or
received by conforming models. This then allows modelers

and othermodels to interact with conformingmodels through
these tools.

Such an interface consists of an event metamodel that
defines the exact set of events that are relevant to the inter-
face purpose and/or domain. First, this means defining the
events whose occurrences can be accepted or exposed by
models conforming to xDSLs typed by the behavioral inter-
face. Second, this means specifying the nature and structure
of the data that can potentially be carried out by occurrences
of these events.

As shown in Fig. 4 by the dependency between behavioral
interface B and the operational semantics, language engi-
neers can type their xDSL by a given behavioral interface by
providing an implementation relationship between the inter-
face and the xDSL, which amounts to nominal typing [36].
This implementation relationship describes how the xDSL
provides the interaction capabilities that are expected a lan-
guage typed by the behavioral interface. In practice, this is
done bydetailing howoccurrences of the events defined in the
interface translate in terms of actual behavior, and vice-versa.
As a supplementary contribution, we provide a systematic
way to generate the behavioral interface implemented by an
xDSL, as well as the implementation relationship between
them.

In addition, we introduce nominal subtyping [36] for
behavioral interfaces in the form of subtyping relation-
ships, illustrated between behavioral interfaces A and B
in Fig. 4. By defining a subtyping relationship between
two behavioral interfaces, language engineers designate one
interface as the subtype and the other as the supertype.
A subtyping relationship then dictates what patterns of
accepted (resp. exposed) event occurrences from the super-
type (resp. subtype) translate to which event occurrences
from the subtype (resp. supertype), in what order and car-
rying what data. Using subtyping relationships, language
engineers can capitalize on the behavioral similarities of dif-
ferent xDSLs to define tools that are both specific to these
similarities and reusable across any DSL exhibiting them.

Both implementation and subtyping relationships are real-
ized through Event-Condition-Action (ECA) rules, as shown
in Fig. 4. These rules are triggered when a pattern of event
occurrences—the event part of the rule—from one side of
the relationship is observed, given that their associated con-
dition (e.g., an OCL query, a Java predicate) is satisfied.
When triggered, their action part translates the observed
event occurrences into new event occurrences belonging to
the other side of the relationship.As shown in the figure, ECA
rules are managed by the event manager, a component able
to route event occurrences from and to various ECA rules,
the execution engine and the external tools.

Finally, we propose an integration facade for the event
manager that acts as an intermediary between the execution
engine and the aforementioned event manager. While this

123



Behavioral interfaces for executable DSLs

Fig. 4 Overview of the approach

integration facade is specific to the metalanguage that is used
to define the operational semantics of xDSLs, the rest of the
approach is agnostic to any suchmetalanguage. Furthermore,
defining this facade for a metalanguage enables the approach
for any xDSL whose operational semantics is defined with
this metalanguage.

In the end, the three main constituents of the approach—
the behavioral interface metamodel, the relationships and the
event manager—form a metalanguage to extend an xDSL
with an event handling component. The behavioral inter-
face metamodel is used to define the abstract syntax of
such language extensions, while the relationships define their
operational semantics. Models conforming to this language
extension are occurrences of events defined in behavioral
interfaces. At runtime, the event manager acts as the engine
executing the operational semantics of the language exten-
sion (i.e., manage event occurrences and relationships),
thereby forming an interpreter for the language extension.

3.2 Usage overview

In the scope of the paper, we distinguish three kinds of users
for the approach: metalanguage engineers, language engi-
neers and modelers. We describe hereafter each of these
kinds, which are represented in Fig. 4.

Metalanguage engineers are the users that design met-
alanguages or adapt existing languages to be used as
metalanguages to define xDSLs. In addition, they develop
the environment necessary to execute models, which we
designate as execution engine, and possibly tooling that
is generic to any language designed with their metalan-
guage (e.g., debugger, tracing facilities). With the proposed
approach, they can provide an integration facade for their
execution engine to enable any xDSL based on their met-
alanguage and implementing a behavioral interface to use
existing generic interactive tools that work with any behav-

ioral interface. This has a cost for metalanguage engineers,
but we believe that, as their role is to provide facilities to cre-
ate new languages, they have a great incentive to add such a
facade. However, it is possible that in some cases the person
with the role of language engineer can temporarily take on
the role of metalanguage engineer to provide the integration
facade through a pull request or a similar process. But in that
case, the correctness of the integration facade still has to be
assessed by a metalanguage engineer.

Language engineers are the users that design xDSLs
using a metalanguage to define their execution semantics.
These users also develop domain-specific tools for their lan-
guages, either from scratch or by reusing and/or extending
generic tools provided by metalanguage engineers. With the
proposed approach, they can provide or reuse behavioral
interfaces as well as implementation and subtyping relation-
ships between these interfaces and their xDSLs. In addition,
language engineers can provide or reuse interactive tools that
are specific to the behavioral interfaces implemented by their
xDSLs. To enable this, they need to learn the proposed meta-
language and how to define relationships, but we believe that
the benefits outweigh the costs as soon as this enables the
direct reuse of even a small set of tools.

Lastly, modelers are the users designing models conform-
ing to xDSLs. Depending on how supported a given xDSL
and the metalanguage used to define its execution semantics
are, modelers will have access to a number of tools to aid
them in their endeavor. With the proposed approach, model-
ers get access to any generic interactive tooling, as well as
any tooling specific to a behavioral interface implemented,
either directly or transitively, for the xDSLs they use.
Inwhat follows,wefirst provide a specification for behavioral
interfaces, and implementation and subtyping relationships
in Sect. 4. Then, we detail one possible strategy to realize the
proposed approach in Sect. 5.

123



D. Leroy et al.

Fig. 5 Behavioral interface metamodel

4 Behavioral interface and relationships

In this section, we first specify what are behavioral interfaces
in Sect. 4.1, then we give a specification of implementation
and subtyping relationships in Sect. 4.2.

4.1 Behavioral interface

In this subsection, we introduce the notion of behavioral
interface for xDSLs. Behavioral interfaces declare the set of
domain-specific stimuli that can be send to or received from
models conforming to an implementing xDSL.

4.1.1 Behavioral interface metamodel

Figure 5 shows a metamodel formalizing the minimal set of
syntactical elements required to define behavioral interfaces
and occurrences of the events declared therein and instanti-
ated at runtime. A behavioral interface is composed of Event
elements defining the possible interactions with models con-
forming to xDSLs typed by the interface. Events have a name
and can either be accepted events, exposed events or both, as
indicated by their type. Events also have a set of EventPa-
rameters that define the data carried out by their occurrences.
A parameter is identified with a name and can either carry
primitive values or objects values, as determined by itstype.
Primitive values are typed by a DataType, and object values
are typed by aMetaclass. Metaclasses referenced as the type
of an event parameter can belong to a specific domain, typing
the interface to that domain, or be defined specifically for the
behavioral interface (e.g., to carry complex data while keep-
ing the interface self-contained). This allows a behavioral
interface to be tied to a specific domain or to be as generic
as desired.

To use a behavioral interface, it must be defined as a
type for an xDSL, through an implementation relationship
between the interface and the xDSL. Alternatively, this
can be achieved through a subtyping relationship toward a
behavioral interface that is defined as a type for the xDSL.

Section 4.2 provides more details about implementation and
subtyping relationships.

Once this is done, any tool working with xDSLs imple-
menting either any behavioral interface or specific ones
can be used with models conforming to the implementing
DSL. Such tools send or receive instantiated events from
the implemented interfaces under the form of EventOccur-
rence elements. These elements have an event reference
to the Event of which they are an occurrence. They also
have a type attribute indicating whether they are accepted
or exposed event occurrences. Additionally, event occur-
rences contain the values attributed to each parameter of
their Event as ParameterValue elements. According to the
type of their corresponding parameter, these parameter val-
ues can be PrimitiveValue elements (not detailed in Fig. 5)
or object values. In the case of object values, we make a dis-
tinction between references to objects contained elsewhere
(ReferenceValues) and objects that are directly contained by
the event occurrence (InstanceValues). This allows to pass
references to elements of the running model as parameters,
as well as objects created for the sole purpose of sending
the event occurrence. The referenced model elements are
accessed through the read-only structural language interface
of the metamodel they conform to, thereby preventing their
unauthorized modification. In addition, this allows for event
parameters to reference metaclasses that are compatible with
several xDSLs, if these references are typed by metaclasses
contained in a model type common to these DSLs. In the
proposed approach, event occurrences do not need to be con-
tained in another entity.However, a language engineer aiming
to provide tooling that revolves around event occurrences can
define metamodels (e.g., scenario or trace metamodels) with
a composition relationship toward event occurrences, which
is the approach adopted in the GEMOC Studio.

Definition 3 Let I be a behavioral interface. OccI denotes
the set of all the event occurrences that can be instantiated
from the events defined in I .

For instance, in the Arduino DSL, an event signaling the
push of a button will carry a reference (thus a Reference-
Value) to the button being pushed, whereas in UML State
Machines, an equivalent event would carry an instance of
UML event only created to send the event occurrence (thus
an InstanceValue), named "button_pushed" and itself
carrying the identifier of the button being pushed.

4.1.2 Examples of behavioral interfaces

ArduinoInterface Figure 6 shows a possible behavioral inter-
face for theArduinoDSL, using the textual concrete syntax of
the behavioral interfacemetalanguage. This interface defines
three accepted events and one exposed event. As they are
accepted events, occurrences of run, button_pressed

123



Behavioral interfaces for executable DSLs

Fig. 6 Behavioral interface for Arduino DSL

Fig. 7 ActivatableInterface behavioral interface

and button_released can be sent by external tools, trig-
gering specific behavior in executed models. Occurrences
of run are meant to start the execution of the Sketch
element provided for the sketch argument. In the case
of button_pressed and button_released, occur-
rences thereof are meant to change the state of the provided
Button element to pressed or released. Conversely, occur-
rences of the exposed event led_level_changed can be
emitted and exposed to external tools when specific behav-
iors are detected in executedmodels. These occurrences carry
two parameters: a Led element and the new value of its
pinValue attribute.
ActivatableInterface Figure 7 shows a behavioral interface
meant for xDSLs whose conforming models contain ele-
ments that can be activated, which we refer to as the Activat-
ableInterface. This language interface can be implemented
by xDSLs to extend their definition with the handling of two
events relating to the activation of elements: activate,
which is an accepted event meant to trigger the activation
of an element, and activated, which is an exposed event
notifying that an element has been activated. Both events
have an id String parameter identifying which element is
affected by the event. This makes the interface quite generic
and thus usable by various xDSLs, as long as the provided
String parameters allow to identify elements of interest.

4.1.3 Behavioral interface generation

Figure 8 shows on the right an excerpt of the most precise
behavioral interface (here called ArduinoSignature) that can
be defined for the Arduino DSL and, on the left, how it maps
to its operational semantics.

For each execution rule of the operational semantics, the
behavioral interface contains (1) an accepted event trigger-
ing calls to the execution rule, (2) an exposed event signaling

Fig. 8 Excerpt of behavioral interface (right) derived from the Arduino
DSL operational semantics (left)

the start of the execution of the rule and (3) an exposed
event signaling the end of the execution of the rule. Any
naming scheme can be used to uniquely name these events.
In our case, we chose to append or prepend "called",
"returned" or "call" to the name of the execution rule.
The parameters of these events are identical to the parameters
of their corresponding execution rule.

To streamline the application of the approach to xDSLs,
we implemented a generator that systematically derives a
behavioral interface to serve as the most precise behavioral
type of an xDSL. The generator performs a static analy-
sis of the code of the operational semantics of the DSL to
extract all the execution rules it contains. The generator then
generates the most precise interface of the DSL based on
the signatures of the execution rules, in accordance with the
specification provided above. This generator also provides a
corresponding trivial implementation relationship, mapping
directly each generated event to its associated execution rule.
To complement the provision of such a generator, metalan-
guage engineers can supply an annotation system or a similar
mechanism that allows language engineers to annotate which
execution rules will result in accepted and/or exposed events.

4.2 Implementation and subtyping relationships

In order to use behavioral interfaces as types for xDSLs, it is
necessary to define both what is an implementation relation-
ship between a behavioral interface and an xDSL and what is
a subtyping relationship between two behavioral interfaces.
This subsectionfirst lays somepreliminary definitions related
to operational semantics and events and then specifies both
kinds of relationships.

4.2.1 Preliminary definitions

We hereafter introduce the concepts that will be used to spec-
ify implementation and subtyping relationships.
Operational semantics The proposed approach relies on
the translation of accepted event occurrences into actual

123



D. Leroy et al.

behavior—e.g., calls to execution rules of the operational
semantics—and conversely on the translation of behav-
ior into exposed event occurrences. Essentially, for this
approach, interactions with the operational semantics can be
considered of two kinds: call requests and call notifications.

Call requests can be issued to request the execution of
a specific execution rule of the operational semantics. Such
requests must supply the name of the execution rule to be
called as well as the arguments to be passed when the call is
eventually carried out. Additionally, in some cases it may be
required to declare that a requested call must be performed in
a run-to-completion way, meaning that no other call request
should be handled as long as the run-to-completion one
has not returned. For example, call requests to the Push-
Button.press and PushButton.release execution rules of the
Arduino DSL should be handled in a run-to-completion way,
as calls to these rulesmodel an instantaneous behavior during
which nothing else can happen. For this reason, call requests
can individually be configured to be handled in a run-to-
completion way.

Conversely, call notifications carry a return Boolean
indicating whether a particular execution rule has been or is
about to be executed. Call notifications supply the name of
the execution rule that has been or is about to be executed,
as well as the arguments passed to the execution rule at the
moment of the call. Additionally, if the notification informs
that an execution rule has been fully executed, it also carries
the resulting value of the call, if applicable, as well.

There are numerous ways to define how call requests can
be handled by the operational semantics as well as how call
notifications are emitted. How this is done depends heavily
on the metalanguage used to define the operational seman-
tics of xDSLs. For instance, if the metalanguage being used
is a graph transformation language like Henshin [2], call
requests will likely be handled in between the application
of transformation rules, as the model state in the middle of
the application of a rule is not consistent. Therefore, we do
not restrict our approach to any strategy, but propose one
such strategy compatible with our technological space of
reference (i.e., where the operational semantics is written in
an object-oriented programming language and its execution
orchestrated by an execution engine) in Sect. 5.2.
Event stream We consider that event occurrences, call
requests and call notifications are observed from and inserted
into an ordered event stream. This event stream can then be
projected on each behavioral interface acting as behavioral
type for an xDSL.
Event-Condition-Action rules We rely on Event-Condition-
Action (ECA) rules to define implementation and subtyping
relationships. ECA rules consist of three parts: an event part
which specifies which stimuli triggers the rule, a condition
part which is a predicate that must evaluate to true for the
action to be executed and an action part which consists of a

behavior to execute when the rule is triggered and its condi-
tion satisfied.

A wide range of valid strategies exist to define ECA rules,
whichmostly depend on how the stream of event occurrences
is modeled. Therefore, the approach is not restricted to a par-
ticular strategy, but one such strategy is proposed in Sect. 5.1.
Event abstraction hierarchy Event abstraction hierarchies
consist of layers of abstraction containing complex events
defined over the layer below that provide a more detailed or
refined view of the event stream.
Pattern One does not necessarily have control over the def-
inition of the behavioral interfaces involved in a subtyping
or implementation relationship. Thus, it follows that a one-
to-one mapping cannot always be established between the
events of two behavioral interfaces. (The same applies to
events and call requests and notifications.) Therefore, to
compensate for this potential discrepancy, a means to detect
patterns of event occurrences or call notifications is required.

In this paper, we consider the definition of temporal pat-
tern matching over a stream of occurrences of events from
a behavioral interface and notifications of calls of execution
rules from the operational semantics. Such patterns can be
as simple as a single event occurrence, or be more complex
like a sequence of several event occurrences in a particular
order. Being able to specify and detect temporal patterns in
turn enables the definition of ECA rules with a non-trivial
event part.

4.2.2 Implementation relationship

A behavioral interface is said to be implemented by an xDSL
when an implementation relationship is defined between
the DSL and the interface. Intuitively, an implementation
relationship between an xDSL and a behavioral interface
guarantees that an observable behavior from the point of
view of the interface can always be defined for every model
conforming to this DSL. This means that the implementa-
tion relationship translates the internal behavior of models,
defined with execution rule calls, into observable behavior,
defined with occurrences of events of the implemented inter-
face.

To provide a formal definition of implementation relation-
ships, we rely on labeled transition systems (LTSs) to define
the behavior of models and the behavior observable through
an interface. We define LTSs as follows:

Definition 4 (Labeled transition system) An LTS is a tuple
〈S, L, T 〉 where S is a set of states, L a set of labels and T a
set of labeled transitions such that T ⊆ S × (L ∪ {τ }) × S.

In addition, we introduce the following notations:

– p
λ−→ q denotes that there is a transition between p and

q which is labeled λ,

123



Behavioral interfaces for executable DSLs

Fig. 9 Relationships between the Arduino DSL and behavioral interfaces from Figs. 6 and 7

– p
λ1·····λn−−−−→ q denotes that p

λ1−→ . . .
λn−→ q,

– p → λq denotes that there is an arbitrary number of
transitions labeled τ and a transition labeled λ such that
p

τ−→ . . .
λ−→ . . .

τ−→ q,
– p → λ1 · · · · · λn q denotes that p → λ1 . . . → λn q,
– given a set of LTSs LTS, States(LTS) denotes the union
set of all the states of the LTSs in LTS,

– given a behavioral interface I , LTSI denotes the set of all
the LTSs that can be defined using a subset of OccI as
their set of labels.

In our formal definitions, we abstract discrete-event models
as LTSs follows;

– The set of states is defined as the set of possible dynamic
states of the model,

– The set of labels is defined as the set of all possible calls
that can be performed on the subset of execution rules
of the operational semantics exposed by the language
engineer,

– The set of transitions is defined according to the possi-
ble transitions between these states. Transitions that do
not involve a call to an execution rule exposed by the
language engineer are labeled with τ .

Next, to formally express the behavioral equivalence
between the internal behavior of a model and its observable
behavior through an interface, we introduce weak and strong
parameterized simulation, a variant from weak and strong
simulation introduced by Milner in [28], as follows.

Definition 5 (Weak/strong parameterized simulation) Let
L1, L2 be sets of labels. Let LTS1,LTS2 be the sets of
LTSs that can be defined from L1 and L2, respectively. Let
S ⊆ States(LTS1) × States(LTS2) be a binary relation. Let
f : L1 × States(LTS2) → (N → L2) be a function associat-
ing, to a label from L1 and a state from LTS2, a sequence
of labels from L2. Then, S is said to be a weak (resp.
strong) simulation parameterized by f if, whenever pSq,
if p

λ−→ p′, then there exists q ′ such that q → f (λ, q) q ′

(resp. q
f (λ,q)−−−−→ q ′) and p′Sq ′. Given two LTSs P and Q,

we say that P weakly (resp. strongly) simulates Q through f
if there exists a weak (resp. strong) simulation parameterized
by f from all states of P to states of Q.

Based on this definition, and more precisely on the definition
for weak parameterized simulation, we can formally define
implementation relationships as follows.

Definition 6 (Implementation relationship) Let L =
〈AS, 〈DM,ER〉〉 be an xDSL and I a behavioral interface.
Let DS be the set of all model states conforming to DM,
and RC the set of all execution rule calls that can be issued

123



D. Leroy et al.

from ER. We say that L implements I if there exists a func-
tion Implem:OccI × DS → (N → RC) such that, for every
modelm conforming toAS, there exists an observable behav-
ior b ∈ LTSI such thatm weakly simulates b through Implem.

In practice, the Implem function of an implementation
relationship between a behavioral interface and aDSLconsti-
tutes a two-layer event abstractionhierarchy, realized through
two sets of ECA rules, namely the accept rules and the
expose rules. Broadly, accept rules define how event occur-
rences of the interface are translated into behavior, while
expose rules define how behavior results in event occur-
rences being emitted.

Accept rules define both which event occurrences con-
forming to the behavioral interface trigger behavior in the
executed model and which parts of the operational semantics
of the corresponding xDSLare used for that purpose.Accord-
ingly, the three parts of an accept ECA rule are defined as
follows:

– event: an accepted event occurrence conforming to the
implemented behavioral interface.

– condition: a predicate to be applied on the event occur-
rence and on the model state.

– action: specifies, as (possibly run-to-completion) call
requests, which (possibly concurrent) sequence of exe-
cution rule calls of the DSL semantics must be requested,
and with what parameters.

Conversely, expose rules define both which behaviors in the
executed model result in event occurrences and which event
occurrences are instantiated thereupon. Each expose ECA
rule is structured as follows:

– event: a (possibly temporal) pattern to be matched over
a stream of call notifications.

– condition: a predicate to be applied on the matching set
of execution rule calls and on the model state.

– action: specifies which exposed event occurrence of the
implemented interface must be emitted in response to the
detected behavior.

The lower part of Fig. 9 shows an example of implemen-
tation relationship between the ArduinoInterface interface
and our Arduino DSL running example. This relationship
defines three accept rules and one expose rules. In this
case, the ECA rules directly map occurrences of each event
to a matching execution rule. For instance, occurrences of
button_pressed are mapped to a call request for the
PushButton.press execution rule and call notifications for
the SetLed.execute execution rule are mapped to occur-
rences of led_level_changed. Note that more complex

mappings could be included, such as a mapping instantiating
two call requests in response to an event occurrence.

4.2.3 Subtyping relationship

A behavioral interface is said to be a subtype of another
behavioral interface when a subtyping relationship is defined
between them. Intuitively, a subtyping relationship between
two behavioral interfaces guarantees that an observable
behavior from the point of view of the supertype interface
can always be defined for every observable behavior from
the point of view of the subtype interface. This means that
the subtyping relationship translates the behavior of mod-
els observed through the subtype interface into observable
behavior defined with occurrences of events from the super-
type interface. We formally define subtyping relationships
using strong parameterized simulation as follows.

Definition 7 (Subtyping relationship)Let I1, I2 be twobehav-
ioral interfaces. Let L = 〈AS, 〈DM,ER〉〉 be an xDSL
implementing I1, and let DS be the set of all model states
conforming to DM. We say that I1 is a subtype of I2 if there
exists a function Subtype:OccI2 ×DS → (N → OccI1) such
that, for every model m conforming to AS with observable
behavior b1 ∈ LTSI1 , there exists an observable behav-
ior b2 ∈ LTSI2 such that b1 strongly simulates b2 through
Subtype.

In practice, the Subtype function of a subtyping rela-
tionship is realized similarly to the Implem function of
implementation relationships: It constitutes a two-layer event
abstraction hierarchy realized with a set of accept ECA
rules and a set of expose ECA rules. Subtyping rela-
tionships between two behavioral interfaces designate one
interface as the supertype and the other as the subtype.Accept
(resp. expose) rules are tasked with translating accepted
(resp. exposed) event occurrences of the supertype (resp. sub-
type) into accepted (resp. exposed) event occurrences of the
subtype (resp. supertype). Accept rules are structured as fol-
lows:

– event: an occurrence of an accepted event from the super-
type.

– condition: a predicate to be applied on the event occur-
rence and on the model state.

– action: specifies into which sequence of which accepted
event occurrences of the subtype the event occurrence is
translated.

Expose rules are structured as follows:

– event: a (possibly temporal) pattern to be matched over
a stream of occurrences of exposed events from the sub-
type.

123



Behavioral interfaces for executable DSLs

– condition: a predicate to be applied on the matching set
of event occurrences and on the model under execution.

– action: specifies into which exposed event occurrence of
the supertype the event pattern is translated.

The upper part of Fig. 9 shows a subtyping relation-
ship between the ActivatableInterface interface as a super-
type and the ArduinoInterface as a subtype. Through
this relationship, the language engineer defines the map-
ping between activate and activated events and
the run, button_pressed, button_released and
led_level_changed events. In this example relation-
ship, when a button is activated, it means it has been pressed
and then released. Likewise, a LED is considered as having
been activated if it has been switched from off to on. Two
accept rules and one expose rule are defined as part of this
relationship. TheOnActivateSketch rule is triggered by
occurrences of activate and has a condition stating that
a Sketch element with a name corresponding to the id car-
ried out by the event occurrence must exist in the running
model. The OnActivateButton rule is also triggered
by occurrences of activate but has a different condi-
tion, stating that a Button element with the appropriate name
must exist in the running model instead. When triggered, the
OnActivateSketch rule emits an occurrence of the run
event, whereas the OnActivateButton rule emits two
event occurrences: an occurrence of button_pressed
and anoccurrenceof button_released. TheOnLEDOffOn
rule illustrates thatECArules canbe triggeredupon thedetec-
tion of a pattern of several event occurrences: Here, the rule
is triggered when a pattern involving several occurrences of
the led_level_changed is observed. When triggered,
this rule directly instantiates an occurrence of activated,
as it does not have a condition (or rather, its condition always
returns true).

4.2.4 Discussion on substitutability

Defining implementation and subtyping relationships accord-
ing to Definitions 6 and 7 guarantees that every model
conforming to an implementing DSL has an observable
behavior from the point of view of each implemented behav-
ioral interface. This is, however, not sufficient to guarantee
that, if two xDSLs implement the same behavioral inter-
face, everymodel conforming to one DSL can be substituted
with at least one model conforming to the other without any
observable difference from the point of view of the imple-
mented interface.

In other words, the fact that an xDSL implements a behav-
ioral interface (either directly or transitively) does not mean
that any behavior that can be specified with that behavioral
interface can be observed from a model conforming to this
DSL.An implementation or subtyping relationship achieving

this would fulfill a DSL-equivalent of the Liskov substitution
principle, as modelers would always be able to use another
language implementing the same interface to define a model
that can be substituted with a given model.

Proving that an xDSL has such implementation and sub-
typing relationships defined for a set of behavioral interfaces
can be done with a static analysis, provided the xDSL has a
formally defined operational semantics.

5 Event management andmetalanguage
integration

Three points remain open in the definition of implementation
and subtyping relationships:

1. how to define the ECA rules of a relationship,
2. how relationships deal with (1) receiving event occur-

rences/call notifications, (2) pattern matching of event
occurrences and (3) instantiating and forwarding new
event occurrences/call requests , namely the event man-
agement strategy, and

3. how call requests and notifications are linked to a given
operational semantics implementation, namely the met-
alanguage integration strategy.

In this section, we first propose a possible strategy for event
management (in Sect. 5.1), tackling points 1 and 2, and then
detail one possible strategy for metalanguage integration (in
Sect. 5.2), tackling point 3.

5.1 CEP-based event management

Implementation and subtyping relationships, as introduced
in Sect. 4.2, require a concrete strategy to define and manage
enclosed ECA rules. In this section, we present a strategy
based on complex event processing (CEP) and more specifi-
cally on Esper’s event processing language (EPL). First, we
mention the salient features ofCEP thatmake it an interesting
candidate for event management in our approach. Then, we
introduce the event manager component acting as an ECA
rule engine. Next, we detail how event occurrences are mod-
eled in Esper, and finally, we explain the design process of
relationships and their ECA rules.

5.1.1 Complex event processing

The goal ofCEP is to identifymeaningful events over streams
of simpler events with queries on both the data carried out
by the events and the before and after relationships between
them. Essentially, CEP systems allow to perform temporal
pattern matching over streams of events and produce a new
stream of potentially overlapping complex events as a result.

123



D. Leroy et al.

Fig. 10 Excerpt of the CEP-based architecture applied to the Arduino DSL

In this aspect, CEP is a paradigm that fits particularly well for
the definition of event abstraction hierarchies [23], which are
central to subtyping relationships between behavioral inter-
faces.

Esper is an open-source Java-based system for CEP that
provides a DSL for event processing called EPL. This DSL
allows to formulate queries, called EPL statements, which
continuously analyze events within a stream to detect sit-
uations of interest and produce a new stream of events
containing properties selected from thematching events. Java

objects, called subscribers, can then subscribe to this new
event stream to be notified each time an event is inserted into
the stream.

As we defined the event part of the ECA rules of our rela-
tionships as temporal patterns over either a stream of event
occurrences or a stream of call notifications, CEP is particu-
larly fitting to the realization of relationships. Moreover, as
Esper is Java-based and open-source, it integrates well with
our existing model execution framework.

123



Behavioral interfaces for executable DSLs

5.1.2 Event manager

To streamline the integration of relationships into the archi-
tecture and avoid dependencies between behavioral inter-
faces, we define a component called the event manager.
The event manager is implemented as an ECA rules engine
configured by the active relationships. For each relation-
ship, two streams are created: one for the environment-
to-model direction and one for the model-to-environment
direction. According to both the nature of its containing
relationship (implementation or subtyping) and its direc-
tion (environment-to-model or model-to-environment), a
stream contains either event occurrences or call notifications.
Streams carrying event occurrences only accepts occurrences
of events from the corresponding behavioral interface, based
on its direction and on the nature of its containing relation-
ship. The temporal patterns constituting the event part of
accept and expose rules are registered to their corresponding
stream, as defined by their relationship. The condition and
action methods constituting the condition and action parts of
the rules of the relationships are then hooked on their cor-
responding temporal pattern. Figure 10 illustrates the event
manager, to which an implementation and a subtyping rela-
tionship have been registered.

At runtime, the event manager is responsible for dispatch-
ing event occurrences between relationships (that is, between
their event streams). The event manager dispatches an event
occurrence for translation to the event stream of a given rela-
tionship based on (1) the behavioral interfaces referenced
by the relationship, (2) their supertype or subtype role in
the relationship (for subtyping relationship only) and (3) the
accepted or exposed nature of the event occurrences. Note
that, if several registered relationships qualify for a given
event occurrence, this occurrence is dispatched to each rela-
tionship.

For instance, the subtyping relationship between Acti-
vatableInterface (the supertype) and ArduinoInterface (the
subtype) shown in the upper part of Fig. 10 can receive occur-
rences of the activate and led_level_changed
events, because activate is an accepted event from the
supertype interface of the relationship, and
led_level_changed is an exposed event from the sub-
type interface of the relationship. However, this relationship
cannot receive occurrences of the activated event, as
this is an exposed event from the supertype interface of the
relationship: Such event occurrences can be emitted by the
relationship but never received, as the relationship does not
know how to handle occurrences of this event. For the same
reason, this relationship cannot receive occurrences of the
run event.

Additionally, the event manager is tasked with communi-
cating with the other entities in the system. One such entity
is the operational semantics of the xDSL, to which the event

manager sends call requests and from which it receives call
notifications. Precisely, how this is handled will be discussed
in Sect. 5.2. Other possible entities are external tools sending
accepted event occurrences to the eventmanager and/or being
notified by the event manager of exposed event occurrences.

Note that, as it has been designed, this eventmanager is not
specific to CEP-based relationships and can accommodate to
any technology allowing relationships to offer the following
two required services: (1) receiving event occurrences and
(2) notifying of event occurrences (e.g., using runtime moni-
tors). In fact, an envisioned approach to define relationships is
to propose a dedicated, declarative event mapping language
letting the language engineer define when and on what con-
dition an event or sequence thereof should be mapped to
another event or sequence thereof.

5.1.3 Modeling event occurrences in Esper

To use Esper, we need to map our event occurrences to event
representations that can be processed by Esper. A range of
possibilities are available, from Plain Java Objects (POJOs)
to Maps to XML documents. We opted for modeling our
events as POJOs, as we do not require the flexibility ofMaps,
and our implementation is exclusively Java-based, making
XML both cumbersome and unnecessary. More specifically,
we defined a wrapper class for EventOccurrence objects.
This wrapper class declares two methods that are considered
as event properties by the Esper runtime. The first method is
the getEventmethod, which returns the event of the occur-
rence. The second method is the getArgs method that takes
an event parameter named as parameter and returns the value
associated with that parameter. This allows Esper to access
the different arguments of an event occurrence as a mapped
property, by supplying the parameter name of the argu-
ment. For instance, the expression args(’someName’)
returns the value provided for the event parameter named
’someName’.

As in our proposed strategy, call notifications are inserted
into the event stream and manipulated by the Esper runtime,
and we also need an Esper representation for them. Since call
notifications are issued by the integration facade, which in
our case is Java-based, the simplest solution for the proposed
architecture is to model these call notifications as POJOs,
as we do for event occurrences. Such POJOs point to the
execution rule at the origin of the call notification, to a map
associating the values supplied for each parameter of the
execution rule in that particular call and for notifications of
completed calls, to the value returned by the call.

5.1.4 Relationship design

With event occurrences and call notification made Esper-
compatible, we can now look into the design process of

123



D. Leroy et al.

implementation and subtyping relationships and their ECA
rules, based on Esper and Java. We will then present a
concrete example of the application of this process to our
Arduino DSL running example.
Design process ECA rules are defined in the following man-
ner. The event part of ECA rules is defined using EPL
statements querying the stream corresponding to the nature
of the rule (i.e., accept or expose). This allows to leverage
the power of CEP to capture complex, potentially overlap-
ping patterns of event occurrences. The condition and the
action parts of a rule are written as Java methods to be called
by the event manager when a complex event is detected by
the EPL statement defined as the event part. The condition
method takes complex events detected by the EPL statement
as parameter and returns a Boolean value indicating whether
the action method should be called or not. To be able to
enforce domain-specific constraints, the condition method
has access to the running model in addition to the trigger-
ing complex event to compute its result value. Conversely,
the action method also takes as parameter the complex event
that was detected by the EPL statement. The action method
of accept rules returns either an array of event occurrences
(for subtyping relationships) or an array of call requests (for
implementation relationships), while the action method of
expose rules always returns a single event occurrence.Access
to the running model allows the action method to configure
newly instantiated event occurrences (e.g., supplying event
occurrences with parameters from the model).
Concrete example Figure 10 illustrates this design strategy
by showing a more in-depth view of Fig. 9, which provides
an overview of implementation and subtyping relationships
between ActivatableInterface and ArduinoInterface. First,
it highlights the fact that each relationship holds two event
streams: a stream associated to accept ECA rules (next to
labels 1 and 2) and another associated to expose ECA rules
(next to labels 3 and 4).

Then, on the upper-left part of the figure (labeled 1),
the OnActivateButton accept rule of the subtyping relation-
ship between ActivatableInterface and ArduinoInterface is
detailed. The event stream observed by this rule contains
ActivatableInterface accepted event occurrences. The event
part of the OnActivateButton rule is an EPL statement that
notifies its subscribers (i.e., the registered rules) whenever
an occurrence of an event named activate is inserted on
the event stream. When this happens, the subscribers receive
a notification that carries the id parameter value, selected
by the EPL statement through the args(’id’) expres-
sion. In the example, there are two subscribers, one of which
(OnActivateSketch) is not shown. The other subscriber is
the OnActivateButton rule. When notified, the evaluate-
Condition method, whose implementation is required of
subscribers, is called. This method checks that the condition
of the rule is satisfied. In the example, the implementation

of this condition method performs a query on the running
model, using the value provided by the complex event pat-
tern of the event part of the rule. This is achieved using a
utility method findElement which finds an element of the
provided class with the provided name (here buttonId) in
the provided model (here the running model). Then, if the
condition is satisfied, the subscriber performs the action of
the rule by calling its execute method, which translates the
triggering event occurrence into two new event occurrences.
This is effectively done by instantiating the new occurrences
(using dedicated utility methods in our example) and return-
ing them in an array to be inserted in the correct event stream
(in this case, the stream of ArduinoInterface event occur-
rences).

On the lower-left part of the figure (labeled 2), the
design of the accept rules of the ArduinoInterface imple-
mentation relationship is detailed. It is very similar to that
of the subtyping relationship, the event stream contain-
ing ArduinoInterface accepted event occurrences instead of
ActivatableInterface ones. The accepted rules observing this
event stream instantiate and return call requests for specific
execution rules. The OnButtonPressed rule shown in the
figure detects occurrences of the button_pressed event
and converts them directly (as no condition is specified) into
call requests for the PushButton.press execution rule of the
operational semantics.

Then, on the lower-right part of the figure (labeled 3) is
detailed the design of the expose rule of the implementation
relationship. The event stream associated with this rule con-
tains the call notifications issued by the operational seman-
tics. The OnSetLed rule detects call notifications for the
SetLed.execute execution rule on the event stream and con-
verts them into occurrences of the led_level_changed
event, to which it supplies the referred led and its new
level.

Finally, on the upper-right part of the figure (labeled 4)
is detailed the OnLEDOffOn expose rule of the subtyping
relationship. This rule observes an event stream contain-
ing ArduinoInterface exposed event occurrences. The EPL
statement constituting the event part of the rule speci-
fies that it is triggered whenever a succession of two
led_level_changed event occurrences with alternating
level parameter values but identical led parameter values
is observed in a sliding window of two events. The action
part of the rule translates the triggering complex event into
an occurrence of the activated event with the id of the
LED as a parameter value.

5.2 Metalanguage integration

In addition to providing a unified way to define the accepted
and exposed events for any xDSL, our approach aims to
be agnostic of the metalanguage used to define the opera-

123



Behavioral interfaces for executable DSLs

tional semantics of an xDSL. This means that the behavioral
interface language and the design of the event manager and
relationships must work for any xDSL, regardless of the met-
alanguage used to define its operational semantics.

To achieve this, an integration facade for the event man-
ager must be defined. This facade is tasked with translating
call requests into actual behavior and behavior into call notifi-
cations, thereby bridging the gap between the event manager
(and the implementation relationships therein) and the oper-
ational semantics.

In this section, we propose such an integration facade to
enable the approach for xDSLs whose operational seman-
tics is defined using an object-oriented metalanguage such
as Java and orchestrated by an execution engine. Note that
the proposed integration facade is intended for sequential
model execution. Adapting the approach to concurrentmodel
execution only requires to define an appropriate integration
facade. First, we present what must be provided by this exe-
cution engine, which is considered as a prerequisite for the
proposed facade. Next, we detail the inner workings of the
integration facade. Finally, we show how this facade is inter-
faced with the aforementioned execution engine.

5.2.1 Execution engine

Theproposed approach considers that a preexisting execution
engine applies the operational semantics of the considered
xDSL on the running model. Such an execution engine must
be able to notify external components when it starts or stops
and when it applies execution rules that alter the model state.
More precisely, the engine only sends notifications for execu-
tion rules annotated as a stepping rule, which are executions
rule producing an observable execution step when applied.
Regarding the Arduino DSL presented in Sect. 2, only step-
ping rules are presented.

The state of the model is considered observable and alter-
able at the time notifications are made and handled; hence,
the possible observable states reached during an execution
are heavily dependent on the granularity of the declared
stepping rules in a semantics. This notification mechanism
can not only be used to attach interactive debuggers [6] and
trace constructors [7] to the execution. We explain later how
we leverage this notification mechanism to enable exposed
events and run-to-completion call requests. The design of an
execution engine is described in more detail in our previous
work [5,6] and can be summarized as the following opera-
tions:

– start does the ensuing actions:

– load the considered xDSL;
– load the model to be executed;
– register the execution observers;

– prepare the initial model state;
– set the running attribute of the engine to true;
– notify registered observers that it is starting.

– stop sets the running attribute to false and notifies
execution observers that the engine is stopping.

– callExecutionRule starts the application of a specific exe-
cution rule of the operational semantics.
If it is a stepping rule, the engine notifies observers at the
beginning and at the end of the execution of the rule.
Note that depending on the metalanguage, an execution
rule may trigger the nested execution of other stepping
rules, in which case observers are also notified when the
nested execution of these stepping rules begins or ends.
For instance, in the Arduino model shown in Fig. 2,
calls to SetLed.execute will be nested within calls to
If.execute, which will in turn be nested within calls to
Sketch.run.
Note that no distinction is made between the notifications
from nested and non-nested rule calls.

– registerObserver registers a component as an observer
that gets notified when the execution of a stepping rule
begins or ends and when the engine starts or stops.
When an observer gets registered, an associated priority
policy needs to be supplied as well.
Such a policy provides, for each kind of notification, the
priority at which the observer must be notified.
This operation is called by the execution engine during
the initialization phase, to register a predefined set of
execution observer, retrieved from a configuration file
for instance, but it can also be called at any time.

The specification of this component is by design as
generic as possible to be able to cover a wide range of
metalanguages. As such, it provides an abstraction over
the multiple execution engines dedicated to various meta-
languages available in the GEMOC Studio (see Sect. 5.3).
The implementation of this component is, however, heav-
ily dependent on the metalanguage used to implement the
operational semantics, especially regarding the procedure
to dynamically call an arbitrary execution rule (e.g., using
java.lang.reflect.Method.invoke if the seman-
tics is implemented in Java).

Using these operations, a user (e.g., a modeler, a tool)
is able to execute a model by starting the engine and then
demanding the execution of one or several execution rules of
the semantics (e.g., a runmethod responsible for the complete
execution). In the following subsections, we explain how the
integration facade can also use these operations formanaging
call requests and notifications.

123



D. Leroy et al.

5.2.2 Overview of the metalanguage integration facade

To bridge the gap between implementation relationships
and the execution engine, we define an integration facade
concentrating on the following two activities: (1) waiting
for execution rule call requests from implementation rela-
tionships and performing the requested calls and (2) issue
execution rule call notifications to implementation relation-
ships.

To be able to perform these activities, the integration
facade has two requirements that need to be fulfilled. First,
it needs a mechanism to wait for execution rule call requests
to arrive. To that effect, our approach relies on a blocking
queue to store the call requests received from implementa-
tion relationships. Call requests can be retrieved from the
queue using the poll and the take operations, which behave
differently when the queue is empty: take suspends the exe-
cution and waits for an element to be available, while poll
simply returns null. Second, the integration facade needs
to be able to call execution rules defined as part of the oper-
ational semantics of an xDSL. This task is delegated to the
execution engine and its callExecutionRule operation.

With these requirements fulfilled, an execution with the
proposed integration facade unfolds as follows:

– The integration facade is notified of the start of the exe-
cution by the execution engine.
It enters its execution rule call scheduling loop: The exe-
cution is repeatedly suspended when the call request
queue is empty and resumed when call requests are
queued.

– Implementation relationships send call requests to the
integration facade, which are added to the call request
queue.

– The engine informs the integration facade when it is safe
to process the queued call requests, i.e., when starting or
ending stepping rule calls.
In such cases, the integration facade first checks whether
a run-to-completion call request is currently being exe-
cuted.
If that is the case, the call request queue is left untouched.
Otherwise, the queued call requests are sequentially del-
egated to the execution engine.

– The integration facade is notified that a stepping rule call
is about to start or has ended and forwards this notification
to implementation relationships.

5.2.3 Metalanguage integration facade operations

We hereby present how the integration facade achieves these
different tasks through a set of operations.
startListening and stopListening. These internal operations
are used to start and stop the call request handling loop. Algo-

Algorithm 1: startListening
Input:
engine : the execution engine,
callReqQueue : the call request queue

1 callRequest ← callReqQueue.take()
2 while engine.running ∧ callRequest �= Stop do
3 processCallRequest(callRequest)
4 callRequest ← callReqQueue.take()

Algorithm 2:manageCallRequests
Input:
engine : the execution engine,
callNotification : the notification,
callReqQueue : the call request queue,
callStack : the call stack

1 call ← callStack.peek()
2 if ¬call.runToCompletion ∧ call.rule �= callNotification.rule
then

3 callRequest ← callRequestQueue.poll()
4 while callRequest �= null ∧ callRequest �= Stop∧
5 engine.running do
6 processCallRequest(callRequest)
7 callrequest ← callRequestQueue.poll()

rithm1 shows startListening. As long as the execution engine
is running, the first call request of the call request queue
(lines 1–2 and 4 of Algorithm 1) is retrieved. When the take
operation is called on the queue, the execution is suspended
if the queue is empty—which only happens if no execution
rule is currently executing—and resumes as soon as a request
is added. Finally, the call request is processed using the
processCallRequest operation (line 3 of Algorithm 1). The
stopListening operation consists of inserting an instance of
a special Stop call request into the call request queue (mech-
anism know as a poison pill [14]), thereby stopping the call
request handling loop.
queueCallRequest. This operation is called by the event
manager to insert a request to call the provided execution
rule with the provided arguments into the call request queue.
Note that, at the start of the execution, no actual execution
takes place until a first call request is queued. For instance, in
the case of the Arduino DSL, the execution only starts once
a run event occurrence is received: This event occurrence
enqueues, through a call to the queueCallRequest operation,
a request for a call to Sketch.run on the sketch parameter
of that event occurrence. This call request is then processed,
which starts the execution.
manageCallRequests This internal operation is similar to
startListening, except that it does not suspend the execution
when the queue of call requests is empty. It is called when
the integration facade is notified that the running model is
in a consistent state, and thus, that pending call requests can
be safely handled. As explained previously, this is the case

123



Behavioral interfaces for executable DSLs

Algorithm 3: processCallRequest
Input:
engine : the execution engine,
callRequest : the call request to process,
callStack : the call stack

1 callStack.push(callRequest)
2 ruleToCall ← callRequest.rule
3 engine.callExecutionRule(ruleToCall, callRequest.args)
4 callStack.pop()

before and after the execution of stepping rules. Algorithm 2
shows the behavior of this operation. When it is called, the
integration facade first checks that the currently executed call
request did not ask for run-to-completion behavior. For this,
the call request on top of the stack is inspected (line 1) and
two conditions are checked: if it should not be treated as run-
to-completion and if its associated execution rule is different
from the stepping rule that triggered the notification (line 2).
The first condition prevents the processing of a call request,
while a run-to-completion call request is being handled. The
second condition prevents the processing of additional call
requests before the processing of the current one gets to start,
whichwould otherwise happenwhen the rule associatedwith
the current call request is a stepping rule. If both conditions
allow it, the non-blocking poll operation is used to iterate
over all call requests in the queue and process them using the
processCallRequest operation (lines 3–7), exiting the loop
if the engine stops or if the Stop call request is encountered.
Otherwise, the call request queue is left untouched, to be pro-
cessed at a later time, as the operation returns immediately.
processCallRequest This internal operation, detailed in
Algorithm 3, is used to process a single execution rule call
request. First, the call request is pushedona call stack (line 1).
Then, the execution rule to call is retrieved from the call
request (line 2), and the call is delegated to the execution
engine (line 3). Once this call returns, the call request is
popped from the call stack (line 4). This call stack keeps
track of the call requests that are currently being handled and
is used to enforce the potential run-to-completion nature of
call requests by preventing the handling of other call requests
while a run-to-completion one is being executed.

5.2.4 Integration with the execution engine

During its initialization phase, the execution engine instanti-
ates and registers the integration facade as an observer from
a configuration file. In the following, we detail how the inte-
gration facade reacts to the different notifications sent by
the execution engine, combining the presented operations to
achieve proper event handling.

– notifyStart: The call request handling loop is started,
using the startListening operation.

– beforeStep: ThemanageCallRequests operation is called
to process the call request queue, given that the call
request currently under execution (if any) is not a run-
to-completion call request.

– afterStep: call notifications are forwarded to implemen-
tation relationships, which decide if they should result in
an exposed event occurrence.
The facade then behaves as for beforeStep notifications.

– notifyStop: the stopListening operation is called to halt
the call request handling loop.

In the event that all execution rule calls issued from the
startListening operation terminate without a notifyStop noti-
fication being received, the call request handling loop sus-
pends the execution, waiting for either a Stop request or a call
request to be queued and thus instantly processed. Note that,
when the integration facade is registered as an observer of the
execution, an accompanying priority policy is supplied, spec-
ifying that it receives notifyStart and afterStep notifications
last, but receives beforeStep notifications first. This allows
the facade to work with other potential execution observers.
For instance, a trace constructor needs to receive beforeStep
notifications after the integration facade: Otherwise, it would
record the start of an execution step when in fact another step
could be triggered, given that there is a pending call request
in the queue of the integration facade.

5.3 Tool support

We implemented our approach as part of the GEMOC Studio
[5], a language and modeling workbench atop the Eclipse
platform [25]. The metamodel of the behavioral interface
language is defined using Ecore, and the event manager is
written in both Java and Xtend. The source code is available
on Github.3

The language workbench of the GEMOC Studio offers
multiple metaprogramming approaches to define the opera-
tional semantics of a DSL (e.g., Java/Kermeta [20], xMOF
[24] or Henshin [2]), as well as one execution engine for
each approach. Our implementation of the event manager
is agnostic to the kind of execution engine that is used, in
accordancewithSect. 5, and comeswith ametalanguage inte-
gration facade for the Java/Kermeta-based execution engine.

In order to make use of the approach, a reflective event
injection GUI was designed, allowing to send and receive
event occurrences from running models and complementing
the existing generic omniscient debugger for xDSLs defined
in the language workbench [6]. We detail this tool in the next
section.

3 https://github.com/eclipse/gemoc-studio.

123

https://github.com/eclipse/gemoc-studio


D. Leroy et al.

5.4 Language engineering scenarios

In this subsection, we describe several language engineer-
ing scenarios and the role played by our approach in their
realization.
Specific tooling development Language engineers can lever-
age the definition of behavioral interfaces to develop tooling
that is specific to one or more interfaces, such as a domain-
specific graphical view of the event occurrences sent to and
received from the model. Such tooling can then be used with
anymodel conforming to a DSL implementing the supported
interfaces.
Generic tooling development Language engineers can lever-
age the reflexive access provided by the behavioral interface
metalanguage to develop generic interaction-centric tooling.
At runtime, from the definition of the xDSL to which the
running model conforms, such tools can retrieve the list of
behavioral interface implemented (directly or transitively)
by the DSL. Then, from these behavioral interfaces, generic
tools can discover the events whose occurrences can be
accepted or exposed by the running model, along with their
parameters. Language engineers can then implement generic
tooling revolving around events and their occurrences.
Tooling for multi-model interaction Going further than the
previous scenario, language engineers can define tools that
handle interaction with concurrently running models con-
forming to different DSLs. Both broadcasting event occur-
rences to eligible models and sending event occurrences to a
single model can be supported. Conversely, language engi-
neers can define tools to receive event occurrences from one
or all eligible running models. This is very close to generic
tooling development: The main difference is that instead of
gathering the implemented behavioral interfaces from one
running model, the tool lists the implemented behavioral
interfaces from all running models. From there, the language
engineer has all the information required to implement the
desired event sending behavior. Alternatively, this capability
can also be implemented for interface-specific tools, for a
predefined set of behavioral interfaces.
Model coordination This scenario requires a complemen-
tary approach such as B-COoL [22] to actually coordinate
models through occurrences of events from their respective
behavioral interfaces. With such a complementary approach,
modelers are able to leverage the behavioral interface defined
for the involved xDSLs to define how a specific set of models
conforming to these DSLs are coordinated.

6 Evaluation

In this section, we first evaluate whether the proposed
approach fulfills each of its requirements, which are listed in

Sect. 2.2; then, we conclude by summarizing and discussing
the results, as well as the threats to validity.

6.1 Interface definition and implementation (Req. 1)

To evaluate how well the proposed approach fulfills Req.
1, we apply the approach on two existing xDSLs to enable
interaction with their conforming models. In a first time, we
apply the approach on the Arduino DSL presented in Sect. 2,
a very specific DSL. In a second time, we apply the approach
to a subset of UML State Machines in conformance with the
Precise Semantics of UML State Machines (PSSM) speci-
fication [33], which is a general and standardized modeling
language. We then report on the process.
Executable DSL I: Arduino The first xDSL on which
we apply the approach is the Arduino DSL presented in
Sect. 2. The behavioral interface directly implemented by
the Arduino DSL has been introduced in Fig. 6 and con-
tains three accepted events (run, button_pressed and
button_released) and one exposed event (led_le-
vel_changed). The implementation relationship defined
between this behavioral interface and the operational seman-
tics of the Arduino DSL is straightforward:

– run occurrences are translated into call requests to the
Sketch.run execution rule,

– button_pressed and button_released occur-
rences are translated into call requests to theButton.press
and Button.release execution rules, and

– calls to the SetLed.execute execution rule are translated
into led_level_changed occurrences, with the new
level being directly queried from the model.

In total, the implementation relationship itself required,
for each ECA rule, around 5–6 lines of Java code for the
method bodies, while we were able to define a library spe-
cific to Esper-based implementation relationships that can be
reused for any implementation relationship. The definition of
this library required 94 lines of Java code.
Executable DSL II: UML state machines The second xDSL
on which we applied the approach is a subset of UML State
Machines in conformance with the Precise Semantics of
UML State Machines (PSSM) specification [33]. Since we
focused on reproducing the event-related behavior of UML
State Machines with our approach, we implemented a rele-
vant subset of the language defined as follows:

– The implementation supports initial, final, entry point,
exit point, fork, join and terminate pseudo-states. History,
choice and junction pseudo-states are not supported as
they take no part in the event-handling behavior of UML
State Machines.

123



Behavioral interfaces for executable DSLs

Fig. 11 Behavioral interface for UML state machines

– Although PSSM is an extension of fUML [31], which
gives semantics for UML activity diagrams, our imple-
mentation of PSSM only covers UML State Machines.

– State machine redefinition is not supported since this is
not related to the event handling logic.

Among the execution rules of the operational semantics,
four rules stand out: The StateMachine.run starts the exe-
cution of themodel, StateMachine.signalReceived notifies a
StateMachine that it received a SignalOccurrence, StateMa-
chine.callPerformed notifies a StateMachine that call was
performed, and Behavior.execute launches the execution of
a Behavior.

Figure 11 shows the StateMachineInterface we defined
for UML State Machines. This interface contains three
accepted events that are described thereafter. The run
event triggers the initialization required to start the execu-
tion of the state machine. The signal_received event
takes a signal occurrence as parameter and triggers run-to-
completion steps. As signals potentially contain parameters,
signal occurrences can provide values for these parameters.
The call_performed event takes an operation call as
parameter and also triggers run-to-completion steps. The
interface also contains one exposed event: signal_sent,
which takes a signal as parameter. Note that this event nor-
mally occurs in the activity diagrams used to define the
behavior of states and transitions of UML State Machines,
not in the state machines themselves. However, as our imple-
mentation does not include activity diagrams, instead using
stubs thereof, we added the signal_sent event to the
StateMachineInterface.

As for the Arduino DSL, the implementation relationship
defined between the StateMachineInterface and UML State
Machines is straightforward. First,run,signal_received
and call_performed occurrences are translated into call
requests for the run, signalReceived and callPerformed
execution rules, with a one-to-one mapping between event
occurrence arguments and execution rule arguments. Sec-
ond, call notifications for the Behavior.execute execution
rule are translated into signal_sent occurrences.

In total, the implementation relationship itself required,
for each ECA rule, around 5–8 lines of Java code for the

method bodies, and we were able to reuse the same library
forEsper-based implementation relationships thatwedefined
when applying the approach to the Arduino DSL.
Fulfilling Req. 1. We successfully applied the approach on
two xDSLs, one very specific and the other more general.
In the process, we defined a library that language engineers
can reuse to define their Esper-based implementation rela-
tionships. This allowed to keep the amount of lines of code
required to implement each ECA rules very low, at around 5
to 8 lines of Java code.

This shows that the proposed metalanguage is expressive
enough to define in a unified way the possible interactions
with models conforming to these two DSLs. The soundness
of the enabled model interactions is up to the language engi-
neer, as it depends on the execution semantics of the DSL.
The language engineer has full control over which behavior
can be triggered by event occurrences, and the conditions of
the ECA rules allow the language engineer to perform exten-
sive checks before accepting or emitting event occurrences.
Therefore, the approach fulfillsReq. 1 for the two considered
DSLs.

6.2 Realizing reflective tools (Req. 2)

We evaluate Req. 2 by demonstrating how the proposed
approach provides genericity through reflection. In more
details, we demonstrate how the reflection capabilities pro-
vided by our metalanguage for behavioral interfaces enables
the development of tools compatible with any xDSL imple-
menting a behavioral interface. Consequently, language
engineers applying the approach to define a behavioral inter-
face and an implementation relationship for their xDSLs are
able to provide some degree of interactive tool support for
free, as their DSLs directly benefit from reflective tool sup-
port. We first demonstrate how a test runner able to run
test suites for any xDSL can be defined. We then show that
the approach enables the definition of a GUI to configure
and send accepted event occurrences, and receive exposed
event occurrences in accordance with the definition of their
events. Combined together, these two tools allow for prac-
tical definition and execution of test cases, for instance, for
non-regression testing. Indeed, the GUI can be used to con-
figure accepted event occurrences, send them and store both
these occurrences and the ones received in return under the
form of a test scenario that can then be run by the test runner.
Reflective tool I: test runner As a first reflective tool, we
implemented a test runner which is able to process a pre-
viously defined test suite to drive the execution of a model
under test and check an oracle.

Test cases are defined in a test suite point to an xDSL defi-
nition, as well as a model under test conforming to that DSL.
Each test case also contains both a test scenario as a sequence
of event occurrences to send to the model and an oracle as

123



D. Leroy et al.

event occurrences that must be received, interleaved with the
test scenario. The test runner, implemented as a launch con-
figuration for the GEMOC Studio, reads provided test suites
and iterates over the test cases they contain. For each test
case, the test runner starts a new execution using the opera-
tions detailed in Sect. 5.2.1. Then, the test runner alternates
sending event occurrences from the test scenario of the test
case and waiting for event occurrences from the oracle of
the test case. The implementation of this tool is possible due
to the unified representation of events and their occurrences
provided by the approach, as Event and EventOccurrence
elements. Indeed, this both enables to define test suites that
contain event occurrences from any behavioral interface and
allows the test runner to send and receive event occurrences
while staying agnostic to their behavioral interface.

Using this tool, we were able to check the conformance of
our implementation of a subset of UML State Machines with
the Precise Semantics for UML State Machines (PSSM). We
retrieved the available test suite designed for Papyrus and,
using a model transformation, converted it into a test suite
model compatible with our test runner. We also used the test
runner to execute test cases on Arduino models. The general
pattern followed by these tests is as follows: The test runner
sends an accepted event occurrences, awaits for one or more
resulting exposed event occurrences and repeats this until the
test case is finished.
Reflective tool II: event injection GUI.As a second reflective
tool, we implemented a reflective event injection GUI for the
GEMOC Studio that leverages the active behavioral inter-
faces to (1) allow the user to create and send accepted event
occurrences to the running model and (2) listen to exposed
event occurrences and display them in a log. In more details,
the tool features a list of all implemented and supertype inter-
faces. For each behavioral interface selected in this list, the
tool provides an event occurrence configurator per accepted
event defined in the interfaces. By reflectively analyzing the
defined parameters for each accepted event, the GUI is able
to provide well-suited controls to configure an occurrence of
these events, such as a text field letting users enter the value of
their choosing for parameters whose type is a string (e.g., the
id parameter of the activate event). Alternatively, the
configurator for button_pressed event occurrences pro-
vides a list of all model elements whose type matches the
parameter type (PushButton in this case), as well as a browse
button that lets users select a predefined model element in an
arbitrary resource located in the workspace. Finally, the GUI
provides a log of exposed event occurrences listing all the
received event occurrences.

As we implemented our approach and tools within the
GEMOC Studio, we are able to use the reflective event injec-
tion GUI in conjugation with the generic debugger already
provided by the GEMOC Studio [6]. Using this extended
debugger, we are able to pause the execution, queue event

occurrences, use stepping operators (forward and backward),
define breakpoints and resume a paused execution to evalu-
ate the impact of queued event occurrences on this execution.
This can be used on anymodel conforming to anyDSLdevel-
opedwith any of themetalanguages provided by the language
workbench for which an integration facade is defined.
Fulfilling Req. 2 No tool-specific line of code is required to
interact with running models, indicating that the event man-
ager component provides a sufficiently expressive API for
both tools. In addition, by design, the event manager guaran-
tees that event handling does not result in undefined behavior,
as it forbids simultaneous calls to execution rules. The con-
dition part of ECA rules also guarantees that execution rules
are only called in execution states allowed by the language
engineer.

Therefore, by implementing these two tools and showing
how they can be used with both UML State Machines and
Arduino DSL, we showed that reflective tools can be built
that leverage behavioral interfaces to both discover how to
interactwith a runningmodel and do so in a sound and unified
way. This means that the approach fulfills Req. 2 for these
two tools.

6.3 Interface subtyping (Req. 3)

We show how the approach fulfills Req. 3 by combining
implementation and subtyping relationships defined over
an xDSL and its behavioral interfaces to define an event
abstraction hierarchy. This is to define interactive tools tai-
lored for a given behavioral interface (i.e., a given set of
top-level events), yet that can be reused across all xDSLs
implementing this interface, either directly or transitively. In
more details, we define a subtyping relationship between the
ActivatableInterface interface shown in Fig. 7 and both the
ArduinoInterface and the StateMachineInterface. We then
discuss how this enables the interchangeability of the two
considered xDSLs, and what the reaped benefits are.
Subtyping with Arduino DSL As the subtyping relation-
ship between ActivatableInterface and ArduinoInterface
has already been presented in Figs. 9 and 10 , we will sum-
marize its content thereafter.

This subtyping relationship features two accept rules
translating activate events into either a run event
occurrence, or a sequence of two event occurrences: a bu-
tton_pressedoccurrence followedbyabutton_relea-
sed occurrence. This depends on whether the id parameter
value of the event occurrence refers to a Sketch or to
a PushButton. The relationship also features one expose
rule translating led_on and led_off occurrences into
activated occurrences. This is a more complex ECA
rule as its event part consists of a pattern that matches
sequences of led_off occurrences followed by led_on
occurrences on a specific time frame. Only when a match is

123



Behavioral interfaces for executable DSLs

found, the involved event occurrences can be translated into
a activated occurrence.

As for implementation relationships, we were able to
define a library specific to Esper-based subtyping relation-
ships that we reused for all subtyping relationships we
defined. By leveraging this library, the ECA rules of the sub-
typing relationship required around 3 to 5 lines of Java code
per method body.
Subtyping with UML state machines Figure 12 details the
content of the OnActivateSignal and OnSignalSent ECA
rules of the subtyping relationship between ActivatableIn-
terface (as a supertype) and StateMachineInterface (as a
subtype).

The left part of the figure highlights the fact that
activate occurrences (from ActivatableInterface) are
translated intorun,signal_received andcall_per-
formed occurrences (from StateMachineInterface). The
OnActivateSignal rule is detailed. Upon detecting an
activate occurrence, it first checks that a Signal element
with a name identical to the value supplied for the id param-
eter of the activate occurrence exists in the executed
model. If that is the case, the rule translates the original
event occurrence into a signal_received occurrence
from StateMachineInterface. This new occurrence is con-
figured to carry a newly instantiated occurrence of the proper
signal.

The right part of the figure highlights the fact that
signal_sent occurrences (from StateMachineInterface)
are translated into activated occurrences (from Activat-
ableInterface) through the OnSignalSent rule. This rule is
straightforward as itmapsoccurrences of thesignal_sent
event to occurrence of the activated event carrying the
name of the signal (i.e., the type of the signal occurrence car-
ried out by signal_sent event occurrences) as the value
of their id parameter.

In total, the ECA rules of the subtyping relationship each
required around 3–7 lines of Java code for themethod bodies,
aswewere able to reuse the library for Esper-based subtyping
relationships.
Fulfilling Req. 3 In this demonstration case, we defined
ActivatableInterface as a common supertype of both the
Arduino DSL and UML State Machines through subtyp-
ing relationships between ActivatableInterface and both
ArduinoInterface and StateMachineInterface. In the pro-
cess, we defined a library dedicated to Esper-based subtyping
relationships, allowing us to keep the number of lines of Java
code required to define each ECA rule of these relationship
between 3 and 7 per method body.

Once defined, the subtyping relationships allow the previ-
ously defined reflective tools to be indiscriminately usedwith
models conforming to either DSL, sending and receiving
event occurrences from the ActivatableInterface interface
in both cases. For example, the test runner can be used to

checkwhether anArduinomodel being a realizationof aState
Machine model behaves in the same expected way, by run-
ning the exact same test suite on both models, provided this
test suite is designed with event occurrences from the Acti-
vatableInterface interface. We were thus able to capitalize
upon this and use tools with events from ActivatableInter-
face with models conforming to the Arduino DSL and with
models conforming to UML State Machines, thereby fulfill-
ing Req. 3 for these two DSLs.

6.4 Summarized results

In summary, the proposedmetalanguage allowed us to define
explicit behavioral interfaces for xDSLs that specify how
modelers and tools can soundly interactwith runningmodels.

Second, having such explicit behavioral interfaces, com-
bined to the explicit API of the event manager allows the
development of reflective tools reproducing essential features
available in common executable modeling tools. This allows
tools to be generic through reflection, as was demonstrated
by using two such tools (a test runner and an event injection
GUI) with two different xDSLs.

Finally, explicit behavioral interfaces allow subtyping
relationships to be defined between them, which can in turn
enable substitutability of xDSLs and thus genericity through
abstraction. This then allows to define tools that are specific
to a given behavioral interface but can in fact be used by any
xDSL having this interface as a supertype. It also allows to
substitute an xDSL by another one tailored for the task at
hand (e.g., analysis of state machines versus simulation plus
code generation targeting Arduino platforms).

6.5 Threats to validity

Internal validityAswe are experienced in using the GEMOC
Studio,wemight have overlooked limitations to our approach
that would make it hard to use for language engineers. Con-
ducting a user study to assess the usefulness of our tools and
the usability of our approach is an important direction of our
future work.
External validityWeverified that our approach yields its ben-
efits for two xDSLs and two generic tools, which externally
threatens the ability of our approach to be generalized tomul-
tiple DSLs and tools. However, the two selected xDSLs are
relevant and representative of the languages supported by the
approach as their abstract syntax is defined as a metamodel
and their execution semantics is defined as a discrete-event
operational semantics written in an object-oriented language
and orchestrated by an execution engine. This indicates that
the approach could be generalized to these languages, given
that their operational semantics provides the necessary gran-
ularity to enable the proper handling of events through calls
to existing execution rules. In the opposite case, a refactor-

123



D. Leroy et al.

Fig. 12 Subtyping relationship between ActivatableInterface and StateMachineInterface

ing of the operational semantics in accordance with the good
practice of the separation of concerns is required.

Another threat to validity is that the DSLs used in the
evaluation were implemented with interaction in mind and
thus presented the appropriate execution rules to correctly
design their implementation relationships. This externally
threatens the ability of our approach to be applied to any
existing language without modifying it. However, the intent
of our contribution is to provide a newwayof designingDSLs
and is thus geared toward the definition of new languages or
the (possibly substantial) refactoring of existing ones, not
toward opportunistic reuse of existing languages. As this is
also an interesting potential application of the approach, we
consider it as a future work direction.

6.6 Critical discussion

While the approach works well for xDSLs whose conform-
ing models are similar to state/transition systems, it presents
some limitations when working with xDSLs that have time-
related concepts, such as the Arduino DSL. More precisely,
defining an ECA rule similar to the activate rule for
PushButton elements that allows for a customized duration
between pressing and releasing a button (and more generally
between two event occurrences) would require to be able to
specify waiting times before specific event occurrences are
sent by the event manager. Since the approach works at the
language level, the issue is then to decide on a waiting time
that will fit all conforming models, or to find a way to derive
or define this waiting time on a model-by-model basis. Addi-

tionally, expressing time durations also requires a time unit,
which could either be a generic unit (e.g., execution steps) or
a domain-specific one (e.g., number of turns for a camshaft),
specified at the language or model level, or even a real-time
one such as seconds or milliseconds.

User-wise, the adoption of the approach by language engi-
neers has an impact on how they work, and most notably
on the way they design the execution semantics of their
xDSL. Indeed, to enable the definition of events at any level
of granularity, execution rules must be designed for a sin-
gle task, and internal behavior needs to be clearly separated
from potentially external behavior. This means that, when
applying the approach on an existing DSL, some refactoring
might be necessary to be able to define meaningful events.
However, we believe that these requirements fit the good
practice of the separation of concerns, advocating for meth-
ods to be dedicated to one precise task. Therefore, as long as
language engineers implemented the execution semantics of
their xDSL according to the separation of concern, little to
no refactoring is necessary for adopting the approach.

Finally, the use of the Stop event discussed in Sect. 5.2.3
and the existence of a run event in both ArduinoInterface
and StateMachineInterface indicate that a kind of “system”
behavioral interface, dedicated to execution specific events
(e.g., starting and stopping the execution, pausing it, waiting)
would be beneficial. This in turn hints at another purpose
for behavioral interfaces, defined at the metalanguage level,
which is worth investigating.

123



Behavioral interfaces for executable DSLs

7 Related work

While a sizable amount of work has been done on language
interfaces, most of it is dedicated to structural language inter-
faces, i.e., language interfaces for interacting with models
on the structural level. Such works include the Meta Object
Facility [32], the Object Constraint Language [34], the Lan-
guage Server Protocol (LSP)4 [37] and all the work onmodel
typing [11,15,39]. Our contribution instead stands on the
behavioral side of language interfaces. Yet, as it leverages
work on model typing for event parameters, it builds on
structural language interfaces. It can also complement them,
e.g., pairing behavioral interface with LSP to provide both
remote editing and interactive support for models. Neverthe-
less, in this section we precisely scope the considered related
works to those dedicated to interacting with models on the
behavioral level, which we divide in two categories: those
working at themodel level and those working at the language
level.

7.1 Model-level

Yakindu5 is a state-of-the-art tool providing support for the
definition of interaction interfaces for Statecharts models,
which can be seen as behavioral model interfaces: They
specify input and output events for a model and generate
code allowing to send corresponding event occurrences to
the model and listen to the emitted event occurrences. In
comparison, our approach works for any language within
our scope as it is used at the language level, thereby allowing
interaction with any conforming model.

An emerging standard to provide a behavioral interface
in the area of simulation is the Functional Mockup Interface
(FMI).6 Simulation models are converted into executables
called Functional Mockup Units (FMUs) which implement
the standardized FMI, and each is accompaniedwith anXML
model description of the interfaces of the unit. FMUs are
mostly used for continuous models where time steps are
performed, variables are set with initial values, and some
variables may be observed during execution. This makes
FMIs a kind of behavioral model interface for continuous
models while, in contrast, our approach is situated at the lan-
guage level and takes an event-driven perspective.

7.2 Language-level

In [22], the authors advocate for the need of language
behavioral interface for coordinating the execution of hetero-
geneousmodels and define one such interface as an extension

4 http://langserver.org.
5 https://www.itemis.com/en/yakindu/state-machine/.
6 http://fmi-standard.org.

of the abstract syntax of an FSM language. In [10], the author
similarlymentions behavioral language interfaces as ameans
to coordinate the execution of models conforming to hetero-
geneous languages. The focus of thiswork is, however, not on
behavioral language interfaces themselves and uses a specific
kind of behavioral interface, defined for a specific purpose:
model coordination. The interface used in this work is similar
to the most precise interface we detail in Sect. 4.1.3. In [21],
Kindler presents the Event Coordination Notation (ECNO)
which allows tomodel event coordination for object-oriented
languages. All those approaches can be seen as complemen-
tary to our work, as they either rely on or could work with
behavioral language interfaces to achieve model coordina-
tion.

In [43], the authors report on the use of Event-B at the lan-
guage level to enable formally verified behavioral interaction
with conforming models. With the methodology described
in the paper, Event-B is used as a metalanguage to define
the translational semantics of an industrial DSL. This means
that, provided our approach was extended to support trans-
lational semantics, this work could be complementary to our
approach. In [35], the authors introduce a methodology to
define a transformation from the metamodel of a DSL to
Concurrent Object-Oriented Petri-Nets (CO-OPN), thereby
providing a translational semantics for xDSLs. From the
obtained CO-OPN specification, a prototype can be gener-
ated, in turn enabling the simulation of conforming models.
In [18], the authors present a methodology leveraging DSL
embedding in Scala to provide several execution semantics
for a given xDSL, in a way that is transparent to the language
user, through the use of a language interface implemented
by these execution semantics. The authors also propose to
leverage the internal nature of DSLs defined through their
methodology to compose their semantics together. As these
works offer metaprogramming approaches for defining the
execution semantics of xDSLs, they are complementary to
our approach. Indeed, provided a respective metalanguage
integration facade is defined for them, these approaches could
be connected to ours, enabling the implementation of behav-
ioral interface and direct reuse of generic, interaction-centric
tools.

In some of our previous work [9], we advocate for the
inclusion of an event definition metamodel in the specifi-
cation of xDSLs, to which occurrences of domain-specific
events conform. Our proposed behavioral interface metalan-
guage is a more expressive mean to define such an event
definitionmetamodel. Beyond this extended expressivity, our
proposed metalanguage relies on behavioral typing to enable
implementation and subtyping relationships, and its execu-
tion semantics allows to safely interact with running models.
In [27], Meyers et al. presented the ProMoBox approach,
which includes the generation of an input metamodel from
a DSL definition, which can also be seen as a behavioral

123

http://langserver.org
https://www.itemis.com/en/yakindu/state-machine/
http://fmi-standard.org


D. Leroy et al.

interface. However, this interface is only used for model
checking, while our contribution is geared toward model
execution. In [26], the closest to our work, an approach to
augment an xDSL with reactive capabilities and generate a
corresponding domain-specific test language is presented.
This requires to enrich the abstract syntax with event-related
concepts and to accommodate for placeholder rules in the
operational semantics, to be later replaced by calls to the test
engine, which manages test cases and events. In contrast, our
approach does not require such a rewriting as the manage-
ment of events is done implicitly before the start and at the
end of the execution of stepping rules, nor does it require
to alter the abstract syntax, thus facilitating reuse of legacy
xDSLs. Additionally, in our approach, behavioral interfaces
are used to define behavioral types for xDSLs through nom-
inal typing and subtyping, which enables the provision of
tools that can be generic (through reflection) or specific to
families of xDSLs (through abstraction).
To summarize, there is an existing work focusing on bringing
interaction capabilities on a model-by-model basis for spe-
cific languages or for continuous models. At the same time,
several works point to the need for language-level behavioral
interfaces and rely on such interfaces defined in an ad hoc
way. While there is existing work providing, at the language
level, the means to interact with conforming models in a way
that is related to our approach, it is done more intrusively on
xDSLs, and interaction is only enabled with a dedicated test
engine anddoes not allow the definition of additional (generic
or domain-specific) tools. Finally, several works are comple-
mentary to our proposed approach as they explore the use of
event-centric languages as metalanguages to define the exe-
cution semantics of executable DSLs, which could then be
mapped to behavioral interfaces through integration facades
and implementation relationships.

8 Conclusion and future work

Interacting with running models is crucial for many tasks,
ranging from automated testing to communication between
heterogeneousmodels. To address this problem,we proposed
an approach to attribute a behavioral type to xDSLs under the
form of explicit behavioral interfaces declaring the accepted
and exposed events that can be used to communicate with
conforming models. This enables the definition of generic
tools for xDSLs through reflection. We complemented this
by providing an approach to define subtyping relationships
between behavioral interfaces. This in turn enables sub-
stitutability of xDSLs sharing a common supertype, thus
enabling the definition of generic tools though abstraction.
We provide semantics for behavioral interfaces implementa-
tion and subtyping in the form of an event manager that acts
as an intermediary between the external tools and the run-

ning model. We implemented our approach for the GEMOC
Studio, a language and modeling workbench for xDSLs. We
demonstrated the value of our approach through two demon-
stration cases based on the implementation of two generic
event-centric tools and their usage on two xDSLs through
their respective implemented interface in a first time, and
through their common supertype interface in a second time.

Perspectives for future work can be sorted in two cat-
egories: extending/improving the approach and leveraging
the approach. Future work extending the approach includes
leveraging formally defined behavior for xDSLs and behav-
ioral interface to automatically infer the implementation and
subtyping relationships between them. Such an extension
would take inspiration from existing work (e.g., [41]) on
model refinement operators that are behavior-preserving and
could leverage existing languages for CEP with a formally
defined semantics such as [1]. Exploring how behavioral
interfaces can be leveraged at the metalanguage level is also
an interesting line of research. Another perspective for future
work is to investigate whether a model-level configuration
or refinement of language-level behavioral interfaces makes
sense and allows to solve problems such as the definition of
model-specific waiting times between event occurrences. In
a somewhat opposite direction, another perspective is deter-
mining the relevance of adjoining a behavioral specification
(e.g., a labeled transition system) to behavioral interfaces
that can serve as a language-level protocol to both provide
the expected semantics from implementing DSLs and detect
and deal with issues such as out-of-order event occurrences,
the challenge being that all conforming models then need
to comply to this protocol. Another envisioned extension
is to identify the needs of concurrent execution semantics
to design the best-suited integration facade for such execu-
tion semantics, allowing to best leverage concurrency. Also
conducting a user study is included where a group of partic-
ipants take on the role of language engineers and are asked
to define a couple of behavioral interfaces and the relation-
ships between them, in order to evaluate and improve the
usability of the approach. Another prospect for future work
is conducting a thorough performance and scalability analy-
sis reporting on the overhead induced by handling multiple
relationships during the same execution. A last perspective in
this category is categorizing the different kinds of legacy exe-
cution semantics and identifying the challenges to address to
define implementation relationships on top of them.

Perspectives for leveraging the approach include extend-
inggeneric support forV&Vactivities onxDSLs (e.g., debug-
ging, testing), such as the definition of generic test coverage
metrics for test case generation for xDSLs, or identify-
ing various purposes for which behavioral interfaces can
be designed (e.g., debugging interface, animation interface,
execution management interface, …). Also extending capa-
bilities are included for generic runtime monitoring for

123



Behavioral interfaces for executable DSLs

models conforming to xDSLs, to be used during both debug-
ging (e.g., for defining conditional breakpoints) and testing
(e.g., to serve as test oracles). Another perspective is to
explore how the proposed approach can be integrated in a
context of model coordination, either to simultaneously test
or debug models, or to coordinate the execution of models
representing different parts of a system. An additional exten-
sion of the approach is to redefine classic design patterns for
languages. For instance, providing a definition of the adapter
pattern for xDSLs would allow to define mappings between
behavioral interfaces that do not support a subtyping rela-
tionship (e.g., when an n:m mapping between events would
be required). A final perspective is the definition of a generic
execution engine able to executemodels conforming toDSLs
whose operational semantics is defined across several met-
alanguages, through the use of multiple integration facades
contributed by each metalanguage used to define the oper-
ational semantics. These last two perspectives would both
contribute to the line of research on the composition of DSLs
[19].

Acknowledgements Open access funding provided by Austrian Sci-
ence Fund (FWF). This work is partially funded by theAustrian Science
Fund (FWF): P 28519-N31 and P 30525-N31 as well as by the Austrian
Federal Ministry for Digital and Economic Affairs and the National
Foundation for Research, Technology and Development. This work is
also partially funded by the Austrian Agency for International Mobility
and Cooperation in Education, Science and Research (OeAD) on behalf
of the FederalMinistry for Science, Research andEconomy (BMWFW)
under the Grand No. FR 08/2017, by the French Ministries of Foreign
Affairs and International Development (MAEDI) and the French Min-
istry of Education, Higher Education and Research (MENESR), and
by the French Project ELOGE (Atlanstic 2020 Amorçage) financed by
Région des Pays de la Loire.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Anicic, D., Fodor, P., Rudolph, S., Stühmer, R., Stojanovic, N.,
Studer, R.: A rule-based language for complex event processing
and reasoning. In: Proceedings of the International Conference on
Web Reasoning and Rule Systems, pp. 42–57. Springer, Berlin
(2010)

2. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.:
Henshin: advanced concepts and tools for in-place EMF model
transformations. In: Proceedings of the InternationalConference on

Model Driven Engineering Languages and Systems (MODELS),
pp. 121–135. Springer, Berlin (2010)

3. Bandener, N., Soltenborn, C., Engels, G.: Extending DMM behav-
ior specifications for visual execution and debugging. In: Proceed-
ings of the 3rd International Conference on Software Language
Engineering (SLE), pp. 357–376. Springer, Berlin (2010)

4. Bendraou, R., Combemale, B., Crégut, X., Gervais, M.P.: Defi-
nition of an executable SPEM 2.0. In: Proceedings of the 14th
Asia-Pacific Software Engineering Conference (APSEC), pp. 390–
397. IEEE (2007)

5. Bousse, E., Degueule, T., Vojtisek, D., Mayerhofer, T., Deantoni,
J., Combemale, B.: Execution framework of the GEMOC studio
(tool demo). In: Proceedings of the International Conference on
Software Language Engineering (SLE), pp. 84–89. ACM (2016)

6. Bousse, E., Leroy, D., Combemale, B., Wimmer, M., Baudry, B.:
Omniscient debugging for executable DSLs. J. Syst. Softw. 137,
261–288 (2018)

7. Bousse, E., Mayerhofer, T., Combemale, B., Baudry, B.: Advanced
and efficient execution trace management for executable domain-
specific modeling languages. Softw. Syst. Model. 18(1), 385–421
(2017)

8. Ciccozzi, F., Malavolta, I., Selic, B.: Execution of UML models:
a systematic review of research and practice. Softw. Syst. Model.
18(3), 2313–2360 (2019)

9. Combemale, B., Crégut, X., Pantel, M.: A design pattern to build
executableDSMLsand associatedV&Vtools. In: 19thAsia-Pacific
Software Engineering Conference, APSEC 2012, China, pp. 282–
287 (2012)

10. Deantoni, J.: Modeling the behavioral semantics of heterogeneous
languages and their coordination. In: Proceedings of theWorkshop
on Architecture-Centric Virtual Integration (ACVI), pp. 12–18.
IEEE (2016)

11. Degueule, T., Combemale, B., Blouin, A., Barais, O., Jézéquel,
J.M.: Safe model polymorphism for flexible modeling. Comput.
Lang. Syst. Struct. 49, 176–195 (2017)

12. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Dynamic meta-
modeling: a graphical approach to the operational semantics of
behavioral diagrams in UML. In: Proceedings of the Third Inter-
national Conference on the Unified Modeling Language (UML),
pp. 323–337. Springer, Berlin (2000)

13. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story diagrams: a
newgraph rewrite languagebasedon the unifiedmodeling language
and Java. In: Proceedings of the 6th InternationalWorkshopTheory
and Application of Graph Transformations (TAGT), pp. 157–167
(2000)

14. Goetz, B., Peierls, T., Lea, D., Bloch, J., Bowbeer, J., Holmes, D.:
Java Concurrency in Practice. Pearson Education, London (2006)

15. Guy, C., Combemale, B., Derrien, S., Steel, J.R.H., Jézéquel, J.M.:
On model subtyping. In: Proceedings of the 8th European Confer-
ence on Modelling Foundations and Applications (ECMFA), pp.
400–415. Springer, Berlin (2012)

16. Harel, D., Lachover, H., Naamad, A., Pnuelli, A., Politi, M., Sher-
man, R., Shtull-trauring, A., Trakhtenbrot, M.: STATEMATE: a
working environment for the development of complex reactive sys-
tems. IEEE Trans. Softw. Eng. 16(4), 403–414 (1990)

17. Hegedüs, Á., Bergmann, G., Ráth, I., Varró, D.: Back-annotation
of simulation traces with change-driven model transformations. In:
Proceedings of the 8th International Conference on Software Engi-
neering and Formal Methods (SEFM), pp. 145–155. IEEE (2010)

18. Hofer, C., Ostermann, K., Rendel, T., Moors, A.: Polymorphic
embedding of DSLs. In: Proceedings of the 7th International Con-
ference on Generative Programming and Component Engineering
(GPCE), pp. 137–148. ACM (2008)

19. Horst, A., Rumpe, B.: Towards compositional domain specific lan-
guages. In: Proceedings of the 7th Workshop on Multi-Paradigm
Modeling (MPM), pp. 1–5. CEUR-WS.org (2013)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


D. Leroy et al.

20. Jézéquel, J.M., Combemale, B., Barais, O., Monperrus, M., Fou-
quet, F.: Mashup of metalanguages and its implementation in the
Kermeta languageworkbench. Softw. Syst.Model. (SoSyM) 14(2),
905–920 (2013)

21. Kindler, E.: The event coordination notation: execution engine and
programming framework. In: Proceedings of the Fourth Workshop
on Behaviour Modelling—Foundations and Applications, pp. 1–8.
ACM, New York (2012)

22. Larsen, M.E.V., Deantoni, J., Combemale, B., Mallet, F.: A behav-
ioral coordination operator language (BCOoL). In: Proceedings of
the 18th International Conference on Model Driven Engineering
Languages and Systems (MODELS), pp. 186–195. IEEE (2015)

23. Luckham, D.: The Power of Events, vol. 204. Addison-Wesley,
Reading (2002)

24. Mayerhofer, T., Langer, P., Wimmer, M., Kappel, G.: xMOF: exe-
cutable DSMLs based on fUML. In: Proceedings of the 6th Inter-
national Conference on Software Language Engineering (SLE).
Springer, Berlin (2013)

25. McAffer, J., Lemieux, J.M.: Eclipse Rich Client Platform: Design-
ing, Coding, and Packaging Java(TM) Applications. Addison-
Wesley Professional, Reading (2005)

26. Meyers, B., Denil, J., Dávid, I., Vangheluwe,H.: Automated testing
support for reactive domain-specific modelling languages. In: Pro-
ceedings of the International Conference on Software Language
Engineering (SLE), pp. 181–194 (2016)

27. Meyers, B., Deshayes, R., Lucio, L., Syriani, E., Vangheluwe,
H., Wimmer, M.: Promobox: a framework for generating domain-
specific property languages. In: Proceedings of the 7th International
Conference on Software Language Engineering (SLE), pp. 1–20
(2014)

28. Milner, R.: Communicating andMobile Systems: The Pi Calculus.
Cambridge University Press, Cambridge (1999)

29. OASIS: Web Services Business Process Execution Language
Version 2.0 (2007). https://docs.oasis-open.org/wsbpel/2.0/OS/
wsbpel-v2.0-OS.html

30. Object Management Group: OMG Unified Modeling Language
(OMG UML), V 2.5 (2013). http://www.omg.org/spec/UML/2.5

31. Object Management Group: Semantics of a Foundational Subset
for Executable UML Models, V 1.1 (2013)

32. Object Management Group: Meta Object Facility (MOF) Core
Specification, V 2.5 (2016). http://www.omg.org/spec/MOF/2.5

33. Object Management Group: Precise Semantics of UML State
Machines Specification, V 1.0 (2019)

34. Object Management Group (OMG): Object Constraint Language
(OCL), Version 2.4 (2014). http://www.omg.org/spec/OCL/2.4

35. Pedro, L., Lucio, L., Buchs, D.: Principles for system prototype
and verification usingmetamodel based transformations. In: Seven-
teenth IEEE International Workshop on Rapid System Prototyping
(RSP’06), pp. 10–17. IEEE (2006)

36. Pierce, B.C., Benjamin, C.: Types and Programming Languages.
MIT Press, Cambridge (2002)

37. Rodriguez-Echeverria, R., Izquierdo, J.L.C., Wimmer, M., Cabot,
J.: Towards a language server protocol infrastructure for graphical
modeling. In: Proceedings of the 21th ACM/IEEE International
Conference onModel Driven Engineering Languages and Systems
(MODELS), pp. 370–380. ACM (2018)

38. Soden, M., Eichler, H.: Towards a model execution framework
for Eclipse. In: Proceedings of the 1st Workshop on Behaviour
Modelling in Model-Driven Architecture (BD-MDA’09). ACM,
New York (2009)

39. Steel, J., Jézéquel, J.M.: On model typing. Softw. Syst. Model.
(SoSym) 6(4), 401–413 (2007)

40. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF:
Eclipse Modeling Framework. Eclipse Series, 2nd edn. Addison-
Wesley Professional, Reading (2008)

41. Syriani, E., Sousa, V., Lúcio, L.: Structure and behavior preserving
statecharts refinements. Sci. Comput. Program. 170, 45–79 (2019)

42. Tatibouët, J., Cuccuru, A., Gérard, S., Terrier, F.: Formalizing
execution semantics of UML profiles with fUML models. In: Pro-
ceedings of the 17th International Conference on Model Driven
Engineering Languages and Systems (MODELS). Springer, Berlin
(2014)

43. Tikhonova, U., Manders, M., van den Brand, M., Andova, S.,
Verhoeff, T.: Applying model transformation and event-B for spec-
ifying an industrial DSL. In: Proceedings of the 10th International
Workshop on Model Driven Engineering, Verification and Valida-
tion (MoDeVVa), pp. 41–50. CEUR-WS.org (2013)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Dorian Leroy is a Ph.D. stu-
dent doing an international Ph.D.
between the JKU Linz (Austria)
and the University of Rennes 1
(France), currently in the DiverSE
team in Rennes. His research inter-
ests lie in the field of Software
Language Engineering and include
metaprogramming approaches and
generic V&V facilities. For more
information, please visit https://d-
leroy.github.io/.

Erwan Bousse is a associate Pro-
fessor at the University of Nantes
(France). He obtained his Ph.D.
in France in 2015 at the Univer-
sity of Rennes 1 for his work on
execution traces and omniscient
debugging of executable models.
His current research interests
include Software Language Engi-
neering (SLE), Model Driven Engi-
neering (MDE), Domain-Specific
Languages (DSLs), model execu-
tion and simulation, and the debug-
ging and testing of models. For
more information, please visit

https://bousse-e.univ-nantes.io/.

123

https://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
https://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/MOF/2.5
http://www.omg.org/spec/OCL/2.4
https://d-leroy.github.io/
https://d-leroy.github.io/
https://bousse-e.univ-nantes.io/


Behavioral interfaces for executable DSLs

Manuel Wimmer is full professor
leading the Institute of Business
Informatics—Software Engineer-
ing at the Johannes Kepler Uni-
versity Linz and he is the head
of the Christian Doppler Labo-
ratory CDL-MINT. His research
interests comprise foundations of
model engineering techniques as
well as their application in
domains such as tool interoper-
ability, legacy modeling tool mod-
ernization, model versioning and
evolution, and industrial engineer-
ing. For more information, please

visit https://www.se.jku.at/manuel-wimmer/.

Tanja Mayerhofer received her
Ph.D. in Computer Science in 2014
from TU Wien, Vienna, Austria
for her work on executable mod-
eling. After finishing her PhD,
she continued her research at TU
Wien as a postdoctoral researcher
until 2018. In this time, she worked
on various topics in the area of
model-based engineering with a
focus on modeling language engi-
neering, model execution, and
model analysis. Details about her
research may be found at https://b
ig.tuwien.ac.at/people/tmayerhof

er/.

Benoit Combemale is full pro-
fessor of Software Engineering at
the University of Toulouse, and
a Research Scientist at Inria. His
research interests are in the field
of software engineering, including
Model-Driven Engineering, Soft-
ware Language Engineering and
Validation & Verification; mostly
in the context of (smart) Cyber-
Physical Systems and Internet of
Things. He is also teaching world-
wide in various engineering
schools and universities.
More information at http://combe

male.fr.

Wieland Schwinger is associate
professor at the Institute of Tele-
cooperation at the Johannes Kepler
University Linz. There he serves
as vice head of the Department of
Cooperative Information Systems.
His research interests focus on the
employment and development of
semantic and model-driven tech-
niques for information systems in
domains like road traffic manage-
ment, situation-awareness, flexi-
ble production and volunteering
support systems. For details, please
see https://www.cis.jku.at/.

123

https://www.se.jku.at/manuel-wimmer/
https://big.tuwien.ac.at/people/tmayerhofer/
https://big.tuwien.ac.at/people/tmayerhofer/
https://big.tuwien.ac.at/people/tmayerhofer/
http://combemale.fr
http://combemale.fr
https://www.cis.jku.at/

	Behavioral interfaces for executable DSLs
	Abstract
	1 Introduction
	2 Background and motivation
	2.1 Background on executable DSLs
	2.2 Motivation and requirements

	3 Approach overview
	3.1 Design overview
	3.2 Usage overview

	4 Behavioral interface and relationships
	4.1 Behavioral interface
	4.1.1 Behavioral interface metamodel
	4.1.2 Examples of behavioral interfaces
	4.1.3 Behavioral interface generation

	4.2 Implementation and subtyping relationships
	4.2.1 Preliminary definitions
	4.2.2 Implementation relationship
	4.2.3 Subtyping relationship
	4.2.4 Discussion on substitutability


	5 Event management and metalanguage integration
	5.1 CEP-based event management
	5.1.1 Complex event processing
	5.1.2 Event manager
	5.1.3 Modeling event occurrences in Esper
	5.1.4 Relationship design

	5.2 Metalanguage integration
	5.2.1 Execution engine
	5.2.2 Overview of the metalanguage integration facade
	5.2.3 Metalanguage integration facade operations
	5.2.4 Integration with the execution engine

	5.3 Tool support
	5.4 Language engineering scenarios

	6 Evaluation
	6.1 Interface definition and implementation (Req. 1)
	6.2 Realizing reflective tools (Req. 2)
	6.3 Interface subtyping (Req. 3)
	6.4 Summarized results
	6.5 Threats to validity
	6.6 Critical discussion

	7 Related work
	7.1 Model-level
	7.2 Language-level

	8 Conclusion and future work
	Acknowledgements
	References




