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Abstract

An extension of the phase field method to model interfacial damage in elastoplastic composites is
proposed. In the matrix, an elastoplastic phase field is employed to model the fracture process. To
introduce interfacial damage between inclusions and the matrix, a strain density function depending
on the jump due to decohesion is added to the total energy. Smooth indicator functions are used
to maintain the regularized character of the approximation. They weight the different terms in
the energy with respect to the vicinity of interfaces. Then, the different problems (mechanical and
phase field problems) are derived and an algorithmic procedure is described. Numerical examples
show the capabilities of the method to handle initiation, propagation and interactions between both
elastoplastic fracture and interfacial cracks in complex elastoplastic composite microstructures. It
is also shown that the solutions are convergent with respect to the mesh refinement.

Keywords: Fracture, Phase field method, Interfacial damage, Crack propagation, Elastoplastic
microstructures

1. Introduction

The evaluation of composite resistance to cracking is of major importance in engineering. Re-
cently, several advances in formulations, numerical methods and computer capabilities have opened
the route to analyze damage of composites and heterogeneous materials directly from their mi-
crostructure, by simulating microcracking initiation, propagation and merging up to global failure.
Such analyses offer new possibilities in material design, such as optimization of the constituents
composition/morphologies [1–4], or investigation of microcracking mechanisms directly from real-
istic microstructures, such as the ones arising from experimental micro-CT images [5, 6].

However, several challenges are related to microstructure-based damage analyses: (i) the de-
velopment of appropriate formulations and related numerical methods to handle initiation, propa-
gation and interactions of micro cracks in complex geometrical domains related to heterogeneous
microstructures; (ii) the computational complexity, which warrants describing all heterogeneities in
the whole sample; (iii) the presence of interfaces which may involve different damage mechanisms
as compared to the bulk cracks.

Regarding the first point, many numerical methods have been proposed in the past decades
to simulate crack propagation, including: discrete approaches (peridynamics [7], discrete elements
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[8]), cohesive models [9–11], Augmented Finite Elements [12], FEM remeshing techniques, XFEM
[13, 14], or continuum damage models with regularization [15–17]. Discrete approaches are suitable
for fragile cracking but they require ad-hoc calibrations and cannot be easily extended to other
behaviors like elastoplasticity. In methods based on sharp fracture description (FEM, XFEM), it
is very difficult to model crack initiation and extension to complex 3D patterns may be highly
cumbersome. Augmented FEM suffers from stability and mesh-dependency issues. While local
damage models are well-known to be associated with mesh-dependency issues and lack of energetic
convergence, nonlocal models such as [16, 17] require nontrivial extensions of FEM discretizations.

The development of the variational approach to fracture [18–23], also called phase field method
in the literature, offers several advantages in this context, like: the possibility to initiate cracks from
undamaged configurations; the possibility to handle arbitrary crack networks (including branching,
merging, in both 2D and 3D) without specific treatment and use of classical finite elements; a
variational framework allowing to include many models or mechanisms, and a mesh-independence
due to an appropriate regularization process. The method requires a fine mesh along the crack path
and a suitable definition for regularization parameters (see a discussion in [24] and recent internal
length-insensitive formulations in [25, 26]). However, due to the above-mentioned advantages, the
phase field method has been widely developed and applied to many problems, such as, among
many others: brittle fracture [23, 27, 28], composite delamination [29], dynamic fracture [30–
32], hydraulic fracture [33–36], topology optimization for resistance to cracking [3, 4], anisotropic
material fracture [37–39], ductile fracture [40–44], ductile/fragile transition [45, 46], fracture in
micro tomography image-based models of microstructures [5, 6, 47] and more recently adapted in
machine learning strategies in [48].

Another issue related to microstructural damage is the presence of many interfaces, which may
constitute additional weak parts and can strongly impact the damage mechanisms. Several works
have been devoted to describe interactions between bulk and interfacial damage: Paggi et al. [49]
proposed a novel combined approach in which bulk brittle fracture is treated by phase field model
and interface debonding is modelled by classical cohesive elements. Msekh et al. [50, 51] applied
the phase field approach to model progressive failure in polymer-matrix composites. Hansen-Dörr
et al. [52] proposed a phase field approach for interface failure between two dissimilar materials.
In [53, 54], a simple framework to extend phase field to interfacial damage has been proposed.
A regularized description of interface displacement jumps has been used as well as appropriate
weights indicator functions to associate different damage behavior to the bulk and to the interfaces
in the energy.

In this work, we follow the framework developed in [53, 54] to interfacial damage in composites
whose phases are elastoplastic. For this purpose, an elastoplastic phase field is employed to model
the fracture process as proposed in [55]. To introduce interfacial damage between inclusions and
the matrix, a strain density function depending on the jump due to decohesion is added to the total
energy. To maintain the regularized character of the approximation, smooth indicator functions are
used to weight the different terms in the energy with respect to the vicinity of interfaces. Then, the
different problems (mechanical and phase field problems) are derived and an algorithmic procedure
is described.

The present paper is organized as follows. In Section 2, we introduce diffuse approximations
for crack and interface displacement jumps in a regularized context. In Section 3, a phase field
method for brittle fracture in elastoplastic solids with interfacial damage is proposed. Section 4
provides the weak forms and FEM discretizations and the flowcharts for the overall algorithm.
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Figure 1: Diffused approximation of cracks and interfaces: (a) a medium containing sharp cracks and interface; (b)
diffused approximation of cracks; (c) diffuse approximation of interfaces.

Finally, numerical examples are presented in Section 5.

2. Diffuse approximation of discontinuous fields

Let Ω ⊂ RD be an open domain with D = 2, 3, describing a heterogeneous medium which
contains internal interfaces between two elasto-plastic phases. The external boundary of Ω is
denoted by ∂Ω ∈ RD−1. During the loading, cracks may propagate in the medium phases and can
pass through the interfaces as depicted in Fig. 1(a), where the crack surfaces and the interfaces are
collectively denoted by Γ and ΓI , respectively. In this work, we adopt the framework proposed in
[20, 56] for a regularized representation of discontinuities extended to interfaces as in [35, 53]. In
this regularized framework, the cracks are approximately represented by a scalar phase field d (x, t)
(see Fig. 1(b)) and the interfaces by a fixed scalar function β (x) (see Fig. 1(c)).

2.1. Phase field approximation of bulk cracks and interfaces

For a known fixed crack surface Γ (see Fig. 1(a), the scalar crack phase field d (x, t) can be
determined through solving the following boundary value problem subjected to Dirichlet boundary
conditions d = 1 on the crack (see [20] for more details):

d (x, t)− `2d∆d (x, t) = 0 in Ω,

d (x, t) = 1 on Γ,

∇d (x, t) · n = 0 on ∂Ω,

(1)

where ∆ (·) and ∇ (·) are the Laplacian and gradient operator respectively, `d is a length scale
parameter that governs the width of the regularization zone and gives for `d → 0 the exact sharp
crack in Fig. 1(a), and n the outward normal on ∂Ω. It can be shown that (1) is the Euler-Lagrange
equation associated with the variational problem:

d = Arg

{
inf
d∈Sd

Γd (d)

}
, Γd (d) =

∫
Ω
γd (d) dΩ, Sd = {d | d (x) = 1, ∀x ∈Γ} , (2)
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where Γd (d) represents the total length of the crack in 2D and the total crack surface area in 3D,
and γd (d) is the crack surface density function per unit volume defined by:

γd (d) =
d2

2`d
+
`d
2
∇d · ∇d, (3)

where the second term in γd (d) penalizes high values of ∇d(x) and where d varies between 0 and
1. Note that in the absence of the second right-hand term in (3), a local damage model is found,
with well-known related non-convergence issues with respect to the mesh discretization.

It must be noted that, `d does not represent physically the exact crack width, but a parameter
which is used to regularize the discontinuities. It has been shown that this parameter can be
treated as a material parameter related to the Young’s modulus, the tensile strength, and the
critical energy release rate of the material in [24, 57, 58]. In our previous work [6], an inverse
approach was developed to identify this parameter, by combining simulations and experiments.

The scalar interface function β (x) can also be determined through solving the following bound-
ary value problem subjected to Dirichlet boundary conditions β = 1 on the interfaces ΓI :

β (x)− `2β∆β (x) = 0 in Ω,

β (x) = 1 on ΓI ,

∇β (x) · n = 0 on ∂Ω,

(4)

where `β is a length scale parameter which governs the width of the regularization zone of the
interface and gives for `β → 0 the exact sharp interfaces in Fig.1(a). Similarly, (4) corresponds to
the Euler-Lagrange equation of the variational problem:

β = Arg

{
inf
β∈Sβ

Γβ (β)

}
, Γβ (β) =

∫
Ω
γβ (β) dΩ, Sβ =

{
β | β (x) = 1, ∀x ∈ΓI

}
, (5)

where γβ (β) is defined by:

γβ (β) =
β2

2`β
+
`β
2
∇β · ∇β. (6)

In the present work, the length scale parameter `d and `β are interpreted as material parame-
ters. Then, one possibility to select these parameters is to perform an inverse identification from
experimental data. Such identification procedure has been described in [6] in the context of quasi-
brittle heterogeneous materials and could be extended to the present elastoplastic framework in
future studies using similar ideas. Then, in the present paper, the numerical values of `d and `β
have been chosen arbitrarily as small values in the numerical examples of section 5.

2.2. Regularized representation of the displacement jumps within interfaces

In this section, an approximation for the displacement jump [[u]] is introduced to consider the
interface debonding (see [53]). Let ΓI be the interface. We define ΓI as the zero level-set of a
function φ (x), such that (see [53] for its construction):

φ (x) > 0 for x ∈Ωi,

φ (x) < 0 for x ∈Ωm,

φ (x) = 0 for x ∈ΓI ,

(7)
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Figure 2: Approximation of the displacement jump across an interface ΓI at a point x, with nI the normal unit
vector to ΓI .

where Ωi and Ωm denote the set of inclusions and matrix, respectively. Using a Taylor expansion
of the displacement field around a point x located on the interface (see Fig. 2):

[[u]] ' w (x) = u

(
x+

h

2
nI
)
− u

(
x−h

2
nI
)

= h∇ (u (x)) nI , (8)

where nI is the normal vector to ΓI at the point x defined by:

nI =
∇φ (x)

‖∇φ (x)‖
(9)

and w (x) denotes the smooth displacement jump approximation. Above, h is a small scalar
parameter, chosen as h = he to minimize the estimation error (see [53]), with he the typical element
size of the finite element mesh around the interface. A detailed description for the numerical
computation of φ (x) is introduced in [53].

It should be noted that φ (x) and nI do not change throughout the simulation because the
interfaces do not evolve. For a sharp interface, the singular part of the strain along the interface
can be defined by:

εI(x) = nI(x)⊗s [[u(x)]] δ(x) ∀x ∈ Γ. (10)

Then using the above regularization framework, this expression can be approximated as [53]:

εI(x) ' nI(x)⊗sw(x)γβ(x) ∀x ∈ Ω. (11)

3. Phase field modeling of elastoplastic damage interacting with interfacial damage

In this section, we propose a phase field model for modeling interactions between interfacial
damage and bulk cracking in elasto-plastic composites. The framework is developed using the
variational framework for fracture as introduced in [44, 59].
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First, we introduce the total strain as:

ε = εe + εp + εI , (12)

where εI has been defined in (11) and εp is the plastic strain. The plastic incompressibility is
assumed, i.e. Tr(εp) = 0, Tr(.) being the trace operator. The cumulated plastic strain is defined
as:

ṗ =

√
2

3
‖ε̇p‖ (13)

where ˙(.) denotes time derivative. In the following, we introduce the deviatoric parts of the stress
and of the elastic strain tensors as s = dev(σ) and ee = dev(εe), respectively, with dev(.) =
(.)− 1

3Tr(.)1, 1 being the first-order identity operator. Finally, we define the directional derivative
as:

Dvf(u) =

[
d

dh
f(u + hv)

]
h=0

. (14)

The damage variable d is introduced to penalize the stifness of the material.

3.1. Total energy

Let us consider a two-phase medium whose phases are elasto-plastic with possible damage.
Small strains are assumed. The total energy of the medium is defined by

W (u, p, d, β) =

∫
Ω
ψe (ε (u) , p, d) dΩ +

∫
Ω

[
ψp (p) + ψd (β, d) + ψI (w (u) , β)

]
dΩ

−
∫
∂ΩF

F · udS −
∫

Ω
f · udΩ, (15)

where ψe, ψp, ψd and ψI denote the elastic strain density function, the plastic and damage dissipa-
tive potentials, and a strain density function depending on the approximated displacement jump
across the interfaces, respectively. Above, f and F are body forces and prescribed traction over
the boundary ∂ΩF , respectively. Note that the total energy is a function of 3 state variables u, p
and d, and of one field β which plays the role of a parameter, as this field does not change during
the evolution of the system.

3.2. Variational framework

We follow the framework presented in [44] to construct the variational principle, which involves:
irreversibility condition, stability condition and energy balance. In this framework, stability con-
dition provides mechanical balance equation, damage and plastic criteria. The energy balance
provides damage consistency and plastic flow rule.
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3.2.1. Irreversibility condition

The irreversibility condition is imposed on the damage variable to disallow material regenera-
tion. It can be expressed as

ḋ ≥ 0, 0 ≤ d ≤ 1. (16)

In the present work, the irreversibility condition is implemented by using an appropriate history
function [20] (see section 3.3).

3.2.2. First-order stability condition

The first order stability condition (see [60–62]) is expressed by:

DδuW (u, p, d) +DδpW (u, p, d) +DδdW (u, p, d) ≥ 0. (17)

Applied to (15), it yields:

∫
Ω

[
σ : εe (δu) +

∂ψI

∂w
·w (δu)

]
dΩ +

∫
Ω

(
−
√

3

2
σ : n̂ +

∂ψp

∂p

)
δpdΩ

+

∫
Ω

(
∂ψe

∂d
+
∂ψd

∂d

)
δddΩ−

∫
∂ΩF

F · δudS −
∫

Ω
f · δudΩ ≥ 0 (18)

where

σ =
∂ψe

∂εe
(19)

and n̂ is a unit tensor in the direction of the plastic flow. From (12):

εe = ε− εp − εI (20)

and then:

Dδuε
e = εe(δu) = ε(δu)− εI(δu). (21)

From (10),

εI(δu) = nI ⊗s w(δu)γβ, w(δu) = h∇(δu)nI . (22)

From this expression, the following results stem out:

• For δp = δd = 0 we obtain:∫
Ω
σ : εe (δu) dΩ +

∫
Ω

∂ψI

∂w
·w (δu) dΩ−

∫
∂ΩF

F · δudS −
∫

Ω
f · δudΩ = 0 (23)

which is the weak form of the equilibrium equation.
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• For δd = 0 and δu = 0:∫
Ω

(
−
√

3

2
σ : n̂ +

∂ψp

∂p

)
δpdΩ ≥ 0. (24)

For J2-plasticity, this expression leads to∫
Ω

(√
3

2
‖s‖−∂ψ

p

∂p

)
δpdΩ ≤ 0, (25)

which is the weak form of the plasticity yield criterion. The local form of the plastic yield
criterion can be expressed as

F p(p) =

√
3

2
‖s‖−∂ψ

p

∂p
≤ 0 in Ω (26)

which is the classical von Mises yield criterion.

• For δp = 0 and δu = 0:∫
Ω

(
∂ψe

∂d
+
∂ψd

∂d

)
δddΩ ≥ 0 (27)

which is the weak form of the damage criterion. In local form, it can be expressed as:

F d(d) = −

(
∂ψe

∂d
+
∂ψd

∂d

)
≤ 0 in Ω. (28)

3.2.3. Energy balance

The energy balance represents the need for the total energy to remain constant as the state
variables evolve. Following a procedure analogous to the treatment of the stability condition, this
condition leads to

∫
Ω

[
−σ : εe (u̇)− ∂ψI

∂w
·w (u̇) +

(√
3

2
σ : n̂− ∂ψp

∂p

)
ṗ−

(
∂ψe

∂d
+
∂ψd

∂d

)
ḋ

]
dΩ

+

∫
∂ΩF

F · u̇dS +

∫
Ω

f · u̇dΩ = 0. (29)

The following cases are analyzed.

• For u̇ = 0 and ḋ = 0, and using (26), the plasticity consistency condition is obtained:

F p(p)ṗ = 0. (30)

• For u̇ = 0 and ṗ = 0, and using (28), the damage consistency condition is obtained:

F d(d)ḋ = 0. (31)
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3.2.4. Alternate minimization

In this section, a staggered alternate minimization algorithm is applied, which naturally stems
out from the energetic principles. This procedure takes advantage of the fact that although the
global energy is non-convex, it is convex with respect to u, p and d individually [63]. With the
total energy (15) at hand, the alternate minimization follows.

• Minimization with respect to the displacement field:

DδuW (u, p, d) = 0 (32)

leads to

∫
Ω
σ : εe (δu) dΩ +

∫
Ω

∂ψI

∂w
·w (δu) dΩ−

∫
∂ΩF

F · δudS −
∫

Ω
f · δudΩ = 0 (33)

which corresponds to the weak form of the mechanical problem to be solved for u, given d.

• Minimization with respect to the equivalent plastic strain:

DδpW (u, p, d) =

∫
Ω

(
−
√

3

2
σ : n̂ +

∂ψp

∂p

)
δpdΩ = 0 (34)

which is the weak form of the plastic yield criterion (24) which has to be satisfied for ṗ ≥ 0.
In the present work, this condition is handled by a return-mapping algorithm (see [64]). In
[59] a regularization term was introduced in the total energy and the above equation was
verified through solving a global problem for p. Here we do not adopt this approach and
treat this criterion as a local one (at Gauss integration points). Eqs. (33) and (34) are solved
together using the return-mapping algorithm (see Algorithm 1).

• Minimization with respect to the damage field:

DδdW (u, p, d) =

∫
Ω

(
∂ψe

∂d
+
∂ψd

∂d

)
δddΩ = 0. (35)

which corresponds to the global problem to be solved to find the field d(x) (phase field problem),
given u and p. Note that if ψd does not include the gradient of damage∇d, then (35) leads to a local
relationship to define the damage evolution, leading to well-known issues like non-convergence with
respect to the mesh size, or dependence of the crack paths to the mesh structure and orientation.
To avoid these issues, we adopt a form similar to (3) for ψd, following [20, 65] but adding influence
of interface weighting function β as detailed in the following.

3.3. Specialization

We now specialize the energy components introduced in (15). Inspired by [35, 40], we define
the different strain density functions as follows:
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ψe (u, d) = g (d)ψe+0 (εe(u)) + ψe−0 (εe(u)) , (36)

with [57]

ψe+0 (εe) =
1

2
κ 〈Tr (εe)〉2+ + µee : ee, (37)

ψe−0 (εe) =
1

2
κ 〈Tr (εe)〉2− . (38)

Above, κ and µ denote bulk modulus and shear modulus, respectively, 〈x〉± = 1
2 (x± |x|).

g(d) = (1− d)2 + k, (39)

where k is a small numerical parameter to prevent loss of definite posedness of the elastic tensor
in case of full damage,

ψp (p) = σY p+
1

2
Hp2, (40)

ψd (β, d) = (1− β)2 gc

(
d2

2`d
+
`d
2
∇d · ∇d

)
, (41)

In (40), σY and H are yield stress and hardening modulus, respectively. Notice that the elasto-
plastic brittle fracture case model can be recovered by simply setting β = 0 in (41).

Following our recent work [53], we specialize the energy of interfacial jump component as:

ψI (u, β) = ψ
I

(w(u)) γβ (β) , (42)

where the traction acting on the interface oriented by nI (see Fig. 2) is defined by:

t (w) =
∂ψ

I
(w)

∂w
. (43)

Above, ψ
I

is the interface strain density depending on the regularized displacement jump w.
Note that as discussed in [53], it is not required in this formulation to include history variables for
the interfaces, the diffuse damage field being used to describe the irreversibility of the interfacial
damage.

For 2D problems, the traction t (w) is in the form

t (w) =
[
tn, tt

]T
, (44)

where tn and tt denote normal and tangential parts of the traction vector t. In this paper, we
neglect the effects of the tangential component in the interface model (tt = 0), and use [66]:

tn = gIc
wn

(δn)2 exp

(
−w

n

δn

)
, (45)

10



Figure 3: Cohesive model for the interfaces: evolution of the normal traction component tn with respect to the
approximated jump normal displacement component wn.

where δn is related to the interface fracture toughness gIc and the interface fracture strength tu by:

δn =
gIc

tu exp (1)
, (46)

wn is the normal displacement jump defined by:

wn = w·nI , (47)

and w and nI are given in (8) and (9), respectively. This relationship is illustrated in Fig. 3,
where the fracture toughness gIc denotes the value of the interface energy function ψI at full crack
opening. Relation (46) can be easily obtained by expressing the extremum of the function (45)
(∂tn(wn)/∂wn = 0), which is found at wn = δn, and then simply replacing this solution in (45).

Using the aforementioned constitutive specialization results, we can re-write (19), (26) and (13)
as:

σ = g (d)σ+
eff + σ−eff, (48)

F p(p) =

√
3

2
‖s‖ − (σY +Hp) ≤ 0, (49)

ε̇p = ṗ

√
3

2

s

‖s‖
with ṗ ≥ 0 (50)

where σ+
eff and σ−eff are the effective tensile and compressive stresses defined as

σ+
eff =

∂ψe+0

∂εe
= κ 〈Tr (εe)〉+ 1 + 2µee, σ−eff =

∂ψe−0
∂εe

= κ 〈Tr (εe)〉− 1. (51)
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The associated Euler-Lagrange equations to (33) are given by:
∇ · σ − γβ(β)f I + f = 0 in Ω,

u = ū on ∂Ωu,

σn = F on ∂ΩF .

(52)

where the body force term f I is expressed by f I = −h∇t(w) · nI , and is obtained from (33) by
applying the divergence theorem to the term

∫
Ω γβ(β)t(w)h∇(δu)dΩ, and assuming t · n = 0 over

the external boundary of the domain.
Using (35) and the property:

(∆d) δd = ∇ · (∇dδd)−∇d · ∇(δd) (53)

as well as the divergence theorem and ∇d · n = 0, we obtain the weak form of the phase field
problem as:

∫
Ω

({
−2(1− d)ψe+0 + (1− β)2 gcd

`d

}
δd+ gc(1− β)2`d∇d · ∇(δd)

)
dΩ = 0. (54)

To prescribe irreversibility, we employ the technique introduced in [67] which consists in sub-
stituting the above weak form with:

∫
Ω

({
−2(1− d)H(εe) + 2(1− β)2ψcd

}
δd+ 2(1− β)2ψc`

2
d∇d · ∇(δd)

)
dΩ = 0, (55)

where

H (εe) = max
s∈[0,t]

[〈
ψe+0 (εe, s)− ψc

〉
+

]
(56)

and ψc is a specific fracture energy density, which can be further related to a critical fracture stress
σc by:

ψc =
1

2E
σ2
c , (57)

where E is the Young’s modulus.
The corresponding Euler-Lagrange equations to (55) are given by:


(1− β)2 ψc

(
d− `2d∆d

)
= (1− d)H (εe)

∇d · n = 0 on ∂Ω,

d = 1 on Γ.

(58)
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Table 1: Governing equations of the elastoplastic phase field model with interfacial damage.

Irreversibility ḋ ≥ 0, 0 ≤ d ≤ 1

Mechanical balance ∇ · σ − γβ(β)f I + f = 0 in Ω

u = ū on ∂Ωu, σn = F on ∂ΩF

Constitutive law σ = g (d)σ+
eff + σ−eff

σ+
eff = κ 〈Tr (εe)〉+ 1 + 2µee, σ−eff = κ 〈Tr (εe)〉− 1

Cohesive law t (w) =
[
gIc

wn

δ2n
exp

(
−wn

δn
)
, 0
]T

Damage criterion (1− β)2 ψc
(
d− `2d∆d

)
− (1− d)H(εe) ≥ 0

H (εe) = max
s∈[0,t]

[〈
ψe+0 ( εe, s)− ψc

〉
+

]
Damage consistency

(
(1− β)2 ψc

(
d− `2d∆d

)
− (1− d)H(εe)

)
ḋ = 0

Plastic yield criterion F p(p) =
√

3
2 ‖s‖ − (σY +Hp) ≤ 0,

Plastic flow rule ε̇p = ṗ
√

3
2

s
‖s‖ with ṗ ≥ 0

The different equations of the model are summarized in Table 1. The weak forms of the
problems to be solved alternatively are summarized in Table 2.

Remark: In the present work, we did not consider coupling between damage and plasticity.
The reason is that currently, the available models from the literature which introduce such phe-
nomena are not able to control the evolution of the plastic strain when damage occurs. In other
words, the plastic strain continues to increases when the damage occurs within the crack. So far,
it seems that the only model able to deal with this issue is the the model proposed in [68], in-
volving gradient plasticity and gradient damage and strong plasticity-damage coupling. Extending
the present interfacial damage framework with the gradient plasticity model in [68] could be a
perspective for this work.

4. Discretization and numerical implementation

In this section, we detail the weak forms and FEM discretizations for displacement and damage
problems, and finally provide the different algorithms.

4.1. Weak forms the linearized mechanical problem

Using (42) and (43), we can re-write the associated weak form for the displacement problem
(33) as:∫

Ω
σ : εe (δu) dΩ +

∫
Ω
γβt·w (δu) dΩ =

∫
Ω

f ·δudΩ +

∫
∂ΩF

F·δudS, (59)

where t and σ are given in (44) and (48), respectively. We can rewrite the balance equation (59)
as

R =

∫
Ω
σ : εe (δu) dΩ +

∫
Ω
γβt·w (δu) dΩ−

∫
Ω

f ·δudΩ−
∫
∂ΩF

F·δudS = 0. (60)
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Table 2: Problems to be solved in the staggered procedure

Mechanical problem: given d, solve for u:∫
Ω σ : εe (δu) dΩ +

∫
Ω γβ(β)t(w)·w (δu) dΩ−

∫
∂ΩF

F · δudS −
∫

Ω f · δudΩ = 0

F p(p) =
√

3
2 ‖s‖ − (σY +Hp) ≤ 0

ε̇p = ṗ
√

3
2

s
‖s‖ with ṗ ≥ 0

Phase Field problem: given u, solve for d:∫
Ω

([
H(u) + (1− β)2ψc

]
dδd+ (1− β)2ψc`

2
d∇d · ∇(δd)

)
dΩ =

∫
ΩH(u)δddΩ.

In a standard Newton method, the displacements are updated for each loading increment by
solving the tangent problem:

D∆uR
(
u(k), d

)
= −R

(
u(k), d

)
= 0, (61)

where u(k) is the displacement solution known from the previous iteration. The displacement
corrections are obtained as

u(k+1) = u(k) + ∆u. (62)

In (61),

D∆uR
(
u(k)

)
=

∫
Ω

∂σ

∂εe
: εe (∆ε) : εe (δε) dΩ +

∫
Ω
γβ
∂t (w)

∂w
: ∆w : δwdΩ, (63)

with

∂σ

∂εe
= Cs (u, d) . (64)

Using (58), we can re-write the associated weak form for the damage problem (35) as:∫
Ω

{[
H+ (1− β)2 ψc

]
dδd+ (1− β)2 ψc`

2
d∇d·∇ (δd)

}
dΩ =

∫
Ω
Hδd dΩ. (65)

4.2. Discretization of the displacement problem

In this work, for the sake of clarity, only 2D FEM discretization is detailed. The vector form of

second-order tensors are introduced as [ε] =
[
ε11, ε22,

√
2ε12

]T
, [σ] =

[
σ11, σ22,

√
2σ12

]T
, as well

as the FEM approximations u = Nuue, δu = Nuδu
e, and ∆u = Nu∆ ue where ue, δue, ∆ue and

Nu are nodal displacement components in one element, nodal trial function components, nodal
incremental displacement components and a matrix of displacement shape function, respectively.
Then we obtain:

[ε] (u) = Buue, [εe] (∆u) = Bw∆ue, [εe] (δu) = Bwδu
e, (66)

and

w (u) = hNBue, ∆w (u) = hNB∆ue, δw = hNBδue, (67)
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where Bu is a matrix of displacement shape function derivatives, and

N =

 n1 n2 0 0

0 0 n1 n2

 , (68)

B =
[

∂u1
∂x1

∂u1
∂x2

∂u2
∂x1

∂u2
∂x2

]T
=

 ∂
∂x1

∂
∂x2

0 0

0 0 ∂
∂x1

∂
∂x2

T Nu, (69)

where n1 and n2 are the x- and y- components of the normal vector nI in (9) and Bw is a modified
spatial strain-displacement matrix defined by:

Bw = Bu − hγβMB (70)

in which M is a matrix expressed by [53]:

M =


n1 0

0 n2

1√
2
n2

1√
2
n1

N =


n2

1 n1n2 0 0

0 0 n1n2 n2
2

1√
2
n1n2

1√
2
n2

2
1√
2
n2

1
1√
2
n1n2

 . (71)

After discretization, the linear system (61) with the displacement corrections (62) reduces to a
standard Newton-type iteration:

Ktan∆u = −R
(
u(k)

)
,u(k+1) = u(k) + ∆u, (72)

where u(k) is the displacement field known from the previous (k-th) Newton-Raphson iteration,

Ktan =

∫
Ω

BT
wCsBwdΩ +

∫
Ω
γβ (hNB)T CI (hNB) dΩ, (73)

and

R
(
u(k)

)
=

∫
Ω

BT
wσ

(k)dΩ +

∫
Ω
γβ (hNB)T t

(
w(k)

)
dΩ−

∫
Ω

NT
u fdΩ−

∫
∂ΩF

NT
uFdS, (74)

where

CI =
∂t (w)

∂w
=

 ∂tn

∂wn 0

0 0

 , (75)

and where Cs is the matrix form corresponding to the fourth-order elastoplastic consistent tan-
gent operator Cs in (64), which is determined by the classical elastic predictor and plastic cor-
rector (return-mapping) algorithm outlined in [69]. It should be noted that an accurate eval-
uation of the operator Cs is crucial to guarantee the convergence of the Newton-Raphson it-
erative solution scheme. The analytical form of Cs for a J2-plasticity yield function can be
found in [70]. The iterative update (72) is performed until convergence is achieved in the sense
‖∆u‖ /

∥∥u(k+1) − u(0)
∥∥ ≤tol.
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4.3. Discretization of the phase field problem

We solve alternatively the damage problem and then the mechanical problem within a staggered
procedure [20]. The damage and damage gradient are approximated in one element by

d = Ndd
e, ∇d = Bdd

e, (76)

where Nd and Bd are matrices of damage shape function and of damage shape function derivatives,
respectively, and de denote nodal damage in one element.

The discretization of damage problem (65) results into the following discrete system of equa-
tions:

Kdd = Fd (77)

in which

Kd =

∫
Ω

{[
H+ (1− β)2 ψc

]
NT
dNd + (1− β)2 ψc`

2
dB

T
dBd

}
dΩ (78)

and

Fd =

∫
Ω

NT
dH dΩ, (79)

where H is given in (56).

4.4. Numerical implementation

In the present work, a staggered scheme is employed following [20], where at each load increment
the displacement problem is solved for fixed damage field which is known from the previous time
step. The damage problem is then solved with the new displacement field. The overall algorithm
is illustrated in Algorithm 1.
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Algorithm 1: Overall algorithm

Initialize u0, d0, εp0, and α0 with assumption of not plasticised and undamaged state.
Compute the level-set function φ and interface damage β.
Loop over load increments n
for i = 1, . . . , n do

Displacement problem
Newton-Raphson iterative solution scheme

k = 1, err = 1, tol = 10−5,u
(0)
i = ui−1

while err > tol do

εep = Bwu
(k−1)
i , w = hNBu

(k−1)
i

Compute t (w) and CI from (44) and (75)
Return-mapping algorithm

Given
(
εep, εpi−1, αi−1, di−1

)
, Compute

(
Cs, ε

p,(k)
i , α

(k)
i

)
from Algorithm 2

Compute Ktan and R
(
u

(k−1)
i

)
from (73) and (74)

Compute ∆u from (72)

Update u
(k)
i = u

(k−1)
i + ∆u

ui = u
(k)
i , εpi = ε

p,(k)
i , αi = α

(k)
i

err = ‖∆u‖ / ‖ui − ui−1‖ , k = k + 1
end
Damage problem
Compute H with ui and εpi from (56)
Compute Kd and Fd from (78) and (79)
Compute the damage field di from (77)
i = i+ 1

end

The flowchart for return-mapping algorithm on one Gauss point is provided in Algorithm 2.
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Algorithm 2: Return-mapping algorithm

Input: εep, εpi−1, αi−1, di−1

Output: Cs, ε
p,(k)
i , α

(k)
i

Elastic prediction
εe trial = εep − εpi−1

Compute σtrial and F p
(
σtrial, αi−1, di−1

)
from (48) and (49)

if F p ≤ 0 then

ε
p,(k)
i = εpi−1, α

(k)
i = αi−1

else
Plastic correction
Compute ∆α from F p (σ, αi−1 + ∆α, di−1) = 0

∆εp = ∆α
√

3
2

strial

‖strial‖
Update the variables

ε
p,(k)
i = εpi−1 + ∆εp

α
(k)
i = αi−1 + ∆α

end

εe = εep − εp,(k)
i

Compute σ from (48)
Compute Cs with the analytical form in [70]

5. Numerical examples

In this section, all numerical computations are performed within the finite element framework
and assuming plain strain conditions. Both damage and displacement fields are discretized with
4-node bilinear elements. The material properties are shown in Table 3. Displacement controlled
conditions are always assumed. We adopt the staggered solution strategy presented in 4.4. For the
sake of simplicity, we recall that both length scale parameters `d and `β are assumed to be equal,
i.e `d = `β = `.

Table 3: Material parameters used in the numerical simulations, from [71]

Name Symbol Material I Material II

Shear modulus κ 27.28 GPa 70.3 GPa

Bulk modulus µ 71.66 GPa 136.5 GPa

Yield stress σY 0.345 GPa 0.443 GPa

Hardening modulus H 0.25 GPa 0.3 GPa

Critical fracture stress σc 1 GPa 2 GPa
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Figure 4: Semicircular notched specimen: (a) geometry and boundary conditions; (b) finite element model.
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Figure 5: Semicircular notched specimen: a1-c1 crack phase field and a2-c2 equivalent plastic strain field at three
different prescribed displacements (see Fig. 7).

5.1. Semicircular notched specimen

In this example, we fist validate the convergence of the elastoplastic phase field with respect to
mesh refinement, in absence of interfaces. Then, we analyze the influence of the critical fracture
stress σc. For this purpose, a specimen with a semicircular notch, as described in Fig. 4(a), is
considered. The boundary conditions are as follows: on the lower end (y = 0), the y-displacement
are fixed, while the x-displacement are free and the node (x = 0, y = 0) is fixed. On the upper end,
the x-displacement are free, while the y-displacement are prescribed to an increasing value of U with
∆U = 0.001 mm during the simulation. The material parameters are those of Material I in Table
3 and ` = 0.5 mm. The spatial discretization of the model comprises 8953 4-node quadrilateral
elements, with refinement in the central region where the crack is expected to propagate (see Fig.
4(b)). Fig. 5 shows the evolution of the crack phase field and the equivalent plastic strain field
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at three different prescribed displacements. As can be observed from Fig. 5 (a1)-(c1), the crack
propagates horizontally towards the right-end boundary. The equivalent plastic strain as shown in
Fig. 5 (a2)-(c2) is maximum at the notch root and localization branches form near the notch at
an angle of about 45◦. The same simulation has been repeated on two other finite element meshes
of 6834 and 11, 325 elements (coarse and fine mesh) to study the convergence with respect to the
mesh size. Results are provided in Fig. 6, demonstrating the convergence of the method as the
mesh is refined. In the following, the medium mesh has been used to limit the computational costs.
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Figure 6: Load-displacement curve of a semicircular notched specimen showing convergence with respect to the finite
element mesh size (6834, 8953 and 11, 325 elements).
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Figure 7: Load-displacement curve of a semicircular notched specimen: sensitivity with respect to the critical fracture
stress σc.
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Figure 8: Semicircular notched specimen: effect of the critical fracture stress σc on the fracture process; a1-c1: crack
phase field; a2-c2: equivalent plastic strain field at three different prescribed displacements (see Fig. 7).

Fig. 7 and Fig. 8 show the effect of the critical fracture stress σc on results in terms of load-
displacement curve, crack path and the equivalent plastic strain field. As can be observed, with the
increase of the critical fracture stress σc, the prescribed displacement corresponding to the point
(maximum load) of initiation of the fracture rises, thus leading to an increase of the equivalent
plastic strain field. This observation has been reported in many other works [42, 43, 72]. Here we
define the critical fracture stress σc as a material parameter which controls the initiation of the
fracture.
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Figure 9: Definition of the fatigue crack test: (a) geometry and boundary conditions; (b) finite element model
(medium mesh).

5.2. Fatigue cracking

In this next example, we include a cohesive interface and validate the convergence of the model
with respect to the mesh size. Additionally we investigate the capability of the framework to
handle fatigue cracking under cyclic loading. A square domain is considered. The domain contains
a cohesive interface, whose geometry is depicted in Fig. 9(a). In order to provide a good balance
between simulation accuracy and computational costs, a finely refined mesh is used in the region
close to the cohesive interface, with finite element size: he = 0.05 mm (see Fig. 9(b)). The material
parameters are those of Material I in Table 2, in addition to ` = 0.1 mm, h = he = 0.05 mm in
(8), fracture strength and toughness tu = 10 MPa and gIc = 0.1 N/mm, respectively.
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Figure 10: Fatigue crack test: (a) evolution of the load; (b) effect of the mesh size (3500, 6800 and 10, 028 elements)
on the load-displacement curve.
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Figure 11: Fatigue crack test: (a) evolution of the load; (b) corresponding load-displacement curve.
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Figure 12: Fatigue crack test: (a) equivalent plastic strain and damage with respect to the prescribed displacement;
(b) displacement jump along y with respect to the load number; (c) cohesive traction with respect to the displacement
jump; (d) cohesive traction with respect to the prescribed displacement.
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Figure 13: Traction test of a microstructure with a single fiber: (a) geometry and boundary conditions; (b) finite
element model.
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Figure 14: Traction test of a microstructure with a single fiber: (a) smeared interface represented by the interface
phase field β (x); (b) corresponding level-set function φ (x).

In a first case, we validate the convergence with respect to the mesh refinement. For this
purpose, two other finite element meshes have been used: a coarse mesh with 3500 elements and a
fine mesh with 10, 028 elements. A displacement U (∆U = 0.001 mm) whose evolution is described
in Fig. 10(a) is prescribed on the upper end, as depicted in Fig. 9(a). Results for 3 meshes are
provided in Fig. 10(b), which show the convergence of the method with mesh refinement. In the
following case, the medium mesh has been used to limit the computational costs.

In this next case, the evolution of U (∆U = 0.001 mm) is described in Fig. 11(a), involving
multiple cycles. The corresponding load-displacement curve is depicted in Fig. 11(b). As shown in
this figure, the irreversible strains upon unloading are well produced by this model. The evolution
of the equivalent plastic strain in the element near node A (which is located in the center of the
domain) and damage on node A are depicted in Fig. 12(a). The computed displacement jump
along y in the element near node A is shown in Fig. 12(b). The normal traction force in the element
near node A, with respect to the computed displacement jump and the prescribed displacement,
are depicted in Fig. 12(c) and (d), respectively.
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Figure 15: Traction test of a microstructure with a single fiber: (a) load-displacement curves for three finite element
meshes (13, 268, 24, 688 and 34, 802 elements); (b) comparison of load-displacement curves for different interfacial
damage models.

5.3. Traction test of a microstructure with a single fiber

In this example, we investigate a microstructure involving one fiber in an elastoplastic matrix
with damageable interface. The importance of interfacial damage and the influence of its param-
eters on the results will be studied. The geometry and boundary conditions are depicted in Fig.
13(a). The finite element model (medium mesh with 24,688 elements) is shown in Fig. 13(b).
External loading is applied by displacement control through a series of load increments with a
fixed step value ∆U = 5× 10−4 mm. The material parameters for the matrix and fiber are those
of Material I and Material II in Table 2, in addition to ` = 0.2 mm, h = 0.1 mm, gIc = 0.1 N/mm
and tu = 0.3 MPa (model I). An illustration of the interface indicator β (x) and associated level-set
φ (x) for the present microstructure is depicted in Fig. 14. In this composite example, we also
validate the mesh convergence with two other finite element meshes: a coarse mesh with 13, 268
elements and a fine mesh with 34, 802 elements. The load-displacement curves are shown in Fig.
15(a). The evolution of the crack phase field is presented in Fig. 16. From these results it is
observed that the crack nucleates from the interface and then kinks into the matrix when reaching
a certain point. This leads to the final predicted semi-debonding angle of 65.10◦ which is similar
to the quasi brittle cases [73, 74]. The difference compared with similar cases but involving a quasi
brittle matrix [53, 74] is that the initial interface debonding position in this model is about 45◦

direction in the fiber surface (see Fig. 16(a)).
To evaluate the capability of the method to describe interfacial damage and investigate the

effect of the interfacial cohesive model, another three simulations are performed: in the first one,
called “model II”: gIc = 0.1 N/mm and tu = 1 MPa, in the second one, called “model III”: gIc = 0.2
N/mm and tu = 1 MPa and in the third one, called “no interface damage ”model, only takes into
account damage of the bulk (basic phase field method). The comparison of load-displacement
curves for all four simulations is depicted in Fig. 15(b). The crack phase fields are shown in Fig.
17. For the three cohesive models, it can be observed that the cracks are similar which nucleate
from the interface and then propagate into the matrix, while for the no interface damage model,
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the cracks nucleate and propagate within the matrix around the boundary after a very long plastic
hardening process. We can then observe that the different interfacial damage models do not have
a significant influence on the response, but when removed, the response of the sample is drastically
changed. This shows the crucial importance of incorporating such interfacial damage model to
properly describe the overall behavior of damaged microstructures.
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Figure 16: Traction test of a microstructure with a single fiber. Evolution of the crack phase field for an applied
traction displacement U : (a) U = 0.095 mm, (b) U = 0.105 mm and (c) U = 0.17 mm.

 
(a)                                     (b)                                      (c)                                     (d) 

 
 

65.10°

66.72°

66.54°

Figure 17: Traction test of a microstructure with a single fiber. Crack phase field for for an applied traction
displacement U and different interfacial models: (a) model I (U = 0.17 mm), (b) model II (U = 0.17 mm), (c) model
III (U = 0.17 mm) and (d) no interface damage (U = 0.906 mm)

(a)

U

10 mm

(b)

Figure 18: Traction test of a microstructure with randomly distributed fibers: (a) geometry of the domain and
boundary conditions; (b) smeared interfaces represented by the interface phase field β (x).
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M1 U 0 075mm= . M1 U 0 094mm= . M2 U 0 08mm= . M2 U 0 104mm= .

M3 U 0 08mm= . M3 U 0 127mm= . M4 U 0 098mm= . M4 U 0 12mm= .

M5 U 0 094mm= . M5 U 0 134mm= . M6 U 0 078mm= . M6 U 0 102mm= .

M7 U 0 097mm= . M7 U 0 125mm= . M8 U 0 113mm= . M8 U 0 16mm= .

M9 U 0 103mm= . M9 U 0 139mm= .

Figure 19: Evolution of crack networks in random elastoplastic microstructures subjected to traction. For each
realization, the crack phase field is depicted at early and final stages of propagation. The microstructures are
subjected to displacement traction U .
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Figure 20: Load-displacement curves corresponding to 9 realizations of random microstructures with interfacial
damage subjected to traction.

5.4. Traction test of a microstructure with randomly distributed fibers

A microstructure with elastoplastic matrix and damageable interfaces, containing 9 randomly
distributed circular fibers (radius r = 1 mm) is considered, whose geometry and boundary condi-
tions are illustrated in Fig. 18(a). External loading is applied by displacement control through a
serious of load increments with a fixed step value ∆U = 2 × 10−4 mm. The material parameters
for the matrix and fiber are those of Material I and Material II in Table 2, in addition to ` = 0.2
mm and h = 0.1 mm. The cohesive model parameters are gIc = 0.1 N/mm and tu = 0.3 MPa. The
distribution of interface phase field is shown in Fig. 18(b). It is observed that the diffusive inter-
face concentrates in the nearby area of the interface, and quickly attenuates. The microcracking
initiation and final distribution for 9 realizations of microstructures is depicted in Fig. 19. The
corresponding load-displacement curves are depicted in Fig. 20. In the different figures of Fig. 19,
we can note that in each case, the cracks nucleate at the interface between the matrix and the
fibers, and then kink into the matrix. For most cases, a crack path is created between the fibers
passing through the interfaces and then leading to the rupture of the specimen. This example
illustrates well the capability and robustness of the technique to handle brittle crack propagation
from interfaces to the bulk in elasto-plastic composites. In Fig. 20, it can be observed that all
curves match with each others in the elastic and plastic stages. However, a large dispersion of the
individual results in the damaged stage is observed. This shows a strong sensitivity of the overall
brittle response to the local distribution of fibers in microstructure as well as the capability of the
proposed method to capture these effect.

5.5. Traction test of a sample whose complex microstructure is obtained from microtomography

In this example, we investigate the capabilities of the method to simulate microcrack propaga-
tion in complex microstructures such as obtained by experimental imaging techniques, like X-ray
microtomography. The geometry and mechanical boundary conditions are illustrated in Fig. 21(a).
The material parameters for the matrix and inclusion are those of Material I and Material II in
Table 2, in addition to ` = 0.1 mm and h = 0.1 mm. The cohesive model parameters are gIc = 0.1
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(a)

U

(b)

10 mm

Figure 21: Traction test of a sample whose geometry is obtained from microtomography: (a) geometry of the
microstructure and boundary conditions; (b) smeared interface represented by the interface phase field β (x).

N/mm and tu = 0.3 MPa. External loading is applied by displacement control through 1800 load
increments with a fixed step value ∆U = 1× 10−4 mm. The distribution of interface phase field is
shown in Fig. 21(b). Comparing with the single fiber system and the randomly distributed fibers
system, it is much more complicated due to material heterogeneities.

The microcracking evolution in the domain is presented in Fig. 22. We can observe that with
the increase of the external loading, cracks are initiated in the form of interface debonding and
then migrate into the matrix in the form of matrix cracks. Subsequently, these interface cracks
and matrix cracks are interconnected and then lead to the final failure of the microstructure.
The crack paths are very complex and show the potential of the method to describe microcrack-
ing with interfacial damage in very complex, heterogeneous microstructures. The corresponding
load-displacement curve is depicted in Fig. 23. It can be seen that the load–displacement curve
shows several abrupt stress drops. These stress drops result mainly from the initiation of the
microcracking in the complex, heterogeneous microstructure.

(a) (b) (c) (d)

Figure 22: Traction test of an elastoplastic sample whose microstructure is obtained from microtomography. Evo-
lution of the crack phase field for traction displacements U = 0.09 mm, U = 0.11 mm, U = 0.13 mm and U = 0.18
mm.
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Figure 23: Traction test of an elastoplastic sample whose microstructure is obtained from microtomography: load-
displacement curve.

6. Conclusion

In this work an extension of the phase field to interfacial damage in elastoplastic composites has
been proposed. In the matrix, the elastoplastic phase field extension as proposed in [55] has been
used. To introduce interfacial damage, the energetic formulation has been modified by adding: (i)
a strain density depending of the displacement jump related to matrix/inclusions decohesion; (ii) a
modified description of the total energy involving a regularized approximation of the singular strain
part along the interfaces and (iii) the use of a regularized description of interfaces through diffuse
weighting functions which are introduced in the energetic formulation to differentiate the bulk and
interfacial damage mechanisms. In that manner, different damage mechanisms can be associated
with interfaces as compared to the matrix cracking mechanisms. Application of the variational
principle provides the different equations to be solved in a straightforward manner. As a result,
the technique allows simulating initiation, propagation and interactions between both fracture and
interfacial cracks in elastoplastic composites without special treatment and using standard finite
elements. Several numerical examples involving complex microstructures (composites, concrete
micro tomography images) have shown the capability of the method to handle complex micro cracks
interactions for arbitrary complexity of the microstructures, and convergent solutions with respect
to the mesh size. One future perspective of this work would be the experimental identification of
the internal length parameters `d and `β, i.e. following an inverse approach as described in the
quasi-brittle context in [6]. The present model could be extended to plasticity gradient models
such as in [68] to involve full damage and plasticity coupling.
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