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We study experimentally and theoretically a dual-polarization fiber laser submitted to time-
delayed frequency-shifted optical feedback. In addition to the usual frequency-locking regime that
is expected when the frequency shift is close to the polarization beat frequency, we observe at high
pumping rates a dynamical pulsing regime inside the locking range. This regime is experimentally
evidenced in a full-fibered experiment based on an erbium-doped distributed-feedback fiber laser in
which polarization beat frequency is about 1 GHz. A rate-equation model including the frequency-
shifted feedback term reproduces well the experimental bifurcation maps, provided that both the
time delay and a phase-amplitude coupling parameter (α factor) are taken into account. The impact
on microwave-photonics applications is discussed.

I. INTRODUCTION

Distributed-feedback (DFB) fiber lasers are appealing
sources for various applications, notably because they of-
fer a combination of low linewidth and high power [1].
When operating in a regime of simultaneous emission of
two orthogonal eigenstates, such short-cavity lasers can
be considered as microwave-optical sources, since the typ-
ical beat frequency between the two polarization modes is
in the GHz range [2–9]. In this context, the stabilization
of the beat frequency, in order to reduce the phase noise
in microwave photonic links, is a question that led re-
cently to develop an optical phase-locked loop scheme [9],
and to the use of frequency-shifted optical feedback [10].
However a full dynamical description of fiber lasers with
FSF has not been explored yet.

Frequency-shifted feedback (FSF) was originally in-
troduced to stabilize dual-frequency bulk solid-state
lasers [11, 12]. It fostered further developments in our
group, leading to the discovery of original bounded-
phase [13, 14], excitablelike [15], or intensity-chaotic
frequency-locked [16] regimes. Other studies involved in-
tegrated pairs of semiconductor lasers [17, 18], but the
case of fiber lasers was left open. Contrary to bulk solid-
state lasers, as we will show in the following, the ef-
fect of the time delay on the feedback regimes in DFB
fiber lasers turns out to be important, as in many other
fields [19]. Besides, the phase-amplitude coupling pa-
rameter (α factor) remains a debated question for fiber
lasers [20–23]. Since this parameter is well known to in-
duce a wealth of dynamics in semiconductor lasers [24],
it may also play a role in the fiber laser feedback scheme.
Also, DFB fiber lasers were shown to exhibit specific dy-
namics with respect to semiconductor lasers in direct in-
jection experiments [25, 26]. Consequently, the study of
DFB fiber lasers subjected to optical feedback needs to
be performed for both applied and fundamental laser dy-
namics issues.

Here we propose an all-fibered experimental setup

based on a dual-frequency erbium-doped DFB fiber laser.
A feedback loop containing an intensity modulator per-
mits to reinject one frequency-shifted polarization mode
into the other. In Sec. II, we show experimentally that
short-cavity fiber lasers exhibit either a simple locking
regime, or an original dynamical regime within the lock-
ing range, depending on the laser pumping rate. Phase
noise is measured in the locking region. In Sec. III, we
focus on a set of delayed-differential equations in order
to model the system with the best accuracy, paying at-
tention to the bifurcation maps obtained in the feedback
rate-detuning plane and to the role of delay and α factor.
Conclusions, discussion of applications, and perspectives
are given in Sec. IV.

II. EXPERIMENTAL RESULTS

A. Method

The experimental set-up designed for the FSF stabi-
lization of a DFB fiber laser is described in Fig. 1. The
fiber laser is a 33-mm-long Er3+-doped fiber into which a
phase-shifted Bragg grating was photoinduced. The in-
tensity transmission coefficients of the resulting mirrors
linked to both grating sections separated by the phase
step are estimated to be −34 dB and −57 dB, respec-
tively, and the laser effective length is about 2.6 mm.
The laser is pumped at 976 nm through a pump-signal
combiner (WDM) and emits at 1547 nm two orthogo-
nal polarization modes Ex and Ey with eigenfrequen-
cies νx and νy respectively (we choose νx > νy). The
threshold pump power is about 10 mW, and the laser
emits a total continuous-wave output power of about
100 µW when backward-pumped with 100 mW. Due to
the birefringence induced by UV photo inscription of the
Bragg grating [27], the polarization beat is at around
fb = νx − νy = 1 GHz. This beat frequency is slightly
tunable using either the pump power, with a slope of
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−20 kHz/mW, or the DFB temperature, with a slope of
about 10 kHz/K. In free-running operation, the radio-
frequency beat note has a linewidth of 3 kHz, and drifts
within a few MHz span over a period of one day [9]. Such
dual-frequency fiber laser (DFFL) free-running features
are very attractive for heterodyning applications, com-
pared to the use of separate lasers. However, it does not
meet the standards for high-purity microwave-photonic
links, hence motivating the search for efficient stabiliza-
tion loops.

FIG. 1. Full-fibered experimental scheme of a dual-
frequency fiber laser (DFFL) submitted to polarization-
rotated frequency-shifted feedback. WDM, pump signal com-
biner; PC, polarization controller; CPL, 10-dB coupler; PBS,
polarization beam splitter; EOM, electro-optic modulator
driven by a synthesizer at frequency fLO. The EDFA per-
mits one to control the feedback power. Optical spectra at
different points are sketched below: when νx is selected by
the PBS, the νx − fLO component of the reinjected field is
resonant with νy. See text for details.

The FSF loop is based on a polarization-maintaining
(PM) polarization beam splitter whose outputs are closed
on one another after passing through the frequency
shifter, here realized with a PM electro-optic modulator
(EOM). It is a standard Mach-Zehnder-type amplitude
modulator which provides a high bandwidth (10 GHz).
The polarization controller PC between the laser and
the FSF loop permits one to select one of the polariza-
tion states, say Ex(νx), with an extinction ratio reach-
ing 40 dB (at point B in Fig. 1). The remaining cir-
culating mode can be amplified through a PM erbium-
doped fiber amplifier (EDFA) with a maximum gain G of
17 dB, and then reaches the EOM. The EOM is driven
by a synthesizer at frequency fLO, acting as a local os-
cillator, and thus generates in the optical field two side-
bands at frequencies νx ± fLO. By biasing the EOM
at minimum carrier transmission, the sideband power is
maximized with respect to the carrier, with a typical 20-
dB ratio (at point C in Fig. 1). After the PBS, we
are then left with a feedback field whose polarization di-
rection is parallel to Ey. Hence, for a small detuning
∆ = fLO − (νx− νy) = fLO − fb, the reinjected field con-
tains an optical sideband resonant with νy. Intracavity

coupling may then lead to frequency locking between νy
and the νx−fLO component of the reinjected field (com-
pare D with A in Fig. 1). We then expect to find a sta-
bility transfer from the synthesizer fLO to the beat note
fb. When the EDFA is inserted, the overall feedback loop
is about 8 m, corresponding to a delay τ = 40 ns. Note
that the clockwise rotation of the y polarization along the
feedback loop is prevented by an optical isolator associ-
ated with the EDFA, thus eliminating any risks of mutual
delayed feedback. Besides in order to monitor the beat
note, a 90:10 optical coupler is inserted between the PC
and the PBS. The −10 dB output is then detected with a
10-GHz bandwidth photodiode after an optical isolator.

In addition to the detuning ∆ parameter, two other
system parameters are important in the following dy-
namical study: the injection rate and the laser pumping
power. The injection rate is Γexp =

√
Pinj/Px, where Px

is the intracavity power emitted in the x−polarized mode
(roughly half the total power), and Pinj is the power
reinjected inside the laser by the feedback field, that is,
y polarized and frequency shifted. Considering the esti-
mated output coupler intensity transmission T and the
measured global transmission Tloop of the feedback loop
(including EOM conversion losses as well as all the in-
sertion losses), the EDFA gain parameter permits one to
raise Γexp = T

√
TloopG up to 3.8 × 10−4. Note that,

while the reinjected optical power is very low (at the pW
level), it still corresponds to a strong feedback: the nor-
malized reinjection rate as defined in Sec. III is found to
be in the 0 − 30 range. Besides, the pumping power is
commonly characterized by the excitation rate η which is
the ratio of the pumping power to the threshold power.

B. Stabilization results

In a first step, we record the RF spectra when the local
oscillator is swept. We choose to inject Ex into the FSF
loop, as in Fig. 1, with a moderate excitation rate η = 1.3
and an EDFA gain of 12 dB yielding Γexp = 2.2× 10−4.
The free-running beat is fb=1.015 GHz. In this case, the
spectrogram shown in Fig. 2(a) is recorded while sweep-
ing the synthesizer frequency across fb over a 7-MHz span
in 1000 steps. As a result, each of the 1000 lines in the
figure corresponds to an electrical spectrum coded in false
colors. The two (high-intensity) yellow lines correspond
to the free-running beat fb (central line) and the swept
synthesizer fLO (oblique line), respectively. As expected
from such an injection experiment, when the local os-
cillator is close enough to the free beat note, the laser
gets locked. Figures 2(b) and 2(c) show spectra corre-
sponding to two lines of Fig. 2(a), in the unlocked and
locked regimes, respectively. The locking range between
the beat note and the synthesizer, emphasized by the
dotted box in Figs. 2(a) and 2(d), is measured to be
about 2 MHz.

We observe that the locking region increases with the
reinjection rate, as is usual with injection schemes. Fig-
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FIG. 2. RF spectrum analysis of the beat note. Γexp =
2.2×10−4 (G = 12 dB). Resolution bandwidth (RBW) 50 kHz.
(a)-(c) η = 1.3 (Γ=20), Span 7 MHz. (a) Swept spectrogram
showing unlocked and locked states. RF spectra (b) from the
unlocked regime and (c) from the locked regime in (a). (d)
and (e) η = 4.1 (Γ=12). Span 6 MHz. (d) Swept spectrogram
showing the instability area within the locked state. (e) RF
spectrum extracted from the instability area in (d).

ure 3 shows a map of the experimental locking region
in the (∆,Γ) plane. Γ is driven by the EDFA gain. At
a maximum gain of 17 dB, the locking range is 4-MHz
wide. It is noteworthy to mention that such a locking
range is wide enough to compensate for usual laboratory
temperature variations, and that the DFFL then stays
locked for days. This map also shows that the locking
region is symmetrical with respect to the detuning. Note
also that, in a first realization of the loop made without
the EDFA, stabilization also occurred at small detunings
and the locking range was measured to be about 200 kHz.

C. Self-pulsing dynamics

In a second step, we notice that the DFFL offers an-
other kind of response at higher pumping rates. Indeed,
we observe an area of instabilities inside the locking range
as soon as η is above a value of roughly 3. The corre-
sponding spectrogram is then the one shown in Fig. 2(d),
recorded at η = 4.1, for example. The instability area
appears for positive values of ∆, and the spectrum then
develops a comb of equidistant lines with a frequency
spacing of the same order of magnitude as the relaxation
oscillation frequency (fR = 170 kHz in this case), as de-
picted in Fig. 2(e). The corresponding oscilloscope trace
is reproduced in Fig. 4, showing a regular self-pulsing
regime with a 200-kHz repetition rate of 2-µs-long pulses.

FIG. 3. Experimental stability maps in the (∆,Γ) plane at
different pumping rates. (a) η = 1.3, (b) η = 4.1. Dots
are experimental points. Colored areas delimit the different
stability regimes. White, unlocked; blue, locked; red, self-
pulsing instability.

We observe that the pulsing period increases with the
detuning. The lower panel of Fig. 3 shows both locking
(in blue) and instability (in red) regions in the (Γ,∆)
plane for η = 4.1. As in the previous low excitation rate
case, the locking range increases with the injection rate
up to about 4 MHz at maximum. The normalized right-
hand side vertical scale changes with respect to the upper
panel, since the relaxation oscillation frequency increases
with the excitation rate.

Interestingly, we find that when the roles of Ex and Ey

are interchanged, the response of the system looks differ-
ent at first sight. Thanks to the polarization controller,
we check the dynamical responses when Ey is injected
in the FSF loop instead of Ex. In this case, frequency
locking occurs between νx and the νy + fLO component
of the reinjected field. We still find a locking region, with
a comparable width, but the instability area appears for
an opposite detuning. This is obvious by comparing the
spectrograms of Figs. 5(a) and 5(b). This apparent sign
reversal is explained by considering the optical frequen-
cies: In the first situation [Figs. 5(a)], the instability is
obtained when ∆ > 0, that is νx − fLO < νy; in the
second situation [Figs. 5(b)] the instability is obtained
when ∆ < 0, that is νy + fLO < νx. It means that, in
both cases, the instability area is consistently found when
the reinjected “master” optical frequency is lower than
the “slave” optical frequency. Another feature of the in-
stability area is that it appears whatever the sweeping
direction but with a slight hysteresis: The width of this
instability area is narrower when ∆ decreases in the first
situation [νx − fLO injects νy; see Fig. 5(a)], or when ∆
increases in the second situation [νy + fLO injects νx; see
Fig. 5(b)].

Finally, when the DFFL operates within the stabil-
ity region, one can measure its phase noise. In Fig. 6,
we plot the phase noise spectra of the beat note in two
different parameter regions: in the phase-locked state
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FIG. 4. Oscilloscope trace of the self-pulsing regime inside
the instability area. η = 11.2 and Γ = 5.

FIG. 5. RF spectrograms recorded η = 4.1 and G = 13.6 dB.
(a) Ex reinjected with Γexp = 2.6 × 10−4 (Γ = 13.9). Span
5 MHz. Instability areas are observed when ∆ > 0. (b) Ey

reinjected with Γexp = 1.9 × 10−4 (Γ = 10.9). Span 2 MHz.
Instability areas observed when ∆ < 0.

(green curve) and at the edge of the instability region
(blue curve). One can see that the two curves are close
to each other at low offset frequencies; this could be an
indication of a bounded-phase state at the edge of the
instability area [16]. In the instability area, the phase
noise spectrum is affected by relaxation oscillations and
harmonics, but it is strongly reduced to −80 dBc/Hz at
1 kHz offset. These measurements are compared with a
previous plot of the free-running beat note phase noise
[9]: The noise is reduced by 40 dB at 1-kHz offset even
in the instability region.

To the best of our knowledge, this dynamical insta-
bility had not been observed in other laser structures,
and it is surely related to the specific time scales of this
system. We develop a rate-equation model in the next
section that intends to support these original experimen-
tal observations.

III. THEORETICAL MODEL

A. Rate equations with delayed feedback

In order to reproduce the experimental results, we in-
troduce the following model equations:

FIG. 6. Phase noise of the beat note in the locked state
(green curve), and at the edge of the self-pulsing state (blue
curve). Phase noise of the free-running beat, obtained from
the phase-locked loop in [9] is recalled for comparison (dashed
black curve).

dex
ds

= (1 + iα)
(mx + βmy)

1 + β

ex
2
, (1)

dey
ds

= (1 + iα)
(my + βmx)

1 + β

ey
2

(2)

+ i∆ ey + Γex(t− τ),

dmx,y

ds
= 1−

(
|ex,y|2 + β|ey,x|2

)
(3)

− εmx,y

[
1 + (η − 1)(|ex,y|2 + β|ey,x|2)

]
.

The model describes the amplitudes ex,y of two laser
fields coupled by optical injection, and the relative pop-
ulation inversions mx,y. The scaled time s is related to
the physical time t by s = 2πfRt. η is the pump param-
eter, and ε =

√
τcav

(η−1)τinv
, where τcav and τinv are the

cavity and inversion lifetimes, respectively. β accounts
for cross-saturation in the active medium. The ex field is
injected into the ey field after having been delayed and
frequency shifted. The injection process is accounted for
by two parameters: the detuning ∆ and the injection
strength Γ. The assumptions and approximations lead-
ing to this model are described in more detail in [14, 15]
and references therein. With respect to the equations
written in [14, 15], two important parameters complete
the model: The equations contain the phase-amplitude
coupling α and the delay τ associated with the propaga-
tion time in the fibered feedback loop.

The model parameters are set as follows. τinv is esti-
mated from the transient response of the laser to a step
in the pumping process, similarly to what is done in [28].
Combining the estimated value τinv ' 75 µs with the
measure of fR, around 160 kHz for a pump rate η = 4,
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FIG. 7. RF spectrogram computed from Eqs. (1)-(3) with (a)
η = 1.3, Γ = 15, τ = 0.029, ε = 0.085; and (b) η = 4.1, Γ =
8, τ = 0.047, ε = 0.0133. (c) Time series inside the instability
area with η = 4.1 and ∆ = 3. (d) Bifurcation diagram as ∆ is
swept from left to right (red), then from right to left (blue),
showing hysteresis as in the experiment (Fig. 5). α = 1 and
β = 0.65 in all simulations.

one can deduce τcav ' 40 ns. We note that from τcav one
can evaluate the global losses over one roundtrip to be
6 × 10−4 (−32 dB). This is in good agreement with the
independently estimated mirror transmission of −34 dB.
The reinjection strength Γ can be calculated via its ex-
pression Γ =

Γexp

τRT 2πfR
, where τRT is the roundtrip time

inside the laser cavity. For a typical value of G = 11 dB
one gets Γ ' 11. Now, Γ also gives an estimate of the half
width of the locking range normalized to fR. This leads
us to predict a locking range of around 3 MHz, in good
agreement with experiments. An important parameter
ruling the dynamics of the system is the cross-saturation
parameter β. We measure it experimentally by using the
ratio of the antiphase and relaxation oscillation frequen-
cies [29, 30] and find β = 0.65, in agreement with former
measures in bulk erbium lasers [31].

B. Simulation results

Figures 7(a) and 7(b) present the power spectrum of
the beat-note intensity Ixy as a function of the detuning
∆. Given that Eqs. (1)-(3) are written for slowly varying
amplitudes, the interference between the x− and y−po-
larized fields must be written as [14]

Ixy = |exei2πνxs + eye
i2π(νx−fLO)s|2

FIG. 8. Simulated stability maps in the (∆,Γ) plane at (a) η
= 1.3 and α = 1; (b) η = 4.1 and α = 1; (c) η = 4.1 and α =
0; and (d) η = 4.1 and α = 2. Other parameters as in Fig. 7.

= |ex + eye
−i2π[fb+∆]s|2, (4)

where all frequencies are normalized to fR. The numeri-
cal value of the free-running beat note frequency fb is im-
material for the present discussion, and has been shifted
to about 1.015 GHz in Fig. 7 to match with the experi-
mental value. We can see from Fig. 7 that the model is
able to reproduce the experimental findings. When |∆|
becomes smaller than Γ, the beat-note frequency locks on
fLO. Furthermore, at higher pumping rates, we recover
an instability area inside the locking range, for positive
detunings only, as in the experiment. Inside the insta-
bility area, observed periodic self-pulsing regime is pre-
dicted as well, as shown in Fig. 7 (c). This self-pulsing
regime appears for moderate, positive detunings only,
and presents some hysteresis [Fig. 7 (d)]. As the de-
tuning is further increased, phase-locking with the local
oscillator is recovered.

In order to have a more global view, we have com-
puted maps of the system’s behavior in the {∆, Γ} plane
(Fig. 8). To obtain these maps, a time series is computed
for each value of ∆ and Γ. Then, after eliminating the
transient dynamics, we calculate the difference between
the extrema of δφ(t) = φy(t) − φx(t), where φy(t) and
φx(t) are the arguments of ey and ex, respectively. If
max(δφ)−min(δφ) = 0 then the system is phase locked,
corresponding to the dark regions in the maps. Con-
versely if max(δφ)−min(δφ) = 2π then the system is un-
locked, as in the yellow regions. Intermediate bounded-
phase zones where max(δφ) − min(δφ) < 2π also ap-
pear. Figures 8(a) and 8(b) are computed with the same
phase-amplitude coupling α = 1. From Fig. 8(a), which
is computed with η = 1.3, we can see that the instability
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FIG. 9. Bifurcation diagram of the beat-note envelope vs the
delay τ . η = 4.1, Γ = 8, ∆ = 3.

area disappears at low pump rates. Figure 8(b) is com-
puted with η = 4.1 and reproduces the appearance of the
instability area. We check the influence of the α param-
eter on these results. First, Fig. 8(c) computed with α
= 0 fails to reproduce the experimental results, since the
instability area disappears. Second, Fig. 8(d) computed
with α = 2 shows a wide instability zone as in the exper-
iment but the bounded-phase zone almost disappears. In
Fig. 8(b) we notice that, close to the left border of the
instability area, we have a region of bounded phase in
agreement with the measured phase noise in Fig. 6, a
behavior already reported in other lasers [32]. Concern-
ing the apparent sign reversal observed experimentally
in Figs. 5(a) and 5(b), we notice that, in Eqs. (1)-(3),
whether νx > νy or not, the form of the equations is the
same. However, if νx > νy then νinj = νx − fLO, and
we obtain the RF detuning ∆ = fLO − fb. The insta-
bility occurs for ∆ > 0, i.e., for fLO > fb. If, on the
contrary, one has νx < νy, then νinj = νx + fLO, and
∆ becomes ∆ = fb − fLO. So, in this latter case the
instability appears for fLO < fb.

C. Discussion

What do we learn from simulations, that was not
known from the experiment? A first point is that the
phase-amplitude α factor, which is sometimes overlooked
in solid-state lasers, cannot be ignored in order to repro-
duce the experimental findings, in particular the asym-
metric behavior with respect to ∆. We notice that a
moderate value α = 1 yields a set of simulations con-
sistent with the experimental data. Another unexpected
insight is that the seemingly short delay (τ ' 0.05 in
units of the laser intrinsic time scale 1/ωR) plays a cru-
cial role in the appearance of the instability. This is
obvious from the bifurcation diagram in Fig. 9, where we
see that the instability begins at a finite, nonzero value of
the delay. This also sheds light on the dependence on the
pump rate η. Indeed, a lower value of η implies a slower

laser intrinsic dynamics, so that effectively, at low pump
rates, the feedback loop appears shorter (τ = 0.029 for
η = 1.3, while τ = 0.047 for η = 4.1) and the instabil-
ity disappears. Finally the crucial role of the delay also
reveals that the coupling due to cross-saturation in the
active medium is essential for observing this instability.
Indeed, if β = 0 the system boils down to a master-slave
configuration where the x mode is unaffected by the dy-
namics so that ex is a constant: Obviously in this case
the notion of delay loses its meaning.

IV. CONCLUSION

We have studied experimentally and theoretically a
dual-polarization fiber laser in the presence of frequency-
shifted feedback. In addition to the expected phase-
locking effect typical of coupled oscillators, we have ob-
served an original dynamical regime of self-pulsed opera-
tion inside the phase-locking region. A set of normalized
coupled rate equations has been introduced with all the
parameters experimentally measured except the α fac-
tor. It permits one to find all the typical regimes of this
laser’s dynamics: the phase locking region and the insta-
bility area.

As regards microwave photonics applications, our feed-
back scheme provides a very efficient stabilization mecha-
nism of the beat note. The locking range can reach 4 MHz
at maximum gain in our setup; it could be further en-
hanced with higher optical gain in the loop. The locking
range is wide enough to compensate for environmental
drifts, leading to robust beat-note stabilization for days,
with a phase noise as low as −90 dBc/Hz at 1-kHz offset
frequency. Here experiments were conducted with a beat
note around 1 GHz, but the loop would work at higher
frequencies if necessary, provided a wide-bandwidth mod-
ulator such as the EOM is used. Finally the setup is
all-fibered and could be integrated in a compact system.

Our work also shows that the phase-locked state can
be destabilized into a regular self-pulsing state, even with
a modest delay. We have found that this instability area
is characterized by the following features: (i) It appears
when the reinjected optical frequency is lower than the
other laser frequency only (denoting a nonzero value of
the α factor), (ii) its width increases with the reinjection
rate, (iii) it appears whatever the sweeping direction but
with a slight hysteresis. This impacts of course the design
of such loops for applications, where shorter loops would
be preferable to avoid spurious self-pulsed states.

Finally our rate-equation model provides simulations
consistent with all the experimental results, showing in
particular the necessity to include the α factor and the
feedback loop time delay. Extension to longer delays can
be conveniently realized in our all-fibered laser platform,
and easily implemented in the simulations for compari-
son. This model could also provide a basis for further
study of other short-cavity dual-frequency lasers, such as
DBR fiber lasers [8] or VECSELs [33].
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