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Abstract

We tackle a stochastic version of the Critical Node Problem (CNP) where the goal is to minimize the
pairwise connectivity of a graph by attacking a subset of its nodes. In the stochastic setting considered, the
outcome of attacks on nodes is uncertain. In our work, we focus on trees and demonstrate that over trees
the stochastic CNP actually generalizes to the stochastic Critical Element Detection Problem where the
outcome of attacks on edges is also uncertain. We prove the NP-completeness of the decision version of the
problem when connection costs are one, while its deterministic counterpart was proved to be polynomial.
We then derive a nonlinear model for the considered CNP version over trees and provide a corresponding
linearization based on the concept of probability chains. Moreover, given the features of the derived
linear model, we devise an exact Benders Decomposition approach where we solve the slave subproblems
analytically. A strength of our approach is that it does not rely on any statistical approximation such
as the Sample Average Approximation, which is commonly employed in stochastic optimization. We also
introduce an approximation algorithm for the problem variant with unit connection costs and unit attack
costs, and a specific integer linear model for the case where all the survival probabilities of the nodes in
case of an attack are equal. Our methods are capable of solving relevant instances of the problem with
hundreds of nodes within one hour of computational time. With this work, we aim to foster research on
stochastic versions of the Critical Node Problem, a problem tackled mainly in deterministic contexts so
far. Interestingly, we also show a successful application of the concept of probability chains for problem
linearizations significantly improved by decomposition methods such as the Benders Decomposition.

Keywords: Network interdiction, Critical Element Detection, Critical Node Problem, Stochastic Integer
Programming, Trees, Probability Chains, Benders Decomposition, Approximation algorithm.
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1 Introduction

We consider the Critical Node Problem (CNP), as introduced in [7], where the goal is to attack a subset of
the nodes of an undirected graph in order to minimize its pairwise connectivity, namely the number of pairs
of nodes still connected by a path in the fragmented graph. In this paper, we tackle a stochastic version
of the CNP over trees where the outcome of attacks on nodes is uncertain. For such a CNP version, we
propose both theoretical results and an exact solution method based on the concept of probability chains from
probability theory and Benders Decomposition (BD). Further approaches are proposed for specific variants
of the problem. This work extends some of the results in the literature for the CNP over trees within a
stochastic framework. From a practical point of view, the problem we consider might find applications in
contexts where the underlying graph is a tree, for instance in networks with an intrinsic hierarchical structure
where each node has “superiors” and “subordinates”, such as the dismantling of a network of terrorists (see,
e.g., [15]) or of a network of drug dealers as in [18]. The CNP is a particular case of the Critical Element
Detection Problem (CEDP) [46] which calls for fragmenting an undirected graph as much as possible by the
deletion of a subset of its edges and nodes. The aim of the CEDP/CNP is to give indications on the critical
elements of a network to protect or to attack according to the application of interest. These problems are
connected to Network Interdiction Problems (NIPs), which also consider the removal of network components
and have been intensively investigated in the recent years [39, 40]. Real-life applications of these problems
arise in many fields, including transportation networks [25], power distribution networks [36, 37], diffusion
phenomena such as viral infections and their mitigation [50, 44], homeland security [11] and bioinformatics
[42]. We refer to [39, 40] for a comprehensive introduction on network interdiction problems and their
applications. There exist many different connectivity metrics for estimating the dismantling of a network.
Earlier works on network interdiction mainly focused on the maximum flow that could be transported from a
source node s to a sink node t in a graph [49], or on increasing the length of the shortest path between s and t
[8, 23]. Studies [12, 13] consider further variants of maximum flow and shortest path problems involving the
detection of the most vital nodes in a network. In comparison, the CEDP and the CNP focus on measures
related to the cohesive properties of a graph, such as the number of maximally connected components, the
maximum cardinality of the connected components or the pairwise connectivity.

The CNP has been the object of numerous publications in the recent years. The authors of [7] prove the
strong NP-hardness of the problem and propose a Mixed Integer Linear Programming (MILP) formulation
along with a heuristic algorithm. Improved MILP formulations have been proposed afterwards in [16, 26,
33, 45] and in [46] where the deletion of edges is also considered. Since the MILP formulations can only
be reasonably applied to graphs of limited size, many heuristic approaches were proposed for dealing with
large graphs. Among others, we mention the recent studies in [3, 4, 5, 34, 51]. The study of the CNP
on specific graph classes such as trees attracted particular attention, as well. The authors of [15] study
the complexity of the pairwise connectivity CNP over trees by analyzing different problem variants and
providing polynomial and super-polynomial algorithms. The works [27] and [38] provide complexity results
for the CNP over trees and other specially structured graphs using alternative connectivity metrics, such
as the maximum cardinality of the connected components, the number of connected components or the
maximum pairwise connectivity between all the components. Further complexity and approximation results
for general or specially structured graphs are given in [1]. The study [47] discusses a generalization of
the pairwise connectivity CNP where the distances between node pairs impact the objective function. A
related CNP variant over trees is analyzed in [6]. More precisely, the authors of [6] establish complexity
results according to specific distance functions and introduce polynomial and pseudo-polynomial algorithms
for special graph classes such as paths, trees and series-parallel graphs. This version of the CNP also
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corresponds to a generalized multiple source-sink shortest path interdiction problem based on node removal
and with a nonlinear objective function. Few decomposition approaches have been explored to solve the CNP
through advanced Mathematical Programming methods, with the notable exceptions of [20] and [48] which
use Column Generation techniques. In these studies, the set of critical nodes is assumed to have a specific
structure such as a path, a clique or a star. Benders Decomposition is used in [22, 31] to respectively solve a
distance-based version of the CNP and a robust version with uncertain costs. We refer the interested reader
to the recent survey [28] for a detailed description of different CNP variants and of the related theoretical
results and algorithms available in the literature.

Stochastic versions of several interdiction problems were also considered in the literature. A stochastic
version of a Max-Flow Interdiction Problem is tackled in [14]. The problem calls for minimizing the maximum
flow between a source and sink in a graph by removing some of its edges where an attack on each edge can
fail with a given probability. The aim is thus to minimize the expected value of the maximum flow over all
possible scenarios of attack failures. The authors design a sophisticated and effective method to solve the
problem by partitioning the scenarios into clusters and reaching solutions with a predefined accuracy. The
method relies on different but equivalent formulations of the classic maximum flow interdiction problem:
one formulation includes the interdiction variables in the constraints while the other one includes them in
the objective function. The two formulations provide respectively upper and lower bounds on the optimal
solution when scenarios are aggregated. The BD method is used to solve the model with aggregated scenarios
by decomposing over the different clusters (this approach is called the L-shaped method in the literature),
as is usually done when applying BD to stochastic problems. The algorithm allows the authors to solve the
stochastic problem without sampling over an exponential set of scenarios. However, the approach exploits
the specific structure of the max flow problem and can hardly be generalized to other network problems
such as the CNP. The same problem is solved in [24] using a statistical approximation called the Sample
Average Approximation (SAA) and the model is decomposed by scenario using a BD approach.

The study [17] tackles a stochastic version of the CNP where the presence of the edges in a given graph is
uncertain. Each edge has an independent probability to be absent from the graph. This gives 2m different
scenarios to analyze where m denotes the number of edges in the input graph. The goal is to minimize
the expected pairwise connectivity after removing a subset of the nodes subject to a budget constraint. A
MILP model is introduced with an exponentially large number of variables due to the number of possible
scenarios. A heuristic approach is proposed by solving a reduced MILP with variables and constraints
aggregated. A local search procedure is then applied to improve the computed solutions. The approach uses
a Fully Polynomial Randomized Approximation Scheme (FPRAS) to estimate the objective value of each
computed solution within a given precision in polynomial time. Finally, a CNP variant with nondeterministic
connection costs for each pair of nodes is introduced in [19, 31] and formulated as a robust optimization
problem.

The probability chains method has been used in several works on stochastic NIPs, such as [30, 32, 29],
in order to linearize stochastic problems with a nonlinear objective function. The authors of [30] study
an interdiction problem to maximize the probability of detecting nuclear smugglers, where the uncertainty
concerns the origin and the destination of the smugglers. The authors of [32] study a protection facility
problem where a set of facilities is subject to potential disaster events. The work of [29] also deals with a
facility protection problem where different levels of protection can be assigned to each facility. The problem
has decision dependent uncertainties and a nonconvex objective function, which is linearized through the use
of probability chains. The recent work of [2] applies probability chains to linearize the objective function of a
stochastic assignment problem called the Weapon-Target Assignment Problem, which can also be classified
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as a type of interdiction problem.

1.1 Our contributions

The contributions of our work can be summarized as follows. At first, we introduce the stochastic version
of the CNP with uncertain outcome of attacks on nodes and provide an Integer Linear Programming (ILP)
model with an exponential number of variables and constraints on general graphs along with valid inequal-
ities. We then focus on trees and prove that the problem over trees is NP-complete even in cases where
its deterministic counterpart is polynomially solvable. We provide a compact nonlinear formulation of the
problem over trees and reformulate the nonlinear model as a MILP model using the concept of probability
chains. Given the features of the MILP model, we decompose the problem by adopting a classic Benders
Decomposition approach for which we derive effective analytical approaches to solve the slave subproblems.
Finally, we introduce an approximation algorithm for the problem variant over trees with unit connec-
tion costs and unit attack costs, and a specific ILP model for trees where all survival probabilities of the
nodes in case of an attack are equal. We evaluate the effectiveness of our solution methods by performing
computational tests on a large set of instances.

We remark that the proposed methods do not rely on any statistical approximation such as the Sample
Average Approximation method [21]: this is a strong feature of our approaches since it avoids the necessary
evaluation of a confidence interval on the optimal objective value, which in turn calls for solving the stochastic
problem at hand several times with different scenario samples.

The paper is organized as follows. We introduce a general ILP formulation for the stochastic CNP in
Section 2. In Section 3, we present models and theoretical results for the problem variant over trees. We
describe the proposed solution approach based on Benders Decomposition in Section 4. We discuss the
results of the computational tests in Section 5. The details of the ILP model for the case with equal survival
probabilities and of the approximation algorithm for the problem variant with unit costs are reported in
Appendices A and B, respectively. Section 6 provides some concluding remarks.

2 Notation and problem formulation over general graphs

In the stochastic CNP, hereafter denoted as SCNP , we are given an undirected graph G = (V,E) with a
set of nodes V and a set of edges E. Let n := |V | and m := |E| denote the number of nodes and edges
respectively. Sticking to the common terminology adopted in previous studies on the CNP, let also cij denote
the cost (or weight) of a connection between nodes i and j (i, j ∈ V ). This parameter can be considered
a cost as the presence of a connection in the CNP penalizes the corresponding objective function. Each
node i (i ∈ V ) has a set of neighbors Ni := {k : (i, k) ∈ E}, an attack cost κi, and a survival probability
pi in case of an attack. We have a budget value for the attacks on nodes denoted by K. We assume that
the survival probabilities are independent. This assumption is realistic in real-life applications where the
vulnerability of sites in a network does not depend on the outcomes of attacks on sites in other parts of the
network. For instance, when all the attacks on nodes occur simultaneously, the defender usually has no time
to redefine his/her defense strategy in terms of redistribution of the resources to protect each node. We
stress that our results rely heavily on the assumption of independent survival probabilities. The problem
calls for minimizing the expected value of the pairwise connectivity in the graph after attacking a subset
of the nodes. The SCNP is a generalization of the deterministic CNP (which is strongly NP-hard [1])
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where pi = 0 for all i ∈ V , i.e., an attacked node is always removed from the graph. We can derive an
ILP formulation for the problem as follows. As customary in Stochastic Programs, we consider the set of
possible scenarios S where each scenario defines which nodes would survive in case of an attack. Thus, the
number of scenarios is exponentially large with n, i.e., |S|= 2n. The probability that a scenario s̄ ∈ S occurs

is denoted by πs̄, with πs̄ =
n∏
i=1

γi, where γi = 1−pi if node i will not survive in the scenario, or else γi = pi.

We then introduce binary variables vi (i = 1, . . . , n) equal to 1 if and only if node i is attacked and binary
variables us̄ij equal to 1 if and only if two nodes i and j are connected by a path in scenario s̄ in the induced
subgraph G[V \ S], with S := {i ∈ V : vi = 1}. We also introduce parameter δs̄i , which is equal to 1 if an
attack on a node i ∈ V is unsuccessful in the scenario s̄ ∈ S. Based on the model in [45] for the deterministic
CNP, we formulate the stochastic CNP as follows:

min
∑
s̄∈S

πs̄
∑
i<j

ciju
s̄
ij (1a)

s.t.
∑
i

κivi ≤ K (1b)

vi = 0 i ∈ V : pi = 1 (1c)

us̄ij ≥ 1− (1− δs̄i )vi − (1− δs̄j )vj (i, j) ∈ E, s̄ ∈ S (1d)

us̄ij ≥
1

|Ni|
∑
k∈Ni

us̄kj − (1− δs̄i )vi (i, j) /∈ E : i < j, s̄ ∈ S (1e)

us̄ij ∈ {0, 1} i, j ∈ V : i < j, s̄ ∈ S (1f)

vi ∈ {0, 1} i ∈ V (1g)

The objective function (1a) minimizes the expected value of the pairwise connectivity by summing over
all possible scenarios. Constraint (1b) represents the budget constraint for the attacks on nodes in the
graph. Constraints (1c) enforce the fact that no node with probability of survival equal to one will be ever
attacked, as it is always suboptimal to consume budget for attacking a node that would survive anyway. In
each scenario s̄, where both nodes i and j of an edge (i, j) ∈ E can be successfully removed by an attack
(δs̄i = δs̄j = 0), constraints (1d) ensure that us̄ij = 1 only if both nodes i and j are not attacked (vi = vj = 0).
Note that when δs̄i (or δs̄j ) is equal to one, node i (or j) is functional in the graph even after it is attacked.
Similarly, constraints (1e) guarantee that, for two nodes i and j not connected by an edge, we have us̄ij = 1
if, on the one hand, there is at least one path between j and a neighbor of i, and, on the other hand, node
i remains functional in the graph (either vi = 0 and δs̄i = 0, or δs̄i = 1). Constraints (1f) and (1g) define
the domain of definition of the variables. Notice that the ILP formulation for the deterministic CNP where
pi = 0 (i = 1, . . . , n) is equivalent to model (1a)-(1g) with one scenario s̄ with πs̄ = 1 and δs̄i = 0 for
i = 1, . . . , n. Notice also that model (1) can be applied to any graph.

However, we remark that the model has a number of variables and constraints which is exponential in the
number of nodes n and thus it is intractable to solve even for graphs of very limited size. In small graphs
with n = 20, the number of scenarios to handle (220 ≈ 106) would be already computationally prohibitive
with model (1). Our goal is to overcome the limits of the generic model (1) when the graphs considered are
trees by offering effective exact solution approaches to deal with larger graphs and without considering any
statistical approximation such as a sampling of the scenarios.
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2.1 Valid inequalities

For our algorithmic developments over trees, we generalize a result for the deterministic version of the CNP
where both connection costs and deletion weights are one. Several works [38, 45, 46] point out that there
always exists an optimal solution for such a CNP variant where no node i ∈ V with only one neighbour
(|Ni|= 1, i.e., a leaf node) is selected. If a solution selects a leaf node, another solution which is never worse
can be obtained by replacing the leaf node with its neighbour.

We generalize this result to the SCNP with arbitrary connection costs cij ≥ 0 and arbitrary attack costs
κi > 0. Let D1 denote the set of leaf nodes, i.e., D1 = {i ∈ V : |Ni|= 1}. The following proposition holds.

Proposition 1: For any node pair i ∈ D1 and j ∈ Ni, with j /∈ D1, if pj ≤ pi and κj ≤ κi, then
vi ≤ vj in at least one optimal solution of model (1).

Proof. We consider the value of vi and vj in an optimal solution. If both nodes i and j are attacked or are
not attacked, we have vi = vj and the claim holds. We then compare the two remaining cases with vi 6= vj
where only one node between i and j is attacked.

Consider first the case where only node i is attacked, i.e., vi = 1 and vj = 0. Let 〈u(1)
kl 〉 denote the average

probability that a given pair of nodes k and l is connected by a path in this configuration, namely 〈u(1)
kl 〉 =∑

s̄∈S πsu
s̄
kl. The part of the objective function involving nodes i and j is given by

∑
k∈V :k 6=i,j ckj〈u

(1)
kj 〉 +∑

k∈V :k 6=i cki〈u
(1)
ki 〉. Since j is the only neighbor of i, any path between i and another node k has to go

through j and we have 〈u(1)
ki 〉 = pi〈u(1)

kj 〉 for any k 6= i, j. Using the fact that 〈u(1)
ij 〉 = pi, we have:∑

k∈V :k 6=i,j
ckj〈u

(1)
kj 〉+

∑
k∈V :k 6=i

cki〈u
(1)
ki 〉 = picij +

∑
k∈V :k 6=i,j

(ckj + picki)〈u
(1)
kj 〉. (2)

Consider now the case where only node j is attacked, vi = 0 and vj = 1, and let 〈u(2)
kl 〉 denote the average

probability that two nodes k and l are connected by a path. We have 〈u(2)
ki 〉 = 〈u(2)

kj 〉 for k 6= i, j and

〈u(2)
ij 〉 = pj . By also considering that 〈u(2)

kj 〉 = pj〈u(1)
kj 〉 for k 6= i, j, the contribution in the objective function

associated with nodes i and j is:∑
k∈V :k 6=i,j

ckj〈u
(2)
kj 〉+

∑
k∈V :k 6=i

cki〈u
(2)
ki 〉 = pjcij +

∑
k∈V :k 6=i,j

(pjckj + pjcki)〈u
(1)
kj 〉. (3)

Notice that the values of all the other terms associated with the remaining nodes in the objective function
do not change when only the values of vi and vj change. Thus, the difference in the objective value provided
by the two solutions corresponds to the difference between (2) and (3)

(pi − pj)cij +
∑

k∈V :k 6=i,j
((1− pj)ckj + (pi − pj)cki)〈u

(1)
kj 〉 (4)

which is nonnegative when pj ≤ pi as terms cij , ckj , 〈u
(1)
kj 〉 are nonnegative. Hence, since κj ≤ κi, a solution

that sets vi = 1 and vj = 0 can be improved by attacking node j instead of i, i.e., vi = 0 and vj = 1, which
implies vi ≤ vj .

Although the rest of this work is devoted to the study of trees, we stress that the previous inequalities are
valid for general graphs.
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3 The Stochastic Critical Node Problem over Trees

We now turn our attention to the stochastic CNP over trees where the outcome of a node attack is uncertain.
We denote this problem as SCNPtree. In this section, we first prove the NP-completeness of the problem
even when connection costs are one, while its deterministic counterpart was proved to be polynomial.
We then present a nonlinear reformulation of the problem from which we derive a Mixed Integer Linear
Programming (MILP) model and an exact approach in Section 4. A significant advantage of the proposed
MILP formulation with respect to model (1) is that it has a polynomial number of variables and constraints.
This allows us to solve to optimality instances of reasonable size (see Section 5) while, as discussed in
Section 2, model (1) can hardly tackle even small instances with 20 nodes without resorting to some kind
of statistical approximation. We conclude the section by providing a theoretical approximation result for a
problem variant with unit connection costs and unit attack costs and some remarks about other stochastic
problems over trees.

3.1 NP-completeness with unit connection costs

We denote as D-SCNPtree the decision version of the problem asking whether there exists a solution of
the SCNPtree with a value not superior to a target value Γ. The expected cost of the connection between
two nodes i and j can be computed in O(n) as it only depends on the products between cij and the
survival probabilities of the attacked nodes in their path. By considering all O(n2) paths in the tree, the
overall objective value of each given solution can be computed in polynomial time O(n3), implying that
the D-SCNPtree is an NP problem. Here we prove the NP-completeness of the D-SCNPtree even with
unit connection costs, i.e., cij = 1 for all i, j ∈ V , while the deterministic pairwise CNP variant with unit
connection costs was proved to be polynomial over trees in [15].

Proposition 2: The D-SCNPtree with unit connection costs is NP-complete.

Proof. We prove the theorem by a reduction from the Knapsack Problem (KP ), a well-known optimization
problem where a capacity value C and a set of n items with profits αi > 0 and weights wi > 0 are given. The
goal is to select a subset of the items to maximize the profits while ensuring that the weight of the selected
items does not exceed C. The decision version of KP , denoted by D-KP , is NP-complete and asks whether
there exists a feasible solution with a profit not inferior to a value A > 0. We can map each D-KP instance
into a D-SCNPtree instance as follows. We consider a root node with survival probability p1 = 0 and deletion
cost κ1 = 1. At the next level of the tree, we introduce n intermediate nodes 2, . . . , (n + 1) with survival
probabilities pi+1 = 1 and deletion costs κi+1 = 1 for i = 1, . . . , n. Then, to each of the intermediate nodes,
we attach a leaf node which corresponds to an item in the knapsack instance. Each leaf node (i + n + 1),
for i = 1, . . . , n, has a deletion cost κi+n+1 = wi and a survival probability pi+n+1 = 1 − αi/αmax, with
αmax = maxi{αi}. Finally, we set K = C+ 1, Γ = n− A

αmax
and cij = 1 for each pair of nodes i and j. Such

a reduction is polynomial in n.

To prove the NP-completeness of the D-SCNPtree, we have to show that a D-KP instance is a Yes instance,
i.e., it has a feasible solution with a profit not inferior to A, if and only if the related D-SCNPtree instance
is a Yes instance, i.e., the instance admits a solution with a value not superior to Γ. Notice that in the
considered settings any solution of a Yes instance of the D-SCNPtree must attack (and successfully delete)
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the root node. Else, a solution value of at least (n+1)((n+1)−1)
2 ≥ n > Γ would be induced by the connections

involving the root node and the intermediate nodes, which cannot be removed after an attack as their
survival probability is one. Since attacks on intermediate nodes only induce budget consumptions without
affecting the objective value and hence are suboptimal, without loss of generality we consider solutions of the
D-SCNPtree where the intermediate nodes are not attacked. Let us consider a Yes instance of D-SCNPtree
and a solution that attacks the root node and a subset of the leaves. If we denote by I the index set of
the attacked leaf nodes (i + n + 1) with i ∈ I, we get a solution with weight 1 +

∑
i∈I κi+n+1 ≤ K which

implies
∑

i∈I wi ≤ C. The corresponding objective value considers only the costs of the connections between
intermediate nodes and their leaves, as the probability of connection between every pair of nodes passing
through the root node is zero. Thus we have

n− |I|+
∑
i∈I

pi+n+1 = n− |I|+
∑
i∈I

1−
∑

i∈I αi

αmax
= n− |I|+|I|−

∑
i∈I αi

αmax
= n−

∑
i∈I αi

αmax
≤ Γ

which implies
∑

i∈I αi ≥ A. Hence, the solution of the D-SCNPtree instance provides also a solution of the
corresponding D-KP instance.

Likewise, consider a Yes instance of D-KP and a solution with item set I ′, namely with
∑

i∈I′ wi ≤ C
and

∑
i∈I′ αi ≥ A. We derive a solution of the D-SCNPtree instance by attacking the root node and the

leaves (i + n + 1) with i ∈ I ′. The corresponding weight and profit entries are 1 +
∑

i∈I′ κi+n+1 ≤ K and

n−
∑

i∈I′ αi

αmax
≤ n− A

αmax
= Γ.

The inherent difficulty of solving the stochastic CNP over trees even with unit connection costs also motivates
the development of the exact algorithm introduced in Section 4.

3.2 Nonlinear reformulation

Two given nodes in a tree are connected by a unique path of nodes. Hence, the expected cost of the connection
between two nodes i and j only depends on the products between cij and the survival probabilities of the
attacked nodes in their path. Let Pij denote the set of nodes, including nodes i and j, in the path between i
and j. Let Sij denote the set of nodes which are attacked in Pij , i.e., Sij = S∩Pij . The expected cost of the
connection between i and j is equal either to cij if Sij is empty or to the product cij

∏
k∈Sij

pk, as we assume
that the survival probabilities are independent. According to this consideration, we can state a nonlinear
model for SCNPtree with a polynomial number of variables and constraints. By keeping the notation of
model (1), we consider only binary variables vi associated with the attack of a node i and introduce the
following nonlinear reformulation:

min
∑
i<j

cij
∏
k∈Pij

(1− (1− pk)vk) (5a)

s.t.
∑
i

κivi ≤ K (5b)

vi = 0 i ∈ V : pi = 1 (5c)

vi ≤ vj i ∈ D1, j ∈ Ni, j /∈ D1, pj ≤ pi, κj ≤ κi (5d)

vi ∈ {0, 1} i ∈ V. (5e)
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The objective function (5a) represents the same sum over the connection costs as in objective (1a). However,
we have already performed the sum over the exponential set of scenarios S. In fact, the probability of survival
of the connection between two nodes i and j corresponds to the probability of survival of their path Pij .
Such a probability can be computed by multiplying the probabilities of survival of the attacked nodes. In
particular, for each node k ∈ Pij we have either 1 in the product

∏
k∈Pij

(1− (1−pk)vk) in (5a) if the node is

not attacked (vk = 0) or pk if the node is attacked (vk = 1). Therefore, the product
∏
k∈Pij

(1− (1− pk)vk)
represents the product

∏
k∈Sij

pk. Constraints (5b) and (5c) are the same constraints as (1b) and (1c),

respectively. Finally, constraints (5d) represent the valid inequalities introduced in Section 2.1. As discussed
in detail in Section 4, we propose a linear reformulation of model (5), that allows us to develop an effective
exact approach based on Benders Decomposition. We also derive a linear formulation for the specific problem
variant where all the survival probabilities are equal to a value p, i.e., pi = p for i ∈ V . Such a case could
occur when all the nodes of a network are defended with a similar level of protection. Even though this
might not be a likely situation in many practical applications, the proposed model might be of interest as
it can handle instances of reasonable size with a limited computational effort (see Section 5). The model
might also constitute a starting point for further developments in cases where the set of possible values
of the survival probabilities is very limited. We present the corresponding ILP model in Appendix A and
compare its effectiveness with the performance of the more general Benders Decomposition approach in our
numerical experiments in Section 5.

3.3 An approximation result for the SCNPtree with unit costs

For SCNPtree instances where both the connection costs and attack costs are one, we derive an approxima-
tion result that is summarized in the following proposition.

Proposition 3: For the SCNPtree with unit connection costs and unit attack costs, there exists an
approximation algorithm with pseudo-polynomial time complexity and an absolute approximation
bound of n(n−1)

2µ .

We refer to Appendix B for the details of the algorithm.

3.4 Considerations on other stochastic interdiction problems over trees

We conclude this section with some remarks about other stochastic interdiction problems over trees. We
first show that the considered CNP variant over trees actually generalizes to the CEDP over trees where
attacks on edges as well as on nodes succeed only with a given probability. The following proposition holds.

Proposition 4: The stochastic CEDP over trees with edge and node removal reduces to the
SCNPtree.

Proof. A stochastic CEDP instance has the same inputs of a SCNPtree instance plus a survival probability
and an attack cost for each edge (i, j) ∈ E, that we denote by p′ij and κ′ij , respectively. To obtain a SCNPtree
instance, it is sufficient to associate each edge (i, j) ∈ E with a new node eij emanating two edges towards
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nodes i and j respectively, giving a new tree with 2n − 1 nodes. For each new node eij , setting peij = p′ij
and κeij = κ′ij completes the reduction.

An alternative stochastic version of the problem also comes to mind where each edge is present in the
graph with an independent probability φij , as proposed in [17]. The problem calls for the minimization
of the expected value of the pairwise connectivity over all the possible realizations of the graph. However,
the following proposition shows that this CNP variant might be of limited interest over trees as it can be
reduced to the deterministic CNP and solved with existing methods available in the literature.

Proposition 5: The stochastic CNP over trees with uncertainty on the existence of edges reduces
to the deterministic CNP over trees.

Proof. In a tree, the probability that a connection exists between two nodes i and j is equal to
∏

(k,l)∈Eij φkl
where Eij denotes the set of edges in the unique path between i and j. Thus, it is sufficient to redefine the
connection costs cij as c′ij = cij

∏
(k,l)∈Eij φkl so as to obtain an instance of the deterministic CNP.

4 An exact solution approach for the SCNPtree

We propose an exact solution approach based on a linearization of model (5) and on Benders Decomposition.
We first introduce a MILP reformulation of model (5) and then present the proposed approach.

4.1 MILP reformulation of model (5)

We can linearize the objective function of model (5) by introducing additional variables and constraints to
compute the probability that a given connection exists through a recursive analysis of the corresponding
attacked nodes. More precisely, we employ the concept of probability chains (see, e.g., [32]). We compute
the probability of survival of each connection i-j as follows. Let us introduce continuous variables sijk , with

0 ≤ sijk ≤ 1, representing the probability that a connection i-j still exists when possible attacks on the first

k nodes in Pij are considered. We also introduce continuous variables rijk , with 0 ≤ rijk ≤ 1, that represent
the probability of disconnecting nodes i and j by considering an attack on the k − th node in the path,
provided that the connection survived possible attacks on the previous nodes. From now on, we will consider
the nodes in a path i-j indexed in increasing order. Correspondingly, we indicate by v[1], v[2], . . . , v[|Pij |] the
binary variables associated with attacks on the nodes in the original tree and by p[1], p[2], . . . , p[|Pij |] the
related survival probabilities. For the first node in Pij we have:

rij1 = (1− p[1])v[1]; (6)

sij1 = 1− rij1 . (7)

The variable rij1 is equal to (1− p[1])v[1] as this product represents the probability of disconnecting i and j

if the first node in the path is attacked. Correspondingly, the probability sij1 that the connection still exists

is computed as the complementary probability 1− rij1 . Moving to the second node in the path, by definition
of variables r, we have:

rij2 = (1− p[2])v[2]s
ij
1 . (8)
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The variable rij2 represents the probability of disconnecting i and j by considering a possible attack on the
second node in the path, given by the product (1− p[2])v[2], subject to the fact that the connection survived

a possible attack on the first node, which is represented by variable sij1 . The probability of survival sij2 is
then equal to 1 minus the probability that at least one previous attack is successful. Such a probability
is equal to rij2 + (1 − sij1 ), namely nodes i and j can be disconnected by an attack on the second node in

the path with probability rij2 or by an attack on the previous nodes (in this case only on the first node)

with probability 1 − sij1 . Notice that we can just sum up the probabilities of the two events as they are

independent according to the definition of rij2 . Therefore, we have

sij2 = 1− ((1− sij1 ) + rij2 ) = sij1 − r
ij
2 . (9)

Since variables v are binary and variables r and s are between 0 and 1, the nonlinear equation (8) can be
linearized by the following set of constraints:

rij2 ≤ (1− p[2])v[2], (10)

rij2 ≤ (1− p[2])s
ij
1 , (11)

rij2 ≥ (1− p[2])(s
ij
1 + v[2] − 1). (12)

By using equations (8), (9) and applying the same recursive argument for all the nodes in the path, we
compute the overall probability sij|Pij | that connection i-j exists, i.e., sij|Pij | =

∏
k∈Pij

(1− (1− pk)vk). Hence,

we linearize the objective function of model (5) by replacing the nonlinear terms in the objective with sij|Pij |
and by adding the corresponding constraints and variables for each path i-j. We obtain the following MILP
model:

min
∑
i<j

cijs
ij
|Pij | (13a)

s.t.
∑
i

κivi ≤ K (13b)

vi = 0 i ∈ V : pi = 1 (13c)

vi ≤ vj i ∈ D1, j ∈ Ni, j /∈ D1, pj ≤ pi, κj ≤ κi (13d)

rij1 = (1− p[1])v[1] i, j ∈ V : i < j (13e)

sij1 = 1− rij1 i, j ∈ V : i < j (13f)

rijk ≤ (1− p[k])v[k] k = 2, . . . , |Pij |, i, j ∈ V : i < j (13g)

rijk ≤ (1− p[k])s
ij
(k−1) k = 2, . . . , |Pij |, i, j ∈ V : i < j (13h)

rijk ≥ (1− p[k])(s
ij
(k−1) + v[k] − 1) k = 2, . . . , |Pij |, i, j ∈ V : i < j (13i)

sijk = sij(k−1) − r
ij
k k = 2, . . . , |Pij |, i, j ∈ V : i < j (13j)

rijk ≥ 0, sijk ≥ 0 k = 1, . . . , |Pij |, i, j ∈ V : i < j (13k)

vi ∈ {0, 1} i ∈ V (13l)

Notice that, since 0 ≤ pi ≤ 1 (i = 1, . . . , n), we can avoid adding bounds rijk ≤ 1, sijk ≤ 1 for k = 1, . . . , |Pij |.
Also, notice that for each subpath i-j′ of path i-j (j′ < j), the related constraints are already taken
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into account in the constraints for path i-j. Thus, for these subpaths, we just have to replace the term∏
k∈Pij′

(1− (1− pk)vk) with the variable sij
′

|Pij′ |
without adding additional constraints.

Furthermore, we can show that any optimal solution of model (13) sets the value of variables rijk equal to
the minimum value of the two upper bounds given by constraints (13g) and (13h), for each path i-j. An
immediate consequence of this result is that constraints (13i) can be removed from the model without loss
of generality.

Proposition 6: In any optimal solution of model (13), rijk = (1 − p[k]) min{v[k], s
ij
(k−1)} for k =

2, . . . , |Pij |.

Proof. For a given path i-j, the minimization of variable sij|Pij | in the objective function (as cij > 0) implies

that, according to related equality constraint (13j), variable rij|Pij | will be set to the largest possible value.

Hence we have rij|Pij | = (1−p[|Pij |]) min{v[|Pij |], s
ij
(|Pij |−1)} from the corresponding constraints (13g) and (13h).

Due to constraint (13j) for k = |Pij |, we can show that the minimization of sij|Pij | also implies that sij(|Pij |−1)

will be set to the lowest possible value (in accordance with the minimization of the cost of the related path of
length |Pij |−1): if v[|Pij |] = 0 in an optimal solution, then rij|Pij | = 0 and thus sij|Pij | = sij(|Pij |−1); if v[|Pij |] = 1,

then rij|Pij | = (1− p[|Pij |])s
ij
(|Pij |−1) and thus sij|Pij | = p[|Pij |]s

ij
(|Pij |−1).

In turn, the minimization of sij(|Pij |−1) implies the maximization of rij(|Pij |−1), thus giving rij(|Pij |−1) = (1 −
p[|Pij |−1]) min{v[|Pij |−1], s

ij
(|Pij |−2)}, as well as the minimization of sij(|Pij |−2). By considering sij(|Pij |−2) and

recursively applying the same argument, we have rijk = (1−p[k]) min{v[k], s
ij
(k−1)} for the remaining k values

(|Pij |−2), . . . , 2. Extending the same analysis to all paths completes the proof.

Corollary 1: Constraints (13i) are redundant and can be removed from model (13).

4.2 A Benders Decomposition approach

The classic version of the Benders Decomposition [9] relies on the construction of a Master Problem (MP)
involving all the binary/integer variables of a MILP model, denoted as “complicating” variables, and on
the construction of a continuous linear Slave Problem (SP) induced by fixing the variables of the MP. The
Master Problem is iteratively solved providing nondecreasing lower bounds (for a minimization problem) on
the optimal objective value of the original model. In each iteration, an optimal solution of the MP induces
a SP that can provide either a “feasibility” cut for the MP if SP is infeasible or else an optimality cut and
a feasible solution (an upper bound) for the original problem. This procedure is repeated until an optimal
solution is certified by the lower bounds provided by the MP. We refer the interested reader to the recent
survey [35] and the references therein for a discussion about applications and algorithmic variants of the
BD. We also mention the recent works [22, 31] for BD applications to variants of the CNP.

In the MILP formulation derived for SCNPtree, any feasible assignment of values to binary variables vi
induces a linear programming model related to all paths in the tree and with variables rij and sij only. The
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optimal solution of such an LP model coincides with the value of a SCNPtree feasible solution given by
attacking nodes i with vi = 1, i.e., it is equal to the sum of the average costs of the connections. A crucial
observation here is that an optimal solution of the induced LP model can be determined by separately
considering each subproblem associated with a path between two nodes i and j. All the subproblems for
pairs (i, j) are in fact independent once the variables vi are set. These structural aspects motivate us to apply
the classic Benders Decomposition method where binary variables vi are included in the Master Problem
and all the continuous variables are projected out in the slave subproblems.

We rely on a MILP solver to compute an optimal solution of the Master Problem which is passed as input to
the slave subproblems at each iteration. As a further option, we also investigate the use of the MILP solver
provided with additional cuts when solving the Master Problem. Nowadays modern MILP solvers allow
the insertion of problem-specific cuts (user cuts) in their branch and cut tree to violate the LP relaxation
solutions computed in each node. Typically, violated cuts are iteratively added and the optimal LP solution
of a node is recomputed until no violated cut can be identified. In our settings, we might derive specific
cuts for the solution of each Master Problem by applying the Benders recipe to the LP solutions (with
fractional vi), which are computed by the MILP solver during the exploration of the branch and cut tree.
We manage to analytically derive both these cuts and the classic optimality Benders cuts by means of an
effective procedure that avoids the use of an LP solver for handling the slave subproblems. We describe
the details of the proposed Benders Decomposition approach in the next subsections and then provide the
corresponding pseudo-code.

4.2.1 Master Problem

For the SCNPtree, we construct the following Master Problem. Since for any given assignment of variables
vi, we can separately analyze the paths in the tree, for each path i-j we introduce a nonnegative variable
zij that relates to the cost of connection i-j through a set of constraints Φij(zij , v). As explained next, each
set Φij(zij , v) is iteratively filled with optimality cuts induced by the slave subproblem SPij associated with
path i-j. We obtain the following formulation:

MP:

min
∑
i<j

zij (14a)

s.t.
∑
i

κivi ≤ K (14b)

vi = 0 i ∈ V : pi = 1 (14c)

vi ≤ vj i ∈ D1, j ∈ Ni, j /∈ D1, pj ≤ pi, κj ≤ κi (14d)

Φij(zij , v) i, j ∈ V : i < j (14e)

vi ∈ {0, 1} i ∈ V (14f)

zij ≥ 0 i, j ∈ V : i < j (14g)

At each iteration, an optimal solution of the MP provides a lower bound on the SCNPtree optimal value
and an assignment of the vi variables to the slave subproblems. The values of variables vi also constitute a
feasible solution for the SCNPtree.
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4.2.2 Slave Problems

Each Slave Problem SPij(v̂) associated with path i-j receives as input a vector v̂ that represents the assign-

ment of values to variables vi provided by the MP in each iteration. A problem SPij(v̂) has term cijs
ij
|Pij |

in the objective function and constraints (13e)-(13h) and (13j) (constraints (13i) are not considered due to
Corollary 1), where the terms involving variables vi become constant and are placed in the right-hand sides.
Even though rijk − (1− p[k])v̂[k]s

ij
k−1 = 0 (for k = 2, . . . , |Pij |) would be a linear constraint in the Slave Prob-

lem, we still need to implement it to the Slave Problem through its linearized constraints. Otherwise, the
dual space would depend on a solution to the Master Problem which may violate the validity of a Benders
optimality cut. We obtain the following LP formulation:

SPij(v̂):

min cijs
ij
|Pij | (15a)

s.t. rij1 = (1− p[1])v̂[1] (λij11) (15b)

sij1 + rij1 = 1 (λij12) (15c)

rijk ≤ (1− p[k])v̂[k] k = 2, . . . , |Pij | (λijk1) (15d)

rijk − (1− p[k])s
ij
k−1 ≤ 0 k = 2, . . . , |Pij | (λijk3) (15e)

sijk − s
ij
k−1 + rijk = 0 k = 2, . . . , |Pij | (λijk2) (15f)

rijk ≥ 0, sijk ≥ 0 k = 1, . . . , |Pij | (15g)

In problem SPij(v̂) we associate dual variables λijk` with constraints (15b)-(15f), with index ` = 1, 2 for
k = 1 and ` = 1, 2, 3 for k > 1. Notice that we assign the index value l = 2 to constraints (15f) as they
correspond to constraint (15c) for k > 1 and in order to write the dual problem in a more compact form.
The corresponding dual formulation of the subproblem SPij(v̂), denoted as SP dualij (v̂), is as follows:

SP dualij (v̂):

max (1− p[1])v̂[1]λ
ij
11 + λij12 +

|Pij |∑
k=2

((1− p[k])v̂[k]λ
ij
k1) (16a)

s.t. λij11 + λij12 ≤ 0 (16b)

λijk1 + λijk3 + λijk2 ≤ 0 k = 2, . . . , |Pij | (16c)

λijk2 − (1− p[k+1])λ
ij
(k+1)3 − λ

ij
(k+1)2 ≤ 0 k = 1, . . . , |Pij |−1 (16d)

λij|Pij |2 ≤ cij (16e)

λij11 ∈ R, λijk2 ∈ R : k = 1, . . . , |Pij | (16f)

λijk1 ≤ 0, λijk3 ≤ 0 : k = 2, . . . , |Pij | (16g)

Dual constraint (16b) is associated with variable rij1 , constraints (16c) are associated with variables rijk
(k = 2, . . . , |Pij |), constraints (16d) with variables sijk (k = 1, . . . , |Pij |−1) and constraint (16e) with vari-

able sij|Pij |, respectively.
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4.2.3 Benders cut separation

We remark that each SPij(v̂) is a feasible problem for a given solution provided by the MP. Hence no
feasibility cut is derived. Let us now consider the current integer optimal solution (v̂, ẑ) of the MP. Denote
by λ̂ij the value of variable λij in an optimal solution of the dual problem SP dualij (v̂). If the corresponding

objective value in (16a) (= cijs
ij
|Pij | by strong duality) is superior to the value of variable ẑij , we add the

following classic Benders optimality cut to set Φij(zij , v) in the MP:

zij ≥ (1− p[1])v[1]λ̂
ij
11 + λ̂ij12 +

|Pij |∑
k=2

((1− p[k])v[k]λ̂
ij
k1) (17)

as the current optimal solution of the MP violates this constraint. We consider all the slave subproblems at
each iteration and possibly add a cut for each subproblem. This strategy is often indicated in the literature
as a multi-cut reformulation (see, e.g., [35]). Then the MP is solved again and the process repeats until the
lower bound converges to the value of the best SCNPtree solution found.

The same reasoning for the generation of cuts still applies when the LP relaxation of the Master Problem is
solved at each iteration, namely when the integrality constraints on variables vi are replaced by the inclusion
in [0, 1]. Therefore, as mentioned in Section 4.2, we might even fill a branch and cut MILP solver launched
on the Master Problem with cuts (17) violating the LP solutions computed at each node of the branch and
cut tree. We tested this modern implementation of Benders Decomposition in our numerical experiments.
Unfortunately, in our instances, adding cuts in this manner turns out to be less efficient than solving the
MP with only the classic optimality cuts added at each iteration (and so, for the sake of exposition, we
decided not to report the corresponding results in Section 5).

The derivation of cuts (17) can be handled by calling an LP solver to compute an optimal solution of the
dual slave problems. On the other hand, the multi-cut nature of our approach might cause a large number
of calls to an LP solver. For a more effective handling of the cut generation process, we derive an analytical
procedure to determine an optimal solution of the dual slave problems. The proposed procedure is described
in the next subsection.

4.2.4 Analytical approaches for problems SPij(v̂) and SP dualij (v̂)

The optimal objective value of problem SPij(v̂) (or of its dual problem SP dualij (v̂)) yields the cost of the
connection i-j for a feasible binary assignment of variables v̂ provided by the MP. A straightforward optimal
solution of problem SPij(v̂) is:

ŝijk =
∏
`≤k

(1− (1− p[`])v̂[`]) k = 1, . . . , |Pij | (18)

r̂ijk = (1− p[k])v̂[k]ŝ
ij
k−1 = (1− p[k])v̂[k]

∏
`≤k−1

(1− (1− p[`])v̂[`]) k = 1, . . . , |Pij | (19)

The corresponding objective value is cij ŝ
ij
|Pij | = cij

∏
`≤|Pij |(1 − (1 − p[`])v̂[`]). Notice that the last product

in (19) is equal to 1 when k = 1.

Given the optimal values (r̂ijk , ŝ
ij
k ) of the primal variables of problem SPij(v̂), we analytically compute the

optimal values λ̂ij of the dual problem SP dualij (v̂) by the following procedure denoted as ComputeSolλij .

15



Procedure ComputeSolλij

1: Input: A solution vector v̂ from the MP, an optimal solution (r̂ijk , ŝ
ij
k ) of problem SPij(v̂).

2: Output: An optimal solution of the dual problem SP dualij (v̂).

3: for i = 1 to i = |Pij | do
4: if (v̂[i] = 1 and p[i] = 0) then return λ̂ijk` := 0 for k = 1, . . . , |Pij | and ` = 1, 2, 3; end if

5: end for

6: λ̂ij|Pij |2 := cij ;

7: if (v̂[|Pij |] < ŝij|Pij |−1) then λ̂ij|Pij |1 := −λ̂ij|Pij |2, λ̂ij|Pij |3 := 0;

8: else λ̂ij|Pij |1 := 0, λ̂ij|Pij |3 := −λ̂ij|Pij |2;

9: end if

10: for k = |Pij |−1 to k = 2 do

11: λ̂ijk2 := (1− p[k+1])λ̂
ij
(k+1)3 + λ̂ij(k+1)2;

12: if (v̂[k] < ŝijk−1) then λ̂ijk1 := −λ̂ijk2, λ̂ijk3 := 0;

13: else λ̂ijk1 := 0, λ̂ijk3 := −λ̂ijk2;

14: end if

15: end for

16: λ̂ij12 := (1− p[2])λ̂
ij
23 + λ̂ij22;

17: λ̂ij11 := −λ̂ij12;

18: return λ̂ijk` for k = 1, . . . , |Pij | and ` = 1, 2, 3.

Proposition 7: Procedure ComputeSolλij provides an optimal solution of any dual slave problem
SP dualij (v̂).

Proof. Given an optimal solution of problem SPij(v̂), we apply the complementary slackness conditions from
duality theory to deduce an optimal solution of problem SP dualij (v̂). At first, we consider the case where
there is at least one variable v̂i = 1 with pi = 0 in the solution provided by the MP. This implies that nodes
i and j are disconnected, namely the optimal objective value of problem SPij(v̂) is 0. Therefore a feasible

and optimal dual solution is simply obtained by setting λ̂ijk` = 0 for all k and l.

In the remaining cases, no certain disconnection occurs in the path between i and j. Thus, we have ŝijk > 0
for k = 1, . . . , |Pij |. Here, slackness conditions imply that an optimal dual solution must satisfy constraints
(16d) and (16e) at equality. We now proceed by considering the last node in Pij and the dual variables

λij|Pij |` (` = 1, . . . , 3). From constraint (16e), we have λ̂ij|Pij |2 = cij . To derive the values of λij|Pij |1 and λij|Pij |3,

we have to consider two cases: a) v̂[|Pij |] < ŝij|Pij |−1; b) v̂[|Pij |] ≥ ŝ
ij
|Pij |−1.

In case a), constraint (15e) (k = |Pij |) is nonbinding. So we have λ̂ij|Pij |3 = 0 due to the associated comple-

mentary slackness condition. From Proposition 6, we also have r̂ij|Pij | = (1 − p[|Pij |])v̂[|Pij |], with r̂ij|Pij | ≥ 0.

If r̂ij|Pij | > 0, then an optimal dual solution must satisfy constraint (16c) (k = |Pij |) with equality, thus

giving λ̂ij|Pij |1 = −λ̂ij|Pij |2. If r̂ij|Pij | = 0, this means that v̂[|Pij |] = 0 (notice that even if p[|Pij |] = 1, then still
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v̂[|Pij |] = 0 due to the related constraint (14c)). Since variable λij|Pij |1 appears only in the related constraint

(16c) and is not in the objective function anymore when v̂[|Pij |] = 0, we can again set λ̂ij|Pij |1 = −λ̂ij|Pij |2 to

satisfy such a constraint.

In case b), constraint (15d) (k = |Pij |) is nonbinding implying λ̂ij|Pij |1 = 0. In this case, we have r̂ij|Pij | =

(1−p[|Pij |])ŝ
ij
|Pij |−1 from Proposition 6, with r̂ij|Pij | > 0 as ŝij|Pij |−1 > 0 and p[|Pij |] < 1 (as v̂[|Pij |] ≥ ŝ

ij
|Pij |−1 > 0).

This implies that the corresponding dual constraint (16c) must be satisfied at equality in an optimal dual
solution, hence λ̂ij|Pij |3 = −λ̂ij|Pij |2. We now iteratively consider nodes k = |Pij |−1, . . . , 2. As sijk > 0 for all

k, from constraints (16d) we have

λ̂ijk2 = (1− p[k+1])λ̂
ij
(k+1)3 + λ̂ij(k+1)2.

After computing the value of λ̂ijk2 with the last equation, we can apply the previous analysis to compute

the values of λ̂ijk1 and λ̂ijk3 according to the value of v̂[k] and ŝijk−1. Correspondingly, we obtain λ̂ijk1 = −λ̂ijk2

and λ̂ijk3 = 0 if v̂[k] < ŝijk−1 or else λ̂ijk1 = 0 and λ̂ijk3 = −λ̂ijk2. When we reach the first node in the path, we

have λ̂ij12 = (1− p[2])λ̂
ij
23 + λ̂ij22 due to the related constraint (16d). Finally we can set λ̂ij11 = −λ̂ij12 to satisfy

constraint (16b) for any value of r̂ij1 .

Notice that the computed dual solution is feasible as it satisfies all the dual constraints and bounds (16g). The
solution has been derived by invoking the slackness conditions on the primal variables and the corresponding
dual constraints. We can easily show that it also satisfies the complementary slackness conditions on
the dual variables and the related primal constraints, implying that the dual solution is optimal. These
complementary slackness conditions are trivially satisfied for primal constraints (15b), (15c) and (15f) as
they are equality constraints. Constraints (15d) and (15e) are either satisfied at equality as well (invoking
Proposition 6) or are nonbinding. But in the latter case the corresponding dual variable is set to 0 thus
satisfying complementary slackness.

We remark that the procedure ComputeSolλij also applies to fractional solutions of the linear relaxation of
the MP.

We report the pseudo-code of the proposed exact approach below. After an initialization step (Lines 2-3)
where we start with empty sets Φij(zij , v), we iteratively solve the MP (Line 5) as long as the obtained
lower bound LB is not within a precision value ε of the best solution value obtained so far, denoted as
UB (while-loop in Lines 4-17). In the first iteration, we consider the optimal solution of the MP where all
variables are equal to 0. In the next iterations, the values of LB and UB are updated according to the
solutions given by the MP (Lines 6-10). We also add the relevant cuts to the MP given by solving the dual
slave subproblems (Lines 11-16). The solution set S of the attacked nodes in the best solution is finally
returned (Line 18).
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Algorithm BDSCNP

1: Input: SCNPtree instance, parameter ε;

2: S := {∅}; LB := 0; UB :=∞;

3: Φij(zij , v) := {∅} for i, j ∈ V : i < j;

4: while UB − LB > ε do

5: (ẑ, v̂)← solve MP;

6: if
∑

i<j ẑij > LB then LB :=
∑

i<j ẑij ; end if

7: for i, j ∈ V : i < j do

8: (ŝij , r̂ij)← compute an optimal SPij(v̂) solution according to (18)-(19);

9: end for

10: if
∑

i<j cij ŝ
ij
|Pij | < UB then UB :=

∑
i<j cij ŝ

ij
|Pij |, S := {i ∈ V : v̂i = 1}; end if

11: for i, j ∈ V : i < j do

12: if ẑij < cij ŝ
ij
|Pij | then

13: λ̂ij ← solve SP dualij (v̂);

14: Add constraint (17) to set Φij(zij , v);

15: end if

16: end for

17: end while

18: return S.

5 Computational results

We first describe the setting of our numerical experiments as well as the characteristics of the different
instances generated. Then, we discuss the results and the performance of the proposed approaches.

5.1 Experimental conditions and instances

All algorithms have been implemented in C++, compiled with gcc 4.1.2, and all tests were performed on
an HP ProLiant DL585 G6 server with two 2.1 GHz AMD Opteron 8425HE processors (with 12 threads)
and 24 GB of RAM. We used solver CPLEX 12.8 to solve model (13) and the MP along the iterations of
algorithm BDSCNP . For model (13), we set the precision level (absolute gap) of CPLEX 12.8 to 0.001. The
other parameters of the solver were set to their default values. In algorithm BDSCNP we set ε = 0.001
for a fair comparison with CPLEX 12.8 launched on model (13). We generated trees with the number of
nodes n ranging from 20 to 750. For each value of n, 30 different trees were generated as in [15], i.e., using
Broder’s algorithm for the uniform spanning tree problem [10]. The generation scheme in [15] guarantees
that each tree is randomly chosen with uniform distribution among all trees with n nodes. For each instance,
we generated a set of survival probabilities pi (i ∈ V ) uniformly distributed between 0 and 1 and with two
decimal digits. For each tree, we considered different sets of weights. A first set of unweighted instances
considers both unit attack costs κi and unit connection costs cij . Then, we generated weighted instances
with three different sets of weights. A first set of weights (type 1 ) considers both attack costs and connection
costs as integers uniformly distributed in the interval [1, 10]. A second set of weights (type 2 ) still considers
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connections costs cij ∈ [1, 10] but attack costs κi ∈ [1, 100]. The last set of weights (type 3 ) considers
connection costs cij ∈ [1, 10] and attack costs equal to the inverse of the survival probability of each node,
i.e., κi = 1/pi for each i ∈ V , where we set κi = 100 if pi = 0. For this last set of weights, the rationale is to
generate instances which are expected to be hard to solve in the sense that nodes with a lower attack cost
have also a higher survival probability. Summarizing, each instance has a unique set of probabilities pi but
four different sets of attack costs and connection costs. The budget K is equal to 10% of the sum of the attack
costs of the nodes: K = 0.1

∑
i∈V κi. We remark that even for the smallest instances with n = 20, the use

of the general model (1) would be impractical due to the induced large number of variables and constraints
given by the number of scenarios to analyze. Our approach does not explicitly require the definition of all
possible scenarios. Thus, it can be applied to larger instances within reasonable computational times, as
discussed in the next sections. We tested model (13) and algorithm BDSCNP with a time limit of 3600
seconds.

5.2 Results for the unweighted instances

We first present the computational results for the unweighted instances in Table 1. For each given number
of nodes n, the table reports the performance of model (13) solved over 30 instances in terms of average
computational time (column time), average percentage gap 1 − LB

UB (column gap (%)) between the best
solution found (UB) for the problem and its lower bound (LB), number of instances solved within the time
limit (column # closed). The average values consider also the instances where the time limit is reached.
The same entries are reported for algorithm BDSCNP with two additional columns: the average number
of iterations (column # iter.) executed by the algorithm and the average number of cuts added over all
iterations (column # cuts). The best percentage gap between the two approaches is displayed in bold font.
The results in Table 1 illustrate that model (13) successfully solves instances with up to 60 nodes and all
the instances with 80 nodes but one. For larger instances with up to 150 nodes, the solver hardly succeeds
in solving the instances within the time limit of 3600 seconds and in obtaining relatively small percentage
gaps. Given the performance of the model (13) on instances with 150 nodes, we did not test the model on
instances with 300 or more nodes.

Algorithm BDSCNP shows up to outperform model (13). The proposed algorithm solves all 30 instances for
trees with up to 80 nodes with a lower average running time. For larger instances, the running times and
percentage gaps provided by algorithm BDSCNP are considerably smaller than the ones given by model (13).
Even on instances with 150 nodes, algorithm BDSCNP closes almost two thirds of the benchmark instances
while model (13) closes none of the 30 instances. We point out that in our numerical experiments, the valid
inequalities of Proposition 1 tend to speed up the performance of algorithm BDSCNP by a considerable
factor. Indeed, on instances with up to 100 nodes, they provide a reduction by 20-30% in the running
times. This effect is harder to evaluate in the instances where the algorithm runs out of time. The limits
of BDSCNP in our experimental setting seem to be reached for instances between 300 and 500 nodes, since
the relative gap at 500 nodes starts to be large (more than 20%).
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n Model (13) BDSCNP

time gap (%) # closed time gap (%) # closed # iter. # cuts

20 0.63 0.00 30 0.53 0.00 30 2.57 289.37
40 5.63 0.00 30 4.47 0.00 30 4.33 1939.60
60 114.47 0.00 30 24.07 0.00 30 5.43 5578.97
80 885.70 0.09 29 116.23 0.00 30 6.37 12159.03
100 3054.17 3.28 14 900.00 0.24 28 8.60 24450.40
120 3486.70 19.69 2 1261.90 0.23 26 7.67 32895.00
150 3600.00 48.96 0 2321.07 0.91 19 7.63 52272.27
300 - - - 3600.00 9.02 0 2.93 109030.13
500 - - - 3600.00 21.54 0 1.97 219325.33
750 - - - 3600.00 73.67 0 1.33 359221.07

Table 1: SCNPtree unweighted instances.

5.3 Results for the weighted instances

The results for the three types of weighted instances are reported in Tables 2-4. For model (13), we report
the results without the valid inequalities of Proposition 1 in the MILP model, since the solver performs
better without these additional constraints in the weighted instances. Instead, the valid inequalities are still
beneficial for algorithm BDSCNP as in the unweighted instances. The comparison between model (13) and
algorithm BDSCNP confirms the previous trend in the results. In general, algorithm BDSCNP solves more
instances than model (13) within the considered time limit, except for instances of type 3 with 80 nodes.
For large instances with more than 120 nodes, model (13) is not capable of solving the instances with a
reasonably small percentage gap, while algorithm BDSCNP provides low average gaps for instances with
up to 150 nodes and gaps less than 10% for instances with 300 nodes (except for type 3 instances). As we
should expect, the type 3 instances turn out to be the hardest instances to solve. Nevertheless, algorithm
BDSCNP provides solutions for type 3 instances with 150 nodes with an average percentage gap of 6%,
although the algorithm does not close any instance within the time limit. With respect to the unweighted
instances, we notice that the number of iterations and the number of generated cuts of the algorithm tend
to increase for weighted instances, in particular for type 3 instances.

In general, solving to optimality instances with 300 or more nodes is currently out of reach. In these large
instances, the convergence process of algorithm BDSCNP is heavily affected by the difficulty of solving
to optimality the Master Problem when the number of optimality cuts increases. For such instances, our
algorithm can be seen as a heuristic with a guarantee on the quality of the solutions given by the computed
lower bounds.
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n Model (13) BDSCNP

time gap (%) # closed time gap (%) # closed # iter. # cuts

20 0.70 0.00 30 1.17 0.00 30 2.57 315.63
40 6.13 0.00 30 8.93 0.00 30 5.60 2566.27
60 115.67 0.00 30 37.27 0.00 30 6.33 6309.97
80 704.53 0.00 30 175.57 0.00 30 7.70 13986.00
100 2919.53 1.47 19 648.03 0.16 28 8.03 24282.80
120 3507.63 6.69 3 1387.23 0.05 24 8.87 36801.63
150 3600.00 55.20 0 2668.47 0.97 16 8.00 57318.87
300 - - - 3600.00 8.55 0 3.30 127527.40
500 - - - 3600.00 17.51 0 2.07 234602.40
750 - - - 3600.00 58.16 0 1.60 427493.53

Table 2: SCNPtree weighted instances (type 1).

n Model (13) BDSCNP

time gap (%) # closed time gap (%) # closed # iter. # cuts

20 0.93 0.00 30 1.17 0.00 30 2.83 359.77
40 6.90 0.00 30 4.73 0.00 30 4.83 2263.00
60 158.73 0.00 30 28.40 0.00 30 5.50 6041.87
80 932.07 0.00 30 104.33 0.00 30 6.80 12635.27
100 2875.90 1.87 19 687.97 0.06 29 8.70 24405.93
120 3506.07 6.87 3 1221.00 0.07 26 8.03 33641.67
150 3600.00 45.48 0 2809.67 0.69 15 8.13 56545.30
300 - - - 3600.00 9.58 0 3.40 128142.57
500 - - - 3600.00 15.46 0 2.33 261545.87
750 - - - 3600.00 67.45 0 1.40 373020.47

Table 3: SCNPtree weighted instances (type 2).

21



n Model (13) BDSCNP

time gap (%) # closed time gap (%) # closed # iter. # cuts

20 0.93 0.00 30 2.43 0.00 30 5.47 633.27
40 11.00 0.00 30 22.80 0.00 30 8.87 4073.53
60 240.07 0.00 30 272.40 0.00 30 12.03 12815.43
80 1361.83 0.03 29 1014.30 0.09 27 10.93 21726.67
100 3157.00 3.52 11 2224.20 0.96 18 10.10 34298.77
120 3600.00 16.35 0 3055.90 3.12 9 8.47 46471.73
150 3600.00 41.61 0 3600.00 6.13 0 6.43 63291.63
300 - - - 3600.00 17.67 0 3.30 145304.60
500 - - - 3600.00 27.01 0 2.80 346410.50
750 - - - 3600.00 63.44 0 1.77 494929.87

Table 4: SCNPtree weighted instances (type 3).

5.4 Procedure ComputeSolλij versus solving LP problems

In order to evaluate the effectiveness of the procedure ComputeSolλij , we also compared the analytical
procedure with the alternative of solving the LP models SP dualij (v̂) with CPLEX 12.8. We performed the
comparison by considering as a test-bed all unweighted and weighted instances with up to 150 nodes and by
computing the overall time taken by ComputeSolλij and by the LP solver to solve all suproblems SP dualij (v̂)
in each instance. Our procedure required much less time than the LP solver: the ratio between the time
taken by ComputeSolλij and that taken by the LP solver was usually less than 1% with values ranging
from 0.2% to 1%. These results highlight the gain in performance of the proposed procedure. In general,
the computational effort needed to solve the master problems is expected to represent a large portion of the
whole running time, especially for larger instances. Still, it turned out that solving the dual subproblems
with the LP solver would have required a non-negligible part of the computational time. In small instances
with 60 nodes or less, the time taken by the LP solver was of the same order as the time devoted to the
master problems, while the ratio between the two times was equal to 18% in unweighted instances with 100
nodes and 6% in unweighted instances with 150 nodes. The same trend emerged for the weighted instances.

5.5 Results for instances with equal survival probabilities

To get a broader picture on the performance of our approaches, we also tested instances where all the
survival probabilities are equal to a value p, i.e., pi = p for i ∈ V . We benchmarked algorithm BDSCNP

against the specific ILP model, called ILPp, that we derived for this problem variant. The details of model
ILPp are reported in Appendix A. We considered unweighted instances and weighted instances of type 1
and two probability values: p = 0.2 and p = 0.4. We report the results for the unweighted instances in
Table 5 and those for the weighted instances in Table 6. Model ILPp was solved by means of CPLEX 12.8
with the above mentioned settings. For algorithm BDSCNP , we omitted the average number of iterations
and the average number of generated cuts in the tables.

The results show that model ILPp usually outperforms algorithm BDSCNP in terms of average percentage
gap and running times in instances with up to 300 nodes. Further, model ILPp is extremely fast in solving
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p = 0.2 p = 0.4

ILPp BDSCNP ILPp BDSCNP

n time gap (%) # closed time gap (%) # closed time gap (%) # closed time gap (%) # closed

20 0.37 0.00 30 2.07 0.00 30 0.37 0.00 30 2.53 0.00 30
40 0.63 0.00 30 3.27 0.00 30 0.73 0.00 30 34.60 0.00 30
60 1.73 0.00 30 13.07 0.00 30 1.80 0.00 30 687.97 0.05 29
80 3.63 0.00 30 66.23 0.00 30 3.10 0.00 30 2276.27 0.92 17
100 8.27 0.00 30 216.13 0.00 30 8.47 0.00 30 3506.13 6.42 1
120 13.23 0.00 30 1036.43 0.00 30 12.30 0.00 30 3600.00 12.69 0
150 27.00 0.00 30 2832.00 0.21 19 25.53 0.00 30 3600.00 17.58 0
300 958.50 3.26 29 3600.00 4.47 0 765.13 0.01 28 3600.00 26.06 0
500 3600.00 99.98 0 3600.00 8.79 0 3600.00 99.94 0 3600.00 40.21 0
750 3600.00 99.99 0 3600.00 81.41 0 3600.00 99.96 0 3600.00 73.34 0

Table 5: SCNPtree unweighted instances with equal survival probabilities.

p = 0.2 p = 0.4

ILPp BDSCNP ILPp BDSCNP

n time gap (%) # closed time gap (%) # closed time gap (%) # closed time gap (%) # closed

20 0.43 0.00 30 0.27 0.00 30 1.77 0.00 30 0.50 0.00 30
40 1.33 0.00 30 1.27 0.00 30 3.00 0.00 30 6.33 0.00 30
60 4.70 0.00 30 8.53 0.00 30 11.77 0.00 30 81.57 0.00 30
80 10.63 0.00 30 27.97 0.00 30 25.87 0.00 30 529.93 0.01 28
100 31.07 0.00 30 74.23 0.00 30 49.70 0.00 30 1552.87 0.18 23
120 43.70 0.00 30 223.57 0.00 30 78.90 0.00 30 3119.27 1.76 8
150 98.73 0.00 30 728.97 0.00 30 125.33 0.00 30 3548.00 7.84 1
300 3209.70 56.06 8 3600.00 1.97 0 2307.93 13.10 23 3600.00 18.24 0
500 3600.00 99.98 0 3600.00 6.21 0 3600.00 99.94 0 3600.00 28.37 0
750 3600.00 99.99 0 3600.00 23.63 0 3600.00 99.96 0 3600.00 51.72 0

Table 6: SCNPtree weighted instances (type 1) with equal survival probabilities.

instances with up to 150 nodes. On the other hand, in instances with 500 and 750 nodes, model ILPp suffers
from the presence of a large number of variables and corresponding memory requirements. This behavior
could be expected as the number of binary variables in the model is of the order of O(n3). In these instances,
algorithm BDSCNP gives better results within the considered time limit. Finally, we notice that, for model
ILPp, the weighted instances tend to be harder to solve than the unweighted instances, while an opposite
trend emerges for algorithm BDSCNP .

6 Conclusions

In this work we introduced a stochastic version of the Critical Node Problem where the outcome of attacks
on nodes is uncertain. We first presented an Integer Linear Programming formulation for the problem over
general graphs and derived valid inequalities. Then, we focused on the problem variant over trees for which
we provided theoretical results, a nonlinear model and a linear reformulation based on the concept of prob-
ability chains from probability theory. Moreover, we devised an exact Benders Decomposition approach for
which we derived an analytical solution of the slave subproblems. We performed an extensive computational
analysis to assess the effectiveness and robustness of the proposed approaches. The BD algorithm is capa-
ble of efficiently solving instances with up to 150 nodes and improves upon the performance of the linear
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reformulation of the problem. We also introduced an ILP model and an approximation algorithm based on
a dynamic program for specific problem variants of interest.

With this work, we aim to foster research on stochastic versions of the Critical Node Problem. Numerous
research lines could be explored in the future. The most natural follow-up of our work would be the design of
a solution approach for tackling the stochastic CNP over general graphs. A possibility is to combine modern
scenario partitioning methods such as in [14, 41, 43] with a Column Generation approach. It might be also
interesting to adapt the proposed algorithmic framework based on Benders Decomposition to the determin-
istic version of the CNP on general graphs. Also, exploring the design of efficient heuristic/metaheuristic
algorithms could be a valid alternative to solve instances on large (and arbitrary) graphs. This last option
would call for finding efficient procedures to compute the stochastic objective function of a given solution,
since the complexity of computing this value is a priori exponential in the solution size. For example, we
could derive a FPRAS to compute the objective function with a suitable precision, as it was done, e.g.,
in [17] for the stochastic CNP with edge uncertainty.

Finally, we have shown in this work a successful application of the concept of probability chains for problem
linearizations significantly improved by decomposition methods such as the Benders Decomposition. In
future research, it would be interesting to consider a similar approach for deriving effective solution methods
for other stochastic optimization problems.
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Appendix A An ILP model with equal survival probabilities

For the simplified problem variant where all survival probabilities are equal to p, i.e., pi = p for i ∈ V , we
derive an ILP formulation that implicitly takes into account the uncertainty associated with the attacks on
nodes. Since the survival probabilities are equal, we only need to know the number of nodes attacked in
Pij in order to compute the average connection cost cij

∏
k∈Sij

pk = cijp
|Sij |. Therefore, we can introduce

binary variables y
(ij)
r equal to 1 only if there are r nodes attacked in path Pij . Index r can vary from 0 to
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ρij , with ρij := min{ K
mini∈V κi

, |Pij |}. We obtain the following ILP formulation (denoted as ILPp):

ILPp:

min
∑
i<j

cij
∑
r≤ρij

pry(ij)
r (20a)

∑
i

κivi ≤ K (20b)∑
r≤ρij

y(ij)
r = 1 i, j ∈ V : i < j (20c)

∑
r≤ρij

ry(ij)
r =

∑
k∈Pij

vk i, j ∈ V : i < j (20d)

y(ij)
r ∈ {0, 1} i, j ∈ V : i < j, r = 0, . . . , ρij (20e)

vi ∈ {0, 1} i ∈ V (20f)

The objective function (20a) minimizes the expected cost of the pairwise connectivity after attacking nodes
in the tree. Constraint (20b) represents the budget constraint. Constraints (20c) ensure that only one value

of r will be selected for each path Pij . Constraints (20d) link y
(ij)
r variables with vi variables. Constraints

(20e) and (20f) define the domain of the variables.

Appendix B An approximation algorithm for the SCNPtree with unit
costs

We present an approximation algorithm for the SCNPtree with unit connection costs and unit attack costs.
The algorithm relies on limiting the numerical precision for the evaluation of each term in the objective
function and has a performance guarantee in terms of the maximum deviation from the optimal objective
value. We remark that the algorithm is very similar to the dynamic program we proposed in [6] for a certain
class of multiplicative distance function for the Distance CNP over trees. Our goal here is to show how to
apply similar techniques to derive an approximation algorithm for the problem considered. For the sake of
conciseness, we will refer the reader to our previous work for the details of the algorithm and recursions.
We first sketch a Dynamic Programming (DP) algorithm for the problem which constitutes the basis for the
approximation algorithm. To derive a DP algorithm for the SCNPtree, we will require that each connection
cost in the objective can be scaled to an integer in the recursions. To this aim, let µ denote the minimum
power of 10 such that µ

∏
k∈Pij

pk ∈ N for any node pair (i, j) ∈ V × V . Note that the value of parameter
µ could be exponentially large depending on the value of probabilities pk, which could compromise the
performance of an algorithm based on scaling the objective to an integer value. However, as discussed
below, the proposed approximation algorithm is based on limiting the value of µ.

Let Ta denote the subtree of tree T rooted at node a ∈ V , and by ai with i ∈ {1, ..., s} the children of a.
Also, we define as Tai→s the subtree constituted by {a}∪j=i,...,s Taj . For further details about this particular
recursion scheme, we refer the interested reader to [6, 15]. All recursions in the dynamic programming
approach are based on traversing the tree in postorder (i.e., from the leaves to the root) and from the right
part of each tree level to the left one. We define the following recursion functions:

Fa(c, k, σ) := minimum cost of a solution for subtree Ta when k nodes are attacked in Ta and the
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total cost of connecting a to subtree Ta multiplied by µ is c. Index σ is equal to
either 1 if a ∈ S or 0 if a /∈ S.

Gai(c, k, σ) := minimum cost of a solution for subtree Tai→s when k nodes are attacked in Tai→s

and the total cost of connecting a to subtree Tai→s multiplied by µ is c. Index σ is
equal to either 1 if a ∈ S or 0 if a /∈ S.

If it is not possible to remove k nodes from Ta such that the total cost of connecting a to subtree Ta multiplied
by µ is equal to c, we have Fa(c, k, σ) =∞ and/or Ga(c, k, σ) =∞.

Let C(T ′) denote the connectivity cost of any subtree T ′. We derive the following recursions for a non-leaf
node a ∈ V :

(21)Fa(c, k, σ) = Ga1(c, k, σ);

for i < s, if pa = 0 and a ∈ S:

(22a)Gai(c, k, 1) = min
{
Fai(b, q, σ

′) +Gai+1 (0, k − q, 1) :

b = 0, . . . , µ|Tai |; q = 0, . . . , k − 1; σ′ = 0, 1
}
,

otherwise, if a /∈ S or pa > 0:

(22b)

Gai(c, k, σ) = min

{
Fai(b, q, σ

′) +Gai+1

(
c− pσa(b+ µpσ

′
ai+1

), k − q, σ
)

+ pσap
σ′
ai + pσ

′
ai

(
c

µ
− pσa

(
b

µ
+ pσ

′
ai+1

))
+ pσa

b

µ
+
b

µ

(
c

µ
− pσa

(
b

µ
+ pσ

′
ai+1

))
:

b = 0, . . . , p−σa c− µpσ′ai ; q = 0, . . . , k − σ; σ′ = 0, 1

}
.

The second line in Equation (22b) represents the total cost of connecting subtrees Tai and Tai→s . The first
term in this line represents the connection cost of node a to ai, the second term represents the connection
cost between ai and all nodes in Tai→s and the third term the connection cost between a and all nodes in Tai .
Finally, the last term represents the connection cost between each node u ∈ Tai \ {ai} and v ∈ Tai→s \ {a}.
The cost for connecting a node pair (u, v) is in fact given by Es̄∈S[us̄uv] = Es̄∈S[us̄uai ]Es̄∈S[us̄av] where Es̄∈S[us̄uv]
is the average value of the connection between nodes u and v. Summing over all possible node pairs (u, v)
gives the last term in Equation (22b). Note that if pa = 0 and σ = 0, we assume in our equations that
p±σa = 1.

We do not provide extensive equations for the initial conditions as they are the same as those provided
in [6]. The optimal solution value is given by

min {Fr(c, k, σ) : c = 0, . . . , C(T ); k = 0, . . . ,K; σ = 0, 1}

where r is the root node of the tree. As commonly done in DP algorithms, the optimal solution set of
attacked nodes can be recovered by implementing a backtracking procedure, once the optimal recursion
functions are obtained. We can state the following proposition.

Proposition 8: The previous DP algorithm has a time complexity of O(K2n3µ2).
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Proof. The number of all possible combinations of the indices in functions Fa and Ga is bounded by 2[(n−
1)µ+ 1](K+ 1). The recursion step with the largest number of operations is given by Equation (22b) which
requires up to 2[(n−1)µ+1](K+1) operations. Thus, the running time of the DP algorithm can be bounded
by O(K2n3µ2).

Given the complexity stated in the above proposition, the performance of the proposed dynamic program
is heavily affected by large values of µ. However, the DP algorithm can be modified to devise a reasonable
approximation algorithm, which also provides a lower bound on the optimal objective value. Because of the
rapid decrease of the cost function with the number of multiplying probabilities, beyond a certain number of
attacked nodes the connection cost between two nodes will increase the objective function only by a negligible
amount. Therefore, we modify the algorithm presented in Equations (21)-(22b) by truncating each term
in the objective after a limited number of decimals corresponding to an integer ν. In the approximation
algorithm, called App, we set µ = 10ν and we truncate the value of each term below the ν-th decimal. By
limiting the value of ν and, correspondingly, the precision at which we want to solve the problem, we can
keep the running time of the DP program under control. Moreover, algorithm App provides both a lower
and an upper bound on the optimum solution value, as the following proposition shows.

Proposition 9: For the SCNPtree with unit connection costs and unit attack costs, algorithm App
constitutes an approximation algorithm with time complexity O(K2n3µ2) and an approximation

bound of n(n−1)
2µ . The truncated objective of the approximate solution underestimates the optimal

value by at most n(n−1)
2µ .

Proof. The proof is formally the same as the one of Proposition 13 in [6]. Since every term in the objective
function is truncated at the ν-th decimal, multiplying these terms by µ = 10ν is sufficient to obtain integer
values, so we can use the DP algorithm presented above with complexity O(K2n3µ2) to obtain a heuristic
solution SApp. As such a solution underestimates each term in the objective function by at most µ−1, it

underestimates the overall objective function by at most n(n−1)
2µ . Let S∗ denote an optimal solution of the

original problem with objective function f∗. Since algorithm App underestimates the objective value of
any solution, including S∗, the algorithm provides a truncated value between f∗ and f∗ − n(n−1)

2µ , giving a
lower bound on f∗. Besides, the non-truncated objective value fApp of SApp overestimates the corresponding

truncated objective value of SApp by at most n(n−1)
2µ . Hence, we have f∗ ≤ fApp ≤ f∗ + n(n−1)

2µ , implying an

approximation bound of n(n−1)
2µ .
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