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Local-mean preserving post-processing step for
non-negativity enforcement in PET imaging:

application to 90Y-PET.
Maël Millardet, Saı̈d Moussaoui, Diana Mateus, Jérôme Idier, and Thomas Carlier

Abstract—In a low-statistics PET imaging context, the positive
bias in regions of low activity is a burning issue. To overcome
this problem, algorithms without the built-in non-negativity
constraint may be used. They allow negative voxels in the image
to reduce, or even to cancel the bias. However, such algorithms
increase the variance and are difficult to interpret since the
resulting images contain negative activities, which do not hold a
physical meaning when dealing with radioactive concentration.
In this paper, a post-processing approach is proposed to remove
these negative values while preserving the local mean activities.
Its original idea is to transfer the value of each voxel with negative
activity to its direct neighbors under the constraint of preserving
the local means of the image. In that respect, the proposed
approach is formalized as a linear programming problem with
a specific symmetric structure, which makes it solvable in a
very efficient way by a dual-simplex-like iterative algorithm. The
relevance of the proposed approach is discussed on simulated
and on experimental data. Acquired data from an yttrium-90
phantom show that on images produced by a non-constrained
algorithm, a much lower variance in the cold area is obtained
after the post-processing step, at the price of a slightly increased
bias. More specifically, when compared with the classical OSEM
algorithm, images are improved, both in terms of bias and of
variance.

Index Terms—Image restoration (noise and artifact reduction),
linear programming, local mean, non-negativity constraint en-
forcement, nuclear imaging (PET), optimization.

I. INTRODUCTION

POSITRON Emission Tomography (PET) has now a ma-
jor impact on the management of patients in oncology.

Its ability to image interactions at picomolar concentrations
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makes it very attractive for revealing molecular processes. Fur-
thermore, PET is a native quantitative imaging modality [1].
However, several phenomena may counteract the quantitative
precision in the reconstructed images, like scatter, random or
multiple coincidences [2].

This is especially true when the number of coincidences
collected is small, such as in brain dynamic PET where the
time frames are often very short or may have only limited
amount of data due to activity decay [3]. The number of
prompt events recorded may be also reduced even further than
in dynamic PET if radio-pharmaceuticals with small branching
ratio are used. In particular, micro-spheres of yttrium-90 (90Y)
are indicated for the treatment of primary and secondary liver
cancers [4]. However, 90Y is a β−-emitter, and its decay pro-
duces positrons with a branching ratio of only 3.2× 10−5 [5].
The data are therefore very noisy and the reconstruction of
90Y-PET images is possible, but challenging [6], [7]. In low-
activity regions (called “cold” areas), the noise, coupled with
the built-in non-negativity constraint of most of the algorithms
used today, such as the classical MLEM (maximum-likelihood
expectation maximization) [8], [9], and OSEM (ordered-subset
expectation maximization) [10], [11], induce a positive bias,
i.e., an over-estimation of the activity in these regions [12].
To tackle this issue, modified algorithms allowing negative
values in the image have been introduced [3], [13]–[15]. Such
algorithms do reduce the positive bias (or even cancel it
out), but at the cost of a variance increase and a loss of
physical meaning for the voxel values. This is a major issue for
dosimetric studies because dose/volume histograms become
unrealistic. Here, we address the difficult problem of reducing
both the bias and the variance while making the image non-
negative.

Previous works have been focused on finding new algo-
rithms that require non-negativity in the data space while being
unconstrained in the image space [15], [16]. Such methods
partially solve the physical inconsistencies, but negative voxels
may still be present in the image. This work proposes a post-
processing strategy that can be used in addition to any uncon-
strained, or partially constrained, algorithm, by producing a
non-negative image.

A possible post-processing strategy would be to make a
simple orthogonal projection of the reconstructed image on
the set of non-negative images, i.e., setting negative intensity
values to zero, while keeping the positive ones unchanged.

c© 2020 IEEE

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TMI.2020.3003428

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



2

However, such a solution presents several drawbacks. First, the
average activity is increased, leading to a positive bias even
higher than what is achievable using a constrained algorithm.
Second, this does not take into consideration the meaning of
negative values. Indeed, the negative values are not completely
insignificant: they do not have any physical meaning at the
voxel level but are important to reduce the mean activity of
their surrounding area.

In this paper, we propose a nontrivial post-processing
approach that transfers all negative values to neighboring
voxels to modify the image only locally, and with a minimal
impact in terms of statistical properties at the local scale. To
achieve such a goal, one classical framework would be to
use the formalism of optimal transport introduced by Gaspard
Monge in 1781 [17], and revisited by Leonid Kantorovich in
1942 [18]. Its original idea is to transfer a defined amount of
mass in a defined amount of holes with minimal cost. Optimal
transport classically deals with the case where the amount of
mass exactly fits the holes. This formalism is more focused
on the way to arrive at a final solution than the intrinsic final
solution. However, it has been extended to the case where the
initial and final distributions do not have the same mass [17],
[19]. The main drawback of optimal transport applied to the
spread of PET image negative values is that the transfer may be
asymmetric, leading to a spurious spread of information. This
happens because the path taken by the negative values would
be in this case arbitrary. Another difficulty to use the formalism
of optimal transport is that it would lead in general to several
possible final images. The approach followed in this paper is to
pre-define a symmetric voxel spread function describing which
proportion of the value coming from a voxel will be distributed
to each neighbor. The solution is the one corresponding to the
minimal transfer following such a symmetric rule.

The contribution of this paper is firstly to formalize this
post-processing strategy of negative voxel removal, and sec-
ondly to implement and test the method. We cast the problem
in a linear programming framework [20], and we propose
an adapted version of the dual simplex algorithm to solve
the optimization problem. Besides, some of its mathematical
properties are discussed. Finally, the performances of the non-
negativity enforcement post-processing step (NNEPPS) have
been evaluated on acquired 90Y-PET data.

The rest of this paper is organized as follows. Section II
gives the mathematical formulation of the negative voxel
removal problem. Section III proposes a variant of the simplex
algorithm allowing to compute the desired final image. The
post-processing approach is then illustrated in Section IV. The
impact of the proposed approach on real PET images is studied
in Section V. Finally, discussions and conclusions are drawn
in Section VI.

II. PROBLEM STATEMENT

A. Presentation of the idea

The goal of the proposed post-processing step is to obtain
a non-negative image by a minimal spread of the negative
values over the positive voxels. Every voxel value is allowed
to increase according to a transfer coefficient assigned to this

voxel, while the values of its neighors decrease, such that the
local mean is preserved.

This post-processing step comes with guarantees of the
existence and uniqueness of a solution under the minimal
assumption that the global mean of the initial image is non-
negative1. The proposed algorithm finds the solution in a finite
number of iterations, in practice around 15 for full PET images
of 4× 106 voxels, for a total time comprised between 1 and
10 minutes on a standard multicore CPU. Fig. 1 illustrates the
effect of the NNEPPS on a simple 2D example.

In the rest of this section and in the next one, we go deeper
into the mathematical formulation of the problem, and into the
proposed solution.

B. Requirements

Let us consider a PET image X having negative values,
obtained from an unconstrained reconstruction algorithm, and
x ∈ Rn a column vector version of X (e.g., based on the
lexicographic order). The addressed problem is the suppression
of the negative values from X to get a modified image
Y corresponding to a vector y ∈ (R+)n. As discussed
above, a simple orthogonal projection of x onto (R+)n is not
satisfactory. In this paper, an alternative approach is sought.

An additional requirement is the preservation of the global
mean, i.e., the mean of the post-processed image Y should be
equal to the mean of X . A natural post-processing solution
could be to consider the orthogonal projection of x onto the
convex set of non-negative vectors with the same mean as x.
Unfortunately, the latter would not respect the local character
of intensity transfers. For example, if x is an image with only
one negative voxel, the latter will be set to 0 while all the
other voxels will be decreased by the same amount.

Therefore, we have to introduce the notion of neighborhood
between voxels. A natural idea is then to minimize the
“quantity of transfer” between neighboring voxels, instead of
the difference between the final and the initial image. For this
purpose, we can formulate the problem as min ‖α‖, such that
y = x +Hα, where α represents a map of the elementary
transfers, ‖·‖ is a norm whose choice will be discussed later (in
Section II-C3), and the operator H encodes the influence of
the transfers on the image. Let us remark that the preservation
of the global mean is automatically fulfilled in this formulation
as long as it involves only transfers between voxels, i.e., each
line of H sums to zero.

C. Mathematical formulation of the problem

In this part, we examine several possibilities of local transfer
structure though the specification of matrix H , and we go
deeper into the formulation of the problem.

1) Properties of H: One first possibility is to allow direct
transfers between pairs of neighboring voxels. If we choose to
minimize the L1 norm of α, we then fall into the framework
of optimal transport, which presents several drawbacks, as
discussed in the introduction.

1It is necessary because the global mean is preserved during the NNEPPS.
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Fig. 1. Simple 2D example of the effect of The NNEPPS. In the initial image (left), three pixels are negative. Their intensities are transferred to their
neighbors during the first iteration (transfer coefficients depicted in red). A new negative pixel appears (middle image), and is added to the set of pixels that
needs to be subsequently set to 0. After the second iteration (right image), no new negative pixel appears, and the algorithm therefore stops.

The second possibility, which is chosen here, is to impose an
isotropic spread of the negative values. Therefore, the weight
vector α has the same size as x and y, each coefficient of α
representing the quantity that the corresponding voxel transfers
to its direct neighbors in a symmetric, predefined way. This
possibility answers the hunch that the intensity of a negative
voxel should be uniformly transferred to its neighbors.

For the sake of clarity, we have grouped the properties that
should be fulfilled by matrix H into two classes. The first one
contains five properties M1-M5. They are mandatory in the
sense that the mathematical validity of our contribution de-
pends on them. We also consider three optional requirements.
O1 will be assumed throughout the article, but its role is purely
a matter of technical simplicity, and properties extend easily
if it is not fulfilled. O2 and O3 correspond to natural choices,
as discussed above, although they are not necessary conditions
in the strict sense. Finally, let us note that we have postponed
the presentation of M5 at the end of the list, because it plays
a specific role that deserves additional comments.
M1 Every line of H has a null sum (as transfers preserve the

overall activity).
M2 The diagonal of H is uniformly positive (by convention,

a positive αi corresponds to an increase of voxel i).
M3 H is non-positive elsewhere (A node can decrease the

value of neighbors by transferring its own value, the
increase of a voxel is associated to a decrease of its
neighbors).

M4 H is symmetric i.e., Hij = Hji (the off-diagonal coeffi-
cients represent proximity between voxels: Hij represents
the amount of transfer from voxel i to voxel j when
i transfers its value, which should be the same as the
transfer from j to i when j transfers its value.)

Remark. Assumptions M1-M4 impose the matrix to be a
Laplacian matrix, associated with a particular non-oriented
graph corresponding to the PET image, where the nodes are
the voxels, and a transfer coefficient is assigned to each
edge. For an introduction on graphs and Laplacian matrices,
see [21], [22].

As a consequence of being a Laplacian matrix, H is a
positive semi-definite matrix of rank n − 1, every principal
sub-matrix of H is invertible, and its inverse has no negative
coefficients [23].

O1 H corresponds to a connected image, i.e., given any two
voxels, it is possible to link them with a path that crosses

only edges where Hij 6= 0.
O2 It is natural that elementary transfers only involve direct

neighbors, in order for the post-processing to be as local
as possible. The inclusion of second and third-order
neighbors2 may be a matter of choice.

O3 A simple choice for H is that it results from a spatially
invariant and isotropic elementary mask, i.e., a spatially
symmetric convolution operator. The convolution kernel
can be given by (−0.5, 1,−0.5) for a 1D image, or 0 −0.25 0

−0.25 1 −0.25
0 −0.25 0

 (1)

in 2D, for instance.
2) Additional requirement on α: One goal of the NNEPPS

is to correct the physical inconsistencies of unconstrained
algorithms by giving back to each voxel its true meaning:
negative values are meaningful only to correct the too large
values of neighboring voxels, and negative voxels should give
back this value to their neighbors. However, the problem is
asymmetric, and there is no reason for positive voxels to spread
a potentially “too large” value. For this reason, we further
impose the following mandatory requirement:
M5 Every component of α is non-negative (which is denoted

α ≥ 0n).
Numerical tests have confirmed that the relaxation of the
latter constraint generates post-processed images with many
artifacts.

3) Choice of the norm: The post-processing procedure to
remove non-negative values can be formulated as:

min
α
‖α‖ such that (2a){

α ≥ 0n

y = x+Hα ≥ 0n
(2b)

The following Proposition, proved in Appendix A, defines
the notion of “minimal” α, independently of the chosen norm3.

Proposition 1. If α and β are two transfer maps satisfying
conditions (2b), the vector γ defined by ∀i, γi = min(αi, βi)
also satisfies (2b).

2Voxels that share only an edge or a corner.
3Proposition 1 can be extended to an infinite number of transfer maps by

noticing that (2) only involves closed subsets and continuous operations with
respect to α.
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Proposition 1 has the following direct consequence.

Proposition 2. (2a) is equivalent to minα d(α), for any
scalar, coordinatewise increasing function d. In particular, all
Lp norms, p ∈]0,∞[, induce equivalent problems.

In the rest of the paper, the solution to (2) is called the
minimal transfer map.

D. Solution existence and uniqueness

The properties of existence and uniqueness of the NNEPPS
are discussed below. Proofs can be found in Appendices B
and C, respectively.

1) Existence:

Proposition 3. A solution to Problem (2) exists if and only if
the mean value of the initial image X is non-negative.

2) Uniqueness:

Proposition 4. If a solution to Problem (2) exists, it is unique.

III. LINEAR PROGRAMMING FORMULATION AND ITS
RESOLUTION USING AN IMPROVED DUAL-SIMPLEX

The previous problem can be reformulated as a linear
programming problem (Section III-A). The particular structure
of this problem allows the dual simplex algorithm to be partic-
ularly efficient, especially, many iterations can be performed
in parallel, and the entering indexes can be chosen in such a
way that they are truly in the basic index set of the solution.

A. Linear programming formulation

The post-processing problem may be formulated as the
minimization of 1T

nα while satisfying4:{
α ≥ 0n

y = x+Hα ≥ 0n
(3)

This problem can be re-written in the standard form of linear
programming in the following way [20]: minimize cTz over

z subject to:

{
Az = −x
z ≥ 02n

where c =

(
0n

1n

)
, z =

(
y
α

)
and A =

(
−In H

)
As imposed by some authors for the standard formulation

of linear programming, note that here A has strictly more
columns than rows (respectively 2n and n) and is full row
rank.

Each linear programming problem comes with a related dual
problem [20]. From the standard form of the primal problem,
we can infer that its associate dual problem is to maximize
−xTπ while satisfying ATπ ≤ c. This can be written in its
standard form of linear programming as follows:

minimize bTs subject to:

{
Gs = 1n

s ≥ 02n

4As seen in Proposition 2, the minimization of α is independent of the
norm. For instance, the problem could have been formulated equivalently
with the L2-norm. The L1-norm is chosen here to express the problem as a
linear program.

with b =

(
x
0n

)
, s =

(
π
t

)
, and G =

(
H In

)
. π, t and s

are dual variables of size n, n and 2n respectively.
Note that again, G has strictly more columns than rows

(respectively 2n and n) and is full row rank.
The Karush-Kuhn-Tucker (KKT) optimality conditions for

the post-processing problem read:

y = x+Hα (4a)
t = 1n −Hπ (4b)
s ≥ 02n (4c)
z ≥ 02n (4d)
∀i ∈ J1, nK, πiyi = 0 (4e)
∀i ∈ J1, nK, tiαi = 0 (4f)

A pair (x, s) is a solution to the problem if and only if the
KKT conditions are fulfilled.

The next section contains the outlines of the simplex al-
gorithm applied to the dual of the post-processing problem.
It will be shown later that this algorithm has particularly
important properties in this case.

B. The dual-simplex algorithm

If a linear program has solutions, at least one of these
solutions belongs to a category called basic feasible point [20].

A feasible point s (i.e., a point satisfying Gs = 1n and
s ≥ 02n) is a basic feasible point if it has at most n nonzero
components and if there exists a subset B ∈ J1, 2nK —
called the basic index set — verifying the three following
properties [20]:
• B contains exactly n indexes
• i /∈ B =⇒ si = 0
• The n× n matrix B = GJ1,nK,B is invertible.

Basic feasible points are actually the vertices of the feasible
polytope. We have already shown in Propositions 3 and 4
that if the mean activity is non-negative, which is actually
the only interesting case, the post-processing problem has a
unique solution, which is therefore a basic feasible point.

The simplex algorithm [24]–[26] is the most widely used
solver for linear programming problems [20], [27]. This al-
gorithm works by generating iteratively a sequence of basic
feasible points. One simplex iteration is summarized in Algo-
rithm 1.

Although the simplex algorithm usually requires at most 2n
or 3n iterations to converge, its worst case has an exponential
complexity [28]. This drawback has motivated the search
for new algorithms that compete with the simplex method,
especially on large scale problems [29], [30]. In the next
section, an improved version of the simplex algorithm is
proposed by exploiting the properties of the post-processing
problem.

C. Resolution using an improved dual simplex algorithm

The size of the problems studied in this article is large (a
PET image typically has 107 voxels). However, the simplex
algorithm applied to the dual problem (simply called the dual-
simplex algorithm [27], [31]), holds in this case very strong
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Algorithm 1 One iteration of the simplex algorithm

1: Given a basic index set B(k) and its complement N (k) =
J1, 2nK \ B(k)

2: Set s(k)N (k) = 0n, and compute s(k)B(k) from (4b).
3: Set z(k)B(k) = 0n, and compute z(k)N (k) from (4a).
4: if z ≥ 02n then declare success and return z
5: else
6: Choose q ∈ N (k) such that zq < 0 (the entering

index).
7: Increase sq while maintaining sN (k)\{q} = 0n−1 and

condition (4b), until one component p of sB(k) is driven
to 0 (i.e., the leaving index).

8: Set B(k+1) = B(k) ∪ {q} \ {p}
9: end if

properties, presented in Theorem 1, which makes it highly
efficient.

Theorem 1. Problem (2) can be solved efficiently by a dual
simplex algorithm, in a number of iterations bounded by n.

Theorem 1 is implied by the following two propositions,
which are proved in Appendices D and E respectively.

Proposition 5. If the post-processing problem has a solution
(see Proposition 3), the dual-simplex algorithm reaches this
solution.

Proposition 6. Starting from y(0) = x, in every dual-simplex
iteration, all the possible entering indexes (all i for which
y
(k)
i < 0) are indeed in the inactive set of the solution i.e.,

all possible choices are correct choices. On top of that, the
leaving index associated to an entering one is known.

Proof of Theorem 1: Proposition 5 shows that when a
solution exists (i.e., when the mean value of the image is non-
negative, cf. Proposition 3), which is easy to check, the dual-
simplex algorithm indeed reaches this solution after a finite
number of iterations. Proposition 6 implies that one change in
the basic index set is always correct. This means that even if
the basic index set of the solution is completely different from
the initial one, at most n iterations are necessary. Proposition 6
also implies that many changes in the basic index set can be
done simultaneously since all the possible entering indexes
can be included at once, and their associated leaving indexes
are known.

Following the steps of Algorithm 1, and taking into account
the previous properties, the computation of s(k) is not needed
since the entering and leaving indexes are known from z. The
algorithm can then be written as in Algorithm 2.

Fig. 2 gives a schematic view of the differences between
the dual simplex applied to the NNEPPS (2a), and another
linear program without any particular structure. In Fig. 2a, the
entering index is always in the “y part” of z, and the leaving
index is the corresponding one in the α part. Every entering
index truly belongs to the final basis. Iterations are condensed.
On the contrary, for a normal run of the dual-simplex (shown
in Fig. 2b), only one index enters the basis at each iteration.
This index can be anywhere, and there is no general rule to find

Algorithm 2 Summary of the algorithm

1: Initialize y(0) = x, k = 0
2: while y(k) contains negative voxels do
3: k = k + 1
4: create the set Z(k) of all the non-positive voxels of
y(k−1)

5: create P(k), the complement of Z(k)

6: α
(k)

Z(k) = −(HZ(k)Z(k))−1xZ(k)

7: α
(k)

P(k) = 0

8: y(k) = x+Hα(k)

9: end while
return y = y(k)

the corresponding leaving index. The choice of the entering
index is not always optimal: during the first iteration, index 1
enters the basis but is later removed.

(a) dual-simplex on the NNEPPS

(b) dual simplex on another problem

Fig. 2. Optimization of the vector z using the dual-simplex algorithm for the
NNEPPS (2a) and for another linear program without any particular structure
(2b). The basis B is shown at each iteration. Entering indexes are framed in
green, and leaving indexes in red.

D. Practical implementation details

1) Improvement of the algorithm (initialization step): Using
PET images (matrix size 200 × 200 × 109), approximately
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Algorithm 3 Initialization step
1: Given a number of voxels N chosen as stopping threshold:
2: while less than N new negative voxels were found do
3: for i in every voxel of the image do
4: if yi < 0 then
5: Increase the number of negative voxels found
6: Set yi = 0 and decrease yj for all j neighbors

of i such that the mean is preserved.
7: end if
8: end for
9: end while

return y

TABLE I
TIME EVALUATION OF THE INITIALIZATION STEP

Tolerance
without init. with init.
time #iter init. time total time #iter

10−3 2’16” 14 13” 1’19” 7

10−6 7’3” 15 40” 3’52” 6

2× 10−16 21’40” 15 1’33” 10’17” 5

15 condensed iterations were needed for the algorithm to
converge. But actually, a better starting point y(0) can be found
quickly by following Algorithm 3. From this new starting
point, the algorithm converges faster to the same output image.
Table I compares the computing time and the number of
iterations (#iter) needed without and with the initialization step
(init.), for different levels of relative residual error upper bound
on the conjugate gradient solver (Tolerance). This tolerance
parameter corresponds well to the relative precision of the
final image. It determines the amount of time needed per
iteration. The stopping criterion of the initialization step has
been optimized for each tolerance level.

2) Implementation: To test the algorithm, a C++ program
has been developed. The linear systems are solved using
the conjugate gradient method [32]–[34]. This method is an
iterative linear solver that is well suited for sparse matrix, and
especially large symmetric problems like ours. This algorithm
allows the user to obtain fast approximate solutions, with a
chosen precision level. The use of an approximate solution is
justified here because of the limited number of post-processing
iterations, and the fact that the computed voxel values are not
used in later iterations: the only goal of the iterations of the
NNEPPS is to find which voxels are null in the final image.

3) Choice of the Laplacian matrix H: In Section II-C1,
some requirements on H have been formulated, as well as
good practices. However, there is still some leeway for the
choice of the neighborhood and the off-diagonal coefficients.
The precise effect of such choices still has to be studied in
detail and is let for a future work. Here, we restrict ourselves
to the first-order neighborhood (so that each pixel has four
neighbors in 2D, and each voxel has six in 3D). In our
2D simulations, the pixels were square, and the coefficients
were evenly distributed between neighbors so that each was
assigned a coefficient of 0.25. For 3D real PET images, voxels
were cuboids of size 4mm × 4mm × 2mm. Coefficient

values near 0.28 and 0.11 were respectively assigned to the
two neighbors in the axial direction and to the four ones
in the lateral direction. Such values have been derived from
theoretical considerations and from numerical simulations,
reported as a supplementary material. Boundaries of the image
were naturally considered by preserving the same coefficients
for the existing neighbors and adapting the diagonal coefficient
to be the opposite sum of the neighbors coefficients. For
instance, for a 1D image of 4 pixels, H would be:

0.5 −0.5 0 0
−0.5 1 −0.5 0
0 −0.5 1 −0.5
0 0 −0.5 0.5

 (5)

IV. NUMERICAL ILLUSTRATIONS

The efficiency of the proposed post-processing approach is
firstly analyzed on a simulated image before its application to
a real data-set from 90Y-PET imaging.

A. Example on a phantom

Fig. 3a shows a simple image with distinct areas, taking
their mean intensity level among three values: 0, 3 and 6.
Moreover, the intensity in each area is perturbed by an additive
Gaussian noise of zero mean and unit standard deviation, to
simulate reconstruction errors. One can notice in the resulting
image after the NNEPPS (Fig. 3c) that the main modifications
concern the zero value area. The intensities of initially negative
pixels are set to zero and their surrounding pixels are either
canceled or attenuated thanks to the local mean preserving
constraint. This effect can be seen more clearly in Fig. 4
that displays the histograms of both images (raw and post-
processed images using the proposed algorithm). One can
notice that negative pixels are set to zero while high-intensity
pixels remain unchanged (areas of theoretical mean value
(TMV) 3 and 6). Fig. 3b shows the initialized image5. It
is close to the post-processed image but appears noisier and
contains many negative values (the minimum voxel value
being −0.0072). Note that we have chosen a specific colormap
to make a sharp difference between positive and negative
pixels in Fig. 3. Table II displays the characteristics of the
different areas. The variance (Var.) of the post-processed image
is drastically decreased, while the other characteristics are
roughly unchanged. Results are also compared to an image
obtained by a simple projection of the rough image on the
set of non-negative images. Fig. 3d shows the systematic bias
created by the NNEPPS (averaged over 1000 realizations). One
can see that the small positive bias introduced in the cold area
by the non-negativity constraint (roughly 0.02) is compensated
by a negative bias at the boundary between non-zero and zero
regions (roughly -0.6 for the outer boundary). However, this
bias is very localized at the boundary pixels. This effect will
be further examined from experimental data in Section V, and
perspectives of refinements will be discussed in Section VI
regarding this point.

5The Initialization step has been stopped after 100 whole paths over the
image has led to a relative number of new voxels of less than 10−6.
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-2 0 2 4 6 8

(a) Initial image
-2 0 2 4 6 8

(b) Initialized image

-2 0 2 4 6 8

(c) Post-processed image
-1 -0.5 0 0.2

(d) Bias image

Fig. 3. Different images of the same phantom. (a) shows the initial image. The
different parts are filled by a random process following a Gaussian distribution
of standard deviation 1, with a mean of 0, 3, or 6 depending on the different
areas. (b) shows the image after the initialization step. (c) shows the image
after the NNEPPS. Regions with a mean activity of 0 are cleaned compared
to the initial image, while the other areas remain unchanged. (d) shows the
bias introduced by the NNEPPS, averaged over 1000 realizations.
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Fig. 4. Histogram representation of the two images of Fig. 3. The rough
image is in blue, the post-processed one in red. In the post-processed image,
10 079 pixels belong to the bin containing 0.

B. Comparison between CPLEX and the proposed algorithm

Since the problem is a linear programming problem, one
could wonder how classical linear programming techniques
relate to the proposed algorithm.

Comparison of the proposed algorithm and classical linear
programming algorithms have been performed and are dis-
played in Fig. 5.

The computations have been performed on a 64-bit Ubuntu

TABLE II
CHARACTERISTICS OF THE DIFFERENT AREAS

TMV
Rough
image

Initialized
image

Image after
NNEPPS

Projected
image

Mean Var. Mean Var. Mean Var. Mean Var.

0 −0.018 1.00 0.0043 0.035 0.015 0.015 0.39 0.33

3 3.00 1.00 2.96 1.04 2.94 1.09 3.00 1.00

6 6.04 0.95 6.02 0.98 6.02 0.98 6.04 0.95
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Improved dual simplex with initialization step

Improved dual simplex without initialization step

primal simplex

dual simplex

interior-point

Fig. 5. Comparison of the time needed to post-process an example of image
of size 100×100×n. Real PET images are typically of size 200×200×109

18.04.2 LTS with a RAM of 7.5 Go, the code was multi-
threaded on 8 Intel Core i7-8550U CPU @ 1.80 GHz. An
identical precision level is reached for each final image. The
proposed algorithm is much faster than CPLEX, regardless
of the chosen algorithm, and the computation time is not far
from being linear with respect to the number of voxels. In
comparison, the best CPLEX algorithm (the primal simplex)
follows a power law with an exponent between 3 and 4. Given
an image containing 200×200×109 voxels and a precision of
10−3, the proposed algorithm with a precision of 10−3 takes
around 2 minutes. CPLEX is much too slow to be used: by
extrapolation of the above curve, the computation time needed
can be estimated to 80 years.

V. EXPERIMENTAL RESULTS

To assess the impact of the NNEPPS in the context of
PET image analysis, tests have been achieved on images
produced by the AML algorithm [3], which allows negative
values in the reconstructed image. These tests compare some
figures of merit extracted from the image after the NNEPPS
(AML+NNEPPS) with the original one (AML), and with an
image produced by an algorithm with a built-in non-negativity
constraint (OSEM). Reconstructions have been performed with
the CASToR software [35].

A. Experimental set-up

In this work, every reconstruction algorithm has been used
with 21 subsets. The phantom used for this study is the NEMA
IEC.
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TABLE III
SUMMARY OF THE FOUR ACQUISITIONS DONE ON THE PHANTOM NEMA

IEC IN 2013.

Phantom
name

Acquisi-
tion day

Prompt number
×106, % of IEC0

Random
fraction

Scatter
fraction

Trues /
Prompts

IEC0 0 5.7 (100) 76 % 32 % 16 %

IEC1 3 3.5 (62) 82 % 30 % 13 %

IEC2 5 2.8 (50) 86 % 31 % 9.4 %

IEC3 7 2.4 (43) 90 % 34 % 6.4 %

Four acquisitions of the same phantom were performed
during 7 days [7], [36]. On day 0, the six spheres of the
phantom were filled with a solution of 90Y with an activity
concentration of 2.9MBqmL−1. The background was filled
with a solution of 90YCl3 mixed with DTPA to prevent any
sticking to the phantom walls and with a concentration 7.5
times lower than in the spheres. The central cylinder was
isolated from any kind of activity. Acquisitions of 1800 s have
then been performed6 on days 0, 3, 5 and 7. The numbers
of prompt coincidences collected for each acquisition are
presented in table III.

B. Images

Fig. 6 shows the reconstruction of IEC1. Qualitatively, it can
be reported a better “detectability” of the central cold cylinder
in AML+NNEPPS while preserving the signal elsewhere.

Fig. 6 also shows that using OSEM reconstruction, the
positive bias is clearly visible in the cold cylinder. Using
AML, negative values are introduced, so the positive bias is
suppressed (or reduced), but the cold areas become very noisy.
After the NNEPPS, a fully null area becomes visible.

Fig. 7 shows clinical images acquired on a patient treated
with 90Y micro-spheres. The positive bias is difficult to
highlight since the ground truth is not known for the patient.
However, one can observe the cleaning of the background
noise performed by the NNEPPS. The injected activity was
1.71GBq at the time of imaging. The field of view (FOV)
activity was 1.65GBq for OSEM, and 1.52GBq for AML
and AML+NNEPPS (the NNEPPS does not affect the FOV
activity).

C. Figures of merit

Fig. 8 compares the mean activity as a function of the root-
mean-square error (RMSE) for AML without and with the
NNEPPS, at different iteration numbers, and different values
of A (which is the parameter of AML indicating the lowest
possible value of the image).

Two observations may be derived:
1) The approach allows one to decrease the RMSE, which is

roughly divided by two when compared with the image
before the NNEPPS. However, this decrease depends
on several parameters: for OSEM, the NNEPPS does
not affect the image (and thus the RMSE) since the
image is already non-negative. For IEC3, with A =

6Same duration as the clinical routine for the 90Y-PET scans

(a) OSEM (b) AML

(c) AML+NNEPPS (d) Ground truth

Fig. 6. Reconstruction of a phantom with OSEM, AML and AML after the
NNEPPS (AML+NNEPPS). In AML+NNEPPS, the cold area at the center is
much clearer.

(a) OSEM (b) AML

(c) AML+NNEPPS

Fig. 7. Reconstruction of a 90Y patient with OSEM, AML and AML
after the NNEPPS (AML+NNEPPS). In AML+NNEPPS, the background
noise introduced by AML is removed. The images display jointly the PET
images and the CT scans. The patient was treated for liver localizations of a
neuroendocrine tumor. Activity injected: 2190 MBq (1709 MBq at the time
of imaging). Shunt: 4 %. Number of prompts: 3.1× 106. Random fraction:
81 %.

−106 BqmL−1, Fig. 8b shows that after three iterations,
the RMSE is equal to 2.0× 105 BqmL−1 for AML,
but decreases to 4.3× 104 BqmL−1 after the NNEPPS,
which makes a reduction by a factor of 4.6.

2) The mean activity of the cold cylinder remains approx-
imately unchanged by the NNEPPS until it reaches a
limit (of approximately 2.5× 104 BqmL−1 for IEC1).
For example, for A = −2× 105 BqmL−1, the activity
at the first AML iteration is around 3.4× 104 BqmL−1
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Fig. 8. Graphs displaying the mean activity in the cold cylinder as a function
of the RMSE in the same area. Tests have been done for different values of the
AML parameter A, which is the lower bound of the image [3]. Each point in
the same curve represent a different iteration number of AML. PP stands for
NNEPPS. The curves for IEC0 and IEC2 are not shown but are close to IEC1,
which is representative of the standard behavior of AML and the NNEPPS.
IEC3 is an uncommon case on which AML completely underestimates the
activity in the cold cylinder.

before the NNEPPS and remains the same after. But at the
second AML iteration, the activity before the NNEPPS is
lower than the limit (around 2.0× 104 BqmL−1) so the
activity after is approximately equal to the limit.

Therefore, the activity is not strictly preserved in the cold
cylinder while the NNEPPS is supposed to preserve the local
means. A small part of the negative activity has spread to the
neighboring warm regions, increasing the activity in the true
cold cylinder, which is thus not totally set to 0, even if the
initial mean activity is 0. This was unavoidable because of the
non-negativity properties of the post-processed image.

The reduction of the activity in the neighboring areas
(already observed in Fig. 3d on a numerical example), is
illustrated on the phantom data in Fig. 9, which shows the
mean activity in a series of concentric hollow cylinders.
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Fig. 9. Graphs displaying the mean activity measured as a function of the
distance from the center of the cold cylinder. The theoretical value and OSEM
are given for reference. The curves for IEC0 and IEC2 are not shown but
are close to IEC1, which is representative of the standard behavior of AML
and the NNEPPS. IEC3 is an uncommon case on which AML completely
underestimates the activity in the cold cylinder.

The mean activity in the close neighborhood of the cold
cylinder is indeed reduced, but this effect is limited and
localized. Fig. 9a shows that the induced negative bias is up
to 15% in the very close neighborhood of the cold cylinder
for IEC1, but it decreases rapidly and completely vanishes at
10 mm to 15 mm away from the boundary. Moreover, in this
area, the estimated activity is obtained with an error that is
comparable to the one produced by OSEM. Fig. 9b shows
an uncommon case, based on very low statistics, where AML
completely under-estimates the activity in the cold cylinder.
After the NNEPPS, the image is better estimated in the cold
cylinder, but the nearby region has to compensate for this
increase of activity. This is an unavoidable consequence of the
fact that global activity is preserved. Compared to OSEM, the
NNEPPS is finally less biased in the cold region, but slightly
more in the close neighborhood of the latter.

VI. DISCUSSION AND CONCLUSION

Many currently used iterative reconstruction algorithms,
such as OSEM, incorporate a built-in positivity constraint. This
constraint is natural from a physical point of view. However,
when associated with noise, it induces a significant positive
bias in cold areas, which can be problematic when considering
quantitative analysis. This problem is especially important in
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the low-statistics context of yttrium-90. The use of algorithms
that are not subject to this positivity constraint may represent
a solution, but at the cost of an even higher noise level and a
lack of physical meaning for negative values.

Based on considerations on the information carried by
negative-valued voxels, we propose a non-negativity enforce-
ment post-processing step (NNEPPS), preserving the mean
image activity as locally as possible. The NNEPPS introduces
a small positive bias in cold areas, but it is successful in
preserving this positive bias at a much lower level than OSEM.
This small positive bias has a corresponding small negative
bias in areas close to cold ones. The effect of this induced
negative bias on small lesions should be evaluated in the
future, but here again, this negative bias remains lower than
that of OSEM. Let us mention an interesting perspective to
further reduce the number of transfers between regions, and
thus the created biases, which would consist in extending the
post-processing step to an anisotropic spread, in the spirit of
anisotropic diffusion [37].

The RMSE in cold areas is also reduced by the NNEPPS
to a level comparable to that of OSEM. Qualitatively, the
images are also visually easier to interpret after the NNEPPS.
In particular, cold areas are much more visible. The method
has also shown signs of robustness in performing well on an
uncommon case (see Figs. 8b and 9b).

An algorithm executing the NNEPPS is proposed and its
source code is available in Supplementary Material. It acts as
a condensed simplex on the dual problem, which is justified
by the particular nature of the problem. The time required to
post-process a whole 3D PET image is about 2 minutes.

Among several perspectives, one would be to include the
NNEPPS in the reconstruction process by applying the method
after each iteration of an iterative algorithm. However, the
convergence properties of such an algorithm, as well as its
effect on the final image, have yet to be studied.

Future work could also include a precise study of the
type of neighborhood to be considered and the choice of the
coefficients of H .

Finally, the NNEPPS is not intrinsically limited to PET.
Its application could be extended to other imaging modalities,
where a non-negativity constraint is imposed from a physical
perspective. One could think about MRI modalities, where a
positive bias has also been reported [38], [39], or the diffusion
with decay [40]–[42]. Moreover, the principle of NNEPPS
is neither limited to non-negativity constraints: the constraint
could be any threshold, corresponding to a physical extremal
value in the image.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: It is obvious that ∀i, γi ≥ 0. Let i be an arbitrary
index and without loss of generality, suppose that αi ≤ βi.
Then γi = αi. Since H has a positive diagonal, its other en-

tries being non-positive, the function
{

RN → R
α 7→ (x+Hα)i

is increasing relatively to the i-th variable, and decreasing
relatively to the others. Since γi ≥ αi (because γi = αi),

and ∀j 6= i, γj ≤ αj (because ∀j, γj ≤ αj), we have
(x+Hγ)i ≥ (x+Hα)i ≥ 0.

APPENDIX B
PROOF OF PROPOSITION 3

Proof: If the mean value of the initial image is negative,
it is obviously impossible to find an image with uniformly
non-negative voxels and a preserved mean.

Let us also show the converse. First, we will show that
according to the properties of H , it is possible to find an
α such that y ≥ 0n. Then we will create a uniformly
positive α from the previous one. As mentioned in the remark
of Section II-C1, matrix H is of rank n − 1, and every
principal sub-matrix of H is invertible. Let i be any voxel,
and I = J1, nK \ i. Since HII is invertible, one can find α̃
such that xI +HIIα̃I = 0. Let us set{

α̃I = −H−1IIxI
α̃i = 0

(6)

This gives us the final image y = x +Hα̃. Because x and
y share the same (positive) mean, and given that yI = 0, the
i-th voxel verifies yi ≥ 0. So the final image is non-negative.
However, the constraint α̃ ≥ 0 is not necessarily fulfilled by
the previous process. Because constant vectors belong to the
kernel of H , any such vector can be added to α̃ with no
change to the final image, and thus α can be made non-
negative. The existence of the solution is therefore proved.

APPENDIX C
PROOF OF PROPOSITION 4

Proof: This is a direct consequence of how the minimal
α is defined: its i-th coordinate is the infimum of the i-th
coordinates of every map satisfying (2b).

APPENDIX D
TERMINATION OF THE DUAL-SIMPLEX

The use of a dual simplex is justified by its finite termina-
tion, which is proved in this section. Indeed, provided that the
linear program is non-degenerate and bounded, the simplex
method terminates at a basic feasible point [20]. Let us show
the two parts:

Lemma 1. The dual problem is not degenerate

Proof: In a degenerate linear program, there exists at
least one basic feasible point that has fewer than n non-zero
components. Let us show that each feasible point of the dual
problem has at least n non-zero components.

If a point is feasible, Hπ + t = 1n. But πi = 0 implies
that (Hπ)i ≤ 0, and therefore ti 6= 0. So, to be feasible, a

point
(
π
t

)
must have at least n non-zero components.

The dual problem is not degenerate.

Lemma 2. If the mean of the initial value is non-negative, the
dual problem is bounded.

Proof: This is a direct consequence of the feasibility of
the primal problem in this case (see Proposition 3).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TMI.2020.3003428

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



11

The dual-simplex algorithm, therefore, terminates if the
mean of the initial image is non-negative.

APPENDIX E
THE CHOICE OF THE ENTERING INDEX IS ALWAYS

CORRECT

We choose a natural starting point in the sense that y(0) =
x, that is, we choose B(0) = Jn + 1, 2nK. Let us first verify
that this leads to a basic feasible point:

This choice corresponds to π = 0n and t = 1n.
• s is then a feasible point of the dual problem presented in

Section III-A, with at most (actually exactly) n non-zero
components.

• B(0) is a subset of J1, 2nK such that:
– B(0) contains n indexes
– i /∈ B(0) =⇒ zi = 0
– The n × n matrix B(0) = GJ1,2nK,B (so B(0) = In)

is invertible.
The initial point is, therefore, a basic feasible point of the

dual problem. The point here is that the entering index q must

always be chosen such that zq =

(
y
α

)
q

< 0.

The following two lemmata will be shown by induction.

Lemma 3. α always remains non-negative, and therefore the
entering index always has to be chosen in J1, nK

Lemma 4. If the chosen entering index is q, the leaving index
is n+ q.

Lemmata 3 and 4 imply that the possible entering indexes
are always in J1, nK, and the leaving indexes in Jn + 1, 2nK.
Therefore, it is known that any choice of the entering index
will be an index that will never leave and is indeed in the basic
index set of the solution. On top of that, since the leaving
indexes associated with the entering ones are known, it is
possible to condense the iterations efficiently.

Proof of Lemmata 3 and 4: The two lemmata will be
shown in a single demonstration by induction.

The base case is already done since in the initial state,
α(0) = 0n.

Inductive step: since α(k) ≥ 0, the entering index has to be
chosen in J1, nK, and such that y(k)q < 0. A simplex iteration
would consist in the increase of π

(k)
q while maintaining

Gs(k+1) = 1n, and z(k+1)

N (k)\q = 0n−1. If Z(k) = J1, nK∩B(k),
and P(k) = J1, nK \ B(k), from the induction hypothesis of
Lemma 4, B(k) = Z(k)∪ (n+P(k)), implying that π(k)

P(k) = 0

and t(k)Z(k) = 0. Therefore:

HZ(k)Z(k)π
(k+1)

Z(k) +HZ(k)qπ
(k+1)
q = 1 =HZ(k)Z(k)π

(k)

Z(k)

HP(k)Z(k)π
(k+1)

Z(k) +HP(k)qπ
(k+1)
q + t

(k+1)

P(k) = 1

=HP(k)Z(k)π
(k)

Z(k) + t
(k)

P(k)

which leads to:

π
(k+1)

Z(k) = π
(k)

Z(k) − (HZ(k)Z(k))−1HZ(k)qπ
(k+1)
q

t
(k+1)

P(k) = t
(k)

P(k) +
(
HP(k)Z(k)(HZ(k)Z(k))−1

HZ(k)q −HP(k)q

)
π(k+1)
q

Moreover, according to Remark II-C1, all the coefficients of
(HZ(k)Z(k))−1 are non-negative, and HZ(k)q ≤ 0 (since q

is outside Z(k)). This implies that all the components of
α(k+1) are increasing with π(k+1)

q . In the same way, we have:
HP(k)Z(k) ≤ 0, (HZ(k)Z(k))−1 ≥ 0, HZ(k)q ≤ 0. We finally
have (HP(k)q)i6=q ≤ 0 and (HP(k)q)q = Hqq ≥ 0. Therefore
all the components of tP(k) are increasing, except the q-th
component, on which we can a priori infer nothing. But since
the dual-simplex terminates (see Appendix III-C), one index
must be leaded to 1. It is therefore necessarily n+ q.

Now, according to equation (4a); and since y(k+1)

Z(k+1) = 0,
and α(k+1)

P(k+1) = 0; 0 = xZ(k+1) + HZ(k+1)Z(k+1)αk+1
Z(k+1) ,

which leads to αk+1
Z(k+1) = −(HZ(k+1)Z(k+1))−1xZ(k+1) . In

the same way, and since P(k+1) ⊂ P(k);

y
(k)

Z(k+1) = xZ(k+1) +HZ(k+1)Z(k+1)αk
Z(k+1)

Coupled with the above form of αk
Z(k+1) , we obtain

α
(k+1)

Z(k+1) −α
(k)

Z(k+1) = −(HZ(k+1)Z(k+1))−1y
(k)

Z(k+1)

Moreover, y(k)

Z(k+1) ≤ 0 (because the entering index is chosen
among negative voxels). And therefore, α(k+1)

Z(k+1) −α
(k)

Z(k+1) ≥
0. So, α(k+1) ≥ 0n.
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