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I. INTRODUCTION:

In the past forty years, the turbulence spectrum of velocity fluctuations in wall turbulence has received considerable attention as it gives valuable insight into the behaviour of wallbounded flows by indicating the distribution of energy across scales. Spectral scaling laws built on ideas initiated by Townsend [START_REF] Townsend | The structure of turbulent shear flow[END_REF] , in particular the attached eddy hypothesis, have seen consistent development over the years (see Refs. Perry & Chong [START_REF] Perry | On the mechanism of wall turbulence[END_REF], Perry et al. [START_REF] Perry | A theoretical and experimental study of wall turbulence[END_REF],

Perry & Li [START_REF] Perry | Experimental support for the attached-eddy hypothesis in zero-pressure-gradient turbulent boundary layers[END_REF], Marusic et al. [START_REF] Marusic | Similarity law for the streamwise turbulence intensity in zero-pressure-gradient turbulent boundary layers[END_REF] and Marusic & Kunkel [START_REF] Marusic | Streamwise turbulence intensity formulation for flat-plate boundary layers[END_REF]). Perry & Abell [START_REF] Perry | Asymptotic similarity of turbulence structures in smooth-and rough-walled pipes[END_REF] and Perry et al. [START_REF] Perry | A theoretical and experimental study of wall turbulence[END_REF] showed how Townsend's attached eddy hypothesis implies that the energy spectrum E 11 (k x ) of the turbulent streamwise fluctuating velocity at a distance y from the wall scales

as E 11 (k x ) ∼ U 2 τ k -1
x in the range 1/δ k x 1/y where U τ is the friction velocity and δ is the boundary layer thickness. Nickels et al. [START_REF] Nickels | Evidence of the k -1 1 law in a high-Reynolds-number turbulent boundary layer[END_REF] stressed the use of overlap arguments to deduce the -1 power law behaviour. That is, a k -1

x region in the spectra would exist where the inner scaling (based on y and U τ ) and outer scaling (based on δ and U τ ) are simultaneously valid over the same wavenumber range. Nickels et al. [START_REF] Nickels | Some predictions of the attached eddy model for a high Reynolds number boundary layer[END_REF] stated that it is necessary to take measurements surprisingly close to the wall to observe a k -1

x behaviour and thought this was the reason why Morrison et al. [START_REF] Morrison | Scaling of the streamwise velocity component in turbulent pipe flow[END_REF] and McKeon & Morrison [START_REF] Mckeon | Asymptotic scaling in turbulent pipe flow[END_REF] did not observe any -1 region in their spectra as their measurements were not close enough to the wall. However, recent experiments by Vallikivi et al. [START_REF] Vallikivi | Spectral scaling in boundary layers and pipes at very high Reynolds numbers[END_REF] do not show an overlap region and these authors infer that the k -1

x region cannot be expected even at very high Reynolds numbers.

The present work looks at the basis for the k -1

x range in flat plate turbulent boundary layers from a new perspective. Using Particle Image Velocimetry (PIV) and a simple model which can in principle be applied to various wall-bounded turbulent flows, we show how, in the turbulent boundary layer, a power-law spectral range exists but is not a Townsend-Perry

k -1
x range and how it can be accounted for by taking only streamwise lengths and intensities of wall-attached structures into account. This paper is organized as follows. In sections II and III we provide a model for the streamwise energy spectrum. The experimental set-up of the flat plate boundary layer is presented in section IV. Our data set is validated in V A and the method for educing the wall-attached flow structures relevant to our model is described in section V B. The main results of the paper are in V C and V D followed by a discussion in V E. We conclude in section VI.

II. A SIMPLE MODEL FOR THE SPECTRAL SIGNATURE OF THE TOWNSEND-PERRY ATTACHED EDDY RANGE OF WAVENUMBERS

As already mentioned in the introduction, Perry & Abell [START_REF] Perry | Asymptotic similarity of turbulence structures in smooth-and rough-walled pipes[END_REF], Perry & Chong [START_REF] Perry | On the mechanism of wall turbulence[END_REF] and Perry et al. [START_REF] Perry | A theoretical and experimental study of wall turbulence[END_REF] showed how Townsend's attached eddy hypothesis implies E 11 (k x ) ∼ U 2 τ k -1

x in the range 1/δ k x 1/y. Perry et al. [START_REF] Perry | A theoretical and experimental study of wall turbulence[END_REF] also developed a flow structure model for this spectral range in terms of specific attached eddies of varying sizes randomly distributed in space and with a number density that is inversely proportional to size. In this paper we attempt to distill such a type of model to its bare essentials. These bare essentials are that flow structures are primarily objects with clear spatial boundaries. In section V we model these boundaries with on-off functions in the expectation that the spectral signature in the attached eddy wavenumber range is dominated by these sharp gradient, effectively onoff, behaviours. The concomitant expectation is that the additional superimposed velocity fluctuations fill the content of a predominantly higher frequency spectral range. In this section we show that the streamwise energy spectrum's k -1

x spectral range can be captured by simple on-off representations of elongated streaky structures of varying sizes as long as their number density has a space-filling power law dependence on size.

We therefore assume that the attached eddies responsible for the k -1

x spectral range have a long streaky structure footprint on the 1D streamwise fluctuating velocity signals at a distance y from the wall. We also assume that these streaky structures can be modeled as simple on-off functions and that it is sufficient to represent the streamwise velocity fluctuations u(x) at a given height y from the wall as follows

u(x) = n,m a nm Π(ξ) (1) 
where Π(ξ) = 1 if -1 < ξ < 1 with ξ = x-xnm λn and Π(ξ) = 0 otherwise. The on-off function Π(ξ) is our cartoon model of a streaky structure. Streaky structures of length λ n are centred at random positions x nm and their intensity is given by the coefficients a nm . For each subscript n, the subscript m counts the spatial positions where cartoon structures of size λ n can be centred in a given realisation. The sum in ( 1) is over all structures lengths

λ n and all their positions x nm .

The energy spectrum of u

(x) is E 11 (k x ) = (2π) 2 Lx |û(k x )| 2
where L x is the length of the record, û(k x ) is the Fourier transform of u(x), and the overbar signifies an average over realisations. The Fourier transform of Π(

x-xnm λn ) being Π(k x , λ n , x nm ) = 2ik -1 x e ikxxnm sin(k x λ n ), it follows that û(k x ) = 2ik -1 x nm
a nm e ikxxnm sin(k

x λ n ) (2)
which implies that the energy spectrum is given by

E 11 (k x ) = 4 (2π) 2 L x k -2
x nm

a nm e ikxxnm sin(k

x λ n ) pq a pq e -ikxxpq sin(k x λ p ). (3) 
We introduce two assumptions which were also used by Perry et al. [START_REF] Perry | A theoretical and experimental study of wall turbulence[END_REF] in their more intricate model. The first assumption is that the positions and amplitudes of our cartoon stuctures are uncorrelated and that different positions are not correlated to each other either, i.e. e ikxxnm e ikxxpq = δ pn δ qm . As a result, the expression for the energy spectrum simplifies as follows:

E 11 (k x ) = 4 (2π) 2 L x k -2 x nm (a nm ) 2 sin 2 (k x λ n ). (4) 
Let us say that there is an average number N n of cartoon stuctures of size λ n centred within an integral scale along the x-axis. The expression for E 11 (k x ) simplifies even further:

E 11 (k x ) = 4 (2π) 2 L x k -2 x n a 2 n N n sin 2 (k x λ n ) (5)
where a 2 n ≡ (a nm ) 2 is the same irrespective of position x nm . We now consider a continuum of different structure sizes λ rather than discrete lengthscales λ n and the previous expression for E 11 (k x ) must therefore be replaced by

E 11 (k x ) = 4 (2π) 2 L x k -2 x dλa 2 (λ)N (λ) sin 2 (k x λ) (6) 
in terms of easily understandable notation. At this point we introduce a generalised form of the second assumption which was also used by Perry et al. Vassilicos & Hunt [START_REF] Vassilicos | Fractal dimensions and spectra of interfaces with application to turbulence[END_REF] proved that, if 0 ≤ D ≤ 1, then the set of points defining the edges of the on-off functions Π(ξ) is fractal and D is effectively the fractal dimension of this set of points. The case where this fractal dimension is D = 1 is the case where these points are space-filling. The population density assumption of Perry et al. [START_REF] Perry | A theoretical and experimental study of wall turbulence[END_REF] corresponds to D = 1 which is also the choice we make in this work. We now show that this choice can lead to

E 11 (k x ) ∼ k -1 x in the range 1/λ o k x 1/λ i .
We calculate the energy spectrum by carrying out the integral in [START_REF] Marusic | Streamwise turbulence intensity formulation for flat-plate boundary layers[END_REF]. This requires a model for a 2 (λ) which, in this section, we chose to be as simple as possible and therefore independent of λ in the relevant range, i.e. a 2 (λ) = A 2 /δ for λ i < λ < λ o where A 2 is a constant. Using our models for N (λ) and a 2 (λ) and the change of variables λk x = l, (

becomes

E 11 (k x ) = A 2 δ(C o (k x δ) -2+D -C M (k x δ) -2 ) (7) 
where

C o = 4(2π) 2 N o δ L x λokx λ i kx dl sin 2 (l)l -1-D
and

C M = 4(2π) 2 N M δ L x (k x δ) -1 λokx λ i kx dl sin 2 (l)
which is bounded from above by N M Lx λo-λ i δ . In the attached eddy range 1/λ o k x 1/λ i ,

C o ≈ 4(2π) 2 No Lx ∞ 0 dl sin 2 (l)l -1-D which means that C o is approximately independent of k x in this range.
Substituting the value D = 1 in equation ( 7), we get

E 11 (k x ) = A 2 (C o k -1 x -C M δ -1 k -2
x ) which is well approximated by 

E 11 (k x ) ≈ C o A 2 k -1 x (8) for wavenumbers k x δ C M /C o (i.e. C o k -1 x C m δ -1 k -2 x ). Note that C M /C o is
A 2 ∼ U 2 τ .

III. A STRAIGHTFORWARD GENERALISATION

It is worth generalising the previous section's model by assuming that a 2 (λ) is not constant but varies with λ in the range λ i < λ < λ o , for example as a 2 (λ) = (A 2 /δ)(λ/δ) p where p is a real number with bounds which we determine below. The arguments of the previous section can be reproduced till equation ( 6) which now becomes

E 11 (k x ) = A 2 δ[c o (k x δ) -2+D-p -c M (k x δ) -2 ] ( 9 
)
where

c o = 4(2π) 2 N o δ L x λokx λ i kx dl sin 2 (l)l -1-D+p and c M = 4(2π) 2 N M δ L x (k x δ) -1-p λokx λ i kx dl l +p sin 2 (l) which is bounded from above by Nm (1+p)Lx [( λo δ ) 1+p -( λ i δ ) 1+p ]. In the attached eddy range 1/λ o k x 1/λ i , c o ≈ 4(2π) 2 No Lx ∞ 0 dl sin 2 (l)l -1-D+p which means that c o is approximately independent of k x in this range if 0 < D -p < 2.
Substituting the value D = 1 in (9), we obtain the following leading order approximation in the parameter range -1 < p < 1:

E 11 (k x ) ≈ c 0 A 2 δ(k x δ) q (10) 
where

p + q = -1 (11) 
for wavenumbers

k x δ (c M /c o ) 1 1-p . Note that c M /c o is much smaller than 1 if p is not too close to 1 because N M is much smaller than N o .
The spectral shape [START_REF] Morrison | Scaling of the streamwise velocity component in turbulent pipe flow[END_REF] and Re θ = 20600 respectively.

V. RESULTS AND DISCUSSION

A. Validation of experimental data is present in the range 100 < y + < 300 for our higher Reynolds number case. Close to the wall, the u + values obtained from our PIV are slightly underestimated, in particular for Re θ = 20600, demonstrating some filtering of the PIV at this resolution (Foucaut et al.

[16]). To compute from PIV the energy spectra used in this paper, we used the method of Foucaut et al. [START_REF] Foucaut | PIV optimization for the study of turbulent flow using spectral analysis[END_REF]. As seen in figure 2 The raw instantaneous streamwise velocity fields are affected by noise so that single structures in figure 3(a) appear split in many little parts. To smooth out these structures without modifying their shape and statistics we used a two-dimensional Gaussian filter. This filtering operation was found to be sufficient to capture and connect the structures while To educe on-off functions such as the ones required by our model we apply a threshold u th on the gaussian-filetered u * to obtain binary images which distinguish between u * < u th and u * > u th . Effects of the threshold on the statistics of educed structures were investigated in the range 0.1u 300 + < |u th | < u 300 + where u 300 + is u at y + = 300.

A threshold u th equal to -0.4u 300 + was finally chosen to detect low momentum structures in the present study as it corresponds to the value that leads to least threshold-dependency of our statistics for a negative u th (for example, u th equal to -0.2u 300 + or -0.6u 300 + return results with no significant difference, see Appendix A). This thresholding operation leads to of lengths λ at various wall distances. The most probable length λ lies between 0.3δ and 0.5δ and lengths λ longer than 3.5δ occur very rarely.

We tested for finite size effects of the field of view by computing the PDF on smaller domains, namely 3.5δ and 3δ long in the streamwise direction but same in the wall normal direction. As shown in figure 5 there is no significant differences caused by the three fields of view except that the smallest field returns a slightly more noisy PDF. Indeed, a reduced field of view leads to a smaller number of detected wall-attached elongated binary structures and therefore to reduced statistical convergence.

Figures 5 and6 show a power law dependence on λ between about 0.5δ and 2δ with 

D. Energy spectra

Figure 7 shows log-log plots of premultiplied energy spectra of streamwise fluctuating velocities u(x) which have been obtained from our PIV data at various normalised wall distances y + for both Reynolds numbers. These plots might suggest that

E 11 (k x ) ∼ U 2 τ k -1
x in a range of wavenumbers 2π/(4δ) k x 0.63/y for y + larger than about 88 and smaller than the value of y + where this range of wavenumbers no longer exists. The apparent k -1

x wavenumber range is close to a decade long at y + = 90 for Re θ = 20600 and shorter for higher wall normal distances and for the lower Reynolds number (Re θ = 8100). One would be justified to conclude that this is indeed experimental support for the Townsend-Perry

k -1
x spectrum if the only available theoretical glasses through which to look at these spectral plots were those of the Townsend-Perry attached eddy model. However the situation is subtler and, in effect, quite different.

A closer look at the spectra in the lin-log plot of figure 8 suggests the possibility for small corrections to this conclusion, particularly at the lower of the two Re θ values, but the result ( 10)-( 11) of our model in section III may pave the way for a significantly different interpretation. This model leads to As an aside for the moment, note that the large-scale motions (LSMs) and very large-scale motions (VLSMs), which have been found to exist in the logarithmic and lower wake regions of a turbulent boundary layer (see Kovasznay et al. [START_REF] Kovasznay | Large-scale motion in the intermittent region of a turbulent boundary layer[END_REF], Brown & Thomas [START_REF] Brown | Large structure in a turbulent boundary layer[END_REF], Hutchins & Marusic [START_REF] Hutchins | Evidence of very long meandering features in the logarithmic region of turbulent boundary layers[END_REF], Dennis & Nickels [START_REF] Dennis | Experimental measurement of large-scale threedimensional structures in a turbulent boundary layer. Part 1. Vortex packets[END_REF] and Lee & Sung [START_REF] Lee | Very-large-scale motions in a turbulent boundary layer[END_REF]) generally refer to elongated regions of streamwise velocity fluctuations having a streamwise extent from about 2δ to 3δ for LSMs and larger than 3δ for VLSMs (see Kim & Adrian [23], Guala et al. [START_REF] Guala | Large-scale and very-large-scale motions in turbulent pipe flow[END_REF] and Balakumar & Adrian [START_REF] Balakumar | Large-and very-large-scale motions in channel and boundary-layer flows[END_REF]). The LSMs near the wall and the VLSMs have been interpreted as being responsible for the k -1

E 11 (k x ) ∼ (k x δ) q with p + q = -1 if D = 1. Support
x scaling range of the turbulence spectrum (Smits et al. [START_REF] Smits | High-reynolds number wall turbulence[END_REF]). The range of scales we concentrate on, in figures 9 to 12, just about includes some LSMs at its upper range.

Returning now to figures 9 to 12, we have included best fits of power law curves in the plots of a 2 versus λ/δ and of E 11 versus k x . These best fits are indicated in the inserts of each plot and provide an estimation of the exponents p and q in a 2 ∼ (λ/δ) p and E 11 (k x ) ∼ k q

x . Figure 13 summarizes the information with plots of p, q and p + q as functions of y + . It is perhaps remarkable that p + q is very close to -1 (see figure 13) as predicted by ( 10)- [START_REF] Mckeon | Asymptotic scaling in turbulent pipe flow[END_REF] for all examined values of y + and for both Reynolds numbers Re θ . Whereas this subsection's initial interpretation in terms of the Townsend attached eddy model is limited to y + larger or equal to 88 (based on the log-log plots of figure 7), the lin-lin plots of figures 9 to 12 present a different and consistent picture which covers both Reynolds numbers and all our y + positions, including y + smaller than 88. This picture is confirmed by Hot Wire Anemometry (HWA) data from a turbulent boundary layer in the same wind tunnel by Tutkun et al. [START_REF] Tutkun | Two-point correlations in high reynolds number flat plate turbulent boundary layers[END_REF] and from the recent Direct Numerical Simulations (DNS) of a turbulent channel flow at Re τ = 5200 by Lee & Moser [START_REF] Lee | Direct numerical simulation of turbulent channel flow up to Re τ 5200[END_REF]. Indeed, these HWA and DNS data show the same variation of the spectral exponent q with y + that we found from using ( 10)- [START_REF] Mckeon | Asymptotic scaling in turbulent pipe flow[END_REF] on our PIV data; see figure 14, and also figure 13(b) where we collected the values of q from different data. The HWA data, in particular, provide a confirmation of our PIV results because they extend to a wider range at the lower end of wavenumbers (see figures 14(a) and also figure 13(b) where it is shown that the HWA's extended wavenumber range returns effectively same values of q). The much higher Reynolds number measurements of Vallikivi et al. [START_REF] Vallikivi | Spectral scaling in boundary layers and pipes at very high Reynolds numbers[END_REF] did not find support for the Townsend-Perry k -1 x spectrum either. However, these authors did find some agreement with the k -1

x log(8π/k x y) spectrum model of del Álamo et al. [START_REF] Del Álamo | Scaling of the energy spectra of turbulent channels[END_REF]. This approximate agreement was found in a range of wall-normal distances where we find positive values of p, i.e. in a region where the spectrum scales as k -1

x k -p x with values of p above but close to 0. It is quite difficult to distinguish between such a weak power law and log(8π/k x y), so the two models qualitatively agree in this range of wall-normal distances. However, the model of del Álamo et al. [START_REF] Del Álamo | Scaling of the energy spectra of turbulent channels[END_REF] cannot account for the scaling of the energy spectrum at closer distances to the wall where we find p ≤ 0, whereas our model fits the data in this region too.

E. Discussion

It is important to stress that the support for (10)- [START_REF] Mckeon | Asymptotic scaling in turbulent pipe flow[END_REF] in figures 9 to 12 cannot be obtained without the crucial last step of our structure detection algorithm in subsection V B which discards structures that are not attached to the wall. The structures which do not touch the wall are in fact less elongated and less intense (i.e. smaller a 2 ) on average. We have checked that if we only consider them, we do not find anything close to p + q = -1, i.e. [START_REF] Mckeon | Asymptotic scaling in turbulent pipe flow[END_REF].

The attached eddy concept introduced by Townsend [START_REF] Townsend | The structure of turbulent shear flow[END_REF] is therefore important for explaining E 11 (k x ) but the results of our analysis suggest that the Townsend-Perry model does x for the present PIV data, the HWA turbulent boundary layer data of Tutkun et al. [START_REF] Tutkun | Two-point correlations in high reynolds number flat plate turbulent boundary layers[END_REF] (see figure 14(a) and the DNS of turbulent channel flow data of Lee & Moser [START_REF] Lee | Direct numerical simulation of turbulent channel flow up to Re τ 5200[END_REF] (see figure 14 (c) p + q versus y + . All these fits are obtained over the range of scales investigated in figures 9 to 12 (except for the HWA case in (b) where we have also included a fit over a range of length-scales extended up to 7δ). The resulting exponents are plotted with the 95% confidence intervals for these fits. not hold without some significant corrections because the turbulent kinetic energy content in these wall-attached flow structures does not just scale with U τ . (If it did, a 2 would scale with U τ and p would be uniformly 0.) At different y inside such a structure, the level of tur-bulent kinetic energy depends both on U τ and on the streamwise length of the structure at that height. Furthermore, this dependence varies with height: a 2 decreases with increasing λ/δ very close to the wall, in the buffer layer, and increases with increasing λ further up.

As a 2 transits smoothly from one dependence to the other, a particular height exists where a 2 is independent of λ and therefore depends only on U τ . At that very particular height,

E 11 (k x ) ∼ k -1
x . However, strictly speaking, this is not a Townsend-Perry spectrum, it is just the spectrum at that particular distance from the wall where the turbulent kinetic energy inside the streaky structures transits from a decreasing to an increasing dependence on the length of these structures. Our conclusion agrees with Nickels et al. [START_REF] Nickels | Some predictions of the attached eddy model for a high Reynolds number boundary layer[END_REF] in their statement that it is necessary to take measurements close to the wall to observe a k -1

x behaviour, in fact at y + between 100 and 200 as they also found. However, these authors were not in possession of ( 10)-( 11) and therefore did not measure a 2 at various heights and for various values of λ/δ which now allows us to see that the k -1

x behaviour at the edge of the buffer layer is not the Townsend-Perry spectrum but just a transitional instance of a more involved spectral structure. In fact, the spectral picture which emerges from our analysis is a unified picture which brings together the buffer and inertial layers in a seemless way.

In figure 15 we plot examples of measured streamwise velocity fluctuations and the on-off signals with which we model them at various heights from the wall. Our model on-off signals are clearly a drastic simplification of the data but one gets the impression from these plots that they capture the sharpest gradients in the signal and therefore much of its spectral content at the length-scales considered here. The lengths of the non-zero parts of the model signals correspond to λ and the actual values of the on-off signal in these non-zero parts correspond to the average value α of the streamwise fluctuating velocity component inside each part. We stress that it is enough that our on-off model agrees with the data in the way it does in figures 9 to 12 for a certain range of thresholds u th (see subsection V B). Our model does not need to work for any arbitrary threshold; it only needs to work for those thresholds which effectively capture the spatial boundaries of the flow structure objects simulated by our on-off functions as mentioned at the end of the first paragraph of section II.

It is clear that a wider range of Reynolds numbers needs to be examined to establish the scalings of the lower and upper bounds of the range of wavenumbers where (10)-( 11 Our work has shed some new light on the streamwise turbulence spectra of wall turbulence by revealing that some of the inner structure of wall-attached eddies is reflected in the scalings of these spectra via p(y + ). An important implication of this structure is that the friction velocity is not sufficient to scale the spectra. Future work must now further probe the inner structure of wall-attached eddies, attempt to explain it and extend our analysis to higher Reynolds numbers so as to establish with certainty the ranges of the power laws (exponents p and q in (10)-( 11)) discussed in this paper. When this will be done, a be reproduced for this positive threshold u th = 0.4u 300 + and show the exact same trend with p increasing while q is decreasing with increasing y + . However, whereas p takes values similar to those for u th = -0.4u 300 + in the lower Re θ case, it does not do so in the higher Re θ case. As a result p + q is quite close to -1 in the lower Re θ case but less so, and in fact closer to -1.1 on average, for the higher Re θ (see figure 18). 

[ 3 ]

 3 : we assume a power-law form for N (λ) in the range λ i < λ < λ o where λ i ∼ y and λ o ∼ δ, and N (λ) = 0 outside this range for simplicity. This power law form is N (λ) = (-N M + N o (λ/δ) -1-D ) where N M and N o are positive dimensionless numbers which increase propotionally to L x so as to keep number densities constant. The number N M is introduced to allow for the possibility of an upper bound on streaky structure size given by N (λ o ) = 0, i.e. N M = N o (λ o /δ) -1-D which should be small given that LSM and VLSM streaky structures have been observed with lengths greater than δ [see Smits et al. 13].

  36δ and 3.85δ, for Re θ = 8100 and 20600 respectively) and 0.3m high (≈ 0.86δ and 1δ) for Re θ = 8100 and 20600 respectively). Nikon lenses of 50mm focal length were set on the cameras and the magnification obtained was 0.05. The Software HIRIS was used to acquire the images of the four cameras simultaneously. A total of 22500 and 29500 samples were recorded at the highest and lowest Reynolds numbers respectively. The flow was seeded with 1µm Poly-Ethylene glycol and illuminated by a double pulsed NdYAG laser at 400mJ/pulse. The modified version by LML of MatPIV toolbox, was used under Matlab to process the acquired images from the 2D2C PIV. A multipass software was used with a final pass of 28x28 pixels (with a mean overlap of 65%) corresponding to 4mm x 4mm i.e. 33x33 wall units for Re θ = 8100 and 100x100 wall units for Re θ = 20600. Image deformation was applied at the final pass. The final grid had 766 points along the wall and 199 points in the wall-normal direction with a grid spacing of 1.5mm corresponding to 11 wall units and 35 wall units for the test cases at Re θ = 8100

Figure 1 FIG. 1 :

 11 Figure 1 shows profiles of the mean streamwise velocity U and the rms streamwise fluctuating velocity u obtained from PIV at Re θ = 8100 and Re θ = 20600 and compared with the hot-wire anemometry results of Carlier & Stanislas [15]. The mean velocity profiles are in good agreement with the hot-wire data and are well resolved from y + ≈ 30 and y + ≈ 90 upwards for Re θ = 8100 and 20600 respectively. Comparisons of the profiles of u + (u scaled with inner variables) show a fairly good match with the hot-wire data. A plateau of u +

  for the particular case of wall distance y + = 200 at Re θ = 20600, the agreement between the spatial spectrum from the PIV and the temporal spectrum from the hot-wire anemometry of Carlier & Stanislas [15] is good up to wavenumbers k x ≈ 500 corresponding to length-scales of 2mm.

FIG. 2 :

 2 FIG. 2: Comparison of the streamwise energy spectra obtained from PIV and hot-wire anemometry at y + = 200 for Re θ = 20600. E 11 (k x ) is in m 3 /s 2 and k x is in rad/m. The hot-wire anemometry was made by Carlier & Stanislas [15] at 19.6m from wind tunnel inlet in the same wind tunnel.

Figure 3 (

 3 Figure 3(a) shows a sample field of instantaneous streamwise fluctuating velocity components u. The existence of well-defined elongated and tilted wall-attached regions of relatively high (positive or negative) u values is clear. It is these regions that we need to target in relation to the elongated streaky structures of our model.

1 FIG. 3 :

 13 FIG. 3: Wall-attached elongated streaky structure eduction method applied on a sample instantaneous streamwise velocity field at Re θ = 20600. From top: (a) Raw instantaneous streamwise fluctuating velocity component field (b) The same field after application of a Gaussian filter (c) Binary image obtained after thresholding negative streamwise fluctuating momentum regions. (d) Final image obtained after cleaning as described in subsection V B.

FIG. 4 :

 4 FIG. 4: Figure 3(d) reproduced in the top plot, with, in the bottom plot, the average streamwise fluctuating velocity α and the streamwise length λ of the detected wall-attached structures at y/δ = 0.03.

figure 3 ( 2 FIG. 5 :

 325 figure 3(c) when applied to figure 3(b). The white structures in figure 3(c) correspond to u * < u th . One more step is required before comparing with our model. White structures which cut through the vertical borders of the figure are discarded because their streamwise extent is unknown; and white structures which are not attached to the bottom wall (at y = 0 but in

2 FIG. 6 :

 26 FIG. 6: PDFs of streamwise lengths λ of wall-attached structures (see figure 4) at selected wall distances for Re θ = 8100 (top) and Re θ = 20600 (middle). The fits shown in these top and middle plots are for y + = 198 at Re θ = 8100 and y + = 195 at Re θ = 20600. The bottom plot is a log-log reproduction of the middle plot's data.

FIG. 7 :

 7 FIG. 7: Log-log plots of pre-multiplied streamwise energy spectra at selected wall distances for Re θ = 8100 above and Re θ = 20600 below. Vertical lines show y 2π k x = (y/2π)(2π/δ) = y δ

FIG. 8 :

 8 FIG.8: Same as figure7in lin-log plots.
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 91213 FIG. 9: Lin-lin plots of a 2 versus λ/δ (left) and streamwise energy spectra plotted at wall distances y + = 41, 64, 88 and 125 (from top to bottom) at Re θ = 8100.

  (b).

11 •FIG. 14 :

 1114 FIG.14:From top to bottom: (a) Lin-log plots of pre-multiplied streamwise energy spectra at selected wall distances obtained with HWA in the Re θ = 19100 turbulent boundary layer of Tutkun et al.[START_REF] Tutkun | Two-point correlations in high reynolds number flat plate turbulent boundary layers[END_REF]. Least-square fits in a range bounded from above byx δ/(2π) = 2 but extended to wavenumbers as small as k x δ/(2π) close to 10 -1 . (b) Lin-log plots of pre-multiplied streamwise energy spectra at selected wall distances from the Re τ = 5200 turbulent channel flow DNS of Lee & Moser[START_REF] Lee | Direct numerical simulation of turbulent channel flow up to Re τ 5200[END_REF]. Least-square fits in the range 0.25 ≤ k x /(2π) ≤ 2.

FIG. 15 : 1 x

 151 FIG. 15: An example of a detected wall-attached flow structure for Re θ = 20600 and the u(x) signal through this structure at three different y + positions. The red line in the repeated binary image indicates the y + position where the signal u(x) is recorded (y + = 195, 450, 1110). The black/red line in the u(x) versus x/δ plots is the raw (un-filtered) PIV fluctuating streamwise fluctuating velocity outside/inside the detected flow structures. The dashed blue line is our model signal, equal to 0 outside and to the average value of u inside the detected structures. 27

2 FIG. 16 :

 216 FIG. 16: PDFs of streamwise lengths λ wall-attached structures at y + = 195 for Re θ = 20600 (top) and y + = 125 for Re θ = 8100 (bottom) over a set of thresholds

  can

2 FIG. 17 :

 217 FIG. 17: PDFs of streamwise lengths λ of wall-attached structures of positive streamwise fluctuating velocity with u th = u 300 + at selected wall distances for Re θ = 20600 (top) and Re θ = 8100 (bottom). The fits shown here are for y + = 195 at Re θ = 20600 and y + = 198 at Re θ = 8100.

FIG. 18 :

 18 FIG.18: From top to bottom: (a) Exponents p obtained from the best power-law fit of a 2 ∼ (λ/δ) p . (b) p + q versus y + . These fits are obtained over the range of scales investigated for the high-speed regions and the resulting exponents are plotted with the 95% confidence intervals for these fits. The y + positions and the two Reynolds numbers Re θ are those in figures 9 to 12.

  much smaller than 1 because N M is much smaller than N o and that (8) is valid in the range 1/λ o k x 1/λ i where λ o scales with but is much larger than δ. For a good correspondence with the scalings of the Townsend-Perry attached eddy model one needs to take λ i ∼ y and

TABLE I :

 I Values of the constants C 1 and C 2 in the form -C 1 + C 2 (λ/δ) -2 of the PDF of λ/δ. In the Re θ = 20600 case, the fit is over a range of λ/δ bounded from above by 3.8 and

	from below by 0.49 (y + = 90), 0.55 (y + = 195), 0.54 (y + = 305), 0.58 (y + = 450) and 0.78
	(y + = 630). In the Re θ = 8100 case, the fit is over a range of λ/δ bounded from above by
	3.4 and from below by 0.54 (y + = 52), 0.53 (y + = 88), 0.53 (y + = 125), 0.56 (y + = 198)
	and 0.65 (y + = 306).

power law exponent -2, i.e. D = 1, in all cases. Given the form of N (λ) hypothesised in sections II and III, we fit the PDF of λ/δ with a functional form -C 1 + C 2 (λ/δ) -2 (where

C 1 /N M = C 2 /N o ).

The fit is shown in figures 5 and 6 and is effectively the same for both Reynolds numbers and all values of y + in the mean flow's approximate log region. The constants C 1 and C 2 are reported in table I. They are indeed fairly constant over the range of wall distances and for both Reynolds numbers. Identical results are obtained for wallattached structures with positive streamwise fluctuating velocity except that C 1 ≈ 0.02 for both Reynolds numbers and C 2 ≈ 0.29 for Re θ = 8100 (see Table

III

in Appendix). It is worth noting that the lower bound of the range where the PDF of λ/δ is well approximated by -C 1 + C 2 (λ/δ) -2 seems to increase slightly with increasing y + .

TABLE II :

 II Number of structures detected over a set of three negative thresholds for Re θ = 20600 and Re θ = 8100 complete picture of streamwise energy spectra will also need to integrate the spectral model of Vassilicos et al. [31].

TABLE III :

 III Values of the constants C 1 and C 2 in the form -C 1 + C 2 (λ/δ) -2 of the PDF of λ/δ.

Acknowledgements

The work was carried out within the framework of the CNRS Research Foundation on Ground Transport and Mobility, in articulation with the ELSAT2020 project supported by the European Community, the French Ministry of Higher Education and Research, the Hauts de France Regional Council. The authors gratefully acknowledge the support of these institutions. JCV also acknowledges the support of ERC Advanced Grant 320560.

(or very weak power law) dependence on y exists for the rms streamwise turbulent velocity in the outer part of the inertial range of wall-distances. If one assumes the lower bound to scale as 1/δ and therefore an energy spectrum E 11 (k x ) of the form (i) E 11 (k x ) ∼ U 2 τ δ for 0 ≤ k x ≤ B 1 /δ, (ii) E 11 (k x ) ∼ U 2 τ δ(k x δ) -1-p for B 1 /δ ≤ k x ≤ B 2 /y (where B 1 and B 2 are dimensionless constants and p may be a function of y as in figure 13(a) and (iii) comparatively negligible energy at wavenumbers k x > B 2 /y, then we should have

This expression for (u + ) 2 tends to

as p → 0 which is the Townsend logarithmic dependence on y corresponding to p ≡ 0 (see Townsend [START_REF] Townsend | The structure of turbulent shear flow[END_REF], Perry & Abell [START_REF] Perry | Asymptotic similarity of turbulence structures in smooth-and rough-walled pipes[END_REF] and Perry et al [START_REF] Perry | A theoretical and experimental study of wall turbulence[END_REF]) . This logarithmic dependence [START_REF] Smits | High-reynolds number wall turbulence[END_REF] results from the assumption that the upper bound of the range of wavenumbers where ( 10)-( 11) may hold with p ≡ 0 scales as 1/y. Slightly non-zero values of p give slight deviations from this logarithmic dependence, of the form [START_REF] Vallikivi | Spectral scaling in boundary layers and pipes at very high Reynolds numbers[END_REF].

Using the values of p obtained in this work and plotted versus y + in figure 13 for our two values of Re θ , it is not possible to fit [START_REF] Vallikivi | Spectral scaling in boundary layers and pipes at very high Reynolds numbers[END_REF] to the data in the lower plot of figure 1 from y + = 41 to 306 in the Re θ = 8100 case and from y + = 90 to 742 in the Re θ = 20600 case.

These are the y + ranges where ( 10)- [START_REF] Mckeon | Asymptotic scaling in turbulent pipe flow[END_REF] has been established for our data and they should therefore also be the ranges where [START_REF] Vallikivi | Spectral scaling in boundary layers and pipes at very high Reynolds numbers[END_REF] holds if the spectral model of the previous paragraph is good enough. However, in spite of the three adjustable dimensionless constants (B 1 , B 2 and an overall constant of proportionality), ( 12) cannot fit the entire y + range for which this model has been designed, that is a y + range which includes both the p < 0 and the p > 0 regions.

A most suspect part of the spectral model used to derive ( 12) is its low wavenumber part. 

Appendix A: Effects of threshold levels and sign

Our results have no significant dependence on threshold u th in the range -0.2u 300 + to -0.6u 300 + . An example of this lack of threshold dependence can be seen in the PDFs of λ/δ which we plot in figure 16. We also report in table II the number of structures educed by the algorithm described in subsection V B for the three negative threshold values -0.2u 300 + , -0.4u 300 + and -0.6u 300 + . Figures 9 to 13 have been obtained for u th = -0.4u 300 + but we checked that they remain very similar without deviations from our conclusions if the threshold u th is chosen in the range -0.2u 300 + to -0.6u 300 + .

As mentioned in subsection V B, this paper's analysis can be repeated equally well on structures of positive streamwise fluctuating velocity. We provide examples of results obtained with u th = 0.4u 300 + in figure 17 and table III. There are indeed no significant differences in the results for the low and high speed attached flow regions, except for a lower but extreme Reynolds numbers," Phys. Rev. Lett. 108, 094501 (2012).