N

N

Combining Superpixels and Deep Learning Approaches
to Segment Active Organs in Metastatic Breast Cancer
PET Images *

Constance Fourcade, Ludovic Ferrer, Gianmarco Santini, Noémie Moreau,
Caroline Rousseau, Marie Lacombe, Camille Guillerminet, Mathilde

Colombié, Mario Campone, Diana Mateus, et al.

» To cite this version:

Constance Fourcade, Ludovic Ferrer, Gianmarco Santini, Noémie Moreau, Caroline Rousseau, et al..
Combining Superpixels and Deep Learning Approaches to Segment Active Organs in Metastatic Breast
Cancer PET Images *. EMBC - Engineering in Medecine and Biology Conference, Jul 2020, Montréal,
Canada. hal-02565092

HAL Id: hal-02565092
https://hal.science/hal-02565092
Submitted on 6 May 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-02565092
https://hal.archives-ouvertes.fr

Combining Superpixels and Deep Learning Approaches to Segment
Active Organs in Metastatic Breast Cancer PET Images *

Constance Fourcade!?

Camille Guillerminet* PhD
Diana Mateus! PhD

Abstract— Semi-automatic measurements are performed on
BEDG PET-CT images to monitor the evolution of metastatic
sites in the clinical follow-up of metastatic breast cancer
patients. Apart from being time-consuming and prone to
subjective approximation, semi-automatic tools cannot make
the difference between cancerous regions and active organs,
presenting a high "*FDG uptake.

In this work, we combine a deep learning-based approach
with a superpixel segmentation method to segment the main
active organs (brain, heart, bladder) from full-body PET
images. In particular, we integrate a superpixel SLIC algorithm
at different levels of a convolutional network. Results are
compared with a deep learning segmentation network alone.
The methods are cross-validated on full-body PET images
of 36 patients and tested on the acquisitions of 24 patients
from a different study center, in the context of the ongoing
EPICUREinmeta study. The similarity between the manually
defined organ masks and the results is evaluated with the
Dice score. Moreover, the amount of false positives is evaluated
through the positive predictive value (PPV).

According to the computed Dice scores, all approaches allow
to accurately segment the target organs. However, the networks
integrating superpixels are better suited to transfer knowledge
across datasets acquired on multiple sites (domain adaptation)
and are less likely to segment structures outside of the target
organs, according to the PPV.

Hence, combining deep learning with superpixels allows
to segment organs presenting a high *FDG uptake on PET
images without selecting cancerous lesion, and thus improves
the precision of the semi-automatic tools monitoring the
evolution of breast cancer metastasis.

Clinical relevance— We demonstrate the utility of combining
deep learning and superpixel segmentation methods to accu-
rately find the contours of active organs from metastatic breast
cancer images, to different dataset distributions.

[. INTRODUCTION

Cancerous lesions in metastatic breast cancer are
monitored by whole-body '®FluoroDeoxyGlucose (‘*FDG)
Positron Emission Tomography (PET) and Computed To-
mography (CT). In clinical practice, apart from the con-
ventional visual inspection of the lesions, semi-automatic
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threshold-based measurements are employed [1]. To avoid
time-consuming interactions, automatic lesion segmentation
algorithms on PET images have been developed [2], [3].
However, these approaches mostly focus on specific body
parts, as the lungs or the brain.

One of the challenges of automatic whole-body lesion
segmentation on PET images is that areas of abnormal
BFDG uptake can be obscured by active sites, presenting
normal physiological uptake (brain, heart) and excretion
(bladder) of the radioactive marker. Most methods proposing
to localize and segment these organs use anatomical imaging
techniques, such as Magnetic Resonance Imaging (MRI), CT
[4], [5], or combine them with PET [6], [7]. However, meth-
ods based solely on PET images are less common: while PET
imaging is recognized for metastatic activity characterization,
it is considered lacking the spatial resolution required for
precise organ segmentation. Hence, segmenting directly on
PET images is a challenge but removes the dependence on
error prone PET/CT registration.

Unlike the methods developed in [4], [8], we did not create
bounding boxes around the target organs. Though more
challenging, we seek a pixel-wise segmentation of the organ
in order to preserve lesions close to the organs of interest for
subsequent analysis. Moreover, our approach represents one
of the first attempts to perform active organ segmentation
using a 3D convolutional neural network (CNN).

The main limitation of the application of deep learning-
based methods to medical imaging problems is the lack
of expertly annotated data to properly train networks [9].
Thus, designing networks adaptable from an image domain
to another is an active research field [10], [11]. As in [12], we
rely on superpixel information to favor the domain adaptation
from images of a distribution to a different one (e.g. acquired
on different sites or with different machines). Since lesions
often appear smaller than the normal active organs in the
context of metastatic breast cancer, superpixels summarize
the important anatomical information while blurring away
other changes in image intensities.

In this paper, we propose two approaches to segment PET
active organs. They both combine a classical deep segmen-
tation network with a superpixel algorithm, but integrates it
at different levels of the CNN: i) in the input images and ii)
in the loss function. The deep segmentation network alone
is used as a reference.



Since the outcome of our networks facilitates the posterior
segmentation of lesions, it is essential that resulting segmen-
tation maps do not contain any tumor located out of the target
organs. Hence, the evaluation is two-fold: a) the Dice metric
compares the results to manual annotations of the normal
uptaking sites, and b) the positive predictive value (PPV)
highlights the presence of false positive detections.

The approaches integrating superpixel information outper-
form the one based solely on a 3D CNN, because their
introduction within a deep learning pipeline compels the
network to focus on voxels presenting normal high 'SFDG
uptake. To the best of our knowledge, this work is the first
to perform automatic segmentation of high '*FDG uptake on
PET images and to take advantage of superpixel information
to enforce networks to focus on the target objects.

II. METHODS

Given a full body '®FDG PET image, we aim to automat-
ically determine which image voxels belong to the active
organs (i.e. brain, heart and bladder). The selection of these
sites is challenging due to the surrounding tumors presenting
a similar intensity, and to the variable tracer uptake amounts
across the acquisitions and patients. In this section, we
describe the baseline 3D U-Net method and propose two
variants including superpixel information.

To segment the target organs, U-Net relies on the 3D U-
Net branch of the nnU-Net pipeline [13]. This network will
be used as a baseline. The objects of interest occupying a
small proportion of the full image, the training loss is a
balanced combination of a cross-entropy and a Dice loss:

ETotal = ECE + £Dice7 (1)
with Lo as in [14] and:
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as in [13], having u the output map of the network, v the
ground truth segmentation, ¢ € I the number of pixels in the
training batch and k € K the classes. This loss reduces the
influence of class imbalance [15].

To reduce the risk of confusing another structure, espe-
cially a tumor, with a target organ, we propose to incorporate
superpixel information at different levels of the network:
as input (U-Net-SP-Input) and in the loss function (U-
Net-SP-Loss). Moreover, superpixels spontaneously tend to
smooth differences between images. Hence, using them in
the training step of a CNN will increase the adaptability
of the network from a dataset distribution to a similar yet
different one (domain adaptation).

For the first approach, U-Net-SP-Input, we trained the
reference network U-Net on superpixelized images (Fig. 1,
right). These superpixelized images were created using the
reference Simple Linear Iterative Clustering (SLIC) algo-
rithm [16] in 3D on the whole-body PET images. This
method clusters voxels based on their grey level similarity

Fig. 1. Left: PET image and ground truth maps of the target organs (red).
Right: Superpixelized PET image. Best viewed in color.

and spatial proximity in the image, minimizing the following
distance with a k-means algorithm:
%dim,age (3)
where D is the weighted sum of two pixel pairwise Euclidean
distances, dcoior for the color-space and djmage for the
coordinate-space. S represents the approximate size of the
superpixels, while m is introduced to control their compact-
ness. Choosing the appropriate superpixel size and compact-
ness parameters is important to emphasize the normal '8FDG
uptake on organs while blurring small lesions and objects.
In a second approach, U-Net-SP-Loss, we introduced
superpixel information in the optimization of the reference
network. The global loss is modified by balancing the cross-
entropy loss with a superpixel-inspired regularization term:

D= dcolor +

Lrotalsp = Lcr + Lsp, “)
where:
Lsp(u,C) = MSE(arg max(u), ®(arg max(u),C)), (5)

with MSE the classical mean square error computation, u
the softmax output of the network and C' the correspondence
map between pixels and superpixels. ® computes superpixel
corrected segmentation maps, forcing all pixels within a
superpixel to belong to the same class.

The regularization term, inspired by [17], enforces voxels
belonging to the same superpixel to be associated with the
same semantic object. Superpixels enhancing patterns in
images, in the application at hand, they help networks to
learn weights more generalizable to different datasets.

III. EXPERIMENTAL VALIDATION
A. Dataset description
In the context of the ongoing EPICUREgymea study
(NCTO03958136), 16 patients were initially recruited from
the Integrated Center for Oncology (ICO) of Nantes (NICO),
followed by 24 patients from the ICO of Angers (AICO).
All patients underwent PET/CT imaging for the diagnosis



TABLE I
DATASET DESCRIPTION

Number of .
Center acquisitions Age Imaging systems
Siemens Biograph mCT 40
NICO 36 60+ 13 Siemens Biograph mCT 64
Imageurs Philips Vereos
AICO 24 58 £ 13 | GE Discovery 690
GE Discovery 1Q

of metastatic breast cancer. From the NICO, 36 PET/CT
were used, corresponding to one to three acquisitions per
patient. PET/CT images were obtained using different imag-
ing systems, depending on the study center, resulting in
intensity, resolution and texture variations between images.
Two different dual-slice Siemens Biograph PET/CT were
used in the NICO, while the images of the AICO were
acquired either on the Philips Vereos, GE Discovery 690 or
GE Discovery 1Q PET/CT imaging systems (see Table I).
This prognostic study was approved by the French Agence
Nationale de Sécurité du Médicament et des produits de santé
(ANSM, #2018-A00959-46) and the Comité de Protection
des Personnes (CPP) IDF I, Paris, France (#CPPIDF1-2018-
ND40-cat.1), and a written informed consent was obtained.

B. Implementation details

All processed PET images where normalized by the in-
jected radioactivity’s concentration and the patient’s body
weight, giving the SUV according to the standard developed
in [18].

The SLIC [16] algorithm was run in 3D, and the free
parameters of the method, i.e. the superpixel size and the
compactness, were set according to preliminary grid search
results to 12 mm x 12 mm X 10 mm and 5, respectively,
to enhance target organs and to blur small lesions.

We followed the recommendations from [13] regarding
the preprocessing steps of the network, namely, cropping
the input images to nonzero values, resampling them to
the median voxel spacing of the dataset and applying a z-
score normalization on each image. This helps to reduce the
discrepancy between data domains. Considering the network
itself, the architecture is similar to the benchmark U-Net [14]
for 3D images, but uses leaky ReLU activation and instance
normalization. All deep learning architectures were trained
from scratch on a NVIDIA GeForce GTX 1080 Ti GPU. The
input patch size (128 128x128) and the number of pooling
operations (4 in each branch) were computed according to
the preprocessed image size. During training, the Adam
optimizer was used. An epoch corresponded to an iteration
over 250 training batches, each composed of two images.
The learning rate was initialized at 3.10~% and reduced by a
factor 5 if the loss did not improve by at least 5.10~3 within
the last 30 epochs. Once the learning rate reached 107,
the training stopped if the loss did not get better by at least
5.10~2 within the last 50 epochs. Random rotations, scaling,
elastic deformations, gamma corrections and mirroring were
performed on the fly for data augmentation purposes.

Fig. 2. PET image of a patient from the AICO dataset with overlaid masks
corresponding to ground truth, U-Net, U-Net-SP-Input and U-Net-SP-Loss
segmentations from left to right respectively. Blue circle marks a lesion
erroneously segmented by the U-Net network. Best viewed in color.

C. Evaluation metrics

The resulting segmentation maps of the three approaches
were compared to ground truth masks containing the target
organs (Fig. 2, left), manually delineated with the Keosys
Viewer [19] on natural PET images.

Results were first assessed computing the Dice metric
between the segmented and reference rasks, considering
all three organs of interest together. The CNNs ability to
segment target organs rather than other anatomical structures,
i.e. to avoid false positive results, was assessed using the
PPV. Indeed, this metric points out the ratio of true positive
(TP) pixels among all the positive predictions, characterised
here by the sum of TP and false positive (FP):

TP
T TP+ FP

D. Intra-domain experiment

PPV (6)

To counteract the limited size of our dataset and maintain
a reasonable computational time, all deep learning segmen-
tation networks were initially validated on the N/ICO dataset
using a 3-fold cross validation.

In that intra-domain experiment, the three CNNs present
similarly high resulting Dice scores: 0.97 =+ 0.01,
0.96 £+ 0.01 and 0.96 + 0.01 for the U-Net, U-Net-SP-Input
and U-Net-SP-Loss approaches respectively. Hence, the three
approaches accurately segment the target organs.

E. Domain adaptation experiments

Over a second phase, the networks trained on the NICO
dataset were tested on the AICO images to evaluate their
adaptability and generalization abilities. While slightly lower
in the intra-domain case, the Dice scores obtained with
the three approaches still remain high, with 0.92 £ 0.07,
0.92 4+ 0.05 and 0.93 + 0.05 for the U-Net, U-Net-SP-Input
and U-Net-SP-Loss networks respectively.

Since we aim to remove the normal high '®*FDG uptake
organs before segmenting lesions, we evaluated the methods
capability to avoid the surrounding anatomical structures.
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Fig. 3. Boxplot of the Positive Predictive Value (PPV) of the segmentations
predicted by the U-Net, U-Net-SP-Input and U-Net-SP-Loss networks on the
AICO dataset.

Considering first a qualitative approach, the Fig. 2 shows that
networks using superpixel information are better suited to
segment only the target organs. Quantitatively, we computed
the PPV for the AICO dataset. As illustrated in Fig. 3,
networks integrating superpixels information produce less FP
than the reference U-Net network.

I'V. DISCUSSION AND CONCLUSION

As shown by the obtained Dice scores, when the train and
test datasets come from the same data distribution, the three
approaches present similar results. In contrast, the superpixel
regularization smooths variations between images acquired
with different acquisition systems, improving segmentation
performance on test data coming from a center unseen during
training, showing the possibility of better generalization
effect on unseen data. Moreover, according to the PPV
measure, the integration of superpixel information in the
training of a segmentation network reduces the amount of
FP when using this network on unseen images.

From a computational point of view, the training time of
the U-Net-SP-Input approach resulted to be faster (dne day)
than the one of U-Net-SP-Loss (two days). Indeed, superpixel
computation is performed only once in the preprocessing step
of the former network, while the latter requires superpixel
computation during each epoch. However, the integration of
the superpixel computation inside the training loop of U-Net-
SP-Loss makes the process end-to-end, and potentially leaves
room to integrate an automatic superpixel hyperparameters
learning.

As a conclusion, we have integrated superpixel informa-
tion at several level of a deep segmentation network to
segment high '®FDG uptake organs on PET images. The
strength of this method is the addition of superpixels, making
the network focus on the organs of interest, and more prone
to segment data that has not been seen by the network.

In a future work, we will evaluate the performances of both
superpixel-based approaches on a more significant dataset.
We will consider using the most promising network in
a lesion segmentation pipeline to reduce the perturbations
caused by normal active organs on PET images. Our method

is an important first step towards a lesion segmentation
algorithm in the context of metastatic breast cancer, in order
to avoid the confusion between high 'FDG uptake organs
and lesions, especially when they are contiguous.
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