
HAL Id: hal-02565091
https://hal.science/hal-02565091

Submitted on 6 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parameter Synthesis for Bounded Cost Reachability in
Time Petri Nets

Didier Lime, Olivier Henri Roux, Charlotte Seidner

To cite this version:
Didier Lime, Olivier Henri Roux, Charlotte Seidner. Parameter Synthesis for Bounded Cost Reach-
ability in Time Petri Nets. 40th International Conference on Applications and Theory of Petri Nets
and Concurrency (Petri Nets 2019), Jun 2019, Aachen, Germany. pp.406-425, �10.1007/978-3-030-
21571-2_22�. �hal-02565091�

https://hal.science/hal-02565091
https://hal.archives-ouvertes.fr


Parameter Synthesis for Bounded Cost
Reachability in Time Petri Nets?

Didier Lime1, Olivier H. Roux1, and Charlotte Seidner2
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2 Université de Nantes, LS2N UMR CNRS 6004, France

Abstract. We investigate the problem of parameter synthesis for time
Petri nets with a cost variable that evolves both continuously with time,
and discretely when firing transitions. More precisely, parameters are
rational symbolic constants used for time constraints on the firing of
transitions and we want to synthesise all their values such that the cost
variable stays within a given budget.
We first prove that the mere existence of such values for the parameters
is undecidable. We nonetheless provide a symbolic semi-algorithm that is
proved both sound and complete when it terminates. We also show how
to modify it for the case when parameters values are integers. Finally, we
prove that this modified version terminates if parameters are bounded.
While this is to be expected since there are now only a finite number
of possible parameter values, this is interesting because the computation
is symbolic and thus avoids an explicit enumeration of all those values.
Furthermore, the result is a symbolic constraint representing a finite
union of convex polyhedra that is easily amenable to further analysis
through linear programming.
We finally report on the implementation of the approach in Romeo, a
software tool for the analysis of hybrid extensions of time Petri nets.

1 Introduction

So-called priced or cost timed models are suitable for representing real-time sys-
tems whose behaviour is constrained by some resource consuming (be it energy
or CPU time, for instance) and for which we need to assess the total cost ac-
cumulated during their execution. Such models can even describe whether the
evolution of the cost during the run is caused by staying in a given state (con-
tinuous cost) or by performing a given action (discrete cost). Thus, the task
of finding if the model can reach some “good” states while keeping the overall
cost under a given bound (or, further, finding the minimum cost) can prove of
interest in many real-life applications, such as optimal scheduling or production
line planning.

Timed models, however, require a thorough knowledge of the system for
their analysis and are thus difficult to build in the early design stages, when the
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system is not fully identified. Even when all timing constraints are known, the
whole design process must often be caried out afresh, whenever the environment
changes. To obtain such valuable characteristics as flexibility and robustness,
the designer may want to relax constraints on some specifications by allowing
them a wider range of values. To this end, parametric reasoning is particularly
relevant for timed models, since it allows designers to use parameters instead of
definite timing values.

We therefore propose to tackle the definition and analysis of models that
support both (linear) cost functions and timed parameters.

Related work Parametric timed automata (PTA) [3] extend timed automata [2]
to overcome the limits of checking the correctness of the systems with respect
to definite timing constraints. The reachability-emptiness problem, which tests
whether there exists a parameter valuation such that the automaton has an ac-
cepting run, is fundamental to any verification process but is undecidable [3].
L/U automata [13] use each parameter either as a lower bound or as an up-
per bound on clocks. The reachability-emptiness problem is decidable for this
model, but the state-space exploration, which would allow for explicit synthesis
of all the suitable parameter valuations, still might not terminate [15]. To obtain
decidability results, the approach described in [15] does not rely on syntactical
restrictions on guards and invariants, but rather on restricting the parameter
values to bounded integers. From a practical point of view, this subclass of PTA
is not that restrictive, since the time constraints of timed automata are usually
expressed as natural (or perhaps rational) numbers.

In [4], the authors have proved the decidability of the optimal-cost problem
for Priced Timed Automata with non-negative costs. In [7,8,16], the computation
of the optimal-cost to reach a goal location is based on a forward exploration
of zones extended with linear cost functions. In [12], the authors have improved
this approach, so as to ensure termination of the forward exploration algorithm,
even when clocks are not bounded and costs are negative, provided that the
automaton has no negative cost cycles. In [1], the considered model is a timed
arc Petri net, under weak firing semantics, extended with rate costs associated
with places and firing costs associated with transitions. The computation of the
optimal-cost for reaching a goal marking is based on similar techniques to [4].
In [11], the authors have investigated the optimal-cost reachability problem for
time Petri nets where each transition has a firing cost and each marking has a
rate cost (represented as a linear rate cost function over markings). To compute
the optimal-cost to reach a goal marking, the authors have revisited the state
class graph method to include costs.

Our contribution We propose in Section 2 an extension of time Petri nets with
costs (both discrete and continuous with time) and timing parameters, i.e., ratio-
nal symbolic constants used in the constraints on the firing times of transitions.

Within this formalism, we define two problems dealing with parametric reach-
ability within a bounded cost. We prove in Section 3 that the existence of a



parameter valuation to reach a given marking under a given bounded cost is un-
decidable. This proof adapts a 2-counter machine encoding first proposed in [14]
for PTA. To our knowledge it is the first time a direct Petri net encoding is
provided and the adaptation is not trivial. We give in Section 4 a symbolic
semi-algorithm that computes all such parameter valuations when it terminates,
and we prove its correctness. We propose in Section 5 a variant of this semi-
algorithm that computes integer parameter valuations and prove in Section 6
its termination provided those parameter valuations are bounded and the cost
of each run is uniformly lower-bounded for integer parameter valuations. This
technique is symbolic and avoids the explicit enumeration of all possible param-
eter valuations. The basic underlying idea of using the integer hull operator was
first investigated in [15] for PTA, but this is the first time that it is adapted
and proved to work with state classes for time Petri nets, and the fact that it
naturally also preserves costs for integer parameter valuations is new and very
interesting. We finally describe in Section 7 the implementation of the approach
in the tool Romeo by analysing a small scheduling case-study.

2 Parametric Cost Time Petri Nets

2.1 Preliminaries

We denote the set of natural numbers (including 0) by N, the set of integers
by Z, the set of rational numbers by Q and the set of real numbers by R. We
note Q≥0 (resp. R≥0) the set of non-negative rational (resp. real) numbers. For
n ∈ N, we let J0, nK denote the set {i ∈ N | i ≤ n}. For a finite set X, we denote
its size by |X|.

Given a set X, we denote by I(X), the set of non empty real intervals that
have their finite end-points in X. For I ∈ I(X), I denotes its left end-point if
I is left-bounded and −∞ otherwise. Similarly, I denotes the right end-point if
I is right-bounded and ∞ otherwise. We say that an interval I is non-negative
if I ⊆ R≥0. Moreover, for any d ∈ R≥0 and any non-negative interval I, we let
I 	 d be the interval defined by {θ − d | θ ∈ I ∧ θ − d ≥ 0}. Note that this is
again a non-negative interval.

Given sets V and X, a V -valuation (or simply valuation when V is clear
from the context) of X is a mapping from X to V . We denote by V X the set
of V -valuations of X. When X is finite, given an arbitrary fixed order on X, we
often equivalently consider V -valuations as vectors of V |X|. Given a V -valuation
v of X and Y ⊆ X, we denote by v|Y the projection of v on Y , i.e., the valuation
on Y such that ∀x ∈ Y, v|Y (x) = v(x).

2.2 Time Petri Nets with Costs and Parameters

Definition 1 (Parametric Cost Time Petri Net (pcTPN)). A Parametric
Cost Time Petri Net (pcTPN) is a tuple N = (P, T,P, •., .•,m0, Is, costt, costm)
where



– P is a finite non-empty set of places,
– T is a finite set of transitions such that T ∩ P = ∅,
– P is a finite set of parameters,
– •. : T → NP is the backward incidence mapping,
– .• : T → NP is the forward incidence mapping,
– m0 ∈ NP is the initial marking,
– Is : T → I(N ∪ P) is the (parametric) static firing interval function,
– costt : T → Z is the discrete cost function, and
– costm : NP → Z is the cost rate function.

Given a parameterized object x (be it a pcTPN, a function, an expression,
etc.), and a Q-valuation v of parameters, we denote by v(x) the corresponding
non-parameterized object, in which each parameter a has been replaced by the
value v(a).

A marking is an N-valuation of P . For a marking m ∈ NP , m(p) represents
a number of tokens in place p. A transition t ∈ T is said to be enabled by a
given marking m ∈ NP if for all places p, m(p) ≥ •t(p). We also write m ≥ •t.
We denote by en(m) the set of transitions that are enabled by the marking m:
en(m) = {t ∈ T | m ≥ •t}.

Firing an enabled transition t from marking m leads to a new marking m′ =
m − •t + t•. A transition t′ ∈ T is said to be newly enabled by the firing of a
transition t from a given marking m ∈ NP if it is enabled by the new marking but
not by m−•t (or it is itself fired). We denote by newen(m, t) the set of transitions
that are newly enabled by the firing of t from the marking m: newen(m, t) ={
t′ ∈ en(m− •t+ t•) | t′ 6∈ en(m− •t) or t = t′

}
A state of the net N is a tuple (m, I, c, v) in NP ×I(R≥0)T ×R×QP

≥0, where:
m is a marking of N , I is called the interval function and associates a temporal
interval to each transition enabled by m. Value c is the cost associated with that
state and valuation v assigns a rational value to each parameter for the state.

Definition 2 (Semantics of a pcTPN). The semantics of a pcTPN is a timed
transition system (Q,Q0,→) where:

– Q ⊆ NP × I(R≥0)T × R×QP
≥0

– Q0 = {(m0, I0, 0, v)|v ∈ QP
≥0,∀t ∈ T, v(Is(t)) 6= ∅} where ∀t ∈ en(m0), I0(t) =

Is(t)
– → consists of two types of transitions:

• discrete transitions: (m, I, c, v)
t∈T−−→ (m′, I ′, c′, v) iff

∗ m ≥ •t, m′ = m− •t+ t• and v(I(t)) = 0,

∗ ∀t′ ∈ en(m′)
· I ′(t′) = Is(t

′) if t′ ∈ newen(m, t),
· I ′(t′) = I(t′) otherwise

∗ c′ = c+ costt(t)

• time transitions: (m, I, c, v)
d∈R≥0−−−−→ (m, I 	 d, c′, v), iff ∀t ∈ en(m),

(I 	 d)(t) ≥ 0 and c′ = c+ costm(m) ∗ d.



A run of a pcTPN N is a (finite or infinite) sequence q0a0q1a1q2a2 · · · such

that q0 ∈ Q0, for all i > 0, qi ∈ Q, ai ∈ T ∪ R≥0 and qi
ai−→ qi+1. The set of

runs of N is denoted by Runs(N ). We note (m, I, c, v)
t@d−−→ (m′, I ′, c′, v) for the

sequence of elapsing d ≥ 0 followed by the firing of the transition t. We denote by

sequence(ρ) the projection of the run ρ over T : for a run ρ = q0
t0@d0−−−−→ q1

t1@d1−−−−→
q2

t2@d2−−−−→ q3
t3@d3−−−−→ · · · , we have sequence(ρ) = t0t1t2t3 · · · . We write q

t
↪−→ q′ if

there exists d ≥ 0 such that q
t@d−−→ q′.

For a finite run ρ we denote by last(ρ) the last state of ρ and by lastm(ρ) its
marking. A state (m, I, c, v) is said to be reachable if there exists a finite run ρ
of the net, with last(ρ) = (m, I, c, v). A marking m is reachable for parameter
valuation v, if there exists some I and c such that (m, I, c, v) is reachable.

For k ∈ N and parameter valuation v, the (Cost) Time Petri net v(N ) is said
to be k-bounded if for all reachable markings m, and all places p, m(p) ≤ k. We
say that v(N ) is bounded if there exists k such that it is k-bounded.

The cost cost(ρ) of a finite run ρ, with last state (m, I, c, v) is c. Since we
are interested in minimising the cost, the cost of a sequence of transitions σ is
defined as cost(σ) = infρ∈Runs(N ),sequence(ρ)=σ cost(ρ). For the sake of the clarity
of the presentation, we consider only closed intervals (or right-open to infinity)
so this infimum is actually a minimum.

2.3 Parametric Cost Problems

Given a set of target markings Goal, the problems we are interested in are:

1. the existential problem: Given a finite maximum cost value cmax, is there a
parameter valuation v such that some marking in Goal is reachable with a
cost less than cmax in v(N )?

2. the synthesis problem: Given a finite maximum cost value cmax, compute all
the parameter valuations v such that some marking in Goal is reachable with
a cost less than cmax in v(N ).

We prove in Section 3 that the existential problem is undecidable.

3 Undecidability Results

The existential parametric time bounded reachability problem for bounded para-
metric time Petri nets asks whether a given target marking is reachable for some
valuation of the parameter(s) within cmax time units. This is a special case of
the existential cost bounded reachability problem defined in Section 2, with no
discrete cost and a uniform cost rate of 1. Proposition 1 therefore implies the
undecidability of that more general problem.

Proposition 1. Existential parametric time bounded reachability is undecidable
for bounded parametric time Petri nets.
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Proof. Given a bounded parametric time Petri netN , we want to decide whether
there exists some parameter valuation v such that some given marking can be
reached within cmax time units in v(N ). The idea of this proof was first sketched
in [14] for parametric timed automata. We encode the halting problem for two-
counter machines, which is undecidable [18], into the existential problem for
parametric timed Petri nets. Recall that a 2-counter machine M has two non-
negative counters (here Cx and Cy), a finite number of states and a finite number
of transitions, which can be of the form: 1) when in state si, increment a counter
and go to sj ; 2) when in state si, decrement a counter and go to sj ; 3) when in
state si, if a counter is null then go to sj , otherwise block. The machine starts
in state s0 and halts when it reaches a particular state shalt.

Given such a machineM, we now provide an encoding as a parametric time
Petri net NM: each state si of the machine is encoded as place, which we also call
si. The encoding of the 2-counter machineM is as follows: it uses two rational-
valued parameter a and b, and three gadgets shown in Figure 1.a modelling three
clocks x, y, z. Recall that, for a state (m, I, c, v), the enabling time of an enabled
transition t is v(Is(t)− I(t)). For the gadget modelling the clock x, the value of
the clock x is equal to: i) the enabling time of the transition tx=b when Px≤b is
marked; ii) b when Px≤b is marked; iii) the sum of b and the enabling time of
the transition tx=a+b when Px≥b is marked (note that this value is lower than
a+ b); iv) a+ b when Px=a+b is marked; v) an unknown (an irrelevant) value in
all other cases.

The gadget encoding the increment instruction of Cy is given in Figure 1.a.
The clocks x and y store the value of each counter Cx and Cy as follows x =
b−a.Cx and y = b−a.Cy when z = 0. The zero-test gadget is given in Figure 2.
We use the initial gadget in Figure 1.b to initialise a and b such that 0 < a ≤ 1
and 0 < b ≤ 1. The system is studied over 1 time unit.



Increment: We start from some encoding configuration: x = b − a.Cx, y =
b − a.Cy and z = 0 in a marking such that the places Pz=0 and si are marked.
After the firing of the transition start, there is an interleaving of the transitions
R(x) and R(y) that go through the gadget. Finally, we can fire the transition
done when z = b (i.e. b − a.Cx later) and we have z = 0, x = b − a.Cx and
y = b−a(Cy +1) as expected. Moreover, v(NM) will block for all the parameter
valuations v which not correctly encode the machine.

Decrement: By replacing the arc from Pz=b to done by an arc from Pz=a+b
to done, the only difference in the previous reasoning is that the elapsing time to
fire done is increased of a. Then we obtain z = 0, x = b+a−a.Cx = b−a.(Cx−1)
and y = b− a.Cy corresponding to the decrement of Cx.

We can obtain symmetrically (by swapping x and y) the increment of Cx and
the decrement of Cy

Both the increment gadget and the zero-test gadget require b time units, and
the decrement gadget requires (a+ b) time units. Since the system executes over
1 time unit, for any value of a > 0 and b > 0, the number of operations that the
machine can perform is finite. We consider two cases:

1. Either the machine halts, both counters Cx and Cy are bounded (let c their
maximum value) and the halting and finite execution of the machine is within
m steps. If c = 0 then the machine is a sequence of m zero-test taking m.b
time units and the parametric Petri net NM can go within 1 time unit to a
marking mhalt if 0 < a ≤ 1 and 0 < b ≤ 1

m . If c > 0, since an instruction

requires at most a+ b time units, if a+ b ≤ 1
m and if 0 < a ≤ b

c then there
exists a run that correctly simulates the machine, and eventually reaches
mhalt within 1 time unit.
This set of valuations is non-empty: for example if c = 0, then we can choose
a = b = 1

m and if c > 0, then, since m ≥ c, we can choose a = b
m and

b = 1
1+m hence a = 1

m(1+m) .

2. Or the machine does not halt. A step requires at least b time units then for
any value v of the parameters, after a maximum number of steps (at most
1
b ), one whole time unit will elapse without v(NM) reaching mhalt. ut

4 A Symbolic Semi-algorithm for Parameter Synthesis

4.1 State Classes

We now introduce the notion of state classes for pcTPNs. It was originally intro-
duced for time Petri nets in [10,9], and extended for timing parameters in [21],
and for costs in [11]. We show that those two extensions seamlessly blend to-
gether.

For an arbitrary sequence of transitions σ = t1 . . . tn ∈ T ∗, let Cσ be the set
of all states that can be reached by the sequence σ from any initial state q0 :

Cσ = {q ∈ Q|q0
t1
↪−→ q1 · · ·

tn
↪−→ q}. All the states of Cσ share the same marking

and can therefore be written as a pair (m,D) where m is the common marking
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and, if we note en(m) = {t1, . . . , tn}, then D is the set of points (θ1, . . . , θn, c, v)
such that (m, I, c, v) ∈ Cσ and for all ti ∈ en(m), θi ∈ I(ti). For short, we will

often write (~θ, c, v) for such a point, with ~θ = (θ1, . . . , θn) and a small abuse
of notation. We denote by Θ the set of θi variables, of which we have one per
transition of the net: for the sake of simplicity, we will usually use the same
index to denote for instance that θi corresponds to transition ti.

Cσ is called a state class and D is its firing domain.
Lemma 1 equivalently characterises state classes, as a straigthforward refor-

mulation of the definition:

Lemma 1. For all classes Cσ = (m,D), (~θ, c, v) ∈ D if and only if there exists a
run ρ in v(N ), and I : en(m)→ I(Q≥0), such that sequence(ρ) = σ, (m, I, c) =

last(ρ), and ~θ ∈ I.

From Lemma 1, we can then deduce a characterisation of the “next” class,
obtained by firing a firable transition from some other class. This is expressed
by Lemma 2.

Lemma 2. Let Cσ = (m,D) and Cσ.tf = (m′, D′), we have:

(~θ′, c′, v) ∈ D′ iff ∃(~θ, c, v) ∈ D s.t.


∀ti ∈ en(m), θi − θf ≥ 0
∀ti ∈ en(m− •tf ), θ′i = θi − θf
∀ti ∈ newen(m, tf ), θ′i ∈ v(Is)(ti)
c′ = c+ costm(m) ∗ θf + costt(tf )

Proof. Consider (~θ′, c′, v) ∈ D′. Then by Lemma 1, there exists a run ρ′ in v(N ),
and I ′ : en(m) → I(Q≥0), such that sequence(ρ′) = σ.tf , (m′, I ′, c′) = last(ρ′),

and ~θ′ ∈ I ′. Consider the prefix ρ of ρ′ such that sequence(ρ) = σ. The last state
of ρ can be written (m, I, c, v) for some I and c. We know that tf is fired from



(m, I, c, v) so there exists some delay d such that I(tf ) ≤ d and for all other

transitions ti enabled by m, I(ti) ≥ d. Furthermore, c = c′ − costm(m) ∗ d −
costt(tf ). It follows that there exists a point ~θ ∈ I with the desired properties.

The other direction is similar. ut

Note that according to Lemma 2, D′ is not empty if and only if there exists
(~θ, c, v) in D such that for all ti ∈ en(m), θi ≥ θf . In that case we say that tf is
firable from (m,D) and note tf ∈ firable((m,D)).

From Lemma 2, it follows that Cσ.tf can be computed from Cσ using Algo-
rithm 1. Note that it is formally the same algorithm as in [11].

Given a class C and a transition t firable from C, we note Next(C, t) the
result of applying Algorithm 1 to C and t.

Algorithm 1 Successor (m′, D′) of (m,D) by firing tf

1: m′ ← m− •tf + t•f
2: D′ ← D ∧

∧
i 6=f,ti∈en(m) θf ≤ θi

3: for all ti ∈ en(m− •tf ), i 6= f , add variable θ′i to D′, constrained by θi = θ′i + θf
4: add variable c′ to D′, constrained by c′ = c+ θf ∗ costm(m) + costt(tf )
5: eliminate (by projection) variables c, θi for all i from D′

6: for all tj ∈ newen(m, tf ), add variable θ′j to D′, constrained by θ′j ∈ Is(tj)

Let C0 = (m0, D0) be the initial class. Domain D0 is defined by the con-
straints ∀ti ∈ en(m0), θi ∈ Is(ti), ∀t ∈ T, Is(t) 6= ∅, and c = 0. This gives

a convex polyhedron of R|en(m0)|+|P|+1
≥0 ; since all the operations on domains in

Algorithm 1 are polyhedral, all the domains of state classes are also convex
polyhedra. Note that only enabled transitions are constrained in the domain of
a state class.

Naturally, we define the cost of state class Cσ as cost(Cσ) = cost(σ).

4.2 The Synthesis Semi-algorithm

In Algorithm 2, we explore the symbolic state-space in a classic manner.
Whenever a goal marking is encountered we collect the parameter valuations
that allowed that marking to be reached with a cost less or equal to cmax.

The Passed list records the visited symbolic states. Instead of checking new
symbolic states for membership, we test a weaker relation denoted by 4: does
there exist a visited state allowing more behaviors with a cheaper cost?

For any state class C = (m,D) and any point (~θ, v) ∈ D|Θ∪P, the optimal

cost of (~θ, v) in D is defined by costD(~θ, v) = inf(~θ,c,v)∈D c.

Definition 3. Let C = (m,D) and C ′ = (m′, D′) be two parametric cost state
classes. We say that C is subsumed by C ′, which we denote by C 4 C ′ iff
m = m′, D|Θ∪P ⊆ D′|Θ∪P, and for all (~θ, v) ∈ D|Θ∪P, costD′(~θ, v) ≤ costD(~θ, v).



Algorithm 2 Symbolic semi-algorithm computing all parameter valuations such
that some markings are reachable with a bounded cost.

1: PolyRes← ∅
2: Passed← ∅
3: Waiting← {(m0, D0)}
4: while Waiting 6= ∅ do
5: select Cσ = (m,D) from Waiting
6: if m ∈ Goal then
7: PolyRes← PolyRes ∪

(
D ∩ (c ≤ cmax)

)
|P

8: end if
9: if for all C′ ∈ Passed, Cσ 64 C′ then

10: add Cσ to Passed
11: for all t ∈ firable(Cσ), add Cσ.t to Waiting
12: end if
13: end while
14: return PolyRes

The following result is a fairly direct consequence of Definition 3:

Lemma 3. Let Cσ1
and Cσ2

be two state classes such that Cσ1
4 Cσ2

.
If a transition sequence σ is firable from Cσ1

, it is also firable from Cσ2
and

cost(Cσ1.σ) ≥ cost(Cσ2.σ).

Proof. Let Cσ1
= (m1, D1) and Cσ2

= (m2, D2). From Definition 3, for any

point (~θ, c1, v) ∈ D1, there exists a point (~θ, c2, v) ∈ D2) such that c2 ≤ c1.
This implies that: (i) cost(Cσ1

) ≥ cost(Cσ2
); (ii) if transition t is firable from

Cσ1
, then it is firable from Cσ2

and Next(Cσ1
, t) 4 Next(Cσ2

, t). And the result
follows by a straightforward induction. ut

While 4 can be checked using standard linear algebra techniques, we can
also reduce it to standard inclusion on polyhedra by removing the upper bounds
on cost (an operation called cost relaxation) [11].

Lemma 4. The following invariant holds after each iteration of the while loop
in Algorithm 2: for all Cσ = (m,D) ∈ Passed,

1. for all prefixes σ′ of σ, Cσ′ ∈ Passed;
2. if m ∈ Goal then

(
D ∩ (c ≤ cmax)

)
|P ⊆ PolyRes;

3. if t is firable from Cσ
– either Cσ.t ∈Waiting,
– or there exists C ′ ∈ Passed such that Cσ.t 4 C ′.

Proof. We prove this lemma by induction. Before the while loop starts, Passed
is empty so the invariant is true. Let us now assume that the invariant holds
for all iterations up to the n-th one, with n ≥ 0, and that Waiting 6= ∅. Let
Cσ ∈ Waiting be the selected class at line 5; to check whether the invariant
still holds at the end of the (n + 1)-th iteration, we only have to test the case
where Cσ is added to Passed (which means that the condition at line 9 is true).
We can then check each part of the invariant:



1. Cσ was picked from Waiting (line 5); except for the initial class (for which σ
is empty, and therefore has no prefix), it means that, in a previous iteration,
there was a sequence σ′ and a transition t ∈ firable(Cσ′) such that σ = σ′.t
(line 11) and Cσ′ ∈ Passed (line 10). Since we add at most one state class
to Passed at each iteration, Cσ′ was added in a previous iteration and we
can apply to it the induction hypothesis, which allows us to prove the first
part of the invariant;

2. lines 6 and 7 obviously imply the second part of the invariant;
3. if Cσ ∈ Passed, then the condition of the if on line 9 is true and then for

any transition t that is firable from Cσ, Cσ.t is added to Waiting (line 11)
so the third part of the invariant holds for Cσ. Nevertheless, Cσ itself is no
longer in Waiting, and it is (except for the initial state class) the successor
of some state class in Passed. But then we have only two possibilities: either
Cσ has been added to Passed in line 10 if the condition on line 9 was true,
and certainly Cσ 4 Cσ, or there exists C ′ ∈ Passed such that Cσ 4 C ′ if
that condition was false. Therefore the third part of the invariant holds.

Both the basis case and the induction step are true: the result follows by
induction. ut

Proposition 2. After any iteration of the while loop in Algorithm 2:

1. if v ∈ PolyRes, then there exists a run ρ in v(N ) such that cost(ρ) ≤ cmax

and lastm(ρ) ∈ Goal.
2. if Waiting = ∅ then, for all parameter valuations v such that there exists

a run ρ in v(N ) such that cost(ρ) ≤ cmax and lastm(ρ) ∈ Goal, we have
v ∈ PolyRes.

Proof. 1. By induction on the while loop: initially, PolyRes is empty so the
result holds trivially. Suppose it holds after some iteration n, and consider
iteration n + 1. Let v ∈ PolyRes after iteration n + 1. If v was already
in PolyRes after iteration n then we can apply the induction hypothesis.
Otherwise it means that if Cσ = (m,D) is the class examined at iteration
n + 1, then m ∈ Goal and v ∈

(
D ∩ (c ≤ cmax)

)
|P. This means that there

exists some point (~θ, c, v) ∈ D with c ≤ cmax. By Lemma 1, this means that
there exists a run ρ such that (m, I, c, v) = last(ρ), for some I such that
~θ ∈ I, and therefore lastm(ρ) ∈ Goal and cost(ρ) ≤ cmax.

2. Let v be a parameter valuation such that there exists a run ρ in v(N ) such
that cost(ρ) ≤ cmax and lastm(ρ) ∈ Goal. Let σ = sequence(ρ). We proceed
by induction on the length n of the biggest suffix σ2 of σ such that, either σ2
is empty or, if we note σ = σ1σ2, with the first element of σ2 being transition
t, then Cσ1t 6∈ Passed.
If n = 0, then Cσ = (m,D) ∈ Passed. By Lemma 1, v ∈ D|P and m ∈ Goal.

From the latter, we have
(
D ∩ (c ≤ cmax)

)
|P ⊆ PolyRes and therefore v ∈

PolyRes because v ∈
(
D ∩ (c ≤ cmax)

)
|P.



Consider now n > 0 and assume the property holds for n − 1. Since n > 0,
then there exists a transition t and a sequence σ3 such that σ2 = t.σ3. By
definition of σ2, we have Cσ1 ∈ Passed but Cσ1.t 6∈ Passed. By Lemma 4,
since Waiting = ∅, there must exists some class Cσ′ such that Cσ1.t 4 Cσ′ .
From Lemma 3, sequence σ3 is also firable from Cσ′ and Cσ′.σ3

= (m,D′),
with cost(Cσ′.σ3

) ≤ cost(Cσ) ≤ cmax. By Lemma 1, there exists thus a
run ρ′ in v(N ), with sequence(ρ′) = σ′.σ3, lastm(ρ′) ∈ Goal and cost(ρ′) ≤
cmax. Also, from Lemma 4 (item 1), we know that for all prefixes of σ′,
the corresponding state class is in Passed, so the biggest suffix of σ′.σ3 as
defined above in the induction hypothesis has length less or equal to n− 1,
and the induction hypothesis applies to ρ′, which allows to conclude. ut

In particular, if the algorithm terminates, then the waiting list is empty and
PolyRes is exactly the solution to the synthesis problem.

5 Restricting to Integer Parameters

Obviously, in general, (semi-)Algorithm 2 will not terminate, since the emptiness
problem for the set it computes is undecidable.

To ensure termination, we can however follow the methodology of [15]: we
require that parameters are bounded integers and, instead of just enumerating
the possible parameter values, we propose a modification of the symbolic state
computation to compute these integer parameters symbolically. For this we rely
on the notion of integer hull.

We call integer valuation a Z-valuation. Note that a Z-valuation is also an
R-valuation, and given a set D of R-valuations, we denote by Ints(D) the set of
integer valuations in D.

The convex hull of a set D of valuations, denoted by Conv(D), is the inter-
section of all the convex sets of valuations that contain D.

The integer hull of a set D of valuations, denoted by IH(D), is defined as the
convex hull of the integer valuations in D: IH(D) = Conv(Ints(D)).

For a state class C = (m,D), we write IH(C) for (m, IH(D)).
Before we see how our result can be adapted for the restriction to integer

parameter valuations, and from there how we can enforce termination of the
symbolic computations when parameters are assumed to be bounded, we need
some results on the structure of the polyhedra representing firing domains of
cost TPNs.

By the Minkowski-Weyl Theorem (see e.g. [20]), every convex polyhedron can
be either described as a set of linear inequalities, as seen above, or by a set of
generators. More precisely, for the latter: if d is the dimension of polyhedron P ,
there exists v1, . . . , vp, r1, . . . , rs ∈ Rd, such that for all points x ∈ P , there exists
λ1, . . . , λp ∈ R, µ1, . . . , µs ∈ R≥0 such that

∑
i λi = 1 and x =

∑
i λivi+

∑
i µiri.

The vi’s are called the vertices of P and the ri’s are the extremal rays of P . The
latter correspond to the directions in which the polyhedron is infinite. In our
case, they correspond to transitions with a (right-)infinite static interval, and
possibly the cost.



A classic property of vertices, which can also be used as a definition, is as
follows: ~v is a vertex of P iff for all non-null vectors ~~x ∈ Rd, either ~v + ~x 6∈ P or
~v − ~x 6∈ P (or both), + and − being understood component-wise.

Proposition 3. Let N be a (non-parametric) cost TPN and let C = (m,D) be
one of its state classes, then D has integer vertices.

Proof. We have proved in [11] that the domain D of a state class of a cost
TPNs, with removed upper bounds on cost (so-called relaxed classes), can be
partitioned into a union of simpler polyhedra

⋃n
i=1Di that have the following

key properties: (1) by projecting the cost out we obtain a convex polyhedron
Di|Θ with integer vertices (actually a zone, as in [17,9]), and (2) these simpler
polyhedra all have exactly one constraint on the cost variable, i.e., of the form
c ≥ `(~θ), with integer coefficients. Note that the same result can be obtained,
with the same technique, if we consider non-relaxed state classes, except that,
we also have an upper bound on cost that is always greater or equal to the lower
bound. We prove in Lemma 5 that each of these simpler polyhedra also has
integer vertices. Since D and each of the Di’s are convex and since D =

⋃
iDi,

D is equal to the convex hull of the vertices of the Di’s and therefore D also has
integer vertices.

Lemma 5. Let D be a convex polyhedron on variables θ1, . . . , θn, c such that
the projection of P on the θ variables has integer vertices, and there are two
constraints on c of the form c ≥ `(θ1, . . . , θn) and c ≤ `′(θ1, . . . , θn), with ` and
`′ linear terms with integer coefficients, such that `(θ1, . . . , θn) ≤ `′(θ1, . . . , θn),
for all values of the θi’s.

Then, the vertices of D are the points (θ1, . . . , θn, `(θ1, . . . , θn)) and (θ1, . . . , θn,
`′(θ1, . . . , θn)) such that (θ1, . . . , θn) is a vertex of D|Θ, and they are integer
points.

Proof. Recall here that we consider all constraints in D to be non-strict so
all polyhedra are topologically closed. The reasoning extends with no difficulty
to non-necessarily-closed polyhedra by considering so-called closure points in
addition to vertices [6].

Consider a non-vertex point ~θ in D|Θ and let (~θ, c) be a point of D. Then

using the form of the unique cost constraint, we have c ≥ `(~θ). Now since ~θ

is not a vertex, there exists a vector ~x such that both ~θ + ~x and ~θ − ~x belong
to D|Θ. Then, for sure, (~θ + ~x, `(~θ + ~x)) ∈ D and (~θ − ~x, `(~θ − ~x)) ∈ D. And

since ` is linear, (~θ + ~x, `(~θ) + `(~x))) ∈ D, i.e., (~θ, `(~θ)) + (~x, `(~x)) ∈ D. And

similarly, (~θ, `(~θ)) − (~x, `(~x)) ∈ D. Using again the form of the unique cost

constraint, and the fact that c ≥ `(~θ), we finally have (~θ, c) + (~x, `(~x)) ∈ D and

(~θ, c)− (~x, `(~x)) ∈ D, that is, (~θ, c) is not a vertex of D.
By contraposition, any vertex of D extends a vertex of D|Θ, and using a last

time the form of the cost constraint, any vertex of D, is of the form (~θ, `(~θ)),

with ~θ a vertex of D|Θ: suppose (~θ, c) is a vertex of D, with c > `(~θ), then for



~x defined with c − `(~θ) on the cost variable, and 0 on all other dimensions, we

clearly have both (~θ, c) + ~x and (~θ, c)− ~x in D, which is a contradiction.
We conclude by remarking that, since D|Θ has integer vertices, all the co-

ordinates of ~θ are integers, and since ` has integer coefficients then `(~θ) is an
integer.

We can deal with the upper bound defined by `′ in exactly the same way. ut

From Proposition 3, we can prove the following lemma that will be very
useful in the subsequent proofs.

Lemma 6. Let (m,D) be a state class of a pcTPN and let (~θ, c, v) be a point in
D.

If v is an integer valuation, then (~θ, c, v) ∈ IH(D).

Proof. Since (~θ, c, v) ∈ D then (~θ, c) ∈ v(D). By Proposition 3, v(D) being the
firing domain of a state class in a (non-parametric) cost TPN, it has integer

vertices, and therefore v(D) = IH(v(D)). Point (~θ, c) is therefore a convex com-

bination of integer points in v(D). Clearly, for all integer points (~θ′, c′) in v(D),

we have that (~θ′, c′, v) is an integer point of D. Since D is convex, this implies

that (~θ, c, v) ∈ IH(D). ut

When we restrict ourselves to integer parameter but continue to work sym-
bolically, we need to adjust the definitions of the firability of a transition from
a class and of the cost of a class.

First, a transition tf is firable for integer parameter valuations from a class
(m,D), call this NP-firable, if there exists an integer parameter valuation v and

a point (~θ, c, v) in D such that for all transitions ti ∈ en(m), θi ≥ θf .

Lemma 7. Let C = (m,D) be a state class. Transition tf ∈ en(m) is NP-firable
from C if and only if it is firable (not necessarily NP-firable) from (m, IH(D)).

Proof. ⇐: trivial because IH(D) ⊆ D.
⇒: since tf is NP-firable from C, there exists an integer parameter valuation

v, and (~θ, c, v) ∈ D such that for all transitions ti ∈ en(m), θi ≥ θf . And the
result follows from Lemma 6 because v is an integer valuation. ut

Second, the cost of a class C = (m,D), for integer parameters, is costN(C) =
inf(~θ,c,v)∈D,v∈NP c.

Lemma 8 is a direct consequence of Lemma 6:

Lemma 8. Let (m,D) be a state class. We have: costN((m,D)) = cost((m, IH(D)).

Lemma 9. If v is an integer parameter valuation, then for all classes Cσ =
(m,D), (~θ, c, v) ∈ IH(D) if and only if there exists a run ρ in v(N ), and I :

en(m)→ I(Q≥0), such that sequence(ρ) = σ, (m, I, c) = last(ρ), and ~θ ∈ I.



Proof. ⇒: if (~θ, c, v) ∈ IH(D) then it is also in D and the result follows from
Lemma 1.
⇐: by Lemma 1, we know that there exists some (~θ, c, v) ∈ D, and since v is

an integer valuation, by Lemma 6, (~θ, c, v) ∈ IH(D). ut

Lemma 10. Let Cσ1
and Cσ2

be two state classes such that IH(Cσ1
) 4 IH(Cσ2

).
If a transition sequence σ is NP-firable from Cσ1 it is also NP-firable from

Cσ2 and costN(Cσ1.σ) ≥ costN(Cσ2.σ).

Proof. Let Cσ1 = (m1, D1) and Cσ2 = (m2, D2). From Definition 3, for any point

(~θ, c1, v) ∈ IH(D1), there exists a point (~θ, c2, v) ∈ IH(D2) such that c2 ≤ c1.
With Lemma 7 and Lemma 8, this implies that: (i) costN(Cσ1) ≥ costN(Cσ2);
(ii) if transition t is NP-firable from Cσ1

, then it is NP-firable from Cσ2
and

Next(Cσ1
, t) 4 Next(Cσ2

, t). And, as before, the result follows by a straightfor-
ward induction. ut

Algorithm 3 Restriction of (semi-)Algorithm 2 to integer parameter valuations.

1: PolyRes← ∅
2: Passed← ∅
3: Waiting← {(m0, D0)}
4: while Waiting 6= ∅ do
5: select Cσ = (m,D) from Waiting
6: if m ∈ Goal then
7: PolyRes← PolyRes ∪

(
IH(D) ∩ (c ≤ cmax)

)
|P

8: end if
9: if for all C′ ∈ Passed, IH(Cσ) 64 IH(C′) then

10: add Cσ to Passed
11: for all t ∈ firable(IH(Cσ)), add Cσ.t to Waiting
12: end if
13: end while
14: return PolyRes

Using Lemma 9 instead of Lemma 1, and Lemma 10 instead of Lemma 3 in the
proof of Proposition 2, we get the following proposition, stating the completeness
and soundness of Algorithm 3.

Proposition 4. After any iteration of the while loop in Algorithm 3:

1. if v ∈ PolyRes and v is an integer parameter valuation then there exists a
run ρ in v(N ) such that cost(ρ) ≤ cmax and lastm(ρ) ∈ Goal.

2. if Waiting = ∅ then for all integer parameter valuations v such that there
exists a run ρ in v(N ) such that cost(ρ) ≤ cmax and lastm(ρ) ∈ Goal, we
have v ∈ PolyRes.



In Algorithm 3, we compute state classes as usual then handle them via
their integer hulls. We can actually simply integrate integer hulls at the end of
Algorithm 1 and use Algorithm 2 with this updated successor computation as
proved by Lemma 11.

Lemma 11. Let (m,D) be a state class of a pcTPN N , and t a transition firable
from C. Let (m′, D′) = Next((m,D), t) and (m′′, D′′) = Next((m, IH(D)), t).
Then m′′ = m′ and IH(D′′) = IH(D′).

Proof. The equality of markings is trivial so we focus on firing domains.
By definition of the integer hull, we have IH(D) ⊆ D. Since the computation

of the next class domain is non-decreasing with respect to inclusion, we then
have D′′ ⊆ D′. Taking the integer hull is also non-decreasing wrt. inclusion, so
IH(D′′) ⊆ IH(D′).

Consider now an integer point (~θ′, c′, v) in D′. Then (~θ′, c′) ∈ v(D′). Consider
state class computations in the (non-parametric) cost TPN v(N ): there exists

some point (~θ, c) in v(D) such that (m′, ~θ′, c′) ∈ Next((m, {(~θ, c)}), t). Since

(~θ, c, v) thus belongs to D and since v is an integer parameter valuation, by

Lemma 6, we have that (~θ, c, v) ∈ IH(D). Thus (~θ′, c′, v) ∈ D′′ and since it is an
integer point, it is in IH(D′′). ut

6 Termination of Algorithm 3

We now consider that parameter valuations are bounded by some value M1 ∈ N
(and that they still have integer values). We also assume that, for all integer
parameter valuations, there exists M2 ∈ Z such that for all runs ρ in v(N ),
cost(ρ) ≥ M2: this allows us, as in [11,12], to keep Algorithm 3 simple by do-
ing away with negative cost loop-checking. Finally, we assume the net itself is
bounded: there exists M3 ∈ N such that for all reachable markings m, for all
places p, m(p) ≤M3.

To prove the termination of Algorithm 3 under these assumptions, we con-
sider < the symmetric relation to 4, such that x < y iff y 4 x. We prove that it
is a well quasi-order (wqo), i.e., that for every infinite sequence of state classes,
there exist C and C ′ in the sequence, with C strictly preceding C ′ such that
C < C ′. This implies that the exploration of children in Algorithm 3 will always
eventually stop.

Proposition 5. Let N be a bounded pcTPN, with bounded integer parameters
and such that the cost of all runs is uniformly lower-bounded for all integer
parameter valuations.

Relation < is well-quasiorder on the set of state classes of N .

Proof. Consider an infinite sequence C0, C1, C2, . . . of state classes. Let Ci =
(mi, Di).

From [11], we know that < is a wqo for the state classes of bounded (non
parametric) cost TPNs. So for each integer parameter valuation v, and using a



classic property of wqo we can extract a subsequence of v(C0), v(C1), . . . that is
completely ordered by <. And since, we have a finite number of such parameter
valuations, we can extract an infinite subsequence Ci0 , Ci1 , . . . such that for all
integer parameter valuations v, v(Ci0) < v(Ci1) < · · · .

Let us consider two of those: Cir and Cis , with r < s.
Since IH(Dis) has integer vertices, and for any integer parameter valuation,

v(Cir ) < v(Cis), which implies that v(Dis) ⊆ v(Dir ), then all the vertices of
Dis are also in Dir . Now assume that some extremal ray ~r of Dis is not in Dir .
Then starting from some vertex ~x of Dir , there must be some λ ≤ 0 such that
~x + λr 6∈ Dis and the same holds for any λ′ ≥ λ (by convexity). But since
r has rational coordinates for some value of λ′, λ′r is an integer vector and
so is ~x + λ′r, which contradicts the fact that v(Dis) ⊆ v(Dir ), for all integer
parameter valuations v, and in particular (~x+ λ′r)|P. We can therefore conclude
that Dir ⊆ Dis and we now proceed to proving that Dis is also “cheaper” than
Dir .

We use another property of the vertices of convex polyhedra: vertices of a
convex polyhedron of dimension n defined by m inequalities

∑n
k=1 aklxk ≤ bl,

for j ∈ [1..m] are solutions of a system of n linearly independent equations∑n
k=1 aklxk = bl, with l in a subset of size n of [1..m].
Now consider the polyhedron D obtained from IH(Dir ), with its cost variable

c, by adding one variable c′ constrained by the cost inequalities of IH(Dis).
Clearly, since c and c′ are not constrained together, the vertices of D are those
of IH(Dir ), extended with the corresponding minimal and maximal values of c′,
and symmetrically those of IH(Dis), extended with the corresponding minimal
and maximal values of c′. Since the inequalities constraining c and c′ have integer
coefficients, and IH(Dis) and IH(Dir ) have integer vertices, D also has integer
vertices.

For the i-th lower-bound inequality on c, and the j-th lower-bound inequal-
ity on c′, we define Eij as D in which we transform both constraints into
equalities. Clearly, from the property above, this does not add any new ver-
tex, but it may remove some. Second, by construction, we have

⋃
ij Eij =

{(~θ,min(~θ,c,v)∈IH(Dir )
c,min(~θ,c,v)∈IH(Dis )

c)|~θ ∈ IH(Dr)|Θ}. If we minimize c − c′
over Ei, we know from the theory of linear programming that the minimum is
obtained at a vertex of Eij , and therefore, in particular, for an integer valuation v

of the parameters, and an integer vector ~θ of Dir . Since we have v(Cir ) < v(Cis),
we then know that for these values of the theta variables and parameters, c ≤ c′.
This means that this holds for the whole of Eij , and finally that Cir < Cis . ut

7 Case Study

We now consider a scheduling problem where some tasks include runnables, a
key concept of the AUTomotive Open System ARchitecture (AUTOSAR), the
open standard for designing the architecture of vehicle software [5]. Runnables
represent the functional view of the system and are executed by the runtime of
the software component [19]. For their execution they are mapped to tasks and



a given runnable can be split across different tasks to introduce parallelism, for
instance. In industrial practice, runnables that interact a lot are mapped to the
same task, in particular when they perform functions with the same period.

In this example, we consider 3 non-preemptive, periodic tasks T1, T2 and T3,
on which have already been mapped some runnables that interact together; we
add another independent runnable whose code must be split between tasks T1
and T2:

– the period of task T1 is 100 time units; T1 includes a “fixed part”, indepen-
dent from the new runnable and whose execution lasts 22 t.u.;

– the period of T2 is 200 t.u.; T2 also has a fixed part lasting 28 t.u.;
– the period of T3 is 400 t.u.; its execution lasts 11 t.u.;
– the period of the runnable is 200 t.u.; its execution lasts 76 t.u.; parameter a

denotes the duration of the section that is executed in T13.

The processing unit consists of 2 cores C0 and C1; T3 can only execute on C0
whereas both T1 and T2 can execute on either core. When both cores are idle,
the cost is null; when only one core is busy, the cost is equal to 2/t.u.; when both
cores are busy, the cost is equal to 3/t.u. Any optimised strategy to divide the
runnable over T1 and T2 and to allocate these tasks to C0 or C1 must therefore
favour the cases where both cores are in the same state.

Figure 3 presents the model for this problem4. The associated cost function
is: 2∗ (C0 6= C1)+3∗C0∗C1+1000∗

(
W1∗ (R1C0+R1C1)+W2∗ (R2C0+R2C1)+

W3 ∗R3C0
)
, where the name of a place (e.g. R1C0) represents its marking5.

We limit the study of the system to the first 400 t.u., at the end of which
T1 has been executed 4 times, T2 twice and T3 once. A preliminary analy-
sis (not detailed here for the sake of concision) showed that the lowest cost
is 466. By setting our maximal cost to this value, we then check the follow-
ing property with our Romeo tool: EF four==4 and two==2 and one==1 and

cost≤466. The answer provided by Romeo is that the property is true iff
a ∈ [13, 17]. We then set a to 17; Romeo yields the following timed trace, in which
the notation T1@t1 means that transition T1 is fired at date t1: T1C0@61, T2C1@69,

T1@100, end1 C0@100, T1C0@100, end1 C0@139, end2 C1@139, T1@200, T2@200, T2C0@261,

T1C1@261, T1@300, end1 C1@300, T1C1@303, end2 C0@331, T3C0@331, end3 C0@342, end1 C1@342

From this trace, we obtain the Gantt chart in Figure 4 (above). Setting a
to 13 yields another timed trace, resulting in the Gantt chart in Figure 4 (below).
In both cases, we can see that both cores are busy during 148 t.u. (and for 11 t.u.,
only one is idle), which confirms our analysis on the optimised strategy above.

3 Every 200 t.u., since T1 is executed twice as often as T2, T1 is running during
(22+a)∗2 = 44+2a t.u. whereas T2 is running during 28+(76−2a) = 104−2a t.u.

4 To ensure a correct access to the cores, we could have added one place for each
core and some arcs on each task to capture and release them but the resulting net
would have been quite unreadable. Instead, we chose to add 2 integer variables C0
and C1 (both initialised to 0); a variable equal to 0 (resp. 1) obviously means the
corresponding core is idle (resp. busy).

5 The last term ensures that such cases where an instance of a task is activated while
a previous one is running are heavily penalised.



1

idle1

1

idle2

1 W1 1 W2 1 W3

R1C0 R2C0 R3C0

4 Task1 2 Task2 1 Task3

R1C1 R2C1

four two one

T1 
 [ 100; 100 ]
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Fig. 3. Offline non preemptive scheduling problem
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Fig. 4. Gantt charts for a = 17 (above) and a = 13 (below)

8 Conclusion

We have proposed a new Petri net-based formalism with parametric timing and
cost features, thus merging two classic lines of work. For this formalism, we define
an existential problem and a synthesis problem for parametric reachability within
a bounded cost. We prove that the former is undecidable but we nonetheless give
and prove a symbolic semi-algorithm for the latter. We finally propose a variant
of the synthesis algorithm suitable for integer parameter valuations and prove
its termination when those parameter valuations are bounded, and some other
classic assumptions. This symbolic algorithm avoids the explicit enumeration of
all possible parameter valuations. It is implemented in our tool Romeo and we
have reported on a case-study addressing a scheduling problem, and inspired by
the AUTOSAR standard.

Further work includes computing the optimal cost as a function of parameters
and investigating the case of costs (discrete and rates) as parameters.
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