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Abstract. With the ever-increasing need for computation of scientific
applications, new application domains, and major energy constraints,
the landscape of floating-point computation is changing. New floating-
point representation formats are emerging and there is a need for tools
to simulate their impact in legacy codes. In this paper, we propose an
automatic tool to evaluate the effect of adapting the floating point preci-
sion for each operation over time, which is particularly useful in iterative
schemes. We present a backend to emulate any IEEE-754 floating-point
operation in lower precision. We tested the numerical errors resilience of
our solutions thanks to Monte Carlo Arithmetic and demonstrated the
effectiveness of this methodology on YALES2, a large Combustion-CFD
HPC code, by achieving 28% to 67% reduction in communication volume
by lowering precision.

1 Introduction

Representing infinite real numbers on a finite machine format exposes com-
plex trade-off: IEEE-754 floating-point (FP) single and double are widely used
standardized formats which have empirically proved their efficiency. Today’s nu-
merical algorithms conveniently rely on double precision FP format. Numerical
formats outside IEEE-754 single and double FP are largely unexplored in hard-
ware and software design for HPC.

With new application domains such as machine learning, FP arithmetic used
in general purpose processor is entering a new burst of evolution as the IEEE-
754 single and double FP are not necessarily the best choices for these problems.
Novel hardware and software solutions are explored: variable precision formats
(e.g. on FPGAs [15]), new vector instructions such (e.g. Intel Vector Neural
Network Instruction), novel FP representations (e.g. BFloat [11], posits [18],
fpanr [12]), and libraries for approximate computing [22].

In this paper we propose a methodology to explore alternative representations
of hardware and software FP. Our first application is the widely used Compu-
tational Fluid Mechanics (CFD) solver YALES2 operated in many recent HPC
simulations [25, 3, 6, 4, 17].
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Variable precision can be harnessed at the application, compiler, and archi-
tecture levels. Our exploration goes beyond traditional mixed precision (single
and double format). Due to hardware memory constraints of general purpose
processors, the target format can only be represented with 8,16,32 or 64 bits.
However, accuracy can be lowered to any given precision to limit the cost of
computation and energy. Finally, to go further in the optimization, one may use
architectural support, like FPGAs, where precision is fine-tuned up to the bit
level [15].

The contributions of this paper are:

– An empirical methodology integrated in Verificarlo [7, 14] to automatically
lower precision in iterative algorithms while maintaining an user defined
accuracy criterion.

– A VPREC backend to Verificarlo to emulate variable FP representations
with a [1, 11]-bits exponent and [0, 52]-bits pseudo-mantissa.

– Integration of the temporal dimension in the exploration of FP precision.
Precisions are not fixed for a variable or code section, but adapt as time
passes.

– A validation step based on stochastic arithmetic [37] to increase robustness
to rounding and cancellation errors.

– An evaluation of the validity and the performance gains of the proposed
methodology on an actual implementation demonstrating runtime savings
in an industrial use case.

2 Motivating example

Let us consider as a simple example the Newton–Raphson method which finds
the root x? of a real-valued function f such that f(x?) = 0. Starting from an
initial guess x0, the method iteratively computes xk+1 = xk−f(xk)/f ′(xk) until
the relative error between two successive iterations is below a given threshold.
At iteration k, the error εk and the number of significant digits sβk in base β are
defined as:

εk =

∣∣∣∣x? − xk+1

x?

∣∣∣∣ sβk = − logβ(εk)

The speed of convergence of this method is quadratic [20], which means that
the number of significant digits doubles at each iteration. Table 1 shows the
evolution of xk and sk when computing the inverse of π (f(x) = 1/x−π) with a
stopping threshold set to 10−15. The insignificant digits are highlighted in gray.

In the first iterations, most digits are incorrect, hinting that a low precision
for the evaluation of f is enough. We used the methodology proposed in this
paper and described in section 3 to explore the impact of lowering the precision
with the VPREC backend for Verificarlo presented in section 3.1.

Our methodology automatically finds for each iteration k, a reduced precision
pk; the pk are chosen such that the overall convergence speed is not degraded.
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k xk+1 s10k s2k

0 0.0690266447076745 0.11 0.37
1 0.1230846130203958 0.21 0.70
2 0.1985746566605835 0.43 1.43
3 0.2732703639721015 0.84 2.79
4 0.3119369815109966 1.79 5.95
5 0.3181822938100336 3.40 11.3
6 0.3183098350392471 6.79 22.6
7 0.3183098861837825 13.6 45.2
8 0.3183098861837907 15.6 51.8
9 0.3183098861837907 15.6 51.8

double newton(double x0) {

double x_k , x_k1=x0, b=PI;

do {

x_k = x_k1;

x_k1 = x_k*(2-b*x_k);

}while (fabs((x_k1 -x_k)/x_k)

>= 1e-15);

return x_k1;

}

Table 1. (left)Convergence speed of Newton-Raphson for the computation of the in-
verse of π using the IEEE-754 binary64 format (right). The stopping threshold is
10−15. Highlighted digits in gray are non significant.

Figure 1 shows on the left the pk’s value found by VPREC. The plot at right
compares the convergence speed of the standard binary64 representation and
the VPREC configuration. Both versions converge within the 10−15 threshold in
nine iterations.
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Fig. 1. (left) Precision found with VPREC for Newton-Raphson. (right) Both the stan-
dard IEEE-754 binary64 version and the VPREC low precision configuration converge
to 10−15 in nine iterations.

Since the first seven iterations require less than 24 bits of precision, they can
be executed in single precision (IEEE-754 binary32). To validate the solution
found by VPREC, we run a mixed-precision version of the Newton-Raphson
scheme where the first seven iterations use the binary32 format. We note that
the convergence speed and final result are almost identical to the full binary64
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version. While more efficient, the solution found by VPREC has only been vali-
dated for a given input data set and its resiliency has to be examined as discussed
in section 4.2.

3 Exploring variable precision

In large computational scientific codes, basic numerical computation functions
are used many times in various places. Each call of the function may require a
different numerical precision. Furthermore, as seen in section 2, the same code
section may require a different precision over time. To explore the temporal
dimension of numerical precision, we use two components presented in the re-
maining of this section:

– A variable precision backend for Verificarlo: VPREC, detailed in section 3.1;
– A heuristic optimizer to automatically minimize the precision configuration,

while ensuring accuracy and convergence as described in section 3.2.

3.1 Verificarlo and the VPREC backend

Fig. 2. General Verificarlo exploration workflow with VPREC backend

Verificarlo [14] is an open-source tool for FP interposition whose workflow is
described in figure 2. The LLVM front-end replaces every FP operations by a
call to the Verificarlo interface. After compilation, the program is dynamically
linked against various backends [7, 14]. Interposing FP operations at the compiler
level allows to capture the compiler optimization effects on the generated FP
operation flow. Furthermore, it reduces the interposition overhead by optimizing
its integration with the original code.

The VPREC backend simulates FP formats that can fit into the IEEE-754
double precision format, avoiding the complex engineering process to implement
a shadow memory [36].

As illustrated in figure 3, the current implementation of VPREC allows
modifying the bit length of the exponent r ∈ [1, 11] and the pseudo-mantissa
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r pbinary16

s exponent pseudo-mantissa

Fig. 3. By setting r = 5 and p = 10, VPREC simulates a binary16 embedded inside a
binary32. Opaque bits represent the new exponent range and precision available. The
sign remains the same.

p ∈ [0, 52]. The explored format can be converted back and forth to double with-
out loss of precision. At each instrumented floating-point operation, VPREC
rounds the operands in (r, p), converts them to double, performs the operation
in double precision, rounds the result using the Round Ties to Even mode, and
stores it as a 64-bit number. This process presents two advantages:

– VPREC operands can be converted to double to use hardware operators
to perform VPREC operations with low overhead, including special values
(subnormal numbers, NaN and ±∞) related to the user defined format (r, p)

– After rounding, converting the result back to double enables graceful degra-
dation if some external libraries are not instrumented.

The user should note that in some rare cases, our implementation suffers from
double rounding issue [5], when the first rounding done by the hardware at 53
bits impacts the second rounding to the required precision p. In practice, these
cases, which occurs for numbers close to the midpoint of two p bits floating-point
numbers, have no significant impact on our experiments.

The VPREC backend requires a single execution of the program and Verifi-
carlo supports MPI. Therefore, we observe a reasonable overhead on full scale
parallel applications ranging from 2.6× to 16.8× for very FP intensive codes.

3.2 Piecewise constant exploration heuristic

Let consider an iterative program with n iterations. VPREC simulates the effect
of using FP numbers represented on a pk-bit mantissa and rk-bit exponent at
iteration k. From now on, the sequence of values [(p0, r0), . . . , (pn, rn)] represents
one VPREC run called a configuration.

When the precision is too low, the program execution fails: either it does not
converge or it produces wrong results. We are only interested in valid config-
urations that preserve convergence and accuracy according to user knowledge.
In our experiment (sec. 4), the validation function checks that the number of
iterations and the final results are within a threshold of some reference values.

Reducing the precision can be seen as introducing numerical errors terms in
the computation. Determining how and where to distribute the errors across the
iterations is an optimization problem with a large number of valid configurations.
Exploring the whole search-space is too costly on any non-trivial application, we
have to rely on heuristics.
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We propose the piecewise search heuristic with the three following design
principles:

1. Configurations where the precision changes slowly over time are preferable
to configurations which quickly oscillate between a low and high precision.

2. Precision lowering should be distributed among all iterations.
3. Early iterations are generally more robust to error. Therefore we foster con-

figurations with lower precision in early iterations compared to late itera-
tions.
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Fig. 4. First three steps of the piecewise constant search heuristic for the Newton-
Raphson problem. The constant piecewise functions of step 0,1 and 2 are represented
in green, blue and black.

To enforce the first and second principles, we follow a top-down approach.
The solution is modeled by a piecewise constant function that is progressively
refined. Figure 4 illustrates the first three steps of the piecewise approach on
the Newton-Raphson problem. For the sake of simplicity, we are solely focusing
on lowering the mantissa size pk. However, the method can simultaneously deals
with the mantissa and exponent size. Initially, the piecewise constant function
has a single domain (marked 0) that spawns all the iterations [0, n). The valid
lowest precision, corresponding to 40, is found by dichotomy on the precision
domain between 1 and 53. In the second step, the domain is split in two subdo-
mains (marked 1 and 2). To enforce the third principle, the precision in the left
domain (marked 1) is lowered in a greedy manner, while keeping the maximal
precision found in the previous step for the right domain (marked 2). Once the
lowest precision for domain 1 is identified, we lower the precision in domain 2.
This ends the second step and produces the blue piecewise function. This pro-
cess continues recursively. This approach guarantees by construction that the
piecewise function at step i is an upper bound of the function at step i+ 1 and
progressively refines the solution following the first principle. The exploration
is breadth-first to evenly distribute the reduction in precision, according to the
second principle.
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4 Large scale study validation on YALES2

YALES2 is a parallel CFD library that aims at solving the unsteady Navier-
Stokes equations in the low-Mach number approximation for multiphase and re-
active flows [28]. It efficiently handles unstructured meshes with several billions
of elements, enabling the Direct Numerical Simulation of laboratory and indus-
trial configurations. A projection method [8, 32] enforces the mass-conservation
constraint on the flow thanks to the resolution of a Poisson equation at each time-
step. In the HPC context, this is usually achieved with Krylov methods and we
focus here on the Deflated Preconditioned Conjugate Gradient (DPCG) [29, 26,
27] implemented in YALES2. In this algorithm, a coarse grid is built from the
fine mesh by merging a fixed number of elements together in super-cells (this
procedure is conceptually similar to the multi-grid approach [13]). The general
principle of deflation is the following. The coarse grid is used to converge the
low frequency eigenmodes of the solution which represent the long range inter-
actions of the Poisson equation. This requires much less work than performing
a classical CG on the fine mesh which is only used to obtain the remaining high
frequencies in a small number of iterations.

Numerically, the deflated operator is solved in iterdef iterations using a
usual PCG method such that the convergence criteria convcrit is met. The
solution is then expanded and injected into the main PCG loop on the finer
grid. This whole process is repeated until the maxnorm of the fine grid residual
is below a threshold. In both CG solvers (on coarse and fine grids), the system is
preconditioned by the inverse of the diagonal. In all experiments, we constraint
the total number of iterations performed,

∑
iterdefk, by the algorithm to be

below 1% of additional iterations compared to the original.
The representative use-case we focus on is the PRECCINSTA burner [24, 2].

It is a well-known lab-scale burner used to validate combustion CFD solvers. We
use 3 different mesh sizes of 1.75 million, 40 million and 870 million of tetrahedral
elements. For all configurations, the super-cell size in the coarse grid was set to
500 elements. We set the max norm of residual convergence criteria to 10−8.

To reduce the search space, we consider two sets of functions. The first set,
named deflated, is the set of functions used on the coarse grid to solve the deflated
operator. The second set, named all, contained all the functions used to solve
the fine grid operator.

4.1 Adaptive precision algorithm experiment on DPCG

In this section, we apply our VPREC tool on the 1.75M mesh case to explore
valid variable precision implementation. In order to use true single precision, we
statically set the exponent range to 8-bits in VPREC exploration.

Figure 5 shows the result of the exploration. In both graphics the x-axis
represents the number of iterations on the fine grid. In the top plot, the right
y-axis represents, on the same scale, the norm maxnorm of the residual between
two successive iterations and the convergence criterion convcrit of the deflated
operator. The left y-axis represents iterdef , the number of iterations on the
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Fig. 5. Adaptive precision searching on YALES2’s DPCG with the deflated part (left)
and the entire code (right). On both plots, we can see that our reduced precision
solution follows the reference IEEE convergence profile.

deflated operator. In the bottom plot, the y-axis represents the virtual precision
used to compute the given iteration on x-axis.

Figure 5 (left) shows that less than 23 bits of precision are required for the
deflated operator on the 1.75 million elements mesh, with an average precision
of 18 bits. Therefore, the deflated operator can be computed with binary32,
resulting in a mixed-precision implementation detailed in section 4.3.

Figure 5 (right) shows the results of the proposed explorations on both coarse
and fine grid at the same time. We notice that, contrary to the deflated experi-
ment, the required precision increases over iterations. This is expected because
the solver needs more and more precision to converge as it refines the solution.
Surprisingly, the required precision drops at iteration 50 from 34 bits to 21 bits.
We cannot yet explain this sudden drop, more investigations are needed.

4.2 Validating resiliency to round-off errors

In the previous sections, we demonstrated that YALES2’s DPCG converges with
a lower precision format. This result is only valid with the particular rounding
mode used by VPREC and is sensitive to the input dataset. In a realistic setup,
small rounding errors may occur when performing FP operations with a different
software representation and/or hardware.

Monte Carlo Arithmetic (MCA) is a stochastic method to model round-off er-
rors by artificially introducing noise within computations and performing Monte
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Fig. 6. Resiliency of VPREC and binary32 configurations. In red the IEEE maxnorm
convergence for reference. Blue envelop shows the 29 MCA samples for the previ-
ously found VPREC configuration. Green envelop shows the 29 MCA samples for the
binary32 configuration. All samples converge, showing the resiliency of both configu-
rations.

Carlo sampling. For the theoretical underpinnings, readers may refer to [14, 31].
MCA is able to simulate rounding errors at a given virtual precision. We use
MCA as a second step of our VPREC analysis to find a configuration that is
resistant to round-off errors. We model this process as a Bernoulli trial. We run
29 MCA samples to simulate the effect of rounding errors. If any one of the
samples fail to converge, we conclude that the solution is not robust to round-off
errors. On the other hand, if all the 29 samples converge we conclude, thanks to
the confidence intervals introduced in [37], that the probability of convergence
in the presence of round-off errors is 90% with a 0.95 confidence level.

Figure 6 shows that the VPREC solution found in the previous section is
robust and converges for all the samples. Since the solution is very close to the
binary32 precision, our objective is to achieve a robust binary32 configuration.
The binary32 constant-precision configuration represented by the light red en-
velop in figure 6 converges in 57 to 63 iterations in the presence of round-off
errors for all samples. This demonstrates that it is possible to safely rewrite the
coarse grid operator of DPCG in binary32.

4.3 Evaluating mixed-precision version

The deflated operator of DPCG can be computed within the binary32 format
for most iterations as shown in previous sections. To validate the results, we com-
piled a mixed-version of YALES2 where the deflated operator can be executed
either in binary32 or binary64 format.

We evaluated the mixed precision version on the three different grids of
PRECCINSTA and 10−9 convergence criteria. We limit the exploration algo-
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rithm to double and single precision since we are not running on variable preci-
sion hardware.

We use CRIANN cluster constituted of 366 bisocket Intel Xeon E5-2680 nodes
and Intel Omnipath interconnect. We gather statistics using Intel IPM interface
for Intel MPI.

As predicted by our methodology, the computation converges and all versions
satisfy all accuracy constraints on the results. However, we noticed that larger
experiments require extra initial double precision iterations on the deflated grid.
For examples, respectively two and four extra double precision iterations are
necessary for the 40M and 870M mesh. This is coherent with the observations
of Cools et al. [9] about the importance of being precise in the first iteration of
a CG recurrence:

We noticed as well, that on these larger cases it is necessary to switch for
the deflated grid from single to double precision when the deflated convergence
criteria is difficult to reach with single precision ∼ 10−8.

This effect did not appear on the smaller case with 500 elements per group.
Our hypothesis is that the granularity difference between the two grids level
is larger on the small mesh and therefore the small errors on the coarse grid
iteration are less impacting on the fine grid iterations [26, 27].

We measure a 28% to 67% reduction in the communication volume. The
energy gain can be estimated to be linearly related to this volume gain with the
simple model proposed in [1].

Since DPCG is mostly bounded by communication latency, the performance
gain is limited when the number of processor grows for a given size falling from
28% speedup to -2% slowdown on critical strong scaling experiments. However,
according to these results and end-user usage of the code, the expected speedup
for daily usage will be in the 10% range.

5 Related works and Background

Many tools and strategies have been developed for lowering precision in codes.
For HPC purposes, the challenge is to have fast and scalable tools for address-
ing real world applications. A comparison with our methodology is presented in
table 2. Most of the tools focus on the spatial dimension while we investigate
the temporal dimension as well. In addition, most of them focus on the mixed-
precision exploration while we provide a more in-depth analysis by working at a
bit level. Evaluating the resiliency to rounding errors is only proposed by Veri-
ficarlo and Promise although FlexFloat [21] and fpPrecisionTuning [38] propose
statistic optimization according to input data ranges. However, they require the
re-implementation of code to adopt the specific libraries.

Daisy [10], Herbie [30] and STOKE [35] are optimizing precision or accuracy
by rewriting formulas. Most of them provides high level of guarantees, however
they all face scalability issues.

Some authors propose adaptive schemes for specific linear algebra algorithms.
Anzt et al. [1, 19] propose an adaptive precision version of the Block-Jacobi
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Tool Localization
Mixed
prec.

Variable
prec.

Round.
Error

Automatic

Precimonious [34] Spatial X X
Blame-Analysis [33] Spatial X X1 X
Promise [16] Spatial X X X
CRAFT [23] Spatial X X2 X
fpPrecisionTuning [21] Spatial X X
FlexFloat [38] Spatial X X
Verificarlo (this paper) Temporal X X X X

Table 2. Comparisons of the different tools for exploring precision reduction.

preconditioner. Authors store data at low precision by truncating bits while
computations remain in double precision. The change of format is guided by
the condition number and the data range. The authors estimate energy gains
with predictive models with the underlying hypothesis that the cost depend
linearly on the bit length of the data. These methods are interesting because
they use mathematical properties of numerical schemes for adapting precision
over iterations. However, the authors focused on small program sections based on
their knowledge at high engineering cost. Therefore, their results are restricted
to a class of specific algorithms unlike our method which provides a broader
exploration tool. Of course, educated developers are still required to take the
final decision to use lower precision provided by our VPREC tool.

6 Conclusion

Reducing communication volume and computation cost is important to reach ex-
ascale computing. Tailoring the precision to the requirements of the application
offers consequent savings in performance and energy. We presented a method-
ology to automatically and finely adapt the precision over time for numerical
iterative schemes. Our methodology goes beyond mixed-precision approaches by
exploring precision configurations at bit level. The method explores the pre-
cision requirements over time, and therefore chooses an optimal precision for
each application phase. To guarantee the accuracy of the results, we validate the
robustness of our solutions to rounding errors with the help of stochastic arith-
metic. Finally, our experiments show that the methodology handles large HPC
codes like the Combustion-CFD solver YALES2. For YALES2, our approach
shows that lowering the precision is viable and achieves 28% to 67% reduction
in the communication volume, lowering the energy and runtime cost.
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