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Abstract

Wall shear stress (WSS) is a relevant hemodynamic indicator of the local stress applied on the
endothelium surface. More specifically, its spatiotemporal distribution reveals crucial in the evo-
lution of many pathologies such as aneurysm, stenosis, and atherosclerosis. This paper introduces
a new solution, called PaLMA, to quantify the WSS from 4D Flow MRI data. It relies on a two-
step local parametric model, to accurately describe the vessel wall and the velocity-vector field in
the neighborhood of a given point of interest. Extensive validations have been performed on syn-
thetic 4D Flow MRI data, including four datasets generated from patient specific computational
fluid dynamics simulations on carotids. The validation tests are focused on the robustness with
respect to noise and on the impact of the resolution level in the context of complex flow patterns.
The WSS quantification performance reached by PaLMA is significantly higher than the refer-
ence one obtained using the smoothing B-spline method proposed by Potters et al. (2015) method,
while the computation time is equivalent for both WSS quantification methods.
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1. Introduction

1.1. State of the Art
In the last decade, the hemodynamic conditions of blood flow have been the subject of intensive

investigations in the context of cardiovascular diseases such as aneurysms [1], stenosis [2, 3],
atherosclerosis [4] or bicuspid aortic valve affliction [5]. It is currently admitted that complex
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hemodynamic conditions play an important role in the evolution of such pathologies. In this5

regard, the Wall Shear Stress (WSS) is a promising hemodynamic parameter, since it characterizes
the local stress applied on the endothelium surface. Specifically, [4, 6] have shown the effect of
WSS on the organization of the endothelial cells. The impact of WSS has been studied on several
cardiovascular pathologies, in terms of magnitude [1, 7], of axial and circumferential direction [8],
and of time variation using the Oscillatory Shear Index (OSI) [9, 10].10

In order to assess the WSS at a given point of the vessel wall, a prerequisite step is to evaluate
the spatial velocity derivatives at this point. 4D Flow MRI is a phase-contrast (PC) MRI sequence
that quantifies the blood flow as velocity vectors over time, with full volumetric coverage1. Un-
fortunately, near-wall values of velocity magnitude being small, the effect of the acquisition noise
and of limited spatial resolution strongly degrades the evaluation precision of such spatial deriva-15

tives [1, 12]. Under clinical acquisition constraints, 4D Flow MRI data has a voxel resolution
limited to 1-1.2 mm ISO for intracranial, and to 2-2.5 mm ISO for thoracic acquisitions [14]. As
regards the velocity noise, its standard deviation is about 5 % of the velocity encoding (Venc) based
on anatomic signal-to-noise-ratio (SNR) in thoracic measurements with a 1.5T MRI and no con-
trast enhancement [15]. In such conditions, it remains a challenging issue to compute WSS values20

with a truly quantitative meaning, and this has motivated continued efforts to produce improved
WSS estimation methods along distinct strategies [5, 12, 16, 17].

Table 1 presents a selected set of existing methods, with a distinction between local methods
and global ones, and whether the methods are regularized or not. Global methods [12, 18, 16,
13, 2, 3] evaluate the WSS at all the segmented points of the wall simultaneously, while the local25

ones focus at given points of interest (POI) [5, 17, 11, 19]. In this regard, local methods can be
considered as more flexible, since the radiologist is free to restrict the computation of WSS values
within ROIs of specific clinical interest.

No regularization Regularized methods

Local
design Cylindrical frame [5]

Sectorial parabolic model [11]
Parabolic model [19]

Smoothing B-spline [17] ([20, 7, 10, 21])

Global
design

B-spline [12] ([9, 6])
Finite difference [18]

5th Order polynomial [16]
Finite-element model [13, 2] ([8])

Sobel filter [3]

Table 1: Selected set of existing WSS evaluation methods. Related WSS studies are in brackets.

On the other hand, regularization is a general principle that aims at incorporating additional
structural information to counterbalance the unstable character of inverse problem solutions [22].30

In the context of WSS estimation from 4D Flow MRI data, regularization can take the form of
a constraint, e.g., the nullity constraint of the velocity at the vessel wall [11, 19, 17, 2], possibly
combined with a parametric model [16, 19]. In [17], the nullity constraint is considered at the
POI only, while in [11, 2], it is imposed on a circular arc and on the whole segmented vessel

1By contrast, 2D time-resolved PC MRI is limited to 2D slice acquisitions [11, 12, 5, 13].
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wall, respectively. Regularized methods generally yield solutions that are more robust to noise,35

but with the risk of underestimating the quantity of interest, i.e., of introducing a significant level
of bias while reducing the variance in the case of complex velocity fields. This explains why
methods such as those proposed in [17, 3] tend to provide WSS values with underestimated levels
and variations, both spatially and temporally [10]. Yet, regularized methods may still reach fairly
high correlation values between the estimated WSS and the true one. For instance, a coefficient40

of determination r2 = 71 % (i.e., a Pearson correlation index r = 84 %) is reported in [21], which
clearly indicates that such a regularized WSS estimation method is operative. However, our con-
tribution is motivated by the feeling that some margin of improvement is still possible within the
local, model-based framework.

1.2. Contribution45

Our goal is to propose a new local, regularized WSS estimation method, with enhanced perfor-
mance, both in terms of absolute error and of correlation to the true WSS level. For that purpose,
we rely on two parametric models under the form of low-order polynomials. The first one is a
cubic surface model of the vessel wall, and the second one is a trivariate model of the velocity
field, defined conditionally to the previous one. Both are defined at given POIs and at given times,50

by reference to the local behavior of the wall shape for the surface model and of the velocity field
for the trivariate model, respectively.

Akin to previous contributions such as [19, 17], we deduce the value of the WSS at any con-
sidered POI from a locally estimated analytical model of the blood velocity field. Thanks to our
volumetric modeling, we propose to perform a new robust a posteriori reestimation step, in order55

to exploit the fact that several estimated values of the WSS are available for each POI. Moreover,
in contrast with existing local WSS estimation methods, our method fully exploits the volumic
character of the available data at all of its steps. In comparison, Potters et al. [17] deduce the WSS
value from a one-dimensional B-spline interpolation step. In this regard, our approach is closer
to Sotelo et al.’s contribution [2], which is also fully 3D based, but using a global approach. In60

addition, our solution aims to model the velocity field in 3D, including the vessel shape input, in
a design inspired from related work limited to 2D-based velocity model [11]. Another distinctive
feature of our contribution is the explicit presence of a spatial filter in our model, accounting for
the partial volume effect due to the limited resolution of 4D Flow MRI data.

Section 2 contains a detailed presentation of the proposed WSS quantification method, called65

Parametric Local Morphology Algorithm (PaLMA). Section 3 presents the simulated data and the
performance indices that have been considered to evaluate the performance of PaLMA. Finally,
Section 4 is dedicated to comparative results.

2. Parametric Local Morphology Algorithm (PaLMA)

2.1. Principle70

PaLMA comprises four distinct steps, at each time instant (see Figure 1):

1. At a given POI, the shape of the vessel wall is first identified as a cubic surface model in
the neighborhood of a POI, i.e., for all vertex points belonging to a region of interest (ROI)
centered around the POI.
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2. Then, the 4D Flow MRI data points are processed in the same ROI, in order to estimate a75

continuous map of the blood velocity field inside the vessel, around the POI. A polynomial
model is used for each component of the blood velocity field, for which the no-slip condition
is enforced uniformly over the local surface.

3. WSS values at the POI and at all vertices in the ROI can be easily deduced by explicit
analytical derivation from the estimated polynomial model of the blood velocity field.80

4. Once the latter steps have been performed for a distributed set of POI, several distinct values
are available for the WSS estimation at a given POI. A final robust estimation step is then
performed to deduce a unique WSS value.

(a) Step 1 (b) Step 2 (c) Step 3 (d) Step 4

Figure 1: The four steps of PaLMA. (a) Fit a cubic surface (in blue) to the local vertices describing the segmented
wall within the ROI. (b) Fit polynomial model (yellow arrows) to the 4D MRI datapoints (black arrows) in the ROI.
(c) Deduce WSS vectors at each local vertex (blue arrows). (d) Distinct intersecting ROIs (e.g., in blue and in green)
provide distinct WSS estimation values at a given POI.

In the remaining parts of this section, we provide additional information about each step of
PaLMA. In practice, PaLMA is a standalone Matlab code2.85

2.2. Step 1: Vessel Wall Model Fitting
A local Cartesian coordinate system L is defined for each segmentation point of the vessel

wall such that the z-axis aligns with the inward normal vector ~n. In order to optimally fit the
surface model, we assume that vertices and faces describing the vessel wall are available from a
segmentation step performed at an early stage. The normal vector ~n is computed from the faces90

close to the POI.
A parametric surface must be chosen as a local model of the vessel wall. The family of

paraboloids (i.e., of quadric surfaces) is a common choice to describe surfaces in a local way
in the field of computer graphics [23, 24, 25]. Some examples of paraboloid surface models can
be found in the context of cardiovascular medical imaging [26, 27]. In 4D Flow MRI, we con-
ducted some tests to fit the vessel wall using quadric surfaces. We observed that the results were
not always satisfying, because the vessel shape is sometimes too complex to be locally described

2PaLMA is freely available on request from the authors for research purposes.
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as a paraboloid. Here, we propose to rely on the broader family of centered cubic surfaces, corre-
sponding to the following model in the local coordinate system L:

z = S(x, y;θ) = ax+ by + cxy + dx2 + ey2 + fyx2 + gxy2 + hx3 + iy3 (1)

where θ = [a, b, c, d, e, f, g, h, i]t is a parameter vector corresponding to nine degrees of freedom
(t denotes matrix transposition). In comparison, paraboloid surfaces would be obtained as a five
dimension family by cancelling the four last parameters. Let us remark that S(0, 0;θ) = 0, so that
the POI belongs to S.95

The local surface parameters are obtained in two steps:

• For each POI, we define a local ROI corresponding to a ball centered at the POI and of a
given radius R. In practice, we found that tuning R to three times the grid resolution is a
reasonable choice.

• We then consider the nR vertices that belong to the ROI, and we estimate θ by linear least100

squares (LS). More details can be found in Appendix A.

Such a procedure can be repeated for different points of interest on the vessel wall. Typically, we
successively consider the Ns available segmentation points to generate Ns local surface models.

2.3. Step 2: Velocity Model Fitting
In a second step, a local model of the velocity field is fitted to to the 4D Flow MRI data points

of the ROI. We rely on a trivariate polynomial model for each component of the velocity field.
Let ~p = (x, y, z) in the local system L. For any ~p located in the ROI, we propose a velocity field
model that reads

~v(~p;γ) = B+(~p)×

 P (x, y, B(~p);γx)
P (x, y, B(~p);γy)
P (x, y, B(~p);γz)

 , (2)

where105

• B(~p) = z − S(x, y; θ̂) is the algebraic distance of ~p from the wall model (1), and B+(~p) =
max {B(~p), 0} is the positive part of B(~p);

• P (~p;γ) is a trivariate quadratic polynomial, i.e.,

P (~p;η) =
∑
i,j,k

i+j+k≤2

ηijkx
ijjzk, (3)

η being a column vector gathering the set of NP = 10 parameters {ηijk, i+ j + k ≤ 2}.

Let us stress that such a model of velocity cancels uniformly along (and outside) the model of the
vessel wall, i.e., the no-slip condition is locally fulfilled everywhere on the vessel wall. Moreover,110

we introduce the algebraic distance B(~p) as the third component of the quadratic polynomials P
in (2) in order to favor blood flows progressing along the modelled wall surface.

5



In order to fit the velocity model (2), we adjust 3NP = 30 free scalar parameters corresponding
to γ = (γt

x,γ
t
y,γ

t
z)

t, given NR measured velocities located within the ROI. Let ~ui refers to the
i-th measured velocity, at position ~pi, both ~ui and ~pi being expressed in the local system L. We
propose to estimate γ using a weighted linear least-squares approach:

γ̂ = arg min
γ∈R3NP

NR∑
i=1

wi‖~ui − (h ? ~v)(~pi;γ)‖2
2, (4)

where ‖·‖ denotes the Euclidian norm, and wi is a nonnegative function allowing to put more
weight on data points that are closer to the vessel wall. Following [25], we definewi asw(B(~pi),M(~pi)),
with M(~pi) the transversal magnetization at position ~pi, and

w(t,m) =

{
m(1− (t/R)2)4 if t < R,

0 otherwise.

On the other hand, h ? · corresponds to the spatial convolution with a point spread function (PSF)
h, which stands for the limited resolution of the MRI scanner. This stage of the model relates the
4D Flow MRI measurements to the underlying velocity field. In a more specific way, it allows us115

to take account of the partial volume effect near the vessel wall.
Appendix B provides additional details about the practical computation of γ̂.

2.4. Step 3: WSS Quantification
At any given point ~pδΩ of the wall surface δΩ (and at a given instant), let us first define the

viscous stress vector as ~τv = ¯̄τv · ~n, where ¯̄τv is the second-order viscous stress tensor and ~n is
the inward unit vector normal to the wall surface δΩ. The WSS ~τ is the component of the viscous
stress vector that is tangent to δΩ, i.e.,

~τ = ~τv − (~τv · ~n)~n (5)

(let us mention that the normal component of the viscous stress ~τv ·~n is most often negligible with
respect to the shear stress component). Considering blood as Newtonian, i.e., as an incompressible
fluid, the viscous stress tensor reads ¯̄τv = 2µ ¯̄D, with µ the dynamic viscosity of blood and ¯̇̄ε the
strain-rate tensor, which is function of spatial derivatives of the velocity vector ~v at the considered
point. As a consequence,

~τv = 2µ ¯̄D · ~n = µ
(

¯̄∇~v + ( ¯̄∇~v)t
)
· ~n = µ

 2∂vx
∂x

∂vx
∂y

+ ∂vy
∂x

∂vx
∂z

+ ∂vz
∂x

∂vy
∂x

+ ∂vx
∂y

2∂vy
∂y

∂vy
∂z

+ ∂vz
∂y

∂vz
∂x

+ ∂vx
∂z

∂vz
∂y

+ ∂vy
∂z

2∂vz
∂z

 · ~n (6)

where the velocity vector is decomposed as ~v = (vx, vy, vz)
t in a Cartesian frame.

According to (5)-(6), the WSS vector for each of the Ns segmentation points of the vessel120

wall can be deduced from the analytical derivatives of ~v(~p; γ̂) (and at each time of interest of the
cardiac cycle).

At this stage, each WSS vector is expressed in its own local coordinate system L. It must be
converted to the common coordinate system for further processing.
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2.5. Step 4: Robust Post-processing125

Steps 1 to 3 allow us to estimate the WSS vector at a given POI, but also at every point in its
close neighborhood (see Figure 1(c)). Thus, if we repeat these steps for several neighboring POI,
we get different WSS values at the same point of the vessel wall, by considering intersecting ROIs
(see Figure 1(d)). We can take profit from such redundant values to improve the WSS estimation
quality, in particular in terms of robustness with respect to modeling errors in the case of complex
blood flows. Let us define a robust WSS estimator ~τm deduced from the evaluations ~τj at nR
closest neighbors:

~τm = arg min
~τ∈R3

nR∑
j=1

Φ(‖~τ − ~τj‖) (7)

where Φ is the Huber norm [28] applied to the velocity norm:

Φ(x) =

{
ε (|x| − ε/2) if x > ε

x2/2 otherwise

with ε set to 10−3. The computation of (7) is performed using the method of Iterative Reweighted
Least-Squares (IRLS) [28].

3. Simulation Based Validation

The proposed WSS estimation method PaLMA has been thoroughly validated using simula-
tions of 4D Flow MRI data. In Subsection 3.1, we first describe the two types of simulated blood130

flows that we have used as a ground truth. Then, we explain our method to generate MRI pseudo-
data in Subsection 3.2. Finally, we define performance indices to measure the estimation error in
a statistically valid way (Subsection 3.3).

3.1. Fluid Simulation
Two types of synthetic data are considered: analytic fluid simulation on simple geometry and135

CFD simulation on complex geometries.

3.1.1. Womersley Simulation
Womersley et al. [29] introduced an analytical model that deals with incompressible and vis-

cous fluids and a pulsatile laminar flow, within a straight cylindrical tube. Womersley flow pro-
vides a unidirectional velocity-vector field aligned with the tube axis, which is valid for the whole140

tube at a given time.
Several existing works on WSS quantification such as [5, 13] validated their contribution on

Womersley flow. Here, we also propose to check PaLMA results on it, as a preliminary test.
We used the blood flow depicted in [30, Fig. 11] as a realistic input. The flow is laminar with a
dynamic viscosity of 0.025 Pa.s, a Reynolds number of 700 and a Womersley number of 5.16. The145

tube diameter is fixed to 2 cm to simulate a non-pathological artery case. The RR time interval is
set to one second. The number of components used to approximate Womersley analytical solution
is set to ten times the number of cardiac phases, i.e., 300 components for 30 cardiac phases. The
angle between the tube axis and the grid is 23◦. The resulting pulsative velocity is represented in
Figure 2.150
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Figure 2: Axial velocity as a function of the radial position for fifteen equally spaced times of the cardiac cycle, i.e.,
one out of two simulated phases.

3.1.2. CFD Simulation
In order to assess PaLMA performance on complex flows, we used patient-specific CFD sim-

ulations generated by Monica Sigovan and Loı̈c Boussel at CREATIS3 (Lyon, France). They were
computed on ANSYS Fluent with an unsteady laminar solver and considering an imposed flow
rate on the inlet and a pressure drop on the outlet. The dynamic viscosity is set to 0.0035 Pa.s,155

leading to a Reynolds number between 110 and 480 for the four carotids. Each simulation pro-
vides the fluid velocity over a tetrahedral mesh along with the numerical evaluation of the WSS on
each vessel wall point. The fluid velocity and WSS are considered as ground truth. Furthermore,
the vessel wall points are assumed to be the true segmentation.

As depicted in Figure 3, we considered four carotids with different levels of stenosis. In160

Figure 3, each stenosis and the local area surrouding it are enclosed in a red box. None of Carotids
#1 and #2 present backflow patterns, although Carotid #2 has a more severe stenosis. Carotids #3
and #4 velocity patterns correspond to the most complex ones. More specifically, Carotid #4
presents a significant backflow associated with a stenosis output jet.

3.2. Synthetic MRI Simulation165

The analytical and numerical flows, described in Section 3.1, have been used to create in silico
4D Flow MRI datasets. To simulate the conditions of 4D Flow MRI acquisition, one can work in
the k-space [17] by filtering the transversal magnetization [31, 32]. It is also possible to directly
filter the velocity map, either by a Gaussian PSF [12, 3], or by mean filtering [20, 33]. Here,
we adopt the mean filtering strategy. Specifically, each voxel is divided into Nsv = 6 × 6 × 6170

sub-voxels, and the discretized PSF is constant over the Nsv subvoxels, so the simulated noiseless
velocity is the average value among them.

The simulation on Womersley flow is performed over a 4D grid with a spatial resolution of
2.5 mm ISO and a time resolution of 34 ms. The simulated 4D grid size is 32×32×32×30. The
spatial resolution on carotids is set to 1 mm ISO to simulate clinical protocols, in conformity175

3https://www.creatis.insa-lyon.fr/site7/en
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Figure 3: WSS magnitude obtained by CFD simulation over four carotid geometries at systolic time. The red boxes
define local areas of interest from the clinical viewpoint.

with [14, Tab. 1]. On the other hand, Potters et al. [17] suggested to work at a resolution of
0.7 mm ISO to get a better WSS quantification. Consequently, we simulated both resolutions on
each carotid. Each carotid are simulated with sixteen cardiac phases, uniformly distributed, with
a temporal resolution between 53.5 and 62.5 ms.

Finally, we consider an additive centered Gaussian noise such that the standard deviation σv is180

equal to
√

2
π

Venc/SNR [34]. The velocity encoding is set to 120 % of the maximum velocity value.

3.3. WSS Performance Indicators
Three performance indicators have been evaluated in a systematic way. The first two directly

evaluate the mismatch between the estimated WSS and the true one. Let us define the WSS Signal-
to-Error Ratio (SER):

SER(dB) = 10× log10


N∑
j=1

‖~τ ∗j ‖2

N∑
j=1

‖~τj − ~τ ∗j ‖2

 (8)

where ~τ ∗j is the true WSS vector, the SER being possibly averaged in space and/or time from N
samples. Whereas such a performance index accounts for the fact that the WSS is a space vector,
many studies [1, 35] focused their analysis on the magnitude of the WSS at the systolic peak. As
a consequence, let us also define another SER index, restricted to the WSS magnitude:

SERm(dB) = 10× log10


N∑
j=1

‖~τ ∗j ‖2

N∑
j=1

(
‖~τj‖ − ‖~τ ∗j ‖2

)
 (9)
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Let us remark that SER is intrinsically smaller than SERm, because SER also gives account of
orientation errors.

Finally, we have also quantified the Pearson’s correlation value r between the magnitude of
the estimated WSS and the true one:

r =

(
N∑
j=1

νjν
∗
j

)(
N∑
j=1

ν2
j

N∑
j=1

(
ν∗j
)2

)−1/2

where νj and ν∗j are statistically centered WSS magnitudes:

νj = ‖~τj‖ −
1

N

N∑
j=1

‖~τj‖, ν∗j = ‖~τ ∗j ‖ −
1

N

N∑
j=1

‖~τ ∗j ‖.

Whereas SERm directly measures the amount of error between ‖~τj‖ and the reference ‖~τ ∗j ‖, the185

correlation coefficient r is neither sensitive to the bias nor to a possibly wrong scale of the esti-
mated WSS. In this sense, r can be viewed as a more qualitative performance index compared to
SERm, which is truly quantitative.

4. Results

In this section, we evaluate the performance of WSS estimation using PaLMA, and we com-190

pare them to that of the Smoothing B-spline (SBS) method proposed by [17]. The latter being a
widespread WSS evaluation technique (e.g., [20, 21, 35]), entering the same local design category
as PaLMA, we have found meaningful to take SBS as a reference method.

4.1. Quantification Analysis
4.1.1. Womersley Flow195

Here, a fixed amount of noise is applied directly to the filtered velocity field, with an SNR
of 20 dB corresponding to a noise standard deviation σ of 4.5 % of the Venc. According to [15,
Fig. 5], such a regime can be considered as the worst case encountered in 4D Flow MRI at 1.5
Tesla, at the clinical routine resolution and without contrast enhancement.

Figure 4 presents the time course of the spatial mean of the z-component of the WSS. The dis-200

played confidence intervals at 95 % are deduced from the fact that the true WSS value is constant
over the 1504 considered vertices.

Figure 4 allows us to compare PaLMA to SBS, the former being also tested without accounting
for the presence of the MRI filter effect. The difference between the two versions of PaLMA is
noticeable, which shows the favorable impact of accounting for a more precise data model. In the205

rest of the paper, the presence of the MRI filter is always taken into account for PaLMA.
Figure 4 clearly shows that the output of PaLMA is significantly closer to the true WSS value

than that of SBS, at nearly all phases of the cardiac cycle. In particular, SBS strongly underesti-
mates the WSS level at all instants outside the diastole phase, where the WSS level is very low.
There is also a tendency to underestimate the WSS value for PaLMA, but at a considerably reduced210

level. In particular, the range of the difference between the output of PaLMA and the true WSS
10



Figure 4: WSS z-component over time. For both PaLMA and SBS estimation, a 95 % confidence interval is also
represented.

values is comparable to the size of the confidence interval at 95 %, which is far from being fulfilled
by SBS. The diastole phase is the only time period where SBS can be considered as slightly better
than PaLMA, because the variance of the latter is about 125 % of that of SBS.

In terms of performance indices, we obtain respectively SER and SERm values of 10.5 and215

12.1 dB for PaLMA, while SBS reaches 5.8 and 6.2 dB. The correlation index r is 96.7 and 85.1 %
for PaLMA and SBS, respectively. The ratio between the latter two values is somewhat reduced by
the fact that the correlation index does not account for the fact that SBS strongly underestimates
the WSS. Nonetheless, the output of PaLMA reaches a very high correlation level, which allows
us to conclude that this first validation test is undoubtedly favorable to PaLMA.220

4.1.2. Carotid Flows
We now assess the performance of PaLMA and SBS on more realistic blood flows and vessel

geometries. The performance indices can be evaluated over either the complete carotids (global
area), or on local areas of higher interest, i.e., regions in red boxes in Figure 3.

Figure 5 presents Bland-Altman plots generated from noiseless datasets. The agreement be-225

tween estimated WSS magnitude and true value is analyzed for PaLMA and SBS separately. More-
over, we have found that the readability was better after log-transformation.

The systematic tendency to underestimate the WSS is confirmed for both methods, the bias
being significantly stronger for SBS. In all cases, the points clouds obtained for PaLMA are more
elongated and flattened, whereas those obtained for SBS have a negative slope of larger magnitude.230

Table 2 gathers all performance indices on noisy datasets with an SNR of 20 dB, computed
either globally or locally, and either at all cardiac phases (∀t), or at systolic times ts only. PaLMA
significantly improves all the indices. In terms of SER and of SERm, the gain is respectively of 1.4
to 3.8 dB and 1.9 to 5.8 dB for global and local estimation, respectively. Besides, let us note that
the correlation levels obtained for SBS within our simulations confirm the range reported in [21],235

while PaLMA systematically improves this performance index from 0.2 to 21.7 %.
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Figure 5: Bland-Altman diagrams of WSS estimation using PaLMA and SBS after logarithmic transformation for
each carotid. Global areas are considered, at all phases of the cardiac cycle. The color of the points indicates the local
density of the cloud, with a scale given by the colorbar on the right. The regression line is shown in black. The mean
and the 95 % confidence interval are respectively depicted by the solid and dashed horizontal red lines.

Carotid # 1 2 3 4
Area global local global local global local global local
Time ∀t ts ∀t ts ∀t ts ∀t ts ∀t ts ∀t ts ∀t ts ∀t ts

Method PaLMA
SER [dB] 5.8 5.8 5.9 5.6 2.8 2.9 2.8 2.5 5.5 5.7 3.4 3.4 3.7 4.2 4.2 4.1

SERm [dB] 7.8 7.7 8.4 8 3.4 3.3 3.2 2.9 6.5 6.7 4.1 4.1 4.9 5 4.6 4.4
r [%] 86.4 82.6 89.8 73.6 79.3 82 83.5 81.7 78.9 69.9 77.6 72.1 78 76.8 80.4 76.8

Method SBS
SER [dB] 2.5 2.3 2.1 1.8 0.9 0.9 0.8 0.7 3.2 3.1 2 1.9 1.8 1.6 1.6 1.4

SERm [dB] 3 2.6 2.6 2.2 1.1 1 0.9 0.8 3.7 3.6 2.2 2.2 2 1.8 1.7 1.5
r [%] 79.7 75 84.5 64.2 57.6 67.1 70.1 68 73.1 61.3 71.6 65.9 71.9 72.1 78.4 76.6

Table 2: Performance indices SER, SERm, and r for PaLMA and SBS [17] applied to the four carotid simulations
with a SNR of 20 dB. The considered area is either global, i.e., the whole carotid wall, or it is otherwise limited to
local areas of interest (cf. Figure 3) for all cardiac phases (∀t) or at systolic times ts only. The presented results are
averaged over 20 noise realizations.

For both methods, the performance indices depend on several parameters such as the maximum
WSS level, and the complexity of the vessel wall geometry and of the fluid pattern. Carotid #1
corresponds to the most favorable case, the fluid pattern being the simplest. Carotid #2 induces
more complex datasets, because it displays a severe stenosis that generates higher WSS levels.240

Moreover, let us stress that high-velocity jets call for larger Venc values, which deteriorates the
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Figure 6: Performance of PaLMA and SBS in terms of SER as a function of the SNR for the four carotids. Typical
SNR intervals obtained in 4D Flow are reported depending on the magnetic field strength [15]. The presented results
are averaged over 20 noise realizations.

SNR in areas and at cardiac phases of lower velocity.
Finally, we can observe that the quantification error is the largest in the internal and external

carotid arteries, where the diameter is reduced to four to five voxels only (against nine to ten voxels
in the common carotid artery). This observation matches an observation from [17], that at least245

eight voxels are necessary to obtain a 5 % accuracy. Furthermore, observations on vessel wall
points with complex flows in their vicinity lead us to conclude that a significant part of the error is
due to the coarse resolution of the data. In particular, some back-flow effects are likely to appear
at scales that are too small to be detectable from the MRI data at a resolution of 1 mm ISO.

4.2. Sensitivity to SNR and Resolution250

Here, we test the WSS estimation methods in different situations in terms of SNR and of spatial
resolution of the 4D Flow MRI data.

In thoracic 4D Flow MRI, the SNR varies between 20 and 36 dB [15], depending on the mag-
netic field strength, the resolution for a specific Field Of View (FOV), the acceleration factor in
parallel imaging and the contrast agent usage. In this work, we assume that the SNR range is255

similar for intracranial acquisitions. We have considered a wide range of SNR values from 10 to
40 dB to evaluate the robustness of both PaLMA and SBS methods. Several contributions rather
evaluate the amount of noise in terms of standard deviation relative to the Venc [17, 2, 3]. Typi-
cally, 5 to 10 % of the Venc are considered. For sake of comparison, SNR levels of 10, 20, and
40 dB correspond to 14.2, 4.5, and 0.45 % of the Venc.260

We have also tested the difference in terms of WSS estimation between a spatial resolution
of 1 mm ISO, which corresponds to clinical standards in 4D Flow MRI [14], and an improved
resolution of 0.7 mm ISO, as suggested in [17].
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Figure 6 displays the SER as a function of the SNR for each carotid and considering both
resolutions. The SER value is averaged over all the vessel wall points and at all cardiac phases.265

For each graph, typical SNR intervals are indicated, corresponding to different magnetic field
strengths for both contrast modalities (with and without contrast enhancement) [15].

At the resolution of 1 mm, PaLMA presents a gain of 1.6 to 3.2 dB compared to SBS, which is
almost constant within SNR intervals typical of 4D Flow MRI. We can draw the same conclusion
for the higher resolution of 0.7 mm ISO, with the important observation that the gain is signifi-270

cantly larger, from 2 to 2.9 dB. Moreover, the improvement is higher for Carotid #2, which is the
most severe case of stenosis. It is only at very low SNR values (less than 14 dB, i.e., a standard
deviation of more than 9 % of the Venc) that SBS performs better than PaLMA. We make the
assumption that the performance of SBS benefits from its relatively simpler and more strongly
regularized structure compared to PaLMA, in such situations. As mentioned earlier, regularized275

methods are subject to the risk of oversmoothing the WSS. These graphs illustrate that the level of
regularization of PaLMA represents an appropriate tradeoff for 4D Flow MRI applications.

Pearson correlation evolves similarly to the SER. It reaches a plateau for an SNR around 25 dB.
Table 3 gathers Pearson’s correlation intervals, obtained by averaging the performance over all
vessel wall points and all cardiac phases, for SNR values from 20 to 36 dB. Once again, one280

can observe a significant improvement due to a finer resolution of 0.7 mm ISO. Moreover, the
performance of PaLMA is uniformly better than that of SBS.

Method PaLMA SBS
Resolution (mm ISO) 0.7 1 0.7 1

#1 90-91.9 86.5-87.8 83-86.5 78.4-82.9
#2 84.5-89.3 77-83.3 69.5-82.3 52.5-72.9
#3 83.5-86.6 78-81.2 74.5-79.1 71-75.6
#4 84.5-88.8 76.7-82.2 74.5-81.4 69-77.9

Table 3: Pearson correlation r [%] for a SNR range of 20 to 36 dB and for the four Carotids #1 to #4.

Let us mention that we have performed additional performance comparisons focused at local
areas (cf. Figure 3), or at systolic time. At average SNR values of at least 20 dB, we obtain the
same general conclusions as the previous ones, based on global averaging. Moreover, for lower285

SNR between 10 to 20 dB, we observe that PaLMA remains superior to SBS, because the velocity-
to-noise ratio is more favorable in the stenosis area and at systolic time.

Finally, unless more efficient MRI sequences become available, MRI data acquisition at a finer
resolution generally comes with a loss in terms of SNR level. Based on the SNR model of [36],
an SNR loss of 14 dB is a price to pay for choosing a finer resolution of 0.7 mm ISO instead of290

the clinical routine resolution of 1.0 mm ISO. At sufficiently high SNR levels (typically, for SNR
levels of 24 dB at least), we conclude that data acquisition at 0.7 mm ISO could be a better choice
to evaluate the WSS at systolic time, for instance. Let us notice that a clinical SNR of 24 dB is
reachable on a 1.5T MRI thanks to contrast enhancement, or with 3T MRI acquisitions [15].
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5. Conclusion and Discussion295

We have proposed a new method of WSS quantification from 4D Flow MRI data, called Para-
metric Local Morphology Algorithm (PaLMA). It relies on a parametric description of the vessel
wall and of the blood velocity field in the vicinity of each point of interest. Because PaLMA is
based on spatial models at the local scale, it bypasses any complex 3D processing step, such as
volumic mesh generation [2], or 3D interpolation [20].300

Extensive validations have been performed on simulated datasets. We have exploited blood
flows simulated by CFD from segmented carotids as realistic case of blood velocities. We have
also considered realistic parameter values in the context of cardiovascular medical imaging, re-
garding the spatial resolution of MRI data, the partial volume effect, and the signal to noise ratio.
More specifically, we have considered noise levels that incorporate background phase corrections,305

according to [15]. As a perspective, the effect of additional artefacts could be tested also, such as
eddy-current and Maxwell terms effects, magnetic field inhomogeneity, imperfect segmentations
of the vessel wall, and Venc aliasing. This could be the topic of a future in-vitro or in-vivo study.

In the tested conditions, PaLMA performs significantly better than the smoothing B-spline
method proposed by Potters et al. in [17], considered here as a reference method, both in terms of310

correlation with the true WSS value, and of absolute error norm. In particular, both methods tend
to underestimate the WSS value, but PaLMA provides a strong reduction of the mismatch. We
attribute the overall improvement brought by PaLMA in terms of WSS quantification accuracy to
two elements.

On the first hand, PaLMA relies on a spatial filter model to relate the 4D MRI data to the315

underlying velocity field. This allows us to manage the partial volume effect in a satisfying manner,
the impact of the latter being significant near the vessel wall.

On the other hand, PaLMA consistently exploits the available data around the point of inter-
est using a spatial model of both the wall surface and the velocity field. In comparison, Potters
et al.’s method relies on two interpolation steps, the second one being one-dimensional, a WSS320

value being finally deduced from the interpolated velocity at only three aligned points. Potters et
al.’s procedure brings robustness at very low SNR levels, but it limits the estimation quality in re-
alistic acquisition conditions. Given the constant progress in the domain of acquisition sequences,
PaLMA thus appears as a better choice than Potters et al.’s method to fully benefit from improved
acquisition conditions.325

The fact that PaLMA relies on spatial models does not mean that it is computationally more
costly that Potters et al.’s method, since we have limited ourselves to simple polynomial models.
In practice, the computing time is equivalent for both methods. With parallel computation, it is
between 5 and 7 minutes for one carotid over the full cardiac cycle, with an eight thread CPU
system (Intel Core i7-6820HQ, 2.70 GHz) equipped with 32GB RAM.330

Several possible improvements of PaLMA can be envisaged. One could consist in exploiting
a fluid incompressibility constraint, i.e., to impose a zero divergence condition to the blood veloc-
ity model, with the hope to get a more precise or a more robust WSS value. Another possibility
would be to explore the possibilities of spatio-temporal models of blood velocity, while the present
version of PaLMA separately process the MRI data at different phases of the cardiac cycle. How-335

ever, a prerequisite to rely on a temporal model of the blood velocity field is that a precise volume

15



registration must be performed between successive frames of the cardiac cycle.
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Appendix A. Vessel Surface Fitting

For each POI, let ~p1, . . . , ~pnR
stand for the positions of the nR vertices in the local system L,

with ~pn = [xn, yn, zn]t. On the other hand, let us introduce the vector-valued function

m(x, y) =
[
x, y, xy, x2, y2, yx2, xy2, x3, y3

]t
,

so that the cubic equation (1) also reads z = m(x, y)tθ. Then, the LS criterion to be minimized
can be expressed as

nR∑
n=1

(
zn −m(xn, yn)tθ

)2
= ‖z −Mθ‖2 ,

where

z = [z1, . . . , znR
]t , M = [m(x1, y1), . . . , m(xnR

, ynR
)]t .

The LS solution is then given by θ = (M tM )−1M tz, provided thatM is an invertible matrix, a345

necessary condition being that nR is not smaller than nine.

Appendix B. Velocity Model Fitting

The spatial convolution h ? ~v is defined as

(h ? ~v)(x, y, z) =

∫∫∫
h(x′, y′, z′)~v(x− x′, y − y′, z − z′) dx′ dy′ dz′, (B.1)

In practice, we have implemented a discrete approximation of (B.1) on regular subgrids with a
finer resolution than the MRI acquisition grid, each voxel being divided into subvoxels, so that

(h ? ~v)(~pi) ≈
∑
j′,k′,`′

hj′,k′,`′~v(xj−j′ , yk−k′ , z`−`′), (B.2)

where ~pi = (xj, yk, z`) corresponds to a position of an MRI data point in the ROI, while the right-
hand-side summation is over a finer subgrid of Nsv subvoxels centered around ~pj,k,`. For each
velocity component, Eq. (B.2) can be compactly written as a scalar product, such as (h?vx)(~pi) ≈350

htvx,i for the x component, where h is the discretized PSF (stacked as a column vector), and vx,i
16



is an Nsv-length vector gathering the x components of the velocity model computed on the subgrid
around position ~pi.

In order to compute γ̂ according to (4), let us first remark that the problem decomposes into
separate LS subproblems, so that γ̂ =

(
γ̂x, γ̂y, γ̂z

)
, each component being computed separately.

For instance, γ̂x minimizes the criterion

NR∑
i=1

wi
(
ux,i − htvx,i

)2
, (B.3)

with ~ui = (ux,i, uy,i, uz,i). Equivalently, we have

γ̂x = arg min
γx∈RNP

NR∑
i=1

wi
(
ux,i − htPiγx

)2

where each row of matrix Pi encodes the linear dependance of the x component of the veloc-
ity on parameter vector γx according to (2)-(3). Finally, let ux = [ux,1, . . . , ux,NR

], W =

Diag(w1, . . . , wNR
) andQ =

[
P t

1h, . . . , P
t
NR
h
]t, so that

γ̂x = arg min
γx∈RNP

(ux −Qγx)tW (ux −Qγx) = (QWQ)−1QtWux,

with the necessary condition NR ≥ NP . In the same way, we get γ̂y = (QWQ)−1QtWuy and
γ̂z = (QWQ)−1QtWuz.355
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