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Galactic ultracompact binaries are expected to be the dominant source of gravitational waves in the milli-
Hertz frequency band. Of the tens of millions of Galactic binaries with periods shorter than an hour, it is
estimated that a few tens of thousand will be resolved by the future Laser Interferometer Space Antenna
(LISA). The unresolved remainder will be the main source of “noise” between 1 and 3 mHz. Typical
Galactic binaries are millions of years from merger, and consequently their signals will persist for the
duration of the LISA mission. Extracting tens of thousands of overlapping Galactic signals and
characterizing the unresolved component is a central challenge in LISA data analysis, and a key
contribution to arriving at a global solution that simultaneously fits for all signals in the band. Here we
present an end-to-end analysis pipeline for Galactic binaries that uses transdimensional Bayesian inference
to develop a time-evolving catalog of sources as data arrive from the LISA constellation.

DOI: 10.1103/PhysRevD.101.123021

I. INTRODUCTION

The most prolific source of gravitational waves (GWs) in
the milli-Hertz band are Galactic ultracompact binaries
(UCBs), primarily composed of two white dwarf stars.
Reference [1] describes a contemporary prediction for the
population of UCBs detectable by the Laser Interferometer
Space Antenna (LISA) [2]. GWs from UCBs are continu-
ous sources for LISA, several thousands of which will be
individually resolvable. The remaining binaries blend
together to form a confusion-limited foreground that is
expected to be the dominant “noise” contribution to the
LISA data stream at frequencies below ∼3 mHz, the extent
of which depends on the population of binaries and the
observing time of LISA [3].
Of the thousands of resolvable binaries, the best-mea-

sured systems will serve as laboratories for studying the
dynamical evolution of the binaries. Encoded within the
orbital dynamics are relativistic effects, the internal struc-
ture of white dwarf stars, and effects of mass transfer [4–9].
The observable population of UCBs will depend on
astrophysical processes undergone by binary stars that
are currently not well understood, including the formation
of the compact objects themselves, binary evolution, and
the end result for such binaries [10]. UCBs are detectable
anywhere in the galaxy because the GW signals are
unobscured by intervening material in the Galactic plane,
providing an unbiased sample to infer a large scale structure

of the Milky Way [11,12]. While LISA will dramatically
increase our understanding of UCBs in the galaxy, there is
an ever-increasing number of systems discovered by
electromagnetic (EM) observations that will be easily
detectable by LISA [13–16]. Thus UCBs are guaranteed
multimessenger sources and the joint EMþ GW observa-
tions provide physical constraints on masses, radii, and
orbital dynamics far beyond what independent EM or GW
observations can achieve alone [17,18].
The optimal detection, characterization, and removal of

UCBs from the data stream has been long recognized as a
fundamentally important and challenging aspect of the
broader LISA analysis. Overfitting the galaxy will result in
a large contamination fraction in the catalog of detected
sources, while underfitting the UCB population will
degrade the analyses of extragalactic sources in the data
due to the excess residual.
In this paper we describe a modern implementation of a

UCB analysis pipeline which is a direct descendent of the
trailblazing algorithms designed in response to the original
Mock LISA Data Challenges (MLDCs) [19,20], and
similar methods developed for astrophysical transients
and non-Gaussian detector noise currently in use for
ground-based GW observations [21,22].

II. PREVIOUS WORK

Compared to other GW sources, UCBs are simple to
model. When in the LISA band, the binary is widely
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separated and the stars’ velocities are small compared to the
speed of light c. Therefore the waveforms are well
predicted using only leading order terms for the orbital
dynamics of the binary [23] and appear as nearly mono-
chromatic (constant frequency) sources. Accurate template
waveforms are computed at low computational cost using a
fast/slow decomposition of the waveform convolved with
the instrument response [24].
The UCB population is nevertheless a challenging

source for LISA analysis due to the sheer number of
sources expected to be in the measurement band, rather
than the complication of detecting and characterizing
individual systems. Each source is well-modeled by
Oð10Þ parameters and over 104 sources are expected to
be individually resolvable by LISA, resulting in a ∼105
parameter model and thus making brute-force grid-based
methods computationally challenging. Compounding the
challenge is the fact that the GW signals, though narrow-
band, are densely packed within the LISA measurement
band to the extent that sources are overlapping. As a
consequence, a hierarchichal/iterative scheme where
bright sources are removed and the data are reanalyzed
produces biased parameter estimation and poorer detection
efficiency: Each iteration leaves behind some residual due
to imperfect subtraction, and enough iterations are
required for the residuals to build up to the point where
they limit further analysis [25]. It was determined in the
early 2000 s that stochastic sampling algorithms perform-
ing a global fit to the resolvable binaries, while simulta-
neously fitting a model for the residual confusion or
instrument noise and using Bayesian model selection to
optimize the number of detectable sources, provided an
effective approach.
The first full-scale demonstration of a Galactic binary

analysis was put forward by Crowder and Cornish [26,27]
with the blocked annealed metropolis (BAM) algorithm.
The BAM algorithm started from the full multiyear dataset
provided by the MLDCs [19]. Because the sources are
narrow-band compared to the full measurement band of the
detector, the search was conducted independently on
subregions in frequency. The analysis region in each
segment was buffered by additional frequency bins that
overlapped with neighboring segments. The noise spectrum
was artificially increased over the buffer frequencies to
suppress signal power from sources in neighboring bands
which spread into the analysis window.
The template waveforms were computed in the time

domain, Fourier transformed, and tested against the fre-
quency domain data. In accordance to the MLDC simu-
lations, the waveform model did not include the intrinsic
frequency evolution of the binaries, and the frequency-
dependent detector noise level was assumed to be known
a priori. The BAM analysis was a quasi-Bayesian
approach, using a generalized multisource F statistic
likelihood that maximized, rather than marginalized, over

four of the extrinsic parameters of each waveform. Model
parameters used flat priors except for the sky location
which was derived from an analytic model for the spatial
distribution of binaries in the galaxy, projected onto the sky
as viewed by LISA. To improve the convergence of the
algorithm, particularly for high-signal to noise ratio (SNR)
signals, the sampler used simulated annealing [28] during
the burn-in phase.
To sample from the likelihood function, BAM employed

a custom Markov chain Monte Carlo (MCMC) algorithm
with a mixture of proposal distributions including uniform
draws from the prior, jumps along eigenvectors of the
Fisher information matrix for a given source, and localized
uniform jumps over a range scaled by the estimated
parameter errors. The BAM algorithm made use of domain
knowledge by explicitly proposing jumps by the modula-
tion frequency f → f � 1=yr to explore sidebands of the
signal imparted by LISA’s orbital motion.
To determine the number of detectable sources, BAM

employed an approximate Bayesian model selection cri-
teria, where models of increasing dimension (i.e., number
of detectable sources) were hierarchically evaluated, start-
ing with a single source in each analysis segment and
progressively adding additional sources to the fit. The
different dimension models were ranked using the Laplace
approximation to the Bayesian evidence [29]. The stopping
criteria for the model exploration was met when the
approximated model evidence reached a maximum.
In response to the next generation of MLDCs, Littenberg

[30] extended the BAM algorithm in several key ways, but
maintained the original concept of analyzing independent
segments with attention paid to the segment boundaries to
avoid edge effects. The primary advancement of this
generation of the search pipeline was the use of replica
exchange between chains of different temperatures (parallel
tempering) [31] and marginalizing over the number of
sources in the data (as opposed to hierarchically stepping
through models) using a reversible jump MCMC
(RJMCMC) [32] to identify the range of plausible models.
The implementation of RJMCMC in the UCB search built
off of the innovative applications of the algorithm in the
gravitational wave context described in Refs. [33–35]. To
guard against potentially poor mixing of the RJMCMC a
dedicated fixed-dimension follow-up analysis with
Bayesian evidence computed via thermodynamic integra-
tion [36] was used for the final model selection determi-
nation. The algorithm continued using the F statistic
likelihood and simulated annealing during burn in (the
“search phase”) but switched to the full likelihood, sam-
pling over all model parameters, during the parameter
estimation and model selection phase of the analysis. The
algorithm additionally made use of the burn-in by building
proposal distributions from the biased samples derived
during the non-Markovian search phase using a naive
binning of the model parameters. The algorithm included
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a parametrized noise model, by fitting coefficients to the
expected noise power spectral density (proportional to the
variance of the noise). The waveform model included
frequency evolution and was computed directly in the
Fourier domain using the fast-slow decomposition
described in [37].
Experience gained from the noise modeling and trans-

dimensional algorithms originally applied to the LISA
Galactic binary problem permeated into analyses of
ground-based GW data from the LIGO-Virgo detectors.
For spectral estimation the BAYESLINE algorithm uses a
two-component phenomenological model to measure the
frequency-dependent variance of the detector noise [22],
while the BAYESWAVE algorithm uses a linear combination
of wavelets to fit short-duration non-Gaussian features in
the data [21]. The wavelet model in each detector is
independent when fitting noise transients and is coherent
across the network when fitting GW models. The Bayes
factor between the coherent and incoherent models is used
as a detection statistic as part of a hierarchichal search
pipeline [38]. The number of wavelets, and components to
the noise model, are all determined with an RJMCMC
algorithm. The large volume of data, number of event
candidates, and thorough measurement of search back-
grounds motivated development of global proposal distri-
butions to improve convergence times of the samplers. The
BAYESWAVE and BAYESLINE models were both inspired by
the previous work on the Galactic binary problem, with the
wavelets substituting the UCB waveforms and the
BAYESLINE model replacing the confusion noise fits.
Completing the feedback loop, lessons learned from the
development and deployment of the methods on the LIGO-
Virgo data have formed part of the foundation in this work,

particularly through global proposal distributions, numeri-
cal methods for reducing computational time of likelihood
evaluations, and infrastructure for deploying the pipeline on
distributed computing resources.

III. A NEW HOPE

The new UCB algorithm incorporates many of the
features from the earlier efforts, but improves on them in
several ways. The biggest change is the adoption of a time
evolving strategy, which reflects the reality of the data
collection. Analyzing the data as they are acquired also
eliminates dedicated algorithm tuning choices for dealing
with very loud sources. When new data are acquired, the
analysis starts on the residual after the bright sources
identified previously are removed from the data. In each
analysis segment, the removed sources are added back into
the data before the RJMCMC begins sampling. This
eliminates the problem of having power leakage between
analysis segments, and the resultant noise model manipu-
lation to suppress the model from being biased by edge
effects in each segment. The time-evolving analysis is also
naturally “annealed” as the SNR of sources builds slowly
over time.
Other significant changes include improvements to the

RJMCMC implementation with the addition of global
proposal distributions which eliminate the need for a
separate, non-Markovian, search phase or the fixed-dimen-
sion follow-up analysis for evidence calculation—the
model selection is now robustly handled by the
RJMCMC itself as originally intended.
Figure 1 shows results from analyzing simulated data

containing a single high frequency and high SNR UCB as

FIG. 1. Demonstration of the algorithm on a single, isolated, high frequency source. The top left panel shows the power spectrum
of the data (black) after 1 year of observations, the posterior distribution of the residual (light blue), and the inferred noise level
(light green). The residual and noise levels are plotted as the median with 50% and 90% credible intervals. The bottom left panel
shows the reconstructed signal waveform posterior (green) identified by the median frequency of the posterior distribution,
fmed
0 ¼ 0.0183131182 Hz. The right panel is a corner plot showing the marginalized posterior distributions of select parameters

likely of most interest to the research community, including the frequency f0, frequency derivative _f, amplitude A, and sky location
(θ, ϕ).
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an example subset of the data products produced by the
new analysis pipeline. The top left figure shows posterior
distributions for the reconstructed noise level (green) and
residual (blue) compared to the original data (black). The
bottom left panel shows the reconstructed waveform
(green). The right panel shows two dimensional margin-
alized posterior distributions for a subset of the model
parameters including. High frequency and high SNR
sources like this were challenging candidates for the
original RJMCMC algorithm in Ref. [30] and thus serve
as important test cases for the new algorithm.
For the first time in the context of our UCB work, we

have also considered how to distill the unwieldy output
from the RJMCMC to more readily useable, higher-level,
data products which is how the majority of the research
community will interact with the LISA observations.
The code described in this work is open source and

available under the GNU/GPL v2 license [39].

IV. MODEL AND IMPLEMENTATION

Bayesian inference requires the specification of a like-
lihood function and prior probability distributions for the
model components. The implementation of the analysis
employs stochastic sampling techniques, in our case the
trans-dimensional RJMCMC [32] algorithm with replica
exchange [31], to approximate the high dimensional
integrals that define the marginalized posterior distribu-
tions. As with all MCMC algorithms, the choice of
proposal distributions is critical to the performance. Here
we detail the model and the implementation, hopefully in
sufficient detail for the analysis to be repeated by others.

A. Likelihood function

The LISA science analysis can be carried out using any
complete collection of time delay interferometry (TDI)
channels [40,41]. For example, we could use the set of
Michelson-type channels I ¼ fX; Y; Zg, or any linear
combination thereof. Schematically we can write
dI ¼ hI þ nI , where hI is the response of the Ith channel
to all the gravitational wave signals in the Universe and nI
is the combination of all the noise sources impacting that
channel. Here the “noise” will include gravitational wave
signals that are individually too quiet to extract from the
data. The goal of the analysis is to reconstruct the detectable
gravitational wave signal using a signal model hI such that
the residual rI ¼ dI − hI is consistent with the noise
model. For Gaussian noise the likelihood is written as

pðdjhÞ ¼ 1

ð2π detCÞ1=2 e
−1
2
ðdIk−hIkÞC−1

ðIkÞðJmÞðdJm−hJmÞ; ð1Þ

where C is the noise correlation matrix, and the implicit
sum over indices spans the TDI channels I ¼ fX; Y; Zg and
the data samples k. If the data are stationary, then the noise

correlation matrix is partially diagonalized by moving to
the frequency domain: CðIkÞðJmÞ ¼ SIJðfkÞδkm, where
SIJðfÞ is the cross-power spectral density between channels
I, J [41]. The cross-spectral density matrix is diagonalized
by performing a linear transformation in the space of TDI
variables. If the noise levels are equal on each spacecraft,
this leads to the I0 ¼ fA; E; Tg variables [40] via the
mapping

2
64
A

E

T

3
75 ¼

2
64

2
3

− 1
3

− 1
3

0 − 1ffiffi
3

p 1ffiffi
3

p

1
3

1
3

1
3

3
75
2
64
X

Y

Z

3
75: ð2Þ

In practice, the noise levels in each spacecraft will not be
equal, and the fA; E; Tg variables will not diagonalize the
noise correlation matrix [41]. However, fA; E; Tg serve
another purpose as they diagonalize the gravitational wave
polarization response of the detector for signals with
frequencies f < f� ¼ 1=ð2πLÞ ≃ 19.1 mHz, such that
A ∼ hþ, E ∼ h×, and T ∼ h⊙. Since the breathing mode
h⊙ vanishes in general relativity, the gravitational wave
response of the T channel is highly suppressed for f < f�,
making the T channel particularly valuable for noise
characterization and the detection of stochastic back-
grounds [42,43] and unmodeled signals [44].
Full expressions for the instrument noise contributions to

the cross spectra SIJðfÞ are given in Ref. [41]. Added to
these expressions will be contributions from the “confusion
noise” from the millions of signals that are too quiet to
detect individually. The confusion noise will add to
the overall noise as well as introduce off-diagonal terms
in the frequency domain noise correlation matrix C, as
the confusion noise is inherently nonstationary with peri-
odic amplitude modulations imparted by LISA’s orbital
motion [45].
For now we have made a number of simplifying

assumptions that will be relaxed in future work: We ignore
the nonstationarity of the noise and assume that the noise
correlation matrix is diagonal in the frequency domain; In
addition, since we are mostly interested in signals
with frequencies well below the transfer frequency
f� ≃ 19.1 mHz, we only use the A and E data combinations
in the analysis, and we assume that the noise in these
channels is uncorrelated; Rather than working with a
component level model for the noise, as was done in
Ref. [41], we break the analysis up into narrow frequency
bands ½fi; fi þ Δf� and approximate the noise in each band
as an undetermined constant Si. The noise level in each
band becomes a parameter to be explored by the RJMCMC
algorithm, resulting in a piecewise fit to the instrument
noise over the full analysis band.
The signal model hðΛÞ is the superposition of each

individual UCB in the model parametrized by λ:
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hIðΛÞ ¼
XNGW

a¼0

hIðλaÞ; ð3Þ

where hIðλaÞ denotes the detector response of the Ith data
channel to the signal from a Galactic binary with param-
eters λa. Note that the number of detectable systems, NGW,
is a priori unknown and has to be determined from the
analysis. Indeed, we will arrive at a probability distribution
for NGW, which implies that there will be no single
definitive source catalog. The individual binary systems
are modeled as isolated point masses on slowly evolving
quasicircular orbits neglecting the possibility of orbital
eccentricity [46], tides [47], or third bodies [48]. The
signals are modeled using leading order post-Newtonian
waveforms. The instrument response includes finite arm-
length effects of the LISA constellation and arbitrary
spacecraft orbits, but the TDI prescription currently imple-
mented makes the simplifying assumption that the arm
lengths are equal and unchanging with time. Adopting
more realistic instrument response functions increases the
computational cost but does not change the complexity of
the analysis.
To compute the waveforms, a fast/slow decomposition is

employed that allows the waveforms to be modeled
efficiently in the frequency domain [24]. The basic idea
is to use trigonometric identities to rewrite the detector
response to the signal in the form hðtÞ ¼ aðtÞ cosð2πfktÞ
where fk ¼ nk=Tobs, nk ¼ int½f0Tobs�, and f0 is the gravi-
tational wave frequency of the signal (twice the orbital
frequency) at some fiducial reference time. The Fourier
transform of hðtÞ is then h̃ðfÞ ¼ 1

2
ðãðf − fkÞþ

ãðf þ fkÞÞ. Since aðtÞ, which includes the orbital evolution
and time-varying detector response, varies much more
slowly than the carrier signal h̃ðfÞ ¼ 1

2
ãðf − fkÞ, the

Fourier transform of aðtÞ is computed numerically using
a lower sample cadence than needed to cover the carrier. A
sample cadence of days is usually sufficient. Note that in
the original implementation [24] the signal was written as
hðtÞ ¼ aðtÞ cosð2πf0tÞ, which was less efficient as it
required the convolution h̃ � ã. By mapping the carrier
frequency to a multiple of the inverse observation time the
Fourier transform of the carrier becomes a pair of delta
functions and the convolution becomes the sum of just two
terms, one of which effectively vanishes.
Each binary is parametrized by NP parameters. NP is

typically eight, with λ → ðA; f0; _f;φ0; ι;ψ ; θ;ϕÞ, where A
is the amplitude, f0 is the initial frequency, _f is the constant
time derivative of the GW frequency, φ0 is the initial phase,
ι is the inclination of the orbit, ψ is the polarization angle,
and θ, ϕ are the sky location in an ecliptic coordinate
system. If the evolution of the binary were purely driven by
gravitational wave emission, we could replace the param-
eters fA; _fg by the chirp mass M and luminosity distance
DL via the mapping

_f ¼ 96

5
π8=3M5=3f11=30 ;

A ¼ 2M5=3π2=3f2=30

DL
: ð4Þ

We prefer the fA; _fg parametrization as it is flexible
enough to fit systems with non-GW contributions to the
orbital dynamics, e.g., mass transferring systems, and it is
better suited to modeling systems where _f is poorly
constrained (it is better to have just one parameter filling
its prior range than two). For binaries with unambiguously
positive _f, and assuming GW-dominated evolution of the
orbit, we resample the posteriors to M and dL in post-
processing [8].
We also have optional settings to increase NP by

including the second derivative of the frequency [8] in
which case the frequency derivative is no longer constant,
so the parameter _f → _f0 is fixed at the same fiducial time
as f0 and φ0. Additional, optional changes to the source
parametrization includes holding an arbitrary number of
parameters fixed at input values determined, for example,
by EM observations [18], or to include parameters which
use the UCBs as phase/amplitude standards for self-
calibration of the data [49].

B. Prior distributions

The model parameters are given by the Nn noise levels
for each frequency band Si and the collection of NGW × NP
signal parameters Λ. The number of noise parameters Nn is
fixed by our choice of bandwidth Δf and the frequency
range we wish to cover in the analysis. In the current
configuration of the pipeline we use analysis windows
with Δf ∼OðμHzÞ in width resulting in Nn ¼ Oð104Þ
noise parameters to cover the full measurement band
of the mission. We use a uniform prior range SI ∈
½10−1SIðfiÞ; 102SIðfiÞ� where SIðfiÞ is the theoretical
value for the noise level of data channel I used to generate
the data. In practice the prior ranges on the noise will be set
using information from the commissioning phase of the
mission.
The total number of detectable signals NGW per

frequency band are unknown. We use a uniform prior
covering the range NGW ∈ U½0; Nmax� where Nmax ¼ 30 is
the default setting but easily adjustable by the user. For the
individual source parameters we used uniform priors on the
initial phase φ0 ∈ ½0; 2π� and polarization angle ψ ∈ ½0; π�,
and a uniform prior on the cosine of the inclination
cos ι ∈ ½−1; 1�. In each analysis window the initial fre-
quency f0 was taken to have a uniform prior covering the
range ½fi; fi þ Δf�.
The allowed range of the frequency derivative is

informed by population synthesis models which provide
information on the mass and frequency distribution of
Galactic binaries [50]. While the expression for the
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frequency derivative is only valid for isolated point masses,
the balancing of accretion torques and gravitational wave
emission in mass-transferring AM CVn type systems is
thought to lead to a similar magnitude for the frequency
derivative, but with the sign reversed [7]. Using these
considerations as input, we adopt a uniform prior
on _f in each frequency band that covers the range
_f ¼ ½−5 × 10−6f13=3i ; 8 × 108f11=3i �.
For RJMCMC algorithms with scale parameters—in our

case the amplitude—the choice of prior influences both the
recovery of those parameters as well as on the model
posterior. For example, a simple uniform prior between
U½0;Amax� will support including low-amplitude sources in
the model. Adding a source to the model with SNR ∼ 0will
not degrade the likelihood, and the remaining model
parameters will sample their prior such that the so-called
“Occam penalty” from including extra (constrained)
parameters is small. The need to derive an amplitude prior
that results in model posteriors as we intuitively expect—
namely that templates are included in the model predomi-
nantly when there is a detectable source for them to fit—
and does not bias the recovery of the amplitude parameter
was addressed in the BAYESWAVE algorithm [21]. There the
prior on the amplitudes had to be considered to suppress
large numbers of low-amplitude wavelets saturating the
model prior. The solution was to evaluate the prior not on
the amplitudes themselves, but on the SNR of the wavelet.
The prior was tuned to go to 0 at low SNR, peak in the
regime where most wavelets were expected to appear in the
model (near the “detection” threshold), and taper off at high
SNR. We adopt that approach for the UCB model as
follows.
Up to geometrical factors of order unity, the SNR of a

Galactic binary ρ is related to the amplitude via the linear
mapping

ρ ¼ A
2

�
Tobs sin2ðf0=f�Þ

SAðf0Þ
�

1=2

: ð5Þ

The prior on the amplitude is then mapped from a prior on ρ
of the form

pðρÞ ¼ 3ρ

4ρ2�ð1þ ρ=ð4ρ�ÞÞ5
; ð6Þ

which peaks at ρ ¼ ρ� and falls off as ρ−4 for large ρ.
Because most detections will be close to the detection
threshold, we set ρ� ¼ 10. For bright sources the like-
lihood, which scales as eρ

2

, overwhelms the prior, and there
is little influence in the recovered amplitudes from our
choice of prior.
For the sky location the pipeline has support for two

options: The model can use either a uniform prior on the
sky or a prior weighted toward the sources being distributed
in the galaxy according to an analytic model for its overall

shape. As currently implemented we use a simple bulge-
plus-disk model for the stellar distribution of the form

ϱ ¼ ϱ0

�
αe−r

2=R2
b þ ð1 − αÞe−u=Rdsech2

�
z
Zd

��
: ð7Þ

Here r2 ¼ x2 þ y2 þ z2 and u2 ¼ x2 þ y2, and x, y, z are a
set of Cartesian coordinates with the origin at the center of
the galaxy and the z axis orthogonal to the Galactic plane.
The parameters are the overall density scaling ϱ0, bulge
fraction α, bulge radius Rb, disk radius Rd, and disk scale
height Zd. Ideally we would make these quantities hyper-
parameters in a hierarchical Bayesian scheme [11], but for
now we have fixed them to the fiducial values α ¼ 0.25,
Rb ¼ 0.8 kpc, Rd ¼ 2.5 kpc, and Zb ¼ 0.4 kpc and ϱ0
determined by numerically normalizing the distribution.
LISA views the galaxy from a location that is offset from
the Galactic center by an amount RG in the x-direction, and
uses ecliptic coordinates to define the sky locations. This
necessitates that we apply a translation and rotation to the
original Galactic coordinates. We then compute the density
ϱðθ;ϕÞ in the new coordinate system and normalize the
density on the sky to unity for use as a prior. In order to
ensure full sky coverage we rescale the normalized density
by a factor of (1 − β) and add to it a uniform sky
distribution that has total probability β. Figure 2 shows
the sky prior for the choice β ¼ 0.1.

C. Transdimensional MCMC

Transdimension modeling is a powerful technique that
simultaneously explores the range of plausible models for
the data as well as the parameters of each candidate model.
The transdimensional approach is particularly valuable in
situations where it is unclear how many components should
be included in the model and there is a danger of either
over- or underfitting the data. Transdimensional modeling
allows us to explore a wide class of models in keeping with
our motto “model everything and let the data sort it out”
[21]. While fixed dimension (signal model) sampling
techniques have thus far proven sufficient for LIGO-

FIG. 2. The sky prior plotted in ecliptic coordinates. The color
scale is logarithmic prior density lnpðθ;ϕÞ.
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Virgo analyses of isolated events, we see no alternative to
using transdimensional algorithms for the multisource
fitting required for LISA data analysis.
Transdimensional MCMC algorithms are really no

different from ordinary MCMC algorithms. They simply
operate on an extended parameter space that is written in
terms of a model indicator parameter k and the associated
parameter vector θ⃗k. It is worth noting that the number of
models can be vast. For example, suppose we were
addressing the full LISA data analysis problem using a
model that included up to NUCB ∼ 105 Galactic binaries,
NBH ∼ 103 supermassive black holes,NEMRI ∼ 103 extreme
mass ratio inspirals, and Nn ∼ 103 parameters in the noise
model. Since the number of parameters for each model
component is not fixed, the total number of possible models
is the product, not the sum, of the number of possible
subcomponents, resulting in ∼1014 possible models in this
instance. The advantage of the RJMCMC method is that it
is not necessary to enumerate or sample from all possible
models but, rather, to have the possibility of visiting the
complete range of models. This is in contrast to the product
space approach [51], which requires that all models be
enumerated and explored while most of the computing
effort is spent exploring models that have little or no
support. Just as an ordinary MCMC spends the majority of
its time exploring the regions of parameter space with high
posterior density, the RJMCMC algorithm spends most of
the time exploring the most favorable models.
Our goal is to compute the joint posterior of model k and

parameters θk,

pðk; θkjdÞ ¼
pðdjk; θkÞpðk; θkÞ

pðdÞ ; ð8Þ

which is factored as

pðk; θkjdÞ ¼ pðkjdÞpðθkjk;dÞ; ð9Þ

where pðkjdÞ is the posterior on the model probabilities
and pðθkjk;dÞ is the usual parameter posterior distribution
for model k. The quantity Oij ¼ pðijdÞ=pðjjdÞ is the odds
ratio between models i, j. The RJMCMC algorithm
generates samples from the joint posterior distribution
pðk; θ⃗kjdÞ by developing a Markov chain via proposing
transitions from state fk; θkg to state fl; θlg using a
proposal distribution qðfk; θkg; fl; θlgÞ. Transitions are
accepted with probability α ¼ min f1; Hl→kg with the
Hastings ratio

Hl→k ¼
pðdjk; θkÞ
pðdjl; θlÞ

pðk; θkÞ
pðl; θlÞ

qðfk; θkg; fl; θlgÞ
qðfl; θlg; fk; θkgÞ

: ð10Þ

Proposals are usually separated into within-model moves,
where k ¼ l and only the model parameters θk are updated,
and between-model moves, where both the model indicator

l and the model parameters θl are updated. Written in the
form of Eq. (10) the RJMCMC algorithm is no different
from the usual Metropolis-Hastings algorithm. In practice
the implementation is complicated by the need to match
dimensions between the model states, which introduces a
Jacobian determinant of the mapping function [32]. This
can all become very confusing and may explain the slow
adoption of transdimensional modeling in the gravitational
wave community. Thankfully the models we consider are
nested, such that the transition from state k to l involves the
addition or removal of a model component. In the case of
nested models the mapping function is a linear addition or
subtraction of parameters, and the Jacobian is simply the
ratio of the prior volumes [52]. For example, the Hasting
ratio for adding a single UCB source with parameters λkþ1

to the current state of the model already using k templates
(with joint parameters Λk) is

Hk→kþ1 ¼
pðdjΛk; λkþ1Þpðλkþ1Þ

pðdjΛkÞqðλkþ1Þ
; ð11Þ

where qðλkþ1Þ is the proposal distribution that generated
the new source parameters, and we assume for the reverse
move (kþ 1 → k) that existing sources are selected for
removal with uniform probability.
The efficiency of any MCMC algorithm depends criti-

cally on the choice of proposal distributions. The necessity
for finding good proposal distributions is even more acute
for the transdimensional moves of a RJMCMC algorithm.
In the UCB pipeline, an increase in dimension comes about
when a new waveform template is added to the solution.
For such a move to be accepted the parameters for the new
source must land sufficiently close to the true parameters of
some signal for the transition to be accepted. Arbitrarily
choosing the NP parameters that define a signal has low
probability of improving the likelihood enough for the
transition to be accepted. The strategy we have adopted to
improve the efficiency, which is explicitly detailed in the
following section, is to identify promising regions of
parameter space in preprocessing, in effect producing
coarse global maps of the likelihood function, and using
these maps as proposal distributions. The global proposals
are also effective at promoting exploration of the multiple
posterior modes that are a common feature of GW
parameter spaces for single sources.
To further aid in mixing we use replica exchange (also

known as parallel tempering). Parallel tempering uses a
collection of chains to explore models with the modified
likelihood pðdjΛ; βÞ ¼ pðdjΛÞβ, where β ∈ ½0; 1� is an
inverse “temperature.” Chains with high temperatures
(low β) explore a flattened likelihood landscape and move
more easily between posterior modes, while chains with
lower temperature sample the likelihood around candidate
sources and map out the peaks in more detail. Only those
chains with β ¼ 1 provide samples from the target
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posterior. A collection of chains at different temperatures
are run in parallel, and information is passed up and down
the temperature ladder by proposing parameter swaps,
which are accepted with probability α ¼ min f1; Hi↔jg
and

Hi↔j ¼
pðdji;Λi; βiÞpðdjj;Λj; βjÞ
pðdji;Λi; βjÞpðdjj;Λj; βiÞ

: ð12Þ

Here we are proposing to swap the parameters of the model
fi;Λig at inverse temperature βi with the model fj;Λjg at
inverse temperature βj. Note that if βi ¼ βj the swap is
always accepted. Models with higher temperatures typi-
cally have lower likelihoods. If the likelihoods of the two
models are very different the Hastings ratio Hi↔j will be
small. We only propose exchanges between chains that are
near one another in temperature.
Choosing the temperature ladder so that chain swaps are

readily accepted is a challenge. The situation we need to
avoid is a break in the chain, where a collection of hotter
chains decouples from the colder chains such that no
transitions occur between the two groups. When that
happens the effort spent evolving the hot chains is wasted
as their findings are never communicated down the tem-
perate ladder to the β ¼ 1 chain(s) that accumulate the
posterior samples. It is generally more effective to run a
large number of chains that are closely spaced in temper-
ature for few iterations than it is to run with fewer chains for
longer. We adopt the scheme described in Ref. [53] where
the temperature spacing between chains is adjusted based
on acceptance rates of chain swaps, and the degree to which
the temperatures adjust based on the acceptance rates,
asymptotically approaches zero as the number of chain
iterations increases. Thus the temperature spacing is
dynamically adjusting to the rapidly changing model when
the sampler is “burning in” but settles into a steady state
when the sampler is exploring the posterior.

D. Proposal distributions

As mentioned previously, the efficiency of a MCMC
algorithm is heavily dependent on the design of the
proposal distributions. This “tuning” requirement for an
efficient MCMC has led to the development of samplers
designed to be more agnostic to the parameter space such
as ensemble samplers (e.g., [54]) and Hamiltonian
Monte Carlo [55]. However, there has been less develop-
ment of alternatives to sampling transdimensional posteri-
ors, and the scale of the LISA UCB problem may be
prohibitive to brute-force evaluation of many competing
models. It is our view that continued innovation in develop-
ment of custom proposal distributions that leverage the
hard-earned domain knowledge is worth the investment. To
that end, we observe that the posterior is the ideal proposal
distribution—setting qðfi;Λig; fj;ΛjgÞ ¼ pði;ΛijdÞ we

have Hi→j ¼ 1, so every proposed move is accepted and
the correlation between successive samples can be made
arbitrarily small. Of course, if we could produce indepen-
dent samples from the posterior in advance there would be
no need to perform the MCMC, but this observation
provides guidance in the design of effective proposal
distributions—we seek distributions that are computation-
ally efficient approximations to the posterior distribution,
which usually amounts to finding good approximations to
the likelihood function. Consider the log likelihood
for model k describing Nk Galactic binaries, which is
written as

lnpðdjk;ΛkÞ ¼
XNk

i¼1

lnpðdjλiÞ

þ 1

2
ðNk − 1Þhdjdi þ

X
i>j

hλijλji; ð13Þ

where

hajbi≡ aImC−1
ðImÞðJnÞðκ⃗ÞbJn ð14Þ

and we are neglecting terms from the noise parameters. The
first term in the expression for the log likelihood in Eq. (13)
is the sum of the individual likelihoods for each source,
while the final term describes the correlations between the
sources. While accounting for these correlations is crucial
to the global analysis, the correlation between any pair of
sources is typically quite small, and we ignore them in the
interest of finding a computationally efficient approxima-
tion to the likelihood to use as a proposal. Figure 3 shows
the maximum match between pairs of sources with
SNR > 7, using a simulated Galactic population and

FIG. 3. Survival function of the maximum match between any
pair of detectable sources computed using a simulated Galactic
population of UCBs. For 1 year of observing (green curve) ≲1%
of sources have overlaps greater than 50%. That fraction is
reduced to 0.1% after 2 years (orange curve), and 0 after 4 years
(purple curve) as the resolving power of LISA increases.
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assuming 1, 2, and 4 year observation periods. Here the
match, or overlap, is defined as

Mij ≡ hhðλiÞjhðλjÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihhðλiÞjhðλiÞihhðλjÞjhðλjÞi
p ; ð15Þ

and we are using the A, E TDI data channels. Less than 1%
of sources have overlaps greater than 50%, and the fraction
diminishes with increased observing time. Thus we will
develop proposals for individual sources and propose
updates to their parameters independently of other sources
in the model. The MCMC still marginalizes over the
broader parameter space, including the rare but nonzero
case of non-negligible covariances between sources, in
effect executing a blocked Gibbs sampler where the blocks
are individual source’s parameters.

1. F statistic proposal

We construct a global proposal density using the single
source F statistic to compute the individual likelihoods
lnpðdjλiÞmaximized over the extrinsic parametersA, φ0, ι,
ψ . Up to constants that depend on the noise parameters, the
maximized log likelihood is equal to

F ðf0; θ;ϕÞ ¼
1

2
hgijgji−1hdjgiihdjgji; ð16Þ

where the four filters gi are found by computing waveforms
with parameters f0; _f ¼ 0; θ;ϕ, A ¼ 2, and

g1 ¼ h

�
φ0 ¼ 0; ι ¼ π

2
;ψ ¼ 0

�
; ð17Þ

g2 ¼ h

�
φ0 ¼ π; ι ¼ π

2
;ψ ¼ π

4

�
; ð18Þ

g3 ¼ h

�
φ0 ¼

3π

2
; ι ¼ π

2
;ψ ¼ 0

�
; ð19Þ

g4 ¼ h

�
φ0 ¼

π

2
; ι ¼ π

2
;ψ ¼ π

4

�
: ð20Þ

The F statistic proposal is the three-dimensional histogram
precomputed from the data using a grid in f0, θ, ϕ. We use
a fixed grid spacing governed by what is needed for the best
resolved sources which are found in the ecliptic plane
(which maximizes the Doppler modulations imparted by
LISA’s orbital motion) and at the highest frequencies
covered by the analysis. The probability density of a cell
ða; b; cÞ of the three-dimensional histogram is F a;b;c

normalized by the sum of F over all cells, and the
parameter volume of the cell. Figure 4 shows four sky
maps at different frequency slices of F -statistic proposal
for the data shown in Fig. 1. The color scale is linear in the
proposal density. The slice closest to the true source

frequency of 18:315 mHz shows several high probability
regions on the sky for the proposal to explore, whereas
slices separated in frequency from the source have little
support from the proposal.
The optimal spacing of the grid can be estimated from

the reduced Fisher information matrix γij, which is found
by projecting out the parameters A, φ0, ι, ψ from the full
Fisher information matrix Γij ¼ h∂h=∂λij∂h=∂λji [26].
The reduced Fisher matrix is not constant across the
parameter space and will naturally reduce the grid size
as f0 gets larger, and for sky locations near the ecliptic
equator compared to those near the poles. The grid spacing
will also become finer as the observation time grows. These
modifications, as well as extending to a four-dimensional
grid including _f, will further improve the efficiency of the
proposal and are left for future development.

2. Multimodal proposals

Due to the parametrization of the gravitational wave
signals and the instrument response to those signals, there
are known exact or near degeneracies which appear as
distinct modes in the likelihood/posterior distribution. While
MCMC algorithms are not generically efficient at sampling
from multimodal distributions, we have developed dedicated
proposal distributions to exploit the predictable multimo-
dality and improve the chain convergence time.
Due to the annual orbital motion of the LISA constella-

tion, continuous monochromatic sources will have nonzero
sidebands at the modulation frequency fm ¼ 1=year.
Sources that are detectable at low SNR after several years
of observation can have likelihood support at multiple
modes separated by fm, while for high SNR sources the
secondary modes are subdominant local maxima, challeng-
ing to generic MCMC sampling algorithms. We have

FIG. 4. Frequency slices of the multidimensional F statistic
proposal for the same segment of data shown in Fig. 1. The color
scale is linear in the proposal density, and each panel is on the
same scale. The proposal promotes frequencies and sky locations
consistent with the signal in the data (top right and bottom left
panels) and returns a low-density and diffuse distribution at
frequencies consistent with random noise (top left and bottom
right panels).
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adopted a dedicated proposal that updates the UCB initial
frequency by f0 → f0 þ nfm where n is drawn from
N½0; 1� and mapped to the nearest integer. The sky location
of the source correlates with the frequency through the
Doppler modulations imparted by the detector’s orbital
motion, so the proposal alternates between updates to the
extrinsic parameters using the Fisher matrix proposal, F -
statistic proposal, and draws from the prior. A similar
proposal was deployed and demonstrated in Refs. [27,30].
We also take advantage of a linear correlation between the

gravitational wave phase φ0 and polarization angle ψ , and a
perfectly degenerate pair of modes over the prior ψ ∈ ½0; π�
and φ0 ∈ ½0; 2π� by proposing fψ ;φ0g → fψ � δ=2;φ0 �
δg where δ ∈ U½0; 2π� and the sign of the shift in the
parameters is random, as the sign of the ψ=φ0 correlation
depends on the sign of cos ι, i.e., if the stars are orbiting
clockwise or counterclockwise as viewed by the observer.

3. Posterior-based proposals

The UCBs are continuous sources for LISA and will be
detectable from the beginning of operations throughout the
lifetime of the mission. Our knowledge of the gravitational
wave signal from the galaxy will therefore build gradually
over time. We have designed a proposal distribution to
leverage this steady accumulation of information about the
galaxy by analyzing the data as they are acquired, and
building proposal functions for the MCMC from the
archived posterior distributions inferred at each epoch of
the analysis.
For a particular narrow-band segment of data, the full

posterior is a complicated distribution due to the proba-
bilistically determined number of sources in the data, and
their potentially complicated, multimodal structure. The
posterior is known to us only through the discrete set of
samples returned by the MCMC but for use as a proposal
must be a continuous function over all of parameter space
(as we must be able to evaluate the proposal anywhere in
order to maintain detailed balance in the Markov chain).
Therefore some simplifications must be made to convert the
discrete samples of the chain into a continuous function.
In the release of the pipeline accompanying this paper,

we select chain samples from the maximum marginalized
likelihood (i.e., highest evidence) model at the current
epoch to build the proposals used in the subsequent
analysis when more data are available. We postprocess
the chain samples to cluster those that are fitting discretely
identified sources, and to filter out samples from the prior
or from weaker candidate sources that do not meet our
threshold for inclusion in the source catalog. The post-
production analysis is described in Sec. V.
Each source i identified in the postproduction step will

have at least two modes, because of the degeneracy in the
ψ − φ0 plane. For each mode n, we compute the vector of
parameter means λ̄i;n from the one-dimensional margin-
alized posteriors, the full NP × NP covariance matrix Ci;n

from the chain samples, and the relative weighting αi;n
which is the number of samples in the mode normalized by
the total number of samples used to build the proposal.
The proposal is evaluated for arbitrary parameters λ as

pðλÞ ¼
Xi<I

i¼0

Xi<2
n¼0

αi;n
e−

1
2
ðλ−λ̄i;nÞC−1

i;nðλ−λ̄i;nÞ

ðð2πÞNP detCi;nÞ1=2
: ð21Þ

To draw new samples from this distribution, we first
select which mode by rejection sampling on αi;n, and then
draw new parameters λ via

λ ¼ λ̄i;n þLi;nn; ð22Þ

where n is an NP-dimension vector of draws from a zero-
mean unit-variance Gaussian and Li;n is the lower-upper
(LU) decomposition of Ci;n.
Figure 5 shows the 1 and 2σ contours of the set of

covariance matrices computed from a 6 month observation
of simulated LISA data around 4 mHz in two projections of
the full posterior: the f0 −A plane (top) and sky location
(bottom). Shown in gray is the scatter plot of all chain
samples before being filtered by the catalog production step
described in the next section. The color scheme is con-
sistent between the two panels. Note that for well localized
(e.g., high amplitude) sources the covariance matrix is a
good representation of the posterior, as should be the case
since the posterior should trend toward a Gaussian dis-
tribution with increased SNR, and will therefore serve as an
efficient proposal when new data are acquired.

FIG. 5. Two-dimensional projections of the multisource covari-
ance matrix proposal produced after analyzing 6 months of
simulated data round 4 mHz. The gray scatter plots show all of
the chain samples from the analysis which are then filtered and
clustered into discrete sources by the catalog production step. The
mean parameter values and covariance matrix for each discrete
source are computed from the chain samples and used as a
proposal for the next step of the analysis after more data are
acquired. Parameter combinations shown are the frequency-
amplitude plane (top panel) and sky location (bottom panel).
Ellipses enclose the 1 and 2σ contours of the covariance matrices,
and sources are colored consistently in the top and bottom panels.
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Figure 6 shows the log-likelihood of the model as a
function of a chain step for observations of increasing
duration T with (teal lines) and without (orange lines) using
the covariance matrix proposal built from each intermediate
analysis. This demonstration was on the same data from
Fig. 1 containing the type of high-f0 and high-SNR source
that proved challenging for the previous RJMCMC algo-
rithm [30]. With the covariance matrix proposal the chain
convergence time is orders of magnitude shorter than using
the naive sampler, to the point where the T ¼ 24month run
failed to converge in the number of samples it took the
analysis with the covariance matrix proposal to finish.
Using the customized proposals described in this section

allows the sampler to robustly mix over model space and
explore the parameters of each model supported by the
data. The pipeline dependably converges without the need
for non-Markovian maximization steps as were used in the
“burn in” phase of our previously published UCB pipelines,
and reliably produces results for model selection and
parameter estimation analyses simultaneously.

E. Data selection

While the UCB pipeline is pursuing a global analysis of
the data, we leverage the narrow-band nature of the sources
to parallelize the processing. Sources separated by more
than their bandwidth—typically less than a few hundred
frequency bins—are uncorrelated and can therefore be
analyzed independently of one another.
As was done in previous UCB algorithms [27,30], we

divide the full Fourier domain data stream into adjacent
segments and process each in parallel, without any
exchange of information during the analysis between
segments. To prevent edge effects from templates trying
to fit sources outside of the analysis window, each segment
is padded on either side in frequency with data amounting
to the typical bandwidth of a source, thus overlapping the

neighboring segments. The MCMC is free to explore the
data in the padded region, but during postproduction only
samples fitting sources in the original analysis window are
kept, preventing the same source from being included in the
catalog twice. Meanwhile, sources within the target analy-
sis region but close to the boundary will not have part of
their signal cut off in the likelihood integral.
Unlike in Refs. [27,30], there is no manipulation of the

likelihood or noise model to prevent loud sources outside of
the analysis region from corrupting the fit. Instead, we
leverage the time-evolving analysis by ingesting the list of
detections from previous epochs of the catalog, forward
modeling the sources as they would appear in the current
dataset, and subtracting them from the data. This will be an
imperfect subtraction but is adequate to suppress the signal
power in the tails of the source which extend into the
adjacent segments and, due to the padding, does not alter
the data in the target analysis region. In the event that an
imperfect subtraction leaves a detectable residual, it will not
corrupt the final catalog of detected sources because
templates fitting that residual will be in the padded region
of the segment and removed in postprocessing. The down-
side is merely in the computational efficiency, as a poorly
subtracted loud signal with central frequency out of band
for the analysis will require several templates co-adding to
mitigate the excess power, wasting computing cycles, and
increasing the burden on the MCMC to produce converged
samples. The effectiveness of the subtraction will improve
as the duration of observing time between analyses
decreases, and it is an area to explore when optimizing
the overall cost of the multiyear analysis.
The strategy for mitigating edge effects is prone to

failure if the posterior distribution of a source straddles the
boundary. The frequency is precisely constrained for any
UCB detection so having a source so precariously located is
unlikely but nonetheless needs to be guarded against. While
not yet implemented, we envision checks for sources near
the boundaries in postproduction to see if posterior samples
from different windows should be combined, and/or
adaptively choosing where to place the segment boundaries
based on the current understanding of source locations
from previous epochs of the analysis. There is no require-
ment on the size or number of analysis windows except that
they are much larger than the typical source bandwidth, and
the segment boundaries do not need to remain consistent
between iterations of the analysis as more data are added.
Figure 7 demonstrates the data selection and padding

procedure by displaying results from the center analysis
region of three adjacent windows processed with the time-
evolving RJMCMC algorithm. The top and bottom panels
show the reconstructed waveforms and posterior samples,
respectively. The posterior samples extend outside of the
analysis region (marked by vertical dashed lines) to fit loud
signals in neighboring frequency bins, but are rejected
during the catalog production step. The frequency padding

FIG. 6. Log-likelihood chains from analyses of the same data as
shown in Fig. 1 run with (teal lines) and without (orange lines) the
covariance matrix proposal. As the observing time increases, the
chain sampling efficiency gained by including the proposal built
from previous analyses becomes more significant.
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ensures that the waveform templates of sources inside of
the analysis region are not truncated at the boundary.
Sources recovered from the neighboring analyses are
marked in gray. Note that there is no conflict between
the fit near the boundaries despite their being overlapping
sources in this example at the upper frequency boundary.

V. CATALOG PRODUCTION

The output of the RJMCMC algorithm is thousands of
random draws from the variable dimension posterior, with
each sample containing an equally likely set of parameters
and number of sources in the model. Going from the raw
chain samples to inferences about individual detected
sources is subtle, as a model using NGW templates does
not necessarily contain N discrete sources. For example,
the model may be mixing between states where the Nth

GW
template is fitting one (or several) weak sources, or
sampling from the prior, and such a model could be on
similar footing with the NGW − 1 or NGW þ 1 template
models purely on the grounds of the evidence calculation.
How then to answer the questions “How many sources
were detected?” or “What are the parameters of the detected
sources?” in a way that is robust to the more nuanced cases
where the data support a broad set of models containing
several ambiguous candidates?

A. Filtering and clustering posterior samples

In Ref. [30], for the sake of responding to the Mock
LISA Data Challenge, postprocessing the chains went only

as far as selecting the maximum likelihood chain sample
from the maximum likelihood model. Condensing the rich
information in the posterior samples down to a single point
estimate defeats the purpose of all the MCMCmachinery in
the first place. Furthermore, due to the large number of
sources being fit simultaneously and the finite number of
samples, the maximum likelihood sample within a particu-
lar dimension model does not necessarily correspond to the
maximum likelihood parameters for each of the many
sources in the analysis should they have been fit by the
model in isolation.
It was therefore necessary that we begin to seriously

consider how to postprocess the raw chain samples into a
more manageable data product for the sake of producing
source catalogs that are easily ingested by end users of the
LISA observations, but are not overly reduced to the point
of being prohibitively incomplete or misleading. We
originally explored using standard “off the shelf” clustering
algorithms to take the NGW × NP samples from the chain
and group them into the discrete sources being fit by the
model. Although not an exhaustive effort, this proved
challenging due to the large dimension of parameter space,
different sources located close to one another in parameter
space, and the multimodal posteriors.
A more robust approach was to group the parameters of

the model by using the match between the waveforms as
defined in Eq. (15) and applying a match thresholdM� that
must be exceeded for the parameter sets to be interpreted as
fitting the same source. Seeing as it is the waveforms that
are fundamentally what is being fit to the data, whereas the
model parameters are just how we map from the template
space to the data, clustering chain samples based on the
waveform match, rather than the parameters, is naturally
more effective.
The catalog production algorithm goes as follows:

Beginning with the first sample of the chain, we compute
the waveform from the parameters, produce a new entry to
the catalog (i.e., a new discrete detection candidate), and
store the chain sample in that Entry. The parameters and
corresponding waveform become the reference sample for
the entry. For each subsequent chain sample we again
compute the waveform and check it against each catalog
entry. If the GW frequency of the chain sample is within 10
frequency bins of the reference sample we compute the
matchMij and, ifMij > M�, the sample is appended to the
entry, effectively filtering all chain samples but those
associated with the discrete feature in the data correspond-
ing to the entry. The check on how close the two samples
are in frequency is to avoid wasteful inner-product calcu-
lations that will obviously result in Mij ∼ 0. If a chain
sample has been checked against all current entries without
exceeding the match thresholdM�, it becomes the reference
sample for a new entry in the catalog. Once the entire chain
has been processed, the catalog will contain many more
candidate entries than actual sources in the data (imagine a

FIG. 7. Demonstration of data selection and padding procedure.
The top panel shows the power spectrum of an example analysis
segment in black and the reconstructed waveforms from the
analysis in various colors. The vertical dashed lines mark the
region of the analysis region where sources will be selected for
the catalog. Gray reconstructions are from the analyses of the
adjacent segments. The bottom panel shows the same frequency
interval in the ff0;Ag plane with injected signals marked as gray
circles and a scatter plot of the MCMC samples in green. Note
that the chain samples extend into the padded region and fit
sources there, but those waveforms are not included in the top
panel’s reconstructions.
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chain that has templates in the model occasionally sampling
from the prior). However, the total number of chain samples
in an entry is proportional to the evidence pðdÞ ¼R
pðλjdÞdλ for that candidate source. Thus each entry

has associated evidence that is used to further filter
insignificant features. The default match threshold isM� ¼
0.5 but is easily adjustable by the user.
For each entry, additional postprocessing is then done to

produce data products of varying degrees of detail depend-
ing on the needs of the end user. We select a point estimate
as the sample containing the median of the marginalized
posterior on f0, and store the SNR, based on the reasoning
that f0 is by far the best constrained parameter and likely
the most robust way of labeling/tracking the sources.
We also store the NP × NP covariance matrices for each
mode of the posterior as a condensed representation of the
measurement uncertainty, and for use as a proposal when
more data are acquired. From the ensemble of waveforms
for each sample in the entry, we also compute the posterior
on the reconstructed waveform. Finally, metadata about the
catalog is stored including the total number of above-
threshold entries, the full set of posterior samples, and the
model evidence. A block diagram for the data products and
how they are organized is shown in Fig. 8.

B. Catalog continuity

As the observing time grows, the UCB catalog will
evolve. New sources will become resolvable, marginal
candidates may fade into the instrument noise, and over-
lapping binaries which may have been previously fit with a
single template will be resolved as separate sources with
similar orbital periods. Our scheme of identifying the

binaries by their median value of f0 will also evolve
between releases of the catalog. While the association for a
particular source from one catalog to the next is obvious
upon inspection, the sheer number of sources requires an
automated way of generating and storing the ancestry of a
catalog entry in metadata.
To ensure continuity of the catalog between releases, we

construct the “family tree” of sources in the catalog after
each incremental analysis is performed. A source’s “parent”
is determined by again using the waveform match criteria,
now comparing the new entry to sources in the previous
catalog computed using the previous run’s observing time.
In other words, we are taking entries found in the current
step of the analysis and “backward modeling” the wave-
forms as they would have appeared during the production
of the previous catalog. The waveforms are compared to the
recovered waveforms from the previous epoch to identify
which sources are associated across catalogs, tracing a
source’s identification over the entire mission lifetime, and
making it easy to quickly identify new sources at each
release of the catalog.

VI. DEMONSTRATION

To demonstrate the algorithm performance we have
selected two stress tests using data simulated for the
LISA Data Challenge Radler dataset [56]. The first is a
high-frequency, high-SNR isolated source that challenges
the convergence of the pipeline due to the many subdomi-
nant local maxima in the likelihood function. As shown in
Figs. 1 and 6, new features in the algorithm have the desired
effect of improving the convergence time.
We have also tested the pipeline on data at lower

frequencies where the number of detectable sources is
high, focusing on a ∼140 μHz wide segment starting at
3.98 mHz. The segment is subdivided into three regions to
test the performance at analysis boundaries, and processed
after 1.5, 3, 6, 12, and 24 months of observing. For the
24 month analysis, the full bandwidth was further divided
into six regions to complete the analysis more quickly.

FIG. 8. Proposed scheme for packaging chain output into
higher level data products for publication in source catalogs.
Raw chain output and evidences are available, as well as the
posterior samples after having been filtered and clustered into
discrete detected sources. Each discrete source candidate will
have its own detection confidence (evidence), chain samples, and
corresponding template waveforms, point estimate, and covari-
ance matrix error estimates so that the user can choose the most
appropriate level of detail for their application of the catalog,
along with metadata including the source name and history (for
continuity over catalog releases), etc.

FIG. 9. Heat map of posterior distribution function as a function
of frequency segment and number of signals in the model.
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Figure 9 shows a heat map of the posterior distribution
function on the model dimension for the six adjacent
frequency segments analyzed to cover the ∼140 μHz test
segment. The maximum likelihood model is selected for
postprocessing to generate a resolved source catalog. In the
event that multiple dimension models have equal likelihood
the lower dimension model is selected.
Figure 10 shows the data, residual, and noise model (top

panel) and the posterior distributions on the reconstructed
waveforms which met the criteria for inclusion into the
detected source catalog after 24 months of observing
(bottom panel). The waveforms, residuals, and noise
reconstructions are plotted with 50% and 90% credible
intervals, though the constraints are sufficiently tight that
the widths of the intervals are small on this scale. The

reconstructed waveforms are shown over a narrower-band
region than the full analysis segment, containing the middle
two of the six adjacent analysis windows.
The recovered source parameters are tested against the

true values used in the data simulation, and we find that our
inferences about the data correspond to the simulated
signals that we would expect to be detected. Figure 11
shows the 1- and 2-sigma contours of the marginalized two-
dimensional posteriors for the frequency-amplitude plane
(top) and sky location (bottom) with gray circles marking
the true parameter values. These results come from a single
analysis window because the results from the full test
region are overwhelming when all plotted together.
Figure 12 is a graphical representation of the family tree

concept for tracking how the source catalog evolves over
time. From this diagram one can trace the genealogy of a
source in the current catalog through the previous releases.
The diagram is color-coded such that new sources are
displayed in green, sources unambiguously associated with
an entry from the previous catalog in white, and sources
that share a “parent” with another source are in blue.
Based on the encouraging results of the narrow-band

analysis shown here we will begin the analysis of the full
dataset. A thorough study of the pipeline’s detection
efficiency, the robustness of the parameter estimation,
and optimization of MCMC and postproduction settings
will be presented with the culmination of the full analysis.

VII. FUTURE DIRECTIONS

The algorithm presented here is a first step toward a fully
functional prototype pipeline for LISA analysis. We envi-
sion continuous development as the LISA mission design
becomes more detailed, and as our understanding of the
source population, both within and beyond the galaxy,
matures.
The main areas in need of further work are as follow:

(1) Combining the Galactic binary analysis with analyses

FIG. 10. Top panel: Power spectrum for 24 months of simulated TDI-A channel used to test the algorithm performance on multisource
data, with inferred residual (light blue) and noise level (green) posteriors, showing 50% and 90% credible intervals. Bottom panel:
Reconstructed waveform posteriors (using the same credible intervals) discretely identified after the 24 month analysis and
postprocessing zoomed in to a narrower bandwidth of the top panel, including two adjacent analysis windows.

FIG. 11. Two-dimensional marginalized posteriors for a single
analysis window of the full test segment of simulated data around
4 mHz after 12 months of observing time by LISA. The analysis
was built up from 1.5, 3, and 6 month observations. Gray circles
mark the parameter values of the injected sources. The top panel
shows the frequency-amplitude plane, and the bottom panel
shows the sky location in ecliptic coordinates. Contours enclose
the 1 and 2σ posterior probability regions for each discrete source
found in the catalog production, and the color scheme is
consistent with Fig. 10.
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for other types of sources; (2) better noise modeling,
including nonstationarity on long and short timescales;
(3) handling gaps in the data; (4) more realistic instrument
response modeling and TDI generation; and (5) further
improvements to the convergence time of the pipeline.
Figure 13 shows one possible approach for incorporating

the Galactic analysis as part of a global fit. In this scheme,
the analyses for each source type, such as supermassive
black hole binaries (SMBH), stellar origin (LIGO-Virgo)
binaries (SOBH), unmodeled gravitational waves (UGW),
extreme mass ratio inspirals (EMRI), and stochastic signals
(Stochastic) are cycled through, with each analysis block
passing updated residuals (i.e., the data minus the current
global fit) along to the next analysis block. New data are
added to the analysis as it arrives. The noise model and the
instrument model (e.g., spacecraft orbital parameters,

calibration parameters) are regularly updated. This blocked
Gibbs scheme has the advantage of allowing compartmen-
talized development and should be fairly efficient given that
the overlap between different signal types is small.
A more revolutionary change to the algorithm is on the

near horizon, where we will switch to computing the
waveforms and the likelihood using a discrete time-fre-
quency wavelet representation. A fast wavelet domain
waveform and likelihood have already been developed
[57]. This change of basis allows us to properly model the
nonstationary noise from the unresolved signals which are
modulated by the LISA orbital motion, as well as any long-
term nonstationarity in the instrument noise. Rectangular
grids in the time-frequency plane are possible using wave-
let wave packets [58] which make it easy to add new data as
observations continue, instead of needing the new data
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FIG. 12. Demonstration of how the catalog evolves as more data are acquired. White entries have clear “parentage,” green are new
sources in the catalog, and blue are split from a single parent. Each entries “geneology” is stored as metadata in the catalog.
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samples to fit into a particular choice for the wavelet time-
frequency scaling, e.g., being 2n or a product of primes.
Wavelets are also ideal for handling gaps in the data as they
have built-in windowing that suppresses spectral leakage
with minimal loss of information. The time-frequency
likelihood [57] also enables smooth modeling of the
dynamic noise power spectrum Sðf; tÞ using BAYESLINE

type methods extended to two dimensions.
Convergence of the sampler will be improved by

including directed jumps in the extrinsic parameters when
using the F statistic proposal (as opposed to the uniform
draws that are currently used). The effectiveness of the
posterior-based proposals can be improved by including
intersource correlations in the proposal distributions. This
would be prohibitively expensive if applied to all param-
eters as the full correlation matrix is D ×D, where
D ¼ NGW × NP ∼ 104. However, if the sources are ordered
by frequency, the D ×D correlation matrix of source
parameters will be band diagonal. We can therefore focus
only on parameters that are significantly correlated, and
only between sources that are close together in parameter

space, while explicitly setting to zero most of the off-
diagonal elements of the full correlation matrix. There may
also be some correlations with the noise model parameters,
but we do not expect these to be significant.
Along a similar vein, we will include corre-

lations between sources in the Fisher matrix pro-
posals. This will only be necessary for sources with high
overlaps [59] which will be identified adaptively within the
sampler. Then the Fisher matrix is computed using
the parameter set λ ¼ fλ1; λ2g and waveform model
hðλÞ ¼ h1ðλ1Þ þ h2ðλ2Þ.
There is a large parameter space of analysis settings to

explore when optimizing the computational cost of the full
analysis, as well as the “wall” time for processing new data.
The first round of tuning the deployment strategy for the
pipeline will come from studying the optimal segmenting
of the full measurement band, and the cadence for
reprocessing the data as the observing time increases.
We will extend the waveform model to allow for more

complicated signals including eccentric white dwarf bina-
ries, hierarchical systems, and stellar mass binary black
holes which are the progenitors of the merging systems
observed by ground-based interferometers [60], and
develop infrastructure to jointly analyze multimessenger
sources simultaneously observable by both LISA and EM
observatories [1,13,14,18].
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