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ABSTRACT
The key challenge in the observation of the redshifted 21-cm signal from cosmic reionization
is its separation from the much brighter foreground emission. Such separation relies on the
different spectral properties of the two components, although, in real life, the foreground
intrinsic spectrum is often corrupted by the instrumental response, inducing systematic effects
that can further jeopardize the measurement of the 21-cm signal. In this paper, we use Gaussian
Process Regression to model both foreground emission and instrumental systematics in ∼2 h
of data from the Hydrogen Epoch of Reionization Array. We find that a simple co-variance
model with three components matches the data well, giving a residual power spectrum with
white noise properties. These consist of an ‘intrinsic’ and instrumentally corrupted component
with a coherence scale of 20 and 2.4 MHz, respectively (dominating the line-of-sight power
spectrum over scales k� ≤ 0.2 h cMpc−1) and a baseline-dependent periodic signal with a
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period of ∼1 MHz (dominating over k� ∼ 0.4–0.8 h cMpc−1), which should be distinguishable
from the 21-cm Epoch of Reionization signal whose typical coherence scale is ∼0.8 MHz.

Key words: instrumentation: interferometers – methods: statistical – dark ages, reionization,
first stars – diffuse radiation – large-scale structure of Universe – cosmology: observations.

1 IN T RO D U C T I O N

Observations of the redshifted 21-cm signal from neutral Hydrogen
hold the promise of revealing the detailed astrophysical processes
occurring during the Epoch of Reionization (EoR) and the Cosmic
Dawn (CD). The 21-cm signal can provide insights into the forma-
tion and evolution of the first structures in the Universe (see e.g.
Furlanetto, Oh & Briggs 2006; Morales & Wyithe 2010; Pritchard &
Loeb 2012; Mellema et al. 2013, for reviews): for example, when the
intergalactic medium (IGM) is still largely neutral, it is a sensitive
probe of the first sources of Ly α and X-ray radiation (Mesinger &
Furlanetto 2007; Santos et al. 2010, 2011; McQuinn & O’Leary
2012; Fialkov, Barkana & Visbal 2014; Fialkov et al. 2017) and,
during the subsequent EoR, its large-scale fluctuations map the
evolution of the global ionization fraction (Lidz et al. 2008; Bolton
et al. 2011). The 21-cm emission gives insights into the nature of
formation of the first stars, galaxies, and their impact on the physics
of the IGM (Loeb & Furlanetto 2013; Zaroubi 2013).

At present, several experiments are attempting to detect the power
spectrum of the 21-cm signal from the EoR (e.g. GMRT,1 LOFAR,2

MWA,3 PAPER4) or the sky-averaged 21-cm emission using a single
dipole (Bowman & Rogers 2010; Greenhill & Bernardi 2012; Patra
et al. 2015; Bernardi et al. 2016). Some of these ongoing efforts
have achieved increasingly better upper limits on the 21-cm signal
power spectra (Ali et al. 2015; Beardsley et al. 2016; Patil et al.
2017; Barry et al. 2019; Kolopanis et al. 2019; Li, Pober & Barry
2019), showing the way for the second-generation experiments such
as the Square Kilometre Array (SKA5) and the Hydrogen Epoch of
Reionization Array (HERA6). Recently, a detection of an absorption
profile in the sky-averaged 21-cm signal centred at 78 MHz has been
reported (Bowman et al. 2018), although the unexpected depth of
the trough is calling for independent confirmations (Fraser et al.
2018) – including interferometric observations (Gehlot et al. 2019).

The main challenge in detecting the faint 21-cm signal is the pres-
ence of Galactic and extra-galactic foregrounds that are around 3–4
orders of magnitude stronger (e.g. Bernardi et al. 2009, 2010; Ghosh
et al. 2011; Dillon et al. 2014; Parsons et al. 2014). Foregrounds
as well as the instrumental response have a highly correlated
continuum spectrum and can, in principle, be separate from the
21-cm signal that has structure on smaller frequency scales due to
the intrinsic redshift evolution of the IGM (e.g. Bharadwaj & Sethi
2001; Zaldarriaga, Furlanetto & Hernquist 2004; Santos, Cooray &
Knox 2005). However, the inherent smoothness of the foreground
emission is often compounded by the interferometric response
(mode-mixing), including frequency-dependent primary beams,
side-lobe from bright, mis-subtracted sources, and ionospheric
distortions (Bowman, Morales & Hewitt 2009; Koopmans 2010;
Ghosh et al. 2011; Vedantham, Udaya Shankar & Subrahmanyan

1http://www.gmrt.ncra.tifr.res.in/
2Low-Frequency Array, http://www.lofar.org.
3Murchison Widefield Array, http://www.mwatelescope.org.
4Precision Array to Probe EoR, http://eor.berkeley.edu.
5http://www.skatelescope.org
6http://reionization.org

2012; Yatawatta et al. 2013; Barry et al. 2016; Vedantham &
Koopmans 2016; Patil et al. 2017; Byrne et al. 2019; Gehlot et al.
2019). Polarization leakage due to improper calibration may also
add additional spectral structures to the unpolarized cosmological
21-cm window (Geil, Gaensler & Wyithe 2011; Asad et al. 2015;
Nunhokee et al. 2017).

The study of foreground properties and their separation from the
21-cm signal have been a very active research area over the years
(e.g. Datta, Bowman & Carilli 2010; Liu & Tegmark 2011; Morales
et al. 2012; Trott, Wayth & Tingay 2012; Dillon et al. 2014). One
strategy is to attempt to ‘avoid’ foregrounds, i.e. to avoid k modes
that are contaminated by foregrounds and to estimate the 21-cm
power spectrum using the uncontaminated modes. This assumes
that foregrounds are well localized in k-space and the mode-mixing
effects can be kept well under control (Thyagarajan et al. 2015). This
foreground avoidance method has the disadvantage of considerably
reducing the sensitivity of the instrument because of reduction in the
number of k-modes that can be probed to characterize the EoR signal
(Pober et al. 2014). The second approach involves subtracting the
best possible foreground model and, possibly, recover access to the
foreground-dominated power spectrum region. One of the possible
disadvantages here is the risk of contamination of the cosmological
21-cm signal from the cleaning process. Foreground wedge also
corrupts nearly all the redshift space 21-cm signal, making it
difficult to extract cosmological information without foreground
subtraction (Pober 2015; Jensen et al. 2016). There are also recent
efforts to develop a somewhat hybrid analysis where a Galactic
and Extragalactic All-sky MWA (GLEAM; Hurley-Walker et al.
2017) catalogue of sources including Pictor A and Fornax A were
first subtracted from Precision Array for Probing the Epoch of Re-
ionization data and then the power spectrum was estimated. This
is equivalent to an additional visibility-based filtering within the
foreground avoidance paradigm (Kerrigan et al. 2018).

Chapman et al. (2016) pointed out that blind foreground re-
moval methods such as Generalized Morphological Component
Analysis (GMCA; Chapman et al. 2013) can still model rela-
tively non-smooth foregrounds effectively on short baselines (k⊥
� 0.2 h cMpc−1), while avoidance suffers some degradation as
the frequency-dependent small-scale structure cannot be confined
purely in a region at small k� modes. Several techniques have
been proposed to model and remove foreground emission taking
advantage of its spectral smoothness, including parametric (Jelić
et al. 2008; Bonaldi & Brown 2015) and non-parametric methods
(Harker et al. 2009; Chapman et al. 2013; Mertens, Ghosh &
Koopmans 2018; Mertens et al. 2020). Both methods have the
limitation that they may suppress the 21-cm signal and do not
always reach a level of modelling error better than the noise for
k ≤ 0.3 h cMpc−1, compared to the desired level of the 21-cm
signal power spectrum (Mertens et al. 2018). In general, foreground
subtraction allows to use virtually all k modes at the risk of
contamination of the 21-cm signal, whereas foreground avoidance
does not corrupt the cosmological signal within the EoR window,
but cannot take advantage of any mode in the foreground wedge.

Recently, a novel, non-parametric (in the signal) method based
on Gaussian Process Regression (GPR) has been studied in detail
with simulations, where intrinsic smooth foregrounds, mid-scale
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frequency fluctuations associated with mode-mixing, Gaussian
random noise, and a basic 21-cm signal model, are modelled
with Gaussian Process (GP), and subsequently a separation with
a precise estimation of the uncertainty was carried out (Mertens
et al. 2018; Gehlot et al. 2019). The advantage of this method over
previous ones is its implementation in a Bayesian framework that
allows to incorporate different physical processes in the form of
covariance structure priors (currently spectral and possible spatial
implementation in future) on the various components. GPR further
allows much better control over the coherence structure (and hence
power spectra) of all components rather then be ‘blind’ for their
physical origins, as are GMCA, Independent Component Analysis,
or fitting polynomials. Further, it also offers a good way to extract
foreground models from the data.

In this paper, we apply GPR to model foregrounds in a ∼100 min
long observation with HERA-47. The GPR method was originally
developed to be applied to observations with good uv coverage, but
here we adapted it to work directly to visibilities, without being
affected by the sparse HERA uv coverage. Foreground modelling
helps us to assess the level of contamination of the data and the
covariance models that can properly describe foregrounds. It can
ultimately guide the foreground cleaning process and help finding
the scales that should be safe to use in a foreground avoidance ap-
proach. We use the line-of-sight and the delay power spectrum in the
(k⊥, k�) plane as our metric to characterize the foreground models.

The paper is organized as follows: Section 2 summarizes our
observations along with the delay power spectrum estimation proce-
dure; Section 3 describes our technique to calculate the foreground
power spectrum using the GPR formalism. Finally, we conclude
in Section 4. Cosmological parameters used here are from Planck
Collaboration XIII (2016).

2 O B S E RVAT I O N S A N D DATA R E D U C T I O N

The HERA (DeBoer et al. 2017) is an ongoing experiment to use
the red-shifted 21-cm radiation originating from the cosmological
distribution of neutral hydrogen (H I) to study the formation of first
stars and black holes from CD (z ∼ 30) to the full IGM ionization
history (6 � z � 12). In its final configuration, the array will consist
of 350 parabolic dishes of ∼14 m diameter, with an effective area
of ∼154 m2 per antenna, closely packed in a hexagonal split-core
(Dillon & Parsons 2016), plus outriggers up to ∼1 km distance.
The experiment is optimized for robust power spectrum detection
while minimizing foreground contamination (Pober et al. 2014;
Thyagarajan et al. 2015; Ewall-Wice et al. 2017)

In this paper, we used data from the deployment of the first 47
dish (HERA–47) array. It covers a frequency range of 100–200 MHz
with a channel resolution of ∼97.6 kHz. The results presented
in this paper were generated from 10 nights of HERA–47 data,
starting on 2017 October 5, using only the ‘xx’ polarization cross-
products. In the paper, we refer to this as stokes ‘I’. We selected
snapshots of 10 min (see Fig. 1 for the corresponding uv coverage)
of data close to 21h Local Sidereal Time (LST) over 10 d from
the HERA data repository.7 In total, we used around 100 min of
data. We used the PYUVDATA8 software (Hazelton et al. 2017) to
convert the correlator output to the Common Astronomy Software
Applications (CASA)9 Measurement Set format. Antenna 50 was

7https://github.com/HERA-Team/librarian/
8https://github.com/RadioAstronomySoftwareGroup/pyuvdata
9http://casa.nrao.edu

Figure 1. This figure shows the 10 min uv coverage around 150 MHz of
HERA-47 which are analyzed in this paper.

found to be bad for the initial 7 d and was permanently flagged.
We also flagged the band edges as well as the channels that were
persistently affected by Radio Frequency Interference, i.e. mostly
the following channels: 0–100, 379–387, 510–512, 768–770, 851–
852, and 901–1023, where channel ‘0’ corresponds to 100 MHz and
channel ‘1023’ to 200 MHz. We then used the CASA task RFLAG to
perform further flagging in time and frequency. The threshold for
‘timedevscale’ and ‘freqdevscale’ was fixed to the default values
of ‘5’ each. This implies that for each channel any visibility will
be flagged if the local RMS of its real and imaginary part, is larger
than five times (RMS + median deviation) within a sliding time
window. Similarly, for each integration time, the real and imaginary
parts of the visibilities were flagged if they exceed five times the
deviation from the median value across channels.

Calibration was performed using custom CASA pipelines.10

The starting flux density model included the five brightest point
sources within the HERA field of view (GLEAM 2101–2800,
GLEAM 2107–2525, GLEAM 2107–2529, GLEAM 2101–2803,
and GLEAM 2100–2829), chosen from the MWA GLEAM point
source catalogue (Hurley-Walker et al. 2017). Their model flux
density was corrected for the HERA primary beam response
following the electromagnetic simulations of the HERA feed and
dish (Fagnoni & de Lera Acedo 2016), obtaining a flux density
estimate for each source at each frequency channel. This sky model
was used to solve for three types of antenna gains: antenna-based
delay (‘K’ term in the CASA terminology), followed by a complex
gain for all the channels and the whole 10 min interval (‘G’ term
in the CASA terminology) and by a complex bandpass calibration
(‘B’ term in the CASA terminology). Calibration solutions were
determined for the snapshot observation on 2017 October 15 and
applied to the rest of the nine nights of data, though data from
each day was flagged individually. The calibration solutions are
used as-is, and are not smoothed across frequency before applying
them to the data. This can allow spectral-dependent calibration
errors generated by unmodelled sky sources and baseline-dependent
systematics to be applied to the data, and can further corrupt the
EoR window (Kern et al. 2020b); however, in this work we seek to
model these terms through a combination of the foreground mode
mixing and periodic kernel discussed next.

Calibrated visibilities were phased to a common right ascension
α = 21h and Fourier transformed into 21◦ × 21◦ images using the
w-projection algorithm with 128 planes and the multifrequency

10https://github.com/Trienko/heracommissioning
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Figure 2. This figure shows 10 snapshot images from HERA-47 at 150 MHz. The flux density scale is in Jy beam−1 units.

synthesis algorithm to combine the whole bandwidth together.
Uniform weights were used, leading to a 43.2 arcmin × 35.4 arcmin
synthesized beam. Each image was conservatively deconvolved
down to a threshold of 10 per cent of the image peak using
the Cotton–Schwab algorithm implemented in the CASA CLEAN
task.

Images of the 10 snapshots are shown in Fig. 2. Images at different
days are very similar, qualitatively showing good instrumental
stability. Image to image variation of the RMS noise in regions
of the sky that are mostly empty (away from phase center and

void of sources) is between 0.35 and 0.45 Jy beam−1. In these parts
of the sky, the primary beam response for the individual fields is
considerably lower than the field centre and we expect them to be
noise dominated. As the primary beam response slightly changes
based on the transit time at the HERA location, we find that the
peak flux density of the images varies up to 5–10 per cent over
the 10 d (Fig. 3), likely due to time variations of the bandpass and
imperfect primary beam corrections across snapshots – the primary
beam was computed for the first snapshot but observations took
place at slightly different LSTs. This variation essentially sets the

MNRAS 495, 2813–2826 (2020)
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Figure 3. This figure display the ‘difference image’ where the mean image has been subtracted out. The flux density scale is in Jy beam−1 units.

accuracy of our absolute flux density calibration. We also note
that Cygnus A is above the horizon at the time when observations
were taken. Although ∼70◦ away from the pointing direction and
therefore heavily attenuated by the primary beam, it still appears as
a source with ∼7 Jy beam−1 peak flux density, possibly affecting the
bandpass calibration. We also leave for future work the application
of techniques that leverage on the array redundancy to improve
calibration (Marthi & Chengalur 2014; Zhang, Liu & Parsons
2018; Grobler, Bernardi & Kenyon 2018; Dillon et al. 2018;
2020).

2.1 LST binning and SEFD evaluation

We bin each night of visibility data in LST. We chose a 2 min
bin resolution, such that we can minimize the variation of the
primary beam. For each observing night and LST bin, we only
average redundant baselines (e.g. baselines of the same length and
orientation). This ensures that we are coherently averaging the
baselines and not mixing up emissions from the sky as the earth
rotates.

We empirically estimate the System Equivalent Flux Density
(SEFD) of the different LST combined visibility data sets by taking

MNRAS 495, 2813–2826 (2020)
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Figure 4. Estimated SEFD as a function of frequency for the different
LST bins. The dashed line shows the mean value for all the LST bins and
frequency channels.

the difference of two adjacent frequency channels (Patil et al. 2016).
This difference can be used to estimate the noise RMS, σ (u, v, ν).
For each polarization, we have (Thompson, Moran & Swenson
2017)

σ (u, v, ν) = 1√
Nvis(u, v, ν)

SEFD(ν)√
�ν �t

, (1)

where �ν and �t are the frequency channel width and the in-
tegration time, respectively. We use equation (1) to estimate the
SEFD for the different LST bins as a function of frequency (Fig. 4).
The factor Nvis(u, v, ν) in equation (1) is the number of redundant
visibilities. We find a SEFD ∼(9.5 ± 2.4) × 103 Jy (here, the mean
and the uncertainty is estimated from all the LST bins and frequency
channels in Fig. 4) for the 157.03–167.09 MHz range that we use for
the power spectrum analysis. In temperature units, this is equivalent
to ∼327 ± 84 K around a central frequency of 162 MHz. We use
a scaling factor of (10−26 λ2)/(2 kB �P), where �P is the angular
area of the primary beam (Parsons et al. 2017), to convert from Jy
to K. The estimated SEFD values are consistent with the HERA
system temperature derived using differences of visibility spectra
for sky-calibrated data for a fixed LST on two consecutive days
(Carilli 2017).

Visibilities observed at the same LST time should ‘see’ the
same sky. Assuming that over the 2-min LST bin the change
in the primary beam is not significant, all the 2-min averaged
visibilities corresponding to similar LST bins are therefore also
coherently averaged (after baselines of same length and slope have
been averaged). Visibility data sets from different LST bins, on the
other hand, correspond to different parts of the sky and therefore
cannot be coherently averaged. However, the 21-cm signal power
spectra should only depend on baseline length, not time. We can
thus incoherently combine them when producing power spectra (e.g.
we average the power spectrum from different LST bins). In the
following subsection, we describe our power spectrum estimation
procedure. We focus our discussion on the line-of-sight and delay
power spectrum in the k⊥−k� plane or, equivalently, baseline–delay
plane.

2.2 Delay power spectrum

Intrinsic flat spectrum sky emission appears as a Dirac delta function
in delay space, where the Fourier transform along the frequency axis
(delay transform) acts as a one-dimensional, per-baseline ‘image’

(Parsons et al. 2012a). Smooth-spectrum foregrounds are bound
by the maximum geometric delay that depends upon the baseline
length. We investigate such foreground isolation via the ‘delay
spectrum’ V̂ (u, τ ), defined as the inverse Fourier transform of
V (u, f ) along the frequency coordinate (Parsons et al. 2012a,b):

V̂ (u, τ ) ≡
∫

V (u, f ) W (f ) ei2πf τ df , (2)

where W(f) is a spectral window function (Vedantham et al. 2012;
Thyagarajan et al. 2013; Choudhuri et al. 2016) and τ represents
the signal delay between antenna pairs τ = u·ŝ

c
, whereu is the

baseline vector towards the direction ŝ and c is the speed of
light. We finally squared the visibilities, V̂ (u, τ ), to form the
delay power spectrum. Unlike an image-based estimator where
the upper and lower frequencies incorporate information from
baselines of different physical length, the delay power spectrum
respects baseline migration, i.e. the same baselines contribute to
all frequencies (e.g. Morales et al. 2012). In our analysis, we
used baselines with length |u| ≤ 60 m and a non-uniform discrete
Fourier transform to compute the line-of-sight delay transform of the
visibilities in order to take proper account of the flagged frequency
channels. We choose a Blackman window function that offers a
∼−67 dB side lobe suppression.

For a single baseline, we can estimate the delay power spectrum
(e.g. the cylindrical power spectrum) as (Parsons et al. 2012a):

P (k⊥, k‖) ≈
(

10−26λ2

2 kB

)2

× X2Y

�PPB

∣∣V̂ (u, τ )
∣∣2

, (3)

where λ corresponds to the wavelength of the mid-frequency of
the band, kB is the Boltzmann constant, B is the bandwidth, �PP is
the angular area of the primary beam, and X, Y are the conversion
factors from angle and frequency to co-moving scales. As discussed,
the power spectrum is averaged over all LST bins. Moreover, we
also average over all k modes with the same k⊥, i.e. the modes that
have the same baseline length. We used the power-square beam
from the HERA beam measurements11,12(Parsons et al. 2017) to
estimate the beam area (equation B10 in Parsons et al. 2014). The
power spectrum has units of K2 [h−3 cMpc3]. Fourier modes (k⊥,
k�) are in units of inverse co-moving distance and are given by (e.g.
Morales, Bowman & Hewitt 2006; Trott et al. 2012)

k⊥ = 2π |u|
DM (z)

, (4)

k‖ = 2πH0ν21E(z)

c(1 + z)2
τ, (5)

k =
√

k2
⊥ + k2

‖, (6)

where DM(z) is the transverse co-moving distance, H0 is the Hubble
constant, ν21 is the frequency of the hyperfine transition, and E(z)
is the dimensionless Hubble parameter (Hogg 1999).

Fig. 5 shows the delay power spectrum for a 2 min LST binned
data (e.g. we consider one LST bin only) as a function of k�, up to τ

∼ 3.6μs, corresponding to k� ∼ 2.0 h cMpc−1. We used a 10 MHz
bandwidth centred at 162.06 MHz to estimate the delay spectrum.
We found most of the foreground power is confined within k� ≤
0.2 h cMpc−1 and foreground excess beyond that is largely limited
for most baselines, however, there is some signature of a signal
with an ∼1 MHz period (Kern et al. 2020a), corresponding to k� ∼
0.5 h cMpc−1, for all the baselines considered.

11https://github.com/HERA-Team/hera-cst
12http://reionization.org/science/memos/

MNRAS 495, 2813–2826 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/495/3/2813/5837088 by guest on 20 June 2022

https://github.com/HERA-Team/hera-cst
http://reionization.org/science/memos/
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Figure 5. Power spectrum of a 2 min LST binned data as a function of k�
for the baselines included in our analysis. The baselines in units of meters
are shown in the legend.

Figure 6. Delay power spectrum in the (k⊥−k�) plane for a 2 min LST
binned data. The dashed line represents the horizon line corresponding to
θmax = 90◦.

Fig. 6 presents the delay power spectra in the k⊥−k� plane related
to the same LST bin. We found that the smooth diffuse foreground
in the k⊥−k� plane dominates at low k�, with most power localized
within k� ≤ 0.2 h cMpc−1. The foreground power drops by four to
five orders of magnitude in the k� ≥ 0.2 h cMpc−1 region, where the
EoR signal is expected to dominate over the foreground emission.
We notice some signature of a wedge-like structure in k space
(Datta et al. 2010; Morales et al. 2012), although in the current
HERA antenna layout we are mostly limited to short baselines and
hence the foreground wedge is not clearly visible. This wedge line
is defined by (Liu, Parsons & Trott 2014; Dillon et al. 2015)

k‖ =
[

sin(θfield)
H0DM (z)E(z)

c (1 + z)

]
k⊥, (7)

where θfield is the angular radius of the field of view. We also show
on the figure the wedge line corresponding to the horizon limit
(θmax = 90◦).

3 G AU SSI AN PROCESS R EGRESSI ON AND
F O R E G RO U N D C H A R AC T E R I Z AT I O N

The delay power spectrum results show that the data is mostly
dominated by foregrounds. GPR offers a way to model these
foregrounds in a maximum likelihood way. In this section, we
summarize the GPR formalism (for a detailed review of how the
method works see Mertens et al. 2018) and apply it to model
foreground components in HERA-47 observations.

In this framework, the different components of 21-cm ob-
servations, such as the astrophysical foregrounds, mode-mixing
contaminants, and the 21-cm signal, are modelled with a GP. A
GP is the joint distribution of a collection of normally distributed
random variables (Rasmussen et al. 2005; Gelman et al. 2014). The
covariance matrix of this distribution is specified by a covariance
function, which defines the covariance between pairs of observed
data points (i.e. at different frequencies). The co-variance function
ultimately determines the structure that the GP will be able to model
(for example, here the smoothness of the foregrounds).

The GPR process requires the choice of the model for the
covariance function and a selection of the best-fittingting parameters
of such a model (what we call the hyper-parameters). Model
selection is done in a Bayesian sense by maximizing the marginal
likelihood, also called the evidence, which is the integral of the
likelihood over the prior range, given the data. For a fixed model,
standard gradient-based optimization or Monte Carlo Markov
Chain (MCMC) methods can be adapted to determine the best-
fitting parameters of the covariance functions. We note here that
currently we model the data only in the frequency axis and no
baseline dependence has been introduced in the hyper-parameter
optimization with GPR (i.e. there is no dependence on baseline
length). This assumption is supported by Fig. 5, where we can see
that the power spectrum is similar for different baseline lengths.

In the following equations, d represents the time-averaged vis-
ibilities within a given LST bin and we have not explicitly shown
the time dependence of the data. Considering an observed data d
and a GP co-variance model that includes a foreground term Kf and
a residual term (noise and 21-cm signal) Kr, the data co-variance
can be expressed as, K = Kf + Kr. After GPR, we can retrieve the
foreground part of the signal E( ffg) that always refers to the total
signal except for noise or 21-cm signal through basically a Wiener
filter (Wiener 1949):

E( ffg) = Kf [Kf + Kr]
−1 d. (8)

In the GPR context, this is referred to as the posterior mean matrix,
while

cov( ffg) = Kf − Kf [Kf + Kr]
−1 Kf (9)

is the posterior co-variance matrix.
Assuming that the GP co-variance model is optimal and taking

〈ddH〉 = Kf + Kr, then 〈E( ffg)E( ffg)H 〉 = Kf − cov( ffg). This
highlights that to obtain the expected co-variance model of the
foregrounds, Kf, directly from E(ffg), we need to un-bias the
estimator using cov(ffg). We implement a similar unbiasing for
the delay power-spectra of the different foreground components
by first taking the delay transform of E(ffg) and cov(ffg) and then
adding them in the power spectrum domain. We finally normalize
by the observed cosmological volume to construct the delay power
spectrum P(k⊥, k�) in units of K2 [h−3 cMpc3]. More specifically,
we calculate the covariance matrices by fitting the hyper-parameters
to all the data, while the posterior mean is obtained for each time-
averaged visibility (so, the covariance calculated from E(ffg) is not
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Figure 7. Example of the normalized GP exponential co-variance func-
tion with a frequency coherence scale linj = 0.8 MHz (dot–dashed line),
compared to the co-variance of a simulated 21-cm EoR signal at different
redshifts using 21cmFAST (Mesinger & Furlanetto 2007; Mesinger et al.
2011).

necessarily the same as the initial Kf). In this paper, we consider
the power spectrum of the different foreground components. This
implies calculating E( ffg) for each of the foreground components,
where we replace Kf by the optimized co-variance of the corre-
sponding foreground component (while keeping the term in square
brackets, [Kf + Kr], the same, since it is the total co-variance).

3.1 Covariance functions

In this section, we review the co-variance functions for the different
components of the data. The selection of a co-variance function κ

for the 21-cm signal can be chosen by comparison to a range of
21-cm signal simulations. For this analysis, we choose a Matern
η = 1/2 co-variance function with a frequency coherence scale l
parameter:

κMatern(νp, νq ) = σ 2
f

21−η

�(η)

(√
2ηr

l

)η

Kη

(√
2ηr

l

)
, (10)

where σ f is the signal variance, r = |νq − νp| and Kη is the modified
Bessel function of the second kind. The parameter η controls the
smoothness of the resulting function. For η = 1/2, the Matern
kernel is equivalent to an exponential kernel. The choice of this co-
variance kernel well matches the co-variance of the EoR signal with
21cmFAST (Mesinger, Furlanetto & Cen 2011, Fig. 7). Following
Mertens et al. (2018), we used a uniform prior in the 0.01–1.25 MHz
range on the hyper-parameter l.

The intrinsic smooth foregrounds are modelled with a Radial Ba-
sis Function (RBF) kernel (also known as the ‘squared-exponential’
or a ‘Gaussian’ kernel):

κRBF(νp, νq ) = σ 2
f exp

(
− r2

2l2

)
, (11)

where the coherence scale l controls the smoothness of the function,
σ f is the signal variance and the frequency coherence scale was
bounded in the 10–200 MHz range. We note that the Matern kernel
(equation 10) is a generalization of the RBF kernel, parametrized
by an additional parameter η. When η tends to infinity, the kernel
becomes equivalent to RBF kernel. Medium-scale fluctuations
coming from a combination of the instrumental chromaticity and
imperfect calibration (termed as ‘mode-mixing’ components) are

also modelled by a GP with an RBF covariance function where the
characteristic coherence scale l is bounded in the 2–20 MHz range.

3.2 Foreground modelling

Here, we discuss the GPR model foreground components, including
the modelling and subsequent removal of the frequency and ampli-
tude, modulated periodic signal with an additional GP co-variance
kernel. Again, following Mertens et al. (2018), we modelled the GP
co-variance function by decomposing the foreground co-variance
as

Kfg = Ksky + Kmix, (12)

where the ‘sky’ denotes the intrinsic smooth foreground sky and
‘mix’ denotes the mode-mixing contaminants that introduce oscil-
lations in frequency mostly caused by the instrument. It is expected
that Ksky will pick up the frequency dependence of the foreground
signal at a given uv point, whereas the mixing component Kmix can
model relatively rapidly varying foreground components such as the
fact that the uv point itself also moves in the uv plane with frequency
(Morales et al. 2012) and hence is sensitive to extra angular and
frequency scale structures. We remind the reader that here we use
the RBF kernel to model the foregrounds and an exponential kernel
is used to represent the 21-cm signal co-variance function. To select
the optimal mode-mixing co-variance function, we considered the
Matern kernel with η = 3/2 and 5/2 along with the RBF kernel with
a uniform prior in the 2–20 MHz range. We found that the difference
in the log-likelihood for the RBF kernel from the Matern 3/2 and
the Matern 5/2 kernels are 1717 and 854, respectively (keeping the
other covariances fixed). Based on this evidence, we choose to use
the RBF kernel to model the mode-mixing component. We optimize
the log-marginal-likelihood for the full set of visibilities (real and
imaginary part separately) for the six variances and the coherence
length scales hyper-parameters (namely, σ 2

21, l21, σ 2
sky, lsky, σ 2

mix, and
lmix), assuming the coherence scale is spatially invariant, i.e. the
same for each baseline type. The PYTHON package GPY13 is used
to do the optimization using the full set of visibilities. The noise
term is modelled with a fixed variance where the covariance matrix
describes the variance along the frequency direction. The noise in
the real data has both a frequency and a time dependence but here we
choose only the frequency axis to approximate the noise variance.
We found that the frequency coherence scale of the ‘sky’ and ‘mix’
co-variance kernel are about 20 and 2.4 MHz, respectively.

In general, the coherence scale is expected to be dependent on
the baseline length, with longer baselines de-correlating faster than
shorter baselines. We investigate this effect by implementing a ‘per-
baseline’ GPR approach that allows us to model a coherence scale
for different baseline lengths using a smaller data set with an in-
creased number of degrees of freedom. We found that the coherence
scale decreases at longer baselines (Fig. 8), from l ∼ 3.2 MHz for
the 14.6 m baseline to l ∼ 2.2 MHz for ∼60 m baseline. In the ‘all-
baselines’ GPR implementation, the optimal coherence scale was
about 2.4 MHz, which falls inside the maximum–minimum range of
‘per-baseline’ GPR approach. These results further agree well with
our initial choice of the 2–20 MHz prior range for the medium-scale
frequency fluctuations introduced in Section 3.1. The main reason
for this behaviour is the limited baseline range used in this analysis
over which the foreground co-variance remains similar.

13https://sheffieldml.github.io/GPy/
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Figure 8. The optimized co-variance scale lmix for the mode-mixing kernel
as a function of baseline lengths using a ‘per-baseline’ GPR technique.

The inclusion of significantly longer baselines would likely
require a ‘per-baseline’ GPR fit as the foreground coherence will
change more significantly across the range of baseline lengths. This
could be implemented without significantly increasing the number
of degrees of freedom by allowing the coherence scale parameters
to be a function of the baseline length. We leave this investigation
for future work.

We then considered all nights, coherently LST combined data
sets for which we estimate different foreground components using
GPR. For the GPR foreground modelling and the power spectrum
estimation we used the PYTHON package PS EOR.14

Fig. 9 shows the power spectrum and the variance across
frequency for the different foreground components that we recover
using the GPR technique. Note that in our GPR power spectrum
estimation method, the hyper-parameters of the covariance model
are optimized using the Bayesian evidence. Doing an MCMC, we
then get the posterior distribution of these hyper-parameters, and
this is the first source of uncertainty that we use and propagate to
the power spectra. The shaded area in Fig. 9 shows the propagated
2σ uncertainty on the hyper-parameters and the uncertainty on
the model fit (equation 9) and from the MCMC run (for details
see Section 3.2.3) on to the different foreground power spectrum
components. An important point to note here is that the uncertainty
on the power spectra that we estimate are correct assuming that our
assumed co-variance functions are appropriate.

We notice that the ‘FG mix’ model has a small coherence scale
(2–3 MHz) and therefore the variance has a wave-like pattern, but for
the intrinsic foregrounds it is mostly smooth across frequency. We
detect a ‘bump’ in the power spectrum around k� ∼ 0.5 h cMpc−1,
corresponding to a ∼900 ns delay, indicating the presence of a
non-negligible contamination in the data (possibly due to internal
signal chain reflections, or a more dominant instrumental cross-talk
feature spanning delays of 800–1200 ns that does not look like an
EoR signal and can therefore be filtered out, Kern et al. 2020a),
which we investigate in more detail in Section 3.2.1.

Fig. 10 shows the correlation along the frequency direction of
the different GPR components (intrinsic foreground, mode-mixing
foreground, and residuals) as a function of LST difference for all
the combinations of LST binned data sets, covering an LST range
of ∼20.92h−21.26h (each cross represents an LST bin difference).

14https://gitlab.com/flomertens/ps eor

Here, we compute the correlation for every combination of the LST
binned visibility data sets for each baseline and finally we average
over the baselines to determine the final value. The correlation
coefficient is given by

ρ
cmpt
LST1,LST2 =

cov
(

fgcmpt
LST1, fgcmpt

LST2

)
σ
(

fgcmpt
LST1

)
σ
(

fgcmpt
LST2

) , (13)

where fgcmpt
LST1 and fgcmpt

LST2 are the foreground model components
corresponding to the ‘sky’, ‘mix’, or the residual at two differ-
ent LSTs. For large LST differences, the correlation should go
down since we are looking at different parts of the sky. From
Fig. 10, we see that the intrinsic foreground correlation remains
above 80 per cent regardless of the time difference. The correlation
coefficient starts to decay only for LST differences >2–4 min (as
the sky starts to shift). The mode-mixing de-correlates significantly
as a function of LST difference. This typically depends on the
coherence scale in the uv-plane as a baseline moves through it and is
faster for longer baselines. The mode-mixing is also more affected
by LST difference de-correlation because it contains fluctuations
due to small beam differences mainly further away from the phase
centre.

3.2.1 Characteristics of the periodic signal

After foreground removal, the residual power spectrum is dominated
by noise and an almost periodic signal that reveals itself by an excess
power at k� ∼ 0.5 h cMpc−1. We find the periodic signal is baseline
dependent and it also varies with LST difference. Fig. 11 shows
the correlation of the residual visibilities (equation 13) for different
baselines as a function of LST difference. Two periodic signals
from two different LST times appear to be phase shifted. A closer
inspection reveals that the amplitude and periodicity of this signal
does not remain stationary but varies with frequency. For example,
the residual visibilities for a specific baseline and the fit to the
periodic signal is shown in Fig. 12. Similar frequency-dependent
complex patterns are also seen for other baselines. This profile can
be fitted using the GPR method and a combination of a RBF and
Cosine co-variance function, Kper, on each baseline individually.
The co-variance function κper for the periodic kernel depends on
the characteristic coherence scale lper over which the periodic signal
vary, the signal variance σ 2

per, and the period pper:

κper(νp, νq ) = σ 2
per exp

(
− r2

2l2
per

)
cos

(
2πr

pper

)
. (14)

We found the main periodicity is ∼1 MHz.
Kern et al. (2020a) provides a thorough investigation of such

systematic effect, attributing it to a combination of instrumental
cross-coupling (e.g. mutual coupling and cross-talk) and cable
reflections within the analogue signal chain. Kern et al. (2019)
present methods for modelling and removing these systematic terms
in the data. In the following section, we show how it can be modelled
and subtracted in the GPR formalism.

3.2.2 Filtering the periodic signal with GPR

To model this locally periodic signal with amplitude varying
over a certain coherence scale, we introduce an additional ker-
nel in the foreground co-variance model. We use a combina-
tion of an RBF and a cosine kernel to model the period in
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Figure 9. Power spectra and derived foreground components after GPR analysis of the coherently averaged combined data: spherically averaged power spectra
(left-hand panel), delay spectra averaged over all baselines (middle panel). The right-hand panel shows the variance of the different foreground components
across frequency. The shaded area highlights the uncertainty (2σ ) from the GP process (equation 9) and the uncertainty on the model fit from the MCMC run
on to the foreground power spectrum components.

Figure 10. Correlation coefficient ρ
sky,mix,res
LST1,LST2 as a function of LST differ-

ence for all the night, LST-binned data. Each marker symbol (‘ + ’, ‘x’ or
‘o’) represents an LST difference.

Figure 11. Correlation coefficients of the residual visibility data after GPR
as a function of baseline length and LST difference. The plot shows very
strong dependence of the periodic signal on baseline length |u| and it also
varies with LST difference.

frequency. The updated foreground co-variance function is mod-
elled as

Kfg = Ksky + Kmix + Kper, (15)

where the Kper represents the periodic signal contaminant (see
equation 14). We used this updated foreground co-variance model
in our GP optimization. The GPR estimates of the parameters for
the periodic co-variance function are found to be pper ∼ 1 MHz and
lper ∼ 1.2 MHz, respectively.

Figure 12. Example of the periodic signal for 38.6 m baseline with
coordinates (u, v) = (−19.8, 7) λ. The real part of the visibility is shown
in ‘K’ units. The different transparent lines correspond to different LST data
sets on which we apply a frequency phase offset to align the periodic signal.
This signal can be fitted using GPR with a combination of an RBF and
Cosine co-variance kernel (the solid line).

Fig. 13 displays the power spectrum of different GPR modelled
components including the periodic signal. We notice that the
periodic signal peaks around ∼0.4–0.8 h cMpc−1. In the middle
panel, we display the GPR model that nicely isolates the periodic
signal component around k� ∼ 0.5 h cMpc−1. In general, we find that
the periodic signal is k dependent. It appears at k ∼ 0.17 h cMpc−1,
reaching a ∼107 mK2 peak at k ∼ 0.4 cMpc−1 – approximately
six orders of magnitude brighter than the expected 21-cm power
spectrum (Mesinger et al. 2011).

The average variance across frequency for the periodic signal
component is ∼3.8 × 104 mK2, while the mean variance of the
mode-mixing signal is around ∼1.2 × 107 mK2, approximately
three orders of magnitude higher. The noise power spectrum shown
in Fig. 13 is estimated by splitting the data set in even and odd times
with a 10.7 s time separation and taking the difference between the
two. At this time resolution, the foregrounds cancel out almost
perfectly. We find the residual power spectrum level is close to the
estimated noise power spectrum, especially at |k�| ≥ 0.85 h cMpc−1.

The residual in Fig. 14 reveals that there is still some time
correlation left, but overall, we find the residuals have become
more uncorrelated and noise-like compared to Fig. 10 where the

MNRAS 495, 2813–2826 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/495/3/2813/5837088 by guest on 20 June 2022



GPR foreground modelling in HERA-47 2823

Figure 13. Same as Fig. 9 but now including the periodic signal and the estimated noise power spectrum and variance.

Figure 14. Same as Fig. 10, but here the periodic signal has been modelled
with an RBF and cosine kernel and then removed.

GP foreground co-variance was modelled only with a combination
of ‘sky’ and ‘mode-mixing’ kernels.

3.2.3 Foreground model hyper-parameter uncertainties

We sampled the posterior distribution of the foreground model
hyper-parameters and characterize their correlation with an MCMC.
We used the EMCEE PYTHON package15 (Foreman-Mackey et al.
2013), which uses an ensemble sampler algorithm based on the
affine-invariant sampling algorithm (Goodman & Weare 2010).

Fig. 15 shows the resulting posterior probability distribution of
the GP model hyper-parameters. The variance of the EoR kernel,
which was modelled with a GP exponential kernel, is found to
be un-constrained and low. The data can be well modelled by
the ‘sky’, ‘mix’, ‘per’ (periodic) foreground kernels and the noise
covariance matrix (modelled with a fixed variance) that contributes
a large part of the variance at large k�. We compared the evidence
values with and without the EoR co-variance kernel in the GP
optimization. We find the evidence remains mostly unchanged and
the Bayes factor (Jeffreys 1961) is around ∼0.93 for GP models
with and without the EoR co-variance kernel. This essentially
confirms that the signal is dominated by a noise-like component
once the foregrounds are removed and adding an EoR kernel has
an insignificant effect. Overall, the confidence intervals of other
kernel hyper-parameters are reasonably well constrained, except
the variance of the ‘21-cm signal’ component that is consistent with
zero. The significance of the coherence scale of the ‘21-cm signal’ is
also reduced given the non-significant variance of this component.
Table 1 highlights the parameter estimates and confidence intervals

15http://dfm.io/emcee/current/

for the posterior probability distribution of the foreground model
hyper-parameters. The estimated median values of the frequency
coherence scale of the ‘sky’ and ‘mix’ covariance kernel is about
19.4 and 2.4 MHz, respectively, which is close to the GPR optimized
values as presented in Section 3.2.

4 D I SCUSSI ON AND C ONCLUSI ONS

In this paper, we have used a novel foreground separation method,
first introduced in Mertens et al. (2018), in order to model fore-
grounds with the HERA-47 array. The mainstream HERA data
analysis takes advantage of the concept of avoiding foregrounds
and provides a single-baseline power spectrum estimate: recent data
analysis showed evidence of systematic effects that contaminate
the EoR window, and motivated the development of strategies
to mitigate their impact to the avoidance paradigm (Kern et al.
2020b). An alternative effort to detect the 21-cm signal using closure
quantities is actively being pursued (Thyagarajan, Carilli & Nikolic
2018; Carilli et al. 2018; Carilli, Thyagarayan & Kent 2020).

The method presented here uses GPR to model various stochastic
foreground components, such as the spectrally smooth intrinsic
sky, mode-mixing components generating from the chromatic
instrument and imperfect calibration, as well as a 21-cm signal. It
therefore bears analogies with the avoidance approach as they both
attempt to model and subtract systematic effects in the EoR window,
but also more broadly models the foreground emission – which
is not within the purpose of the avoidance approach. Foreground
modelling may be a necessary step in order to reduce the leakage in
the EoR window and access the high signal-to-noise ratio small k
modes (e.g. Kerrigan et al. 2018; Ewall-Wice et al. 2020; Lanman,
Pober & Kern 2020).

Our analysis included a different co-variance function for each
of intrinsic sky, mode-mixing, and 21-cm signal components in
the GP modelling. We found that the frequency coherence scale of
the ‘sky’ and ‘mix’ co-variance kernel are about 20 and 2.4 MHz,
respectively. As a comparison, the typical (theoretical) frequency
coherence scale for the 21-cm EoR signal is found to be around
∼0.8 MHz, when fitted to the co-variance of a simulated 21-cm EoR
template. The foreground power spectrum is shown to be contami-
nated by an ∼1 MHz periodic signal whose amplitude changes from
baseline to baseline. The periodic signal dominates the 0.25 < k <

0.9 h cMpc−1 range. We included a combination of RBF and a cosine
kernel to model this signal within our GPR method and found a fairly
cleaner and flatter residual power spectrum across the 0.05 < k <

1.83 h cMpc−1 range. The residual power spectrum is also mostly
consistent with the estimated noise power spectrum, especially at
high k� values, whereas residuals are still present in the foreground
and periodic signal-dominated region of the pwoer spectrum.
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Figure 15. Posterior probability distributions of the GP model hyper-parameters. We show here the coherence scale and strength of the EoR co-variance
kernel (l21 in MHz and σ 21 in K2), the coherence scale and strength of the mode-mixing foreground kernel (lmix in MHz, σmix in K2), the intrinsic foreground
kernel (lsky in MHz, σ sky in K2) and the periodic co-variance kernel hyper-parameters (lper, pper in MHz and σ 2

per in K2). The vertical dashed lines show the
first, second, and third (Q1, Q2, and Q3) quantile levels. The diagonal panels represent the marginalized probability distribution of each parameter.

Table 1. Summary of the estimated median and confidence intervals (first
and third quantile levels (Q1 and Q3)) of the respective GP model hyper-
parameters including the periodic co-variance kernel.

Hyper-parameter Prior Estimate

lmix (MHz) U (2, 20) 2.40+0.02
−0.01

σ 2
mix (K2) U (0.1, 0.9) 0.115+0.007

−0.005

lsky (MHz) U (10, 200) 19.42+1.25
−1.18

σ 2
sky (K2) U (0.02, 2.5) 1.89+0.10

−0.09

lper (MHz) U (1, 5) 1.23+0.01
−0.01

pper (MHz) U (0.628, 1.256) 0.999+0.002
−0.002

σ 2
per (K2) U (0.00001, 0.01) 0.000183+0.000004

−0.000003

As foreground subtraction is potentially at risk of altering the
21-cm signal, we plan to further explore this approach using more
HERA data and test the cleaning with signal injection tests using
full-scale HERA simulations. In this paper, we have restricted
ourselves to foreground modelling only and left the characterization
of residual power spectra to future work, which will include end-
to-end signal injection tests.

Finally, we note that the foreground model used in this paper
might not be complete, although it seems to be enough at this
noise level. In particular, it does not include other foregrounds
contaminants such as the instrumental polarization leakage, residual
RFIs, and the phase errors caused by the ionosphere or imperfect
calibration. We plan to include these additional subtle effects in
our GP co-variance modelling. In addition to these, we intend to
implement a per-baseline GPR approach where the coherence scale
parameters are a function of the baseline length without exploding
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the number of degrees of freedom of the GPR fit. This will be
relevant for longer HERA baselines where the larger baselines
will de-correlate faster compared to the shorter baselines. Also,
the present mode-mixing model can be improved by integrating the
k⊥ dependence of the foreground wedge. We further plan to include
the isotropic nature of the 21-cm signal and its evolution at different
redshift bins, which will also ensure a more sensitive and detailed
modelling.
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Jelić V. et al., 2008, MNRAS, 389, 1319
Jensen H., Majumdar S., Mellema G., Lidz A., Iliev I. T., Dixon K. L., 2016,

MNRAS, 456, 66
Kern N. S., Parsons A. R., Dillon J. S., Lanman A. E., Fagnoni N., de Lera

Acedo E., 2019, ApJ, 884, 105
Kern N. S. et al., 2020a, ApJ, 888, 70
Kern N. S. et al., 2020b, ApJ, 890, 122
Kerrigan J. R. et al., 2018, ApJ, 864, 131
Kolopanis M. et al., 2019, ApJ, 883, 133
Koopmans L. V. E., 2010, ApJ, 718, 963
Lanman A., Pober J. C., Kern N. S., 2020, MNRAS, 487, 5840
Li W., Pober J. C., Barry N., 2019, ApJ, 887, 14
Lidz A., Zahn O., McQuinn M., Zaldarriaga M., Hernquist L., 2008, ApJ,

680, 962
Liu A., Tegmark M., 2011, Phys. Rev. D, 83, 103006
Liu A., Parsons A. R., Trott C. M., 2014, Phys. Rev. D, 90, 023018
Loeb A., Furlanetto S. R., 2013, The First Galaxies in the Universe,

by Abraham Loeb and Steven R. Furlanetto. Princeton Univ. Press,
Princeton, NJ

Marthi V. R., Chengalur J., 2014, MNRAS, 437, 524
McQuinn M., O’Leary R. M., 2012, ApJ, 760, 3
Mellema G. et al., 2013, Exp. Astron., 36, 235

MNRAS 495, 2813–2826 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/495/3/2813/5837088 by guest on 20 June 2022

http://dx.doi.org/10.1088/0004-637X/809/1/61
http://dx.doi.org/10.1093/mnras/stv1107
http://dx.doi.org/10.1093/mnras/stw1380
http://dx.doi.org/10.3847/1538-4357/833/1/102
http://dx.doi.org/10.1051/0004-6361/200911627
http://dx.doi.org/10.1051/0004-6361/200913420
http://dx.doi.org/10.1093/mnras/stw1499
http://dx.doi.org/10.1007/BF02702273
http://dx.doi.org/10.1111/j.1745-3933.2011.01100.x
http://dx.doi.org/10.1093/mnras/stu2601
http://dx.doi.org/10.1038/nature09601
http://dx.doi.org/10.1088/0004-637X/695/1/183
http://dx.doi.org/10.1038/nature25792
http://dx.doi.org/10.3847/1538-4357/ab107d
http://reionization.org/science/memos/
http://dx.doi.org/10.1029/2018RS006537
http://dx.doi.org/10.3847/1538-4365/ab77b1
http://dx.doi.org/10.1093/mnras/sts333
http://dx.doi.org/ https://doi.org/10.1093/mnras/stw161
http://dx.doi.org/10.1093/mnras/stw2254
http://dx.doi.org/10.1088/0004-637X/724/1/526
http://dx.doi.org/10.1088/1538-3873/129/974/045001
http://dx.doi.org/10.3847/0004-637X/826/2/181
http://dx.doi.org/10.1093/mnras/sty1060
http://arxiv.org/abs/2003.08399
http://dx.doi.org/10.1093/mnras/stx1221
http://arxiv.org/abs/2004.11397
http://dx.doi.org/10.1038/nature12999
http://dx.doi.org/10.1093/mnras/stw2540
http://dx.doi.org/10.1086/670067
http://dx.doi.org/10.1016/j.physletb.2018.08.035
http://dx.doi.org/10.1093/mnras/stz1937
http://dx.doi.org/10.1111/j.1365-2966.2011.19509.x
http://dx.doi.org/10.1111/j.1365-2966.2011.19649.x
http://arxiv.org/abs/1201.1700
http://dx.doi.org/10.1093/mnras/sty357
http://dx.doi.org/10.1111/j.1365-2966.2009.15081.x
http://dx.doi.org/10.21105/joss.00140
https://arxiv.org/abs/astro-ph/9905116
http://dx.doi.org/10.1093/mnras/stw2337
http://dx.doi.org/10.1111/j.1365-2966.2008.13634.x
http://dx.doi.org/10.1093/mnras/stv2679
http://dx.doi.org/10.3847/1538-4357/ab3e73
http://dx.doi.org/10.3847/1538-4357/ab5e8a
http://dx.doi.org/10.3847/1538-4357/ab67bc
http://dx.doi.org/10.3847/1538-4357/aad8bb
http://dx.doi.org/10.3847/1538-4357/ab3e3a
http://dx.doi.org/10.1088/0004-637X/718/2/963
http://dx.doi.org/10.1093/mnras/stz1639
http://dx.doi.org/10.1086/587618
http://dx.doi.org/10.1093/mnras/stt1902
http://dx.doi.org/10.1007/s10686-013-9334-5


2826 A. Ghosh et al.

Mertens F. G., Ghosh A., Koopmans L. V. E., 2018, MNRAS, 478,
3640

Mertens F. G. et al., 2020, MNRAS, 493, 1662
Mesinger A., Furlanetto S., 2007, ApJ, 669, 663
Mesinger A., Furlanetto S., Cen R., 2011, MNRAS, 411, 955
Morales M. F., Wyithe J. S. B., 2010, ARA&A, 48, 127
Morales M. F., Bowman J. D., Hewitt J. N., 2006, ApJ, 648, 767
Morales M. F., Hazelton B., Sullivan I., Beardsley A., 2012, ApJ, 752,

137
Nunhokee C. D. et al., 2017, ApJ, 848, 47
Parsons A. R., 2017, HERA Memo 27, Power Spectrum Normalizations for

HERA. University of California, Berkeley,
Parsons A., Pober J., McQuinn M., Jacobs D., Aguirre J., 2012a, ApJ, 753,

81
Parsons A. R., Pober J. C., Aguirre J. E., Carilli C. L., Jacobs D. C., Moore

D. F., 2012b, ApJ, 756, 165
Parsons A. R. et al., 2014, ApJ, 788, 106
Patil A. H. et al., 2016, MNRAS, 463, 4317
Patil A. H. et al., 2017, ApJ, 838, 65
Patra N., Subrahmanyan R., Sethi S., Udaya Shankar N., Raghunathan A.,

2015, ApJ, 801, 138
Planck Collaboration XIII, 2016, A&A, 594, A13
Pober J. C., 2015, MNRAS, 447, 1705
Pober J. C. et al., 2014, ApJ, 782, 66
Pritchard J. R., Loeb A., 2012, Rep. Prog. Phys., 75, 086901
Rasmussen, Carl Edward, Williams, Christopher K. I., 2005, Gaussian

Processes for Machine Learning (Adaptive Computation and Machine
Learning. MIT Press, Cambridge

Santos M. G., Cooray A., Knox L., 2005, ApJ, 625, 575
Santos M. G., Ferramacho L., Silva M. B., Amblard A., Cooray A., 2010,

MNRAS, 406, 2421
Santos M. G., Silva M. B., Pritchard J. R., Cen R., Cooray A., 2011, A&A,

527, A93
Thompson A. R., Moran J. M., Swenson G. W., 2017, Interferometry and

Synthesis in Radio Astronomy, 3rd edn. Springer, Berlin
Thyagarajan N. et al., 2013, ApJ, 776, 6
Thyagarajan N. et al., 2015, ApJ, 804, 14
Thyagarajan N., Carilli C. L., Nikolic B., 2018, Phys. Rev. Lett., 120,

251301
Trott C. M., Wayth R. B., Tingay S. J., 2012, ApJ, 757, 101
Vedantham H. K., Koopmans L. V. E., 2016, MNRAS, 458, 3099
Vedantham H., Udaya Shankar N., Subrahmanyan R., 2012, ApJ, 745,

176
Wiener N., 1949, Extrapolation and Smoothing of Stationary Time Series:

With Engineering Applications. MIT Press, Cambridge
Yatawatta S. et al., 2013, A&A, 550, A136
Zaldarriaga M., Furlanetto S. R., Hernquist L., 2004, ApJ, 608, 622
Zaroubi S., 2013, The First Galaxies, 396, 45
Zhang Y. G., Liu A., Parsons A. R., 2018, ApJ, 852, 110

1Department of Physics and Astronomy, University of Western Cape, Cape
Town 7535, South Africa
2The South African Radio Astronomy Observatory (SARAO), 2 Fir Street,
Black River Park, Observatory, Cape Town 7925, South Africa
3Department of Physics, Banwarilal Bhalotia College, GT Rd, Ushagram,
Asansol, West Bengal 713303, India
4Kapteyn Astronomical Institute, University of Groningen, PO Box 800,
NL-9700 AV Groningen, the Netherlands
5LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne
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