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This article investigates the properties of a scalar fifth force that arises in a scalar tensor-theory with a
chameleon screening mechanism in the context of gravity space missions like the MICROSCOPE
experiment. In such an experiment, the propagation of the chameleon field inside the nested cylinders of the
experiment causes a fifth force when the cylinders are not perfectly coaxial. We propose a semianalytic
method to compute the field distribution and the induced fifth force and compare it to a full numerical
simulation, in settings where the cylindrical symmetry is broken. The scaling of the fifth force with both the
parameters of the model and the geometry of the experiment is discussed. We show that the fifth force is
repulsive, hence adds a destabilizing stiffness that should be included in the force budget acting on the
detector. This opens the way to a new method to constrain a scalar fifth force in screened models.

DOI: 10.1103/PhysRevD.101.124056

I. INTRODUCTION

Scalar-tensor theories represent a large class of exten-
sions of general relativity (GR) that are widely studied
[1–3] to constrain deviations from GR and to investigate the
physical effects of a potential scalar partner to the graviton,
which may arise from high-energy theories, e.g., string
theory. On large scales, coupled scalars modify the evo-
lution of the universe and its structure. They have attracted
a lot of attention in connection with the modeling of the late
acceleration of the Universe, i.e., as possible dark energy
candidates [4]. On smaller scales, the extra-degree of
freedom is responsible for a fifth force. The properties
of this fifth force depends on the nature of the couplings of
the scalar field to standard matter, universal or not, on the
mass of the scalar field, and more generally on its potential.
While light field models can be attracted toward general
relativity [5,6] and are constrained in laboratory and space
gravity experiments, local tests are more difficult for
models exhibiting screening as they require to take into
account the effects of the environment [7]. Amongst such
models, let us cite the symmetron [8] and the chameleon
[9,10] mechanisms. In both cases, the profile of the scalar
field and thus the associated fifth force depends on the local
mass density: the field acquires a large mass in high density
environments responsible for the suppression of the fifth

force, whereas in low density environments the force can be
long-ranged.
The main goal of this article is to continue our inves-

tigation on the possibility to test such scalar-tensor theories
with a screening mechanism in gravity space experiments.
Even if the coupling of the field is universal, it can generate
composition dependent fifth force between macroscopic
objects since the profile of the scalar field, and thus the fifth
force that derives from it, inside the object depends on its
density, and thus on this composition. So far, many
experiments [11–13] have set constraints on the existence
of a chameleon field among which atom interferometry
[14,15], Casimir effect measurements [16] or torsion
balance experiments [17]. Space-borne experiments—as
the MICROSCOPE mission [18] testing the weak equiv-
alence principle in orbit—were originally argued to be a
possible smoking gun for the chameleon mechanism [9,10]
as the local density in space is much smaller than at the
surface of the Earth, hence leading to a lighter field and a
stronger fifth force. However, this intuitive argument
requires to be analyzed in depth, in particular to take into
account the fact that the experimental set-up can itself
screens the chameleon. Understanding this screening and
the propagation of the scalar field inside the measurement
device is a key issue to detect or constrain such a
mechanism. It requires to determine the field profile
for nontrivial matter distributions as the theory is highly
nonlinear and a special attention to the boundary conditions
must be paid. Multiple approaches have been used*martin.pernot_borras@onera.fr
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involving both analytic [10,16,19–26] and numerical
methods [17,27–30].
In a previous paper [31], we considered an idealized

experimental setting modeled by cylindrically or spheri-
cally nested geometries, and studied the propagation
of a chameleon field inside such a setting. This clarified
the occurrence of the screening mechanism and led
us to conclude that for experiments similar to the
MICROSCOPE mission, the screening induced by the
experiment’s cavity steps in for most of the parameter
space of the chameleon model, hence reducing the hope
of constraining chameleons with this space experiment.
Nevertheless, the different parts of the detector are subject
to a series of nongravitational forces that need to be
compensated. It follows that the inner cylinders of the
device can move and thus depart from the cylindrical
symmetry. This can induce an internal source for the fifth
force that needs to be modeled and constrained in the force
budget of the experiment.
To that purpose, we consider a model configuration

similar to the MICROSCOPE geometry involving an
accelerometer composed of nested test mass cylinders
and electrode cylinders. A force on a test mass appears
when the cylindrical symmetry is broken by shifting the
cylinder from its axis. The goal of this article is to quantify
the fifth force induced by this noncoaxiality. Thus, we
consider a static configuration of two infinite nested
cylinders. After summarizing briefly the theoretical context
in Sec. II, we start by a simplified exercise in Sec. II in
which we restrict to 1-dimensional configurations. Then we
tackle the case of nested cylinders by first developing a
semianalytical multipolar expansion in Sec. IV and the full
numerical integration in Sec. V. Both methods have their
own domain of validity and are compared when they both
apply. Once the profiles are determined, we compute in
Sec. VI the resulting force on the inner cylinder and then
discuss its scaling with the geometry of the model and the
parameters of the theory.
This provides the first analysis of the fifth force stiff-

ness induced by a chameleon field on an idealized gravity
experiment with a design similar to the MICROSCOPE
mission. It shows that the fifth force being repulsive,
it adds a destabilizing stiffness that would require to be
compared to the other forces acting on the detector,
from electrostatic and Newtonian origin (since the
Newtonian force vanishes only for infinite cylinders).
Hence, this work paves the way to the analysis of the
MICROSCOPE experiment that shall be presented in a
companion article [32].

II. GENERAL EQUATIONS

A. Theory

Let us consider the theory defined by the general scalar-
tensor action in the Einstein frame,

S ¼
Z

dx4
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

2
∂μϕ∂μϕ − VðϕÞ

�

−
Z

d4x
ffiffiffiffiffiffi
−g̃

p
Lmðg̃μν;ϕ;…Þ; ð1Þ

where ϕ is a scalar field, V its potential, MPl the reduced
Planck mass, R the Ricci scalar, gμν the Einstein frame
metric, g its determinant, and Lm the matter Lagrangian.
The field couples nonminimally to matter through the
Jordan frame metric

g̃μν ¼ A2ðϕÞgμν; ð2Þ

where AðϕÞ is a universal coupling function, from which
the dimensionless coupling constant

βðϕÞ ¼ MPl
dlnA
dϕ

ð3Þ

can be defined. It characterizes the magnitude of the
coupling to the scalar field to standard matter, and hence
the magnitude of the fifth force. Note that the coupling
may not be universal, so that the field could have different
couplings, AiðϕÞ for the different components of matter.
Such models involve spacetime variations of fundamental
constants that have been well-constrained [33–35] so that
we restrict our analysis to a universal coupling. The method
proposed here generalizes itself easily to nonuniversal
couplings.
In the Einstein frame, the scalar field dynamics follows

from the Klein-Gordon equation,

□ϕ ¼ dV
dϕ

−
βðϕÞ
MPl

Tμνgμν; ð4Þ

so its source term depends both on the potential and the
local value of the trace of the matter stress-energy tensor,
which reduces to the local energy density for a non-
relativistic matter.

B. Chameleon models

Chameleon models posits that the potential V and
coupling function A do not have the same convexity so
that the minimum of the effective potential depends on the
local matter density. We shall assume that the coupling
function is of the form

A ¼ eβϕ=MPl ð5Þ

and the potential is of the form

V ¼ Λ4

�
1þ Λn

ϕn

�
ð6Þ
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whereΛ is a mass scale, n a natural number and β a positive
constant. It follows that the Klein-Gordon equation (4)
reduces to

□ϕ ¼ dVeff

dϕ
ð7Þ

with the effective potential

Veff ¼ VðϕÞ þ β

MPl
ρϕ; ð8Þ

ρ being the mass density configuration. This equation
enjoys a density-dependent minimum

ϕ�ðρÞ ¼
�
n
MPlΛnþ4

βρ

� 1
nþ1

: ð9Þ

In media of constant density ρ the field would tend to reach
this minimal value. This would occur on scales given by the
density dependent Compton wavelength,

λcðρÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

nðnþ 1ÞΛnþ4

�
nMPlΛnþ4

βρ

�nþ2
nþ1

s
; ð10Þ

which becomes shorter as ρ is larger.
Finally, if we assume static configurations, the field is

governed by the Laplace equation

Δϕ ¼ nΛnþ4½ϕ−ðnþ1Þ
� − ϕ−ðnþ1ÞÞ�: ð11Þ

With the rescalings ϕ=Λ → ϕ, β=Λ3 → β and Λr → r, it
reduces to

Δϕ ¼ β

MPl
ρðxÞ − nϕ−ðnþ1Þ: ð12Þ

From such a rescaling, a profile computed for specific Λ, β
and matter configurations specified by ρ, could directly lead
to profiles for different Λ and β and a rescaled geometry.

III. ONE-DIMENSIONAL ASYMMETRIC
CONFIGURATIONS

Let us first start by considering a nonsymmetrical one-
dimensional model. It consists of 3 infinite parallel walls of
the same thickness. The central wall can move and thus is
not necessarily at the same distance from the other two
external fixed walls.
The configuration is characterized by the thickness e of

the walls, the gap g between the walls in the symmetric
case, the distance 2gþ e between the two external walls
and the displacement δ of the central wall with respect
to the middle position. The density of the walls and of the
interwall regions are respectively denoted by ρin and ρvac.

Throughout this work, if not stated otherwise, we shall
assume

ρin ¼ 8.125 g:cm−3;

and

ρvac ¼ 10−3ρin

for which the corresponding Compton wavelengths are
λc;in ≃ 2 cm and λc;vac ≃ 2 m.

A. Resolution method

The profile of the field in the symmetrical case (δ ¼ 0)
has already been described in our former work [31]. We can
adapt the method to deal with the nonsymmetrical case and
solve Eq. (12) for a nonsymmetrical configuration.
The main problem is to determine the boundary con-

ditions for the numerical integration. When δ ¼ 0, it is
obvious, by symmetry, that the field’s derivative cancels at
the center of the central wall. Under that condition, one can
proceed by dichotomy on the value of the field at the center
to determine the value that is compatible with the boundary
conditions at large distance.
When δ ≠ 0, the derivative of the field does not vanish at

the center but at a slightly shifted location that depends
on δ. Again, it can be determined by dichotomy. Since the
central wall is separated from the two external walls by
distances of respectively g − δ and gþ δ, we start at some
initial position x0 in the central wall. We then determine
the profile that corresponds to the condition ϕ0ðx0Þ ¼ 0
with the same procedure as for the symmetrical case. The
different configurations encountered in each direction—
i.e., a gap of respective width g − δ and gþ δ—and the
boundary conditions, give two different values of ϕðx0Þ.
Depending on the sign of the difference of these values we
adjust x0, and repeat the procedure until convergence when
this difference gets negligible. This way we obtain the
correct position x0 and initial value ϕðx0Þ corresponding to
the profile satisfying the correct boundary conditions at
large distance.

B. Profile of the field and resulting force
on the central wall

The profile of the field for a configuration in which
e ¼ 0.2 m and g ¼ 0.25 m is depicted in Fig. 1 for
different displacement δ. Since the profile is no more
symmetrical inside the central wall, it implies that the
integration of the fifth force −β∇ϕ=MPl does not vanish.
Figure 2 depicts the evolution of the fifth force with δ. For
small displacements it is linear with a positive sign, i.e., a
repulsive force that tends to destabilize the configuration.
It develops a nonlinear scaling for large δ. Note, for
comparison, that the Newtonian force on the central wall
remains zero whatever δ.
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This result can be compared to the one obtained by
considering this problem as two joined Casimir-like
configurations—two sets of parallel plates whose
chameleonic force has been analytically computed in
Ref. [16]—where the central wall is pulled by each external
walls resulting in a total destabilizing force. The agreement
between our numerical computation and this analytical
form is excellent for almost all the range of displacements.
The Casimir-like force scales for one pair of plates as d−1

for n ¼ 2. Then applied to our cases here it scales as
2δ

ðgþδÞðg−δÞ. So it is linear as long δ ≪ g. For larger displace-

ment the agreement is not as good since our result departs
from linearity for larger δ. This is indeed not surprising

as for small displacements this is the regime where
λc;in ≪ d ≪ λc;vac for both sets of plates, for which a good
agreement already exists [16]. For large displacements this
is no longer the case, explaining the discrepancy.

IV. TWO-DIMENSIONAL CYLINDRICAL
ASYMMETRIC CONFIGURATION:
SEMIANALYTIC MULTIPOLAR

APPROXIMATION

Let us now turn to the less academic case of two infinite
nested cylinders. This geometry is close to the one of
MICROSCOPE’s accelerometers even though we still
assume that the cylinders are infinite to simplify the
analysis. The transverse geometry is detailed in Fig. 3
and the goal is to compute the force on the inner cylinder
once shifted from the center. This is indeed a more
complex problem than previously as it requires to treat
the full 2 dimensions in Eq. (12) and cannot be reduced to
1-dimensional problem as for configurations with cylin-
drical symmetry. Nevertheless, as we shall now see, for
small displacements the problem can be simplified using a
multipolar expansion of the field configuration.
The geometry we consider is described on Fig. 3 and

consists of two cylinders:
(i) an outer cylinder of radius R̄ and width ē centered on

O and with density ρout;
(ii) an inner cylinder of radius R and width e centered on

O0 and with density ρin. We assume that

OO0 ¼ δex; ð13Þ

where δ is the displacement of the inner cylinder
with respect to the axis of symmetry and ex the unit
vector in this direction, arbitrarily chosen to be the
x-axis.

FIG. 2. The pressure on the central wall for the configuration
described in Fig. 1 as a function of the displacement δ. The red
line corresponds to the two-Casimir-like configuration as com-
puted in Ref. [16].

FIG. 3. Geometry of the 2-dimensional configuration of the two
nested cylinders and definition of the notations of the problem.

FIG. 1. Profiles of ϕ for a three-wall asymmetric configuration
for walls of thickness e ¼ 0.2 m and for different displacements δ
of the central wall. The doted lines delimit the borders of the
central walls. The shaded zones correspond to the two fixed
external walls. The blue and green curves are superposed. The
model parameters have been chosen to n ¼ 2, β ¼ 1, Λ ¼ 1 eV.
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We define the basis of the Cartesian coordinates as ðex; eyÞ
and the polar coordinates system ðer; eθÞ with

ex:er ¼ cos θ; ey:er ¼ sin θ; ð14Þ

and

ex:eθ ¼ − sin θ; ey:eθ ¼ cos θ: ð15Þ

In complex notations, it is clear that the equation
of the inner cylinder is rðθÞeiθ ¼ δþ Reiψ so that
R2 ¼ r2 þ δ2 − 2δr cos θ, from which we determine the
equation of the inner disk in polar coordinates

rðθÞ ¼ R

�
δ

R
cos θ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

δ2

R2
sin2 θ

r �
; ð16Þ

this defines the inner and outer borders of the inner cylinder
as r−ðθÞ and rþðθÞ, respectively with R and Rþ e in
Eq. (16). It follows that the matter density is distributed as

ρðr; θÞ ¼ ρvac þ
8<
:

ρin − ρvac if r ∈ ½r−ðθÞ; rþðθÞ�
ρout − ρvac if r ∈ ½R̄; R̄þ ē�
0 otherwise

:

ð17Þ

It will be convenient to define the function Ξ such that
Ξðx; a; bÞ ¼ 1 is x ∈ ½a; b� and 0 otherwise, i.e., it is
defined in terms of the Heaviside distribution H as

Ξðx; a; bÞ ¼ Hðx − aÞ −Hðx − bÞ: ð18Þ

It follows that

ρðr; θÞ ¼ ρvac þ ðρout − ρvacÞΞðr; R̄; R̄þ ēÞ
þ ðρin − ρvacÞΞ½r; r−ðθÞ; rþðθÞ�: ð19Þ

A. Mode decomposition

In cylindrical coordinates, forgetting about the z-
dimension since by symmetry ϕ ¼ ϕðr; θÞ, the gradient
is given by ∇ ¼ ð∂r; ∂θ=rÞ and the Laplacian by

Δf ¼ ∂2
rf þ 1

r
∂rf þ 1

r2
∂2
θf: ð20Þ

for any function fðr; θÞ. One can always decompose f in
modes as

fðr; θÞ ¼
X
l∈Z

ulðrÞffiffiffi
r

p eilθ ð21Þ

with

ulðrÞffiffiffi
r

p ¼
Z

dθ
2π

fðr; θÞe−ilθ: ð22Þ

It follows that

Δf ¼ 1ffiffiffi
r

p
X
l∈Z

�
u00l þ

ð1
4
− l2Þ
r2

ul

�
eilθ: ð23Þ

Let us now turn to integration. We will have to integrate
functions fðr; θÞ, such as the components of the force, on
the inner cylinder as

Z
fðMÞdm ¼ ρinh

Z
inner cyl:

fðr; θÞrdθdr;

h being the length of the cylinder. For each θ, r varies
between r− and rþ so that

Z
fðMÞdm ¼ ρinh

Z
2π

0

dθ
Z

rþðθÞ

r−ðθÞ
fðr; θÞrdr: ð24Þ

It is then “easily” checked that for f ¼ 1 we get the mass of
the cylinder ρinπheð2Rþ eÞ. Indeed this is a tricky integral
which turns out to be trivial in terms of the angle ψ defined
in Fig. 3.

B. One cylinder

We start by considering only the outer cylinder. The
density profile has been fully described in our former
work [31] and is denoted by ϕ̄ðrÞ. It is solution of

ϕ̄00 þ 1

r
ϕ̄0 ¼ β

MPl
½ρvac þ ðρout − ρvacÞΞðr; R̄; R̄þ ēÞ�− n

ϕ̄nþ1

ð25Þ

with the boundary conditions

ϕ̄ð∞Þ ¼ ϕ�ðρvacÞ; ϕ̄0ð0Þ ¼ 0: ð26Þ

C. Two cylinder configuration

Starting from the previous profile ϕ̄ðrÞ, we consider the
effect of the second cylinder and decompose ϕ as

ϕðr; θÞ ¼ ϕ̄ðrÞ þ ψðr; θÞ: ð27Þ

Indeed, if the inner cylinder is centered in O then ψ in only
a function of r. Such configurations were also studied in
our previous work [31]. Now by subtracting Eq. (25) to the
Klein-Gordon equation (12) we get
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ψ 00 þ 1

r
ψ 0 þ 1

r2
∂2
θψ ¼ β

MPl
ðρin − ρvacÞΞ½r; r−ðθÞ; rþðθÞ�

þ n
ϕ̄nþ1ðrÞ −

n
½ϕ̄ðrÞ þ ψðr; θÞ�nþ1

:

ð28Þ

This equation is fully general and no approximation has
been made so far. It is a 2-dimensional nonlinear partial
differential equation. There is no way it can be analytically
solved in full generality.

D. Multipolar hierarchy

To go further, we decompose ψ in multipoles as in
Eq. (21) and we single out the monopole l ¼ 0,

ψðr; θÞ ¼ ψ0ðrÞ þ
ffiffiffi
δ

r

r X
l≠0

ulðrÞeilθ: ð29Þ

This decomposition is fully general. Since ψ is a real-
valued function, u�l ¼ u−l. We introduce the dimensionless

factor δ=r as it is clear that the nonradial terms all vanish
when δ ¼ 0 and that δ=R ∼ δ=ðRþ eÞ will serve as a small
parameter for our expansion. Thus, the generic Klein-
Gordon equation takes the form

ψ 00
0 þ

1

r
ψ 0
0 þ

ffiffiffi
δ

r

r X
l≠0

�
u00l þ

ð1
4
− l2Þ
r2

ul

�
eilθ

¼ β

MPl
ðρin − ρvacÞΞ½r; r−ðθÞ; rþðθÞ�

þ n

ϕ̄nþ1ðrÞ −
n

½ϕ̄ðrÞ þ ψðr; θÞ�nþ1
: ð30Þ

The goal is thus to determine the functions ψ0ðrÞ and ulðrÞ.
It is clearly a difficult task as the last term of the right-and
side (rhs) couples to all the modes.
The evolution of each mode can be obtained by

integrating Eq. (30) times e−il
0θdθ=2π over θ and singling

out the monopole from the l ≠ 0 modes so that Eq. (29)
splits as

ψ 00
0 þ

1

r
ψ 0
0 ¼

n

ϕ̄nþ1ðrÞ −
Z

nh
ϕ̄ðrÞ þ ψ0ðrÞ þ

ffiffi
δ
r

q P
l0≠0ul0 ðrÞeil0θ

inþ1

dθ
2π

þ β

MPl
ðρin − ρvacÞ

�Ξ½r;R;Rþ e� if δ ¼ 0R
Ξ½r; r−ðθÞ; rþðθÞ� dθ2π if δ ≠ 0

ð31Þ

ffiffiffi
δ

r

r �
u00l þ

ð1
4
− l2Þ
r2

ul

�
¼ β

MPlp
ðρin − ρvacÞ

Z
Ξ½r; r−ðθÞ; rþðθÞ�e−ilθ

dθ
2π

− n
Z

e−ilθ

½ϕ̄ðrÞ þ ψ0ðrÞ þ
ffiffi
δ
r

q P
l0≠0ul0 ðrÞeil0θ�

nþ1

dθ
2π

ð32Þ

Let us note that (1) this hierarchy is highly nonlinear and
that (2) the complex integrals on the rhs of Eqs. (31)–(32)
cannot be performed as one would need to know the poles
of its integrand, which depend on the whole solution and
because, due to the displacement, the radial width of the
inner cylinder depends on θ. Nevertheless as shown in the
Appendix A, the integral of Ξe−ilθ over θ can be computed
analytically so that the only big issue is the complex
integral involving ul.

E. Small displacement approximation

So far, the system (31)–(32) is fully general since we
made no approximation. Now, keeping in mind our goal,
we want the force on the inner cylinder, so that we are
interested on the field configuration on the cylinder, that is

close to r ∼ R. Since we assume δ ≪ R, we can expand our
solutions in e=R.
First, we define eðθÞ as

eðθÞ ¼ rþðθÞ − r−ðθÞ ð33Þ

with the definition (16). At lowest order in δ=R, it
reduces to

eðθÞ ¼ e

�
1þ δ2

RðRþ eÞ sin
2 θ

�
: ð34Þ

Then, consider Eq. (31).The computation of the integral of
Ξ is obtained by taking the limit l → 0 in Eq. (A3) as
½ϑþðrÞ − ϑ−ðrÞ�=π where ϑþðrÞ and ϑ−ðrÞ are two angles
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in ½0; π� at which the circle of radius r centered on O
intersects the circle centered on O0 of radius R and Rþ e
respectively. They are defined only for r ∈ ½R − δ; Rþ δ�
and r ∈ ½Rþ e − δ; Rþ eþ δ� respectively so that this
term vanishes outside of the support ½R − δ; Rþ Eþ δ�.
It can be checked that in the limit δ → 0 it reduces to the
function equal to 1 on this support, that is precisely
Ξ½r;R;Rþ e�. So, we get

β

MPl
ðρin − ρvacÞ

�Ξ½r;R;Rþ e� if δ ¼ 0

ϑþðrÞ−ϑ−ðrÞ
π if δ ≠ 0

ð35Þ

for the source term.
Then, consider Eq. (32). The multipolar components of

Ξ are derived in Appendix A, see Eq. (A3).
Now, we need to treat the nonlinear term. To that purpose

we consider an expansion in powers of δ=r. The dominant
term involves only functions of r so that the integral over θ
vanishes. It follows that

Z
e−ilθ

�
ϕ̄ðrÞ þ ψ0ðrÞ þ

ffiffiffi
δ

r

r X
l0≠0ul0 ðrÞeil0θ

�−ðnþ1Þ dθ
2π

reduces to

−ðnþ 1Þ
ffiffiffi
δ

r

r
ulðrÞ

½ϕ̄ðrÞ þ ψ0ðrÞ�nþ2

at lowest order. Then, the first nonlinear term is given by

ðnþ 1Þðnþ 2Þ
2

δ

r

P
L≠0uLðrÞul−LðrÞjl−L≠0
½ϕ̄ðrÞ þ ψ0ðrÞ�nþ3

: ð36Þ

In the equation for ψ0 we have the contribution of the
monopole −n=½ϕ̄ðrÞ þ ψ0ðrÞ�nþ1 and then the linear term
in ul vanishes so that the first correction is the nonlinear
term involving the sum

P
L≠0 uLðrÞu−LðrÞ ¼

P julðrÞj2.
In conclusion, we get the hierarchy for the modes as a

set of 1-dimensional differential equations to which we
need to add the equation for ϕ̄, so that the full system is
described by

ϕ̄00 þ 1

r
ϕ̄0 ¼ β

MPl
½ρvac þ ðρout − ρvacÞΞðr; R̄; R̄þ ēÞ� − n

ϕ̄nþ1
ð37Þ

ψ 00
0 þ

1

r
ψ 0
0 ¼

n
ϕ̄nþ1ðrÞ −

n
½ϕ̄ðrÞ þ ψ0ðrÞ�nþ1

þ nðnþ 1Þðnþ 2Þ
2

δ

r

P
L≠0juLðrÞj2

½ϕ̄ðrÞ þ ψ0ðrÞ�nþ3

þ β

MPl
ðρin − ρvacÞ

�Ξ½r;R;Rþ e� if δ ¼ 0

ϑþðrÞ−ϑ−ðrÞ
π if δ ≠ 0

: ð38Þ

u00l þ
ð1
4
− l2Þ
r2

ul ¼ β

MPl
ðρin − ρvacÞ

ffiffiffi
r
δ

r ½sinlϑþðrÞ − sinlϑ−ðrÞ�
πl

þ nðnþ 1Þ ulðrÞ
½ϕ̄ðrÞ þ ψ0ðrÞ�nþ2

−
nðnþ 1Þðnþ 2Þ

2

ffiffiffi
δ

r

r P
L≠0uLðrÞul−LðrÞjl−L≠0
½ϕ̄ðrÞ þ ψ0ðrÞ�nþ3

; ð39Þ

where Ξðr; R̄; R̄þ ēÞ is defined in Eq. (18), ϑ�ðrÞ in
Eq. (A1). The equation for ϕ̄ is closed and can be solved
easily numerically following the same method as in our
previous work [31]. Then, the equation for ψ0 is coupled to
all the modes. But, if we restrict to Oðδ=RÞ it becomes
closed. Then, the infinite set of equations for the ul
becomes again linear if we work at order Oð ffiffiffiffiffiffiffiffi

δ=R
p Þ,

and we can solve it having previously solved for ψ0. Note
that this set of equations is only valid for δ < e=2.

F. Numerical scheme

To completely specified the system, we need to define
properly the boundary conditions for ðψ0; ulÞ.

The total field ϕ must verify the same asymptotic
boundary condition than ϕ̄: ϕð∞Þ¼ϕ�ðρvacÞ. Conse-
quently, both the monopole and the multipoles must
asymptotically cancel,

ψ0ð∞Þ ¼ 0; ulð∞Þ ¼ 0: ð40Þ

We now have all the elements to integrate numerically
the set of equations (37)–(39). In the following all numeri-
cal examples will assume, if not specified otherwise,
that the cylinders are of same density ρin and that the
parameters of the geometry areR ¼ 0.2 m, e ¼ 0.05 m and
R̄ ¼ 0.6 m, ē ¼ 0.1 m.

FIFTH FORCE INDUCED BY A CHAMELEON FIELD ON … PHYS. REV. D 101, 124056 (2020)

124056-7



1. Monopole ψ0

The contribution of the monopole being cylindrically
symmetric, its derivative shall cancel at r ¼ 0: ψ 0

0ð0Þ ¼ 0.
We can therefore follow the same numerical resolution
scheme as we performed for ϕ̄ in Ref. [31].
Figure 4 shows the profile of the monopole for various

values of δ. It is compared to the one-cylinder profile ϕ̄
and to the symmetrical two-cylinder profile. As expected,
it can be checked that the monopole profile tends to the
former profile when δ tends to 0. As δ gets larger, the
minimum value of the field reached in the inner cylinder
departs slightly from the corresponding value in the two-
centered-cylinders case. The total field might then leak in
the multipoles.

2. Multipoles ul
The integration of the multipoles is more complex.

Indeed, we do not know the position at which the field’s
derivative cancels, position used previously as a starting
point to integrate ϕ̄ and ψ0. Nevertheless Eq. (29) gives
useful information. The factor in front of the multipole sum
scales as 1=

ffiffiffi
r

p
. For the total field not to diverge at r ¼ 0,

each ul must then scale at least as r
1
2 at r ¼ 0. We thus

deduce that we must have for all l: ulð0Þ ¼ 0. Similarly to
the method used to integrate ϕ̄ and ψ0, this leaves us with
one parameter u0lð0Þ for the dichotomy which determines
the correct initial condition giving the proper profile that
verifies ulð∞Þ ¼ 0.
Figure 5 depicts the first multipoles for several displace-

ments of the inner cylinder δ. We observe that, as expected,
the contribution of the multipoles is more important for

large δ. We also notice that for small δ the dipole (l ¼ 1)
is the main contribution whereas for larger δ, the l ¼ 4
term still provides a contribution to the field. We will see
in Sec. VI that this hierarchy is preserved when comput-
ing the force on the inner cylinder, such that the con-
tribution of the l ¼ 4multipole is always negligible. This
justifies the fact that we do not consider multipoles of
higher order.
Now, from these multipoles we can reconstruct

2-dimensional maps of the field using Eq. (29). Figure 6
shows such maps for different values of δ. Figure 7 gives a
clearer view of these maps showing slices of the field
profile in the plane y ¼ 0. One can notice that asymmetry
in the field appears along the axis of displacement. This is
significant in the inter-cylinder space, where the field gets
shrunk on the right side of the inner cylinder while
expanding on the left. Similarly, the maximum of the field
in the space enclosed by the inner cylinder departs from
x ¼ 0. When integrating over the whole cylinder this will
be responsible for a force on the inner cylinder.

FIG. 5. Multipoles of order l obtained for a set of displacement
δ ¼ 0.0001; 0.01; 0.023 m from top to bottom.

FIG. 4. Profiles of the field including the monopole correction
for an asymmetric system of two nested cylinders for different
displacements δ of the inner cylinder. The blue line shows the
one-cylinder profile ϕ̄. The green line is the centered two-nested-
cylinder profile. The dotted lines delimit the border of the
cylinders.
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G. Accuracy of the approximation

When solving Eqs. (38)–(39), we neglected the nonlinear
terms in ul—3rd in the rhs of both Eqs. (38) and (39).
Unfortunately, when evaluating them with the solution we
have obtained, we notice that despite the suppression at
high r caused by the powers of δr, they can dominate close to
the inner cylinder. This occurs for multipoles of order l ≥ 2.
To verify the impact of this terms, we solve again the

multipole equations (38)–(39) taking into account the
nonlinear terms that we evaluate with the solution we first
obtained by neglecting them. These terms involve a sum
over all multipoles and we only keep terms up to l ¼ 4
which is justified by the hierarchy of the multipoles
observed on Fig. 5. As expected, this procedure leaves
the monopole and the dipole unchanged, whereas for
higher multipoles there is a subsequent change in their
relative magnitude while their global shape is conserved.
This however has a limited impact on the total field and on
the associated force as we will show that the monopole
and the dipole are the dominant contributions to the force.
The impact lessen for smaller displacement δ. The multi-
pole shown in Fig. 5 take into account these nonlinear
corrections.

V. TWO-DIMENSIONAL CYLINDRICAL
ASYMMETRIC CONFIGURATION: FULL

NUMERICAL COMPUTATION

We can also address the problem of the nested cylinders
by a full numerical 2-dimensional simulation, that will
not rely on the approximations of the previous section.
We follow the same approach as Ref. [28] that uses an
iterative relaxation algorithm which, from an initial guess,
converges slowly to the solution. We apply it to the
2-dimensional chameleon equation

∂2ϕ

∂x2 þ
∂2ϕ

∂y2 ¼ β

MPl
ρðx; yÞ − nϕ−ðnþ1Þ; ð41Þ

which is discretized over a Cartesian 2D mesh by Taylor
expanding to get

ϕiþ1;j − 2ϕi;j þ ϕi−1;j

ðΔxÞ2 þ ϕi;jþ1 − 2ϕi;j þ ϕi;j−1

ðΔyÞ2

¼ β

MPl
ρðxi; yjÞ − nðϕi;jÞ−ðnþ1Þ; ð42Þ

where ϕi;j denotes the field in the cell ði; jÞ of the mesh, Δx
and Δy the resolutions of the mesh along the two axis.
Here, we use a square mesh so thatΔx ¼ Δy. Then, starting
from an initial guess we can iteratively redefine the field
over the mesh as

FIG. 7. Field profile slices for y ¼ 0 for a set of displacement
δ ¼ 0.0001; 0.01; 0.023 m. The shaded zones and the dotted lines
delimit the cylinders.

FIG. 6. Total field maps obtained by summing ϕ̄, ψ0 and the
multipoles for a set of displacement δ ¼ 0.0001; 0.023 m from
top to bottom. The dotted lines delimit the cylinders. The field is
truncated at 1300 eV in this scale.
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Φðkþ1Þ
i;j ¼ ϕðkÞ

iþ1;j þ ϕðkÞ
i−1;j þ ϕðkÞ

i;jþ1 þ ϕðkÞ
i;j−1

4

−
ðΔxÞ2
4

�
β

MPl
ρðxi; yjÞ − nðϕðkÞ

i;j Þ−ðnþ1Þ
�

ð43Þ

where k denotes the iteration. The process thus consists, at
each iteration, in taking the mean value of the field on the 4
closest neighbors to which one subtracts ðΔxÞ2 times the
second member of the equation evaluated with the current
solution. After enough iterations this converges to the
solution as long as the resolution of the mesh is fine
enough. Having a resolution a tenth smaller than the
smallest Compton wavelength of the field in the considered
setup—here λc;in—is sufficient by inspection.
Nevertheless, due to the nonlinearity of the equation,

instabilities can appear. To overcome them we use an
underrelaxation process, by adding a part of the kth
solution in the redefinition the kþ 1th as

ϕðkþ1Þ
i;j ¼ ð1 − ωÞϕðkÞ

i;j þ ωΦðkþ1Þ
i;j ð44Þ

where ω is the overrelaxation parameter that we take as
ω ¼ 0.9 and Φ is defined by the previous equation.
In this method, due to the finite extent of the mesh,

we must set boundary conditions at finite distance unlike
the method used in the previous section. In our case, this
requires the external cylinder to be thick enough for the
field to reach the minimum of its potential, so that the
internal field becomes screened. In our previous work [31],
we showed that for a wall to be safely screened, its
thickness needs to be roughly larger than 100 λc;wall.
Here, for the parameters we consider, due to the limited
computing resources, we have only been able to use a mesh
allowing one to have an external cylinder of thickness
80 λc;wall, which appears to be sufficient.
Note that we are also limited by the facts we need to have

a large enough mesh to treat the boundary conditions
correctly and to have a precise enough mesh to model the
small variations of the field that are more likely to happen
inside the cylinders, which are the very quantity needed to
evaluate the force. This limits us for exploring the chame-
leon parameter space, and makes this method complemen-
tary to the one presented in the previous section. This
problem is less likely to be encountered in Ref. [28] as it
focused on the field variations in the vacuum gaps and thus
could neglect all variations smaller than Δx, which anyway
have a limited impact on the larger scale variations.

A. Results

The results of this method are displayed in Figs. 8 and 9.
This method allows us to simulate larger displacements
than the multipole method. The structure is faithful to the
one observed in the previous section. We observe the
different behaviors for r > 0.6 m, due to the different ways

FIG. 8. Total field maps obtained by a full numerical simulation
for a set of displacements δ ¼ 0.023; 0.225 m from top to bottom.
The dotted lines delimit the cylinders.

FIG. 9. Field profile slices in the plane y ¼ 0 obtained by a
full numerical simulation for a set of displacements δ ¼ 0.023;
0.225 m. The shaded zones and the dotted lines delimit the
cylinders.
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of setting boundary conditions. The departure from cylin-
drical symmetry is more clearly apparent for large δ,
specially on both sides of the inner cylinder testifying of
a more intense force.

B. Comparison of the two methods

With the full numerical method we can treat any
displacements that are larger than the resolution of the
mesh. This overlaps with the previous semianalytical
method and enables us to compare them. To that end,
we must increase the thickness of the external cylinder in
the multipolar method. We are however limited by the
numerical precision, we use a thickness of 0.2 m. Figure 10
compares the first multipoles computed in the previous
section by considering or not the correction of the nonlinear
terms discussed in Sec. IVG to the multipoles extracted
from the 2D simulation.
We observe that, as expected, the nonlinear corrections

have no impact on the monopole and the dipole. And the
agreement is such that the largest difference between the
multipoles obtain by the method amounts to less than a
percent whether we considered nonlinear corrections or
not. For the modes l ¼ 2 and l ¼ 3, without nonlinear
corrections, the multipolar expansion fails at reproducing
the result of the 2D simulation, reaching differences in the
multipoles that represent an error of 69%. Fortunately,
when we consider nonlinear corrections this differences

falls to respectively less than a percent for l ¼ 2 and 9%
for l ¼ 3. This is a very strong confirmation of the validity
of the multipolar approximation. The difference of 9% for
l ¼ 3will be negligible when considering the force exerted
on the inner cylinder, as we shall discuss.

VI. FORCE BETWEEN CYLINDERS

Now, we have all the elements to study the force that the
cylinders are experiencing when shifting the inner one by δ.

A. Definition of the force

The force on the inner cylinder, is obtained by integrat-
ing the fifth force on the cylinder, hence

F ¼ −
β

MPl

Z
∇ϕdm ¼ −

β

MPl
ρinhF ½δ� ð45Þ

with

F ½δ�≡
Z

2π

0

dθ
Z

rþðθÞ

r−ðθÞ
∇ϕrdr: ð46Þ

We denote Fh ¼ F
h. Fh and F only differ by a constant

factor of −βρin=MPl.
Since we assume a displacement along the x-axis, the

y-components on two symmetric elements (i.e., on θ and
2π − θ) are equal and opposite so that

F x ¼ F ; F y ¼ 0: ð47Þ

It follows that

F ½δ�≡
Z

2π

0

dθ
Z

rþðθÞ

r−ðθÞ

�
cos θ∂rϕ −

sin θ
r

∂θϕ

�
rdr: ð48Þ

Replacing the multipolar expansion of the field we obtain

F ½δ� ¼
Z

2π

0

cos θ
Z

rþðθÞ

r−ðθÞ
½ϕ̄0 þ ψ 0

0�rdr

þ
X
l=0

Z
2π

0

eilθ
Z

rþðθÞ

r−ðθÞ

ffiffiffi
δ

r

r ��
u0l −

ul
2r

�
cos θ

− il
ul
r
sin θ

�
rdr: ð49Þ

We see that ϕ̄0 þ ψ 0
0� will contribute to all the multipoles of

the force.

B. Computation of the force

Let us proceed with a series of approximations that will
allow us to get to the full generic expression of the force.
Those approximations turn to be useful to understand the
magnitude of the force.

FIG. 10. Comparison of the multipoles computed by a full
numerical method and the multipolar expansion method with and
without considering terms nonlinear in ul in Eq. (39).
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1. Test inner cylinder

First, we consider that the inner cylinder as a test cylinder
in the sense that its presence does not affect the scalar field
profile inside the cavity. The latter is thus purely dictated by
the outer cylinder, thus is axially symmetric and given by
ϕ̄ðrÞ alone. It follows that the expression (48) reduces to

F jϕ̄½δ�≡
Z

2π

0

cos θdθ
Z

rþðθÞ

r−ðθÞ
ϕ̄0ðrÞrdr: ð50Þ

Now, since

r−ðθÞ≡ Rþ h−ðθÞ ¼ Rþ δ cos θ −
1

2

δ2

R
sin2 θ þ…

and

rþðθÞ≡ Rþ eþ hþðθÞ

¼ Rþ eþ δ cos θ −
1

2

δ2

Rþ e
sin2 θ þ…

where the dots contain terms which are higher powers of
sin2 θ, we split the integral over r as

Z
Rþe

R
−
Z

r−

R
þ
Z

rþ

Rþe
:

Obviously, the first does not depend on θ and gives 0
after angular integration. The other two reduce to
ϕ̄0ðRÞR½rðθÞ − R� and ϕ̄0ðRþ eÞðRþ eÞ½rþðθÞ − R − e�.
When integrating over θ only the linear term in δ survives
so we get

F jϕ̄;lin½δ� ¼ ½ϕ̄0ðRþ eÞðRþ eÞ − ϕ̄0ðRÞR� δ
2
: ð51Þ

In this approximation we can get the force directly from
our the results of our former work [31]. Even though we
assumed staticity, we can write down the equation of
motion for the inner cylinder as mδ̈ ¼ F so that

δ̈þ β

2πMp

�
ϕ̄0ðRþ eÞðRþ eÞ − ϕ̄0ðRÞR

ð2Rþ eÞe
�
δ ¼ 0;

i.e we expect a typical pulsation of order

ω2 ¼ β

2πMp

�
ϕ̄0ðRþ eÞðRþ eÞ − ϕ̄0ðRÞR

ð2Rþ eÞe
�
: ð52Þ

Note that this does not assume that ω2 is positive. If the
slope of F ½δ� is positive then the force destabilizes the
system and ω has to be thought as the inverse of a
stability time.

Table I summarizes the force for different δ by the
integration of ϕ̄ through both Eqs. (50)–(51), with or
without the linear approximation. Both methods reproduce
the same order of magnitude. We conclude that the force is
positive so that the fifth force destabilizes the system of
cylinders.

2. Inner cylinder with radial backreaction

To go one step further, we consider the change of
the profile of the field induced by the inner cylinder but
neglect the l ≠ 0 modes so that ψ0ðrÞ is taken as the
symmetric configuration when δ ¼ 0. It follows that the
expression (48) reduces to

F jϕ̄þψ0
½δ�≡

Z
2π

0

cos θdθ
Z

rþðθÞ

r−ðθÞ
½ϕ̄0ðrÞ þ ψ 0

0ðrÞ�rdr: ð53Þ

This leads us to a similar computation as the previous one
with a modified profile

F jϕ̄þψ0;lin½δ� ¼ ½ðϕ̄0 þ ψ 0
0ÞðRþeÞðRþ eÞ − ðϕ̄0 þ ψ 0

0ÞRR�
δ

2
:

ð54Þ

Table II contains the values of the force applied to the
inner cylinder corrected by the back reaction contribution
of ψ0, again by integrating it with or without the linear
approximation for the force. Now for all δ, the force is
negative and the linear approximation fails to give the
correct force by one order of magnitude. It shows that the

TABLE I. Magnitude of the force and of the associated
(inverse) of the stability time defined in Eq. (52) in the inner
cylinder test approximation.

δðmÞ jFhjϕ̄jðN:m−1Þ jFhjϕ̄;linjðN:m−1Þ jωjðrad:s−1Þ
10−6 9.57 × 10−11 3.57 × 10−11 1.18 × 10−4

10−4 9.57 × 10−9 3.57 × 10−9 1.18 × 10−4

10−2 9.57 × 10−7 3.57 × 10−7 1.18 × 10−4

0.023 2.20 × 10−6 8.21 × 10−7 1.18 × 10−4

TABLE II. Magnitude of the force and of the associated
pulsation taking into the cylindrically symmetric backreaction.
To be compared to Table I. Note the change of sign in the force
that shows the stabilizing effect of the monopole.

δðmÞ jFhjϕ̄þψ0
jðN:m−1Þ jFhjϕ̄þψ0;linjðN:m−1Þ jωjðrad:s−1Þ

10−6 −2.71 × 10−9 −3.20 × 10−10 3.54 × 10−4

10−4 −2.80 × 10−7 −3.20 × 10−8 3.54 × 10−4

10−2 −2.18 × 10−5 −2.87 × 10−6 3.35 × 10−4

0.023 −3.55 × 10−5 −5.76 × 10−6 3.13 × 10−4
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monopole induces a stabilizing force, as can actually be seen directly from Fig. 4 on which it can clearly be seen that the
gradient of the scalar field becomes positive.

3. Generic case

The general expression (49) includes the sum

X
l

Z
2π

0

eilθ
Z

rþðθÞ

r−ðθÞ

ffiffiffi
δ

r

r ��
u0l −

ul
2r

�
cos θ − il

ul
r
sin θ

�
rdr: ð55Þ

Again in the small δ limit, this can be computed by splitting the integral over r as

cos θ
Z

Rþe

R

ffiffiffi
δ

r

r �
u0lðrÞ −

ulðrÞ
2r

�
rdr − il sin θ

Z
Rþe

R

ffiffiffi
δ

r

r
ulðrÞdrþ cos θ

Z
RþeþhþðθÞ

Rþe

ffiffiffi
δ

r

r �
u0lðrÞ −

ulðrÞ
2r

�
rdr

− il sin θ
Z

RþeþhþðθÞ

Rþe

ffiffiffi
δ

r

r
ulðrÞdr − cos θ

Z
Rþh−ðθÞ

R

ffiffiffi
δ

r

r �
u0lðrÞ −

ulðrÞ
2r

�
rdrþ il sin θ

Z
Rþh−ðθÞ

R

ffiffiffi
δ

r

r
ulðrÞdr:

Hence, F is obtained by integrating over θ the following expression

eilθ cos θ
Z

Rþe

R

ffiffiffi
δ

r

r �
u0lðrÞ −

ulðrÞ
2r

�
rdr − ileilθ sin θ

Z
Rþe

R

ffiffiffi
δ

r

r
ulðrÞdr

þ eilθ cos θhþðθÞ
� ffiffiffi

δ

r

r �
u0lðrÞ −

ulðrÞ
2r

�
r
�

r¼Rþe
− ileilθ sin θhþðθÞ

� ffiffiffi
δ

r

r
ulðrÞ

�
r¼Rþe

− eilθ cos θh−ðθÞ
� ffiffiffi

δ

r

r �
u0lðrÞ −

ulðrÞ
2r

�
r

�
r¼R

þ ileilθ sin θh−ðθÞ
� ffiffiffi

δ

r

r
ulðrÞ

�
r¼R

: ð56Þ

The first two terms have a contribution of l ¼ �1 which
scales as

ffiffiffi
δ

p
. The terms in δ cos θ in h� leads to terms linear

in δ for l ¼ 2. Then higher multipoles arise from the shape
h�ðθÞ. Basically we will have a series with terms scaling as
½δ2 sin2ðθÞ�p each of which will involve multipoles up to
l ¼ 2pþ 1 and each term is a higher power of δ2. This
is good news since it better justifies the approximation
scheme.
The expected tendency, deduced from our analytical

analysis, that the contributions decrease with l is numeri-
cally confirmed. Table III shows the force computed for
each multipole, as shown in Fig. 5, up to l ¼ 4, i.e., the
contribution to the force resulting from the integration of
Eq. (55) jFhjulþu−l j compared to the integration of Eq. (56)
jFhjulþu−l;linj in the linear approximation. In both cases the
multipole l contains the contribution of ul and u−l to get a
real-valued quantity. We observe, as expected, that the
magnitudes of the multipoles decrease with higher l. This
decrease is slower than what expected in the linear
approximation of Eq. (56). For small δ, we can consider
that only the dipole contributes significantly to the total
force. For larger δ the contributions are more balanced, but

still, the multipoles with l > 2 can be neglected. In any
case, the main contribution to the force are the monopole
and dipole of the field and none can be neglected.

TABLE III. Magnitude of the first multipoles of the force taking
into account nonlinearities (top) and in the linear approximation
(bottom).

jFhjulþu−l jðN:m−1Þ
δðmÞ l ¼ 1 l ¼ 2 l ¼ 3 l ¼ 4

10−6 2.75 × 10−9 1.14 × 10−16 … …
10−4 2.74 × 10−7 9.77 × 10−11 1.29 × 10−11 …
10−2 2.11 × 10−5 8.71 × 10−7 1.11 × 10−7 7.40 × 10−9

0.023 3.12 × 10−5 4.27 × 10−6 5.42 × 10−7 3.65 × 10−8

jFhjulþu−l;linjðN:m−1Þ
δðmÞ l ¼ 1 l ¼ 2 l ¼ 3 l ¼ 4

10−6 2.74 × 10−9 5.06 × 10−17 … …
10−4 2.74 × 10−7 5.06 × 10−11 1.16 × 10−15 …
10−2 2.41 × 10−5 6.80 × 10−7 1.16 × 10−10 7.49 × 10−23

0.023 4.67 × 10−5 3.28 × 10−6 2.44 × 10−9 0
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C. Dependance of the total force on δ

We can now gather all the different contributions and
calculate the total force on the inner cylinder. Figure 11
depicts how it behaves with δ. The sum on l is truncated to
l ¼ 2 included. The force is repulsive and linear in the
displacement. The force obtained by both methods have
been compared: there is an overlap for δ between 10−3 and
2.10−2 m, where both methods agree. At each limit of this
interval, each method starts to show some of its limits by
departing from linearity. For the full numerical method, it is
due to the fact that the mesh is too coarse compared to δ.
For the multipolar method, it is due to the fact that some
higher nonlinear terms we have not considered become
non-negligible for large δ. Nevertheless, both method are
consistent and show the same global linear behavior and
magnitude. The linearity of the force occur for δ≲ 10−1 m
and have linear stiffness of kh ¼ −3.10−5 N:m−2—
assuming the convention F ¼ −kδ, and kh ¼ k=h.
These results can also be compared with the one-

dimensional simulation of asymmetry from Sec. III. To
be comparable to this cylindrical case, we consider a 4-wall
configuration where the two internal walls move together.
We compute the acceleration experienced by respectively
the twowalls and the internal cylinder. Figure 12 shows that
both cases are in excellent agreement. The linearity of the
force occurs for the same range of δ and the departure from
linearity for large δ are very much similar. The magnitude
of the accelerations using both methods differ by a factor
smaller than 2, so that the cylindrical geometry does not
bring any major additional contribution to the force—it
even lowers it slightly.

D. Total force variation with β and λ

Let us investigate the dependence of this fifth force on
the chameleon parameters β and Λ. We run the multipolar
method for different parameters for δ ¼ 10−6 m, and
compare kh that we estimate as the linear slope of FðδÞ.
Table IV summarizes the values of kh obtained for

different couples of parameters ðβ;ΛÞ. For each kh, the
sum of the multipole contribution is truncated at l ¼ 2
as the next contribution are negligible. Figure 13 shows
graphically its variation with β for Λ ¼ 1 eV, and with Λ

TABLE IV. Dependence of the slope per unit of length of the cylinder, kh ¼ −F=ðhδÞ, of the pressure with the
parameters β and Λ of the chameleon model.

Λ

kh N:m−2 0.4 1 3 5 10

β 0.01 6.72 × 10−10 2.81 × 10−10 2.31 × 10−10 2.26 × 10−10 2.24 × 10−10

0.1 1.25 × 10−6 5.13 × 10−7 3.91 × 10−8 3.01 × 10−8 2.65 × 10−8

1 5.55 × 10−6 3.78 × 10−5 1.69 × 10−4 3.67 × 10−5 5.55 × 10−6

4 4.37 × 10−5 8.78 × 10−5 8.85 × 10−4 2.20 × 10−3 1.57 × 10−3

10 … 3.03 × 10−4 1.41 × 10−3 4.46 × 10−3 1.51 × 10−3

FIG. 11. Total linear force as a function δ. The blue line refers
to the result of the multipolar expansion method while the red line
is the result of the full numerical simulation. The green line is a
linear model fitted on the two first points.

FIG. 12. Acceleration experienced by the inner cylinder of a
2-cylinders configuration computed by the multipolar expansion
method blue) and the full numerical simulation (red). The green
line represents the acceleration experienced by the two central
wall of a 4-wall configuration, i.e., of the analog 1-dimensional
problem.
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for β ¼ 1. The force increases with β and exhibits a
maximum along the Λ-axis, that flattens for small values
of β. Notice that the behavior of the stiffness is similar for
the 1-dimensional case of 4-walls. This behavior is inter-
esting considering screening. The cylinders indeed tend to
be screened for large β and small Λ, as the Compton
wavelength decreases. The behavior of the force shows that
it can still be relevant even when the system of cylinders
is screened—β large. This is promising as this could still
lead to a detectable internal effect even when screening
occurs, i.e., when externally sourced effects are shielded,
see Ref. [31].

E. Dependence on the geometry

For now, we have fixed the geometry with specific sizes
of cylinders, gaps, and matter densities. Varying these
parameters will indeed change the value of the force and its
stiffness, as well as shifting the sensitivity curves displayed
in Fig. 13.

1. Effect of the densities

In most experiments, the vacuum density is much smaller
than the one used in our analysis. Here, we estimate how
this impacts the force by varying the density of the
intercylinder vacuum. Figure 14 shows the result for a
displacement δ ¼ 10−6 m—for higher δ, the curve remains
similar. The intercylinder vacuum density is expressed as a
multiple of the cylinder density ρin, which we keep fixed.
So far we used ρvac=ρin ¼ 10−3.
We observe that on the one hand, improving the vacuum

quality leaves unchanged the magnitude of the force.
This is due to the fact that the field is in fact unchanged
in the intercylinder and exterior regions. When lowering
ρvac the associated Compton wavelength stretches such that
the field has less room to vary, but the associated minimum
of the potential ϕ� gets stretched at the same time. These

two effects compensate so that the profile and the force
remains unchanged. On the other hand, when worsening
the vacuum quality the force gets exponentially suppressed.
This occurs when the Compton wavelength associated to
ρvac becomes of same order of magnitude as the intercy-
linder gap, as then the field has enough room to reach its
minimum so that the previous argument is no longer
valid. The force becomes null when the vacuum density
equals the density of the cylinders. This is natural as, in this
case, the system can be considered as a solid cylinder in
which the field is flat and equal ϕ�ðρinÞ deeply inside the
cylinder at the level of where the inner cylinder was. This
confirms that everything we obtained previously with
ρvac=ρin ¼ 10−3 is directly transposable to case of a better
vacuum quality.

2. Scaling of the geometry

Considering smaller scales in the geometry by reducing
the sizes of the cylinders and the gaps would also affect the
force. The scaling mentioned in Eq. (12) should give us the
answer to this question. Indeed, it gives a correspondence
between two geometries with constant matter densities, as
long as the chameleon parameters are changed accordingly.
This can be generalized to a scaling of the type

x → x0 ¼ αxx;

Λ → Λ0 ¼ αΛΛ;

β → β0 ¼ αββ;

ϕ → ϕ0 ¼ αϕϕ

ρ → ρ0 ¼ α3ρρ; ð57Þ

keeping the Planck mass unchanged. In order for the field
equation to be unchanged, we need to impose that

FIG. 13. Dependence of the chameleon stiffness kh to β and Λ
for Λ ¼ 1 eV and β ¼ 1 respectively.

FIG. 14. Evolution of the force with the intercylinder vacuum
density while the cylinder density is kept fixed, for δ ¼ 10−6 m
and n ¼ 2, β ¼ 1, Λ ¼ 1 eV.
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αϕ ¼ αβα
3
ρα

2
x; and αnþ2

ϕ ¼ α4þn
Λ α2x: ð58Þ

Hence, Eq. (12) corresponds to αρ ¼ 1, αΛ ¼ αϕ ¼ α,
αx ¼ 1=α and αβ ¼ α3. It follows that the masses of the
cylinders scale as m → m0 ¼ α3ρα

3
x m. Since the force is

given by Fh ¼ − β
MPl

m
h ∇xϕ, it follows that it scales as

F → F0 ¼ αβα
3
ραxαϕF;

and that, given the constraint (58) the profile of the field is
obtained from a simple rescaling as the Klein-Gordon
equation remains unchanged, up to a general conformal
factor. Hence, in the particular case of Eq. (12), F0 ¼ α3F.
This tells us that small systems are more likely to provide
detectable forces since shrinking all physical dimensions
by a factor α (keeping the same materials; αρ ¼ 1) would
increase the force by a factor α3. On the other hand, this
corresponds to another theory as β has also been changed.
It follows that the dependence of the force on β and Λ is
impacted accordingly so that the curves of Sec. VI D should
be shifted along the β- and Λ-axis in a way consistent with
the above scaling relations. All these scalings have been
checked using our simulations.

VII. CONCLUSIONS

This article investigated the fifth force that arises on the
detector of a gravity experiment, in the case of chameleon
models. As the profile of the scalar field is affected by the
local matter density, this requires us to determine solutions
of the Klein-Gordon equation inside the instrument. To that
goal, we modeled the accelerometer in the simplest way as
two nested cylinders. We then extended our previous work
[31] to take into account the fact that the cylinders may
move, violating the axial symmetry, and hence creating a
nonvanishing fifth force on the cylinders.
The computation of this force requires full numerical

simulations but we estimated its magnitude and depend-
ence on the geometry and the parameters of the model by
first assuming that the cylinders are infinite. In such a
situation, the Newton force between the two cylinders
vanishes exactly. First, we considered an analog
1-dimensional model with 2 parallel walls containing a
third wall that can move from its central position. Then,
we explored the case of 2 infinite nested cylinders. We
developed a semianalytic method based on a multipolar
expansion of the field. It allowed us to solve the Klein-
Gordon equation iteratively. While the hierarchy of equa-
tions for the multipoles is a coupled system due to the
nonlinearity of the chameleon model, we showed that they
decoupled for small displacement. We thus solved these
equation numerically, first in the linear approximation and
then with the first nonlinear term, and compared them with
the profiles obtained from a full numerical simulation using
a finite difference relaxation method. The two approaches

are complementary and agree perfectly inside their
common domain of applicability.
In all the cases studied, 1- or 2-dimensional, the force is

linear in the displacement, as long at it is small compared to
the radius of the cylinders. The fifth force is repulsive so
that it does not stabilize the system by restoring the
symmetry. Interestingly, the accelerations induced by this
force in 1 or 2 dimensions are in very good agreement,
testifying that there is no significant effect created by the
cylindrical geometry. Then, we studied the dependence of
this force on the chameleon parameters. We mainly showed
that the force was increasing with β leading to the
conclusion that one could expect detectable effects even
when the cylinders are screened. We exhibited some scaling
relations between the geometry and the parameters of the
model and explored the sensitivity of the force to geomet-
rical parameters. Two features have been explored: (1) we
showed that the force was constant regardless of the
magnitude of the density in the vacuum of the intercylinder
gaps as long as this density is small enough, i.e., the
Compton wavelength of the field in vacuum is smaller than
the sizes of the gaps. This makes all our results valid for
realistic densities of vacuum. Finally (2) we showed that
reducing the size of the cylinders simultaneously would
affect the force in such a way that dividing them by a factor
α would multiply the force by a factor α3, leading to forces
more likely to be detectable for smaller system.
While this analysis gives a first insight on the effect

of a chameleon fifth force on a space detector with a
geometry close to the MICROSCOPE accelerometer, it is
still simplified. First it assumes infinite cylinders. Indeed,
with finite cylinders one expects edge effects which would
require full 3-dimensional simulations. Besides, while the
Newtonian force is strictly zero for 2 infinite nested
cylinders, it will be nonvanishing for finite cylinders.
This study allows us to control such simulations in the
limits h=R ≫ 1. Then, we assume that the configuration of
cylinders is static. While this is fine to compute the fifth
force, it may not be adapted for a dynamical analysis. Such
an analysis would require to study the relaxation of the field
when the inner cylinder is moving and would challenge the
hypothesis of a frozen field. Nevertheless, our formalism
paves the way to study the effects of a chameleon fifth
force on the detector of gravity experiments such as the
MICROSCOPE mission. An application to this experiment
will be presented, with more faithful geometrical param-
eters, in a follow-up article [32].
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APPENDIX: COMPUTATION OF IlðrÞ
To obtain Eq. (35), we need to compute integrals of eilθΞ

that contains terms like

IlðrÞ ¼
Z

dθ
2π

H½r − fðθÞ�eilθ

whereH is the Heaviside function and f stands for r− or rþ.
At constant r, the equation r ¼ fðθÞ has then 2 opposite

solutions in θ as fðθÞ is the polar equation of a circle of
radius R displaced of δ. These solutions exists only when
r ∈ ½R − δ; Rþ δ� and are given by

cos ϑðrÞ ¼ r2 þ δ2 − R2

2δr
; ðA1Þ

for which we keep only the positive root, the second
being −ϑðrÞ. Then it is clear that H½r − fðθÞ� ¼ 1 for
θ ∈ ½−ϑðrÞ; ϑðrÞ� so that

IlðrÞ ¼
Z

−ϑðrÞ

ϑðrÞ

dθ
2π

eilθ

and thus

IlðrÞ ¼ −
sinlϑðrÞ

πl
:

It follows thatZ
Ξ½r; r−ðθÞ; rþðθÞ�e−ilθ

dθ
2π

¼ sinlϑþðrÞ
πl

−
sinlϑ−ðrÞ

πl

ðA2Þ

from which we deduce thatZ
Ξ½r; r−ðθÞ; rþðθÞ�

dθ
2π

¼ ϑþðrÞ − ϑ−ðrÞ
π

: ðA3Þ
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