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Abstract In the frame of the project MORA (Matter’s Origin from the Radio Activity of trapped and
oriented ions), a transparent axially symmetric radio-frequency ion trap (moratrap) was designed in order
to measure the triple correlation parameter D in nuclear β−decay of laser-polarised ions. The trap design
was inspired from the lpctrap geometry, operated at GANIL from 2005 to 2013. In a real (non-ideal) Paul
trap, the quadrupole electric potential is not perfect leading to instabilities in ion motion and therefore
affecting the overall trapping efficiency. This paper presents a numerical method aiming to optimise the
geometry of a trap. It is applied to moratrap in order to improve the trapping efficiency and to enlarge
the axial transparent solid angle compared to lpctrap. In the whole optimisation process, numerical
computation of electric potential and field was carried out using an electrostatic solver based on boundary
element method (BEM). The optimisation consisted in minimising an objective function (fitness function)
depending on higher order multipoles of the potential. Finally, systematic changes of trap dimensions and
electrode displacements were applied to investigate geometrical effects on the potential quality.

PACS. Paul trap, Spherical harmonics, Laplace’s solver, Boundary element method

1 Introduction

Precision measurements in nuclear β−decay provide a re-
markable tool to improve the accuracy of Standard Model
(SM) parameters and to search for New Physics (NP) be-
yond, at the low energy frontier [1]. In particular, the
search for new sources of CP (Charge Parity) violation
is one of the requirements to explain the matter−anti-
matter asymmetry observed in the universe, according to
Sakharov’s criteria [2]. This search can be achieved in nu-
clear β−decay by measuring the triple correlation between
the parent nucleus spin (J), electron momentum (pe), and
neutrino momentum (pν): D 〈J〉 · (pe × pν). This triple
correlation is sensitive to T (Time) reversal violation and
thus to CP violation thanks to CPT conservation. Such
a violation would be quantified by a non-zero D value,
experimentally determined from an asymmetry in the β-
recoil angular distribution measured in a plane perpen-
dicular to J for two opposite directions of this nucleus
orientation. In this context, the new project MORA [3]
aims to measure the triple-correlation D coefficient in the
β-decay of laser-polarised 23Mg+ and 39Ca+ ions confined
in a Paul trap applying a quadrupole radio frequency (RF)
field. The use of Paul traps is considered as an innovative
technique in precision measurements of correlation coeffi-

a e-mail: benali@lpccaen.in2p3.fr
b e-mail: quemener@lpccaen.in2p3.fr

cients in nuclear β−decay in the SM framework [4,5]. One
example is the transparent Paul trap lpctrap used in the
measurement of the β − ν correlation coefficient, aβν , in
the decay of different nuclei [6–9].

The central element of the MORA apparatus is a trans-
parent Paul trap (moratrap), which will be used to con-
fine singly charged radioactive ions, coupled to a laser sys-
tem allowing to polarise the nucleus by optical pumping.
As shown in Fig. 1, moratrap, which will be installed in
a vacuum chamber, is surrounded by four pairs of elec-
tron and recoil ion detectors arranged alternately in an
octagonal geometry in the azimuthal plane of the trap
and allowing close to 2π azimuthal coverage. Two annular
silicon detectors (not visible on the figure) located on the
trap axis will monitor the polarisation degree thanks to β
asymmetry measurement.

The RF potential generated in the trapping volume or
region of interest (ROI) is not perfectly a quadrupole but
contains some small amplitude, higher order electric multi-
pole components which disturb the ion’s motion. Since the
potential in the ROI depends on the electrodes shape and
on the applied voltages, an optimisation of the trap geom-
etry is mandatory to reduce the higher order harmonics
and to generate an optimised quadrupole potential.

In this work, we will describe an efficient method to
optimise the moratrap geometry, using two electrostatic
solvers developed at LPC Caen. Our trap is a three dimen-
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Figure 1. moratrap setup overview showing the location of
the ion trap in the centre surrounded by 4 beta detectors
(Phoswich) and 4 recoil ion detectors (MCP).

sional transparent Paul trap, inspired from the lpctrap
geometry, where the electrodes have been modified from
an ideal Paul trap to allow the detection of β− decay prod-
ucts in a large solid angle around the azimuthal plane and
obtain an efficient injection of the ion bunches. By optimis-
ing the geometry, we aim to reach a quadrupole potential
of higher quality, to minimise the ion losses from the trap
and to increase the trapping lifetime and the space charge
capacity. Such improvements are mandatory to reach the
statistics required in the MORA experiment to search for
NP.

The potential of an ideal Paul trap is commonly de-
fined in cylindrical (r, z) coordinates as:

Videal(r, z, t) = V0 cos(Ωt)
r2 − 2 z2

2 r2
0

, (1)

where V0 is the amplitude of the RF voltage, Ω = 2πf
its pulsation, and r0 a distance parameter. 3D Paul traps
usually approximate the ideal Paul trap by using elec-
trodes consisting of one ring and two end caps, whose sur-
faces form truncated hyperboloids (see for example Fig. 1
in [9]). In such a configuration, r0 is the distance of the
ring surface to the centre of the trap. In geometries which
significantly depart from the ideal trap, one can define
an effective trapping radius reff which contains the region
where the quadrupole field still sufficiently dominates, so
that ion trajectories are still stable in standard conditions
defined for the ideal potential. This region is defined in [9]
as the region for which the contribution to the potential
from harmonics of higher order than the quadrupole one,
are still below a few percents. The conditions for stability
of an ion of mass m and charge q in an ideal Paul trap,
in the absence of DC field, are defined with respect to the
Mathieu parameter qz:

qz =
4 q V0

mr2
0 Ω2

. (2)

In the first stability region, |qz|< 0.908 [10]. In the pseudo-
potential approximation limit, valid for small qz values,
one can define a pseudo-potential depth Dz (resp. Dr) for
the z (resp. r) dimension:

Dz =
qz V0

8
= 2Dr. (3)

In this model, the maximal charge density ρmax the Paul
trap can hold is

ρmax =
3 ε0Dz

z2
0

, (4)

where ε0 is the vacuum permittivity and z0 = r0/
√

2 is
the distance of the end caps from the trap centre. From
Eqs. (2) to (4) and considering the fact that experimen-
tally one usually fixes a Mathieu parameter in the middle
of the stability diagram qz ' 0.4 [9], the maximal charge
capacity Qmax a trap can hold directly relates to the prod-
uct r0V0 via the formula:

Qmax =
1

2
πε0qzr0V0 (5)

in the case of an ideal trap, and

Qmax =
1

2
πε0qzreffVeff (6)

in the case of a Paul trap with a limited quadrupole re-
gion of radius reff , where Veff = V0

r2eff
r20

is the maximum
potential at the radius reff . In order to optimise the charge
capacity of the trap for the MORA experiment, the opti-
misation procedure presented in this article therefore aims
at enlarging the trapping region, of radius reff , given some
space constraints on the size of the trap.

Sec. 2 presents the electrostatic solvers necessary to
compute the potential from an electrode set and Sec. 3 in-
troduces the harmonics series expansion describing this
potential, solution of Laplace’s equation. Sec. 4 details
the objective function used in the optimisation procedure
whose results are presented and commented in Secs. 5 and
6. Finally, the effects of electrode misalignment on the po-
tential quality are investigated in Sec. 7.

2 Laplace’s solver

The shape of the electric potential generated within a trap
depends on both the electrode geometry and their corre-
sponding applied voltages. In order to estimate and op-
timise this potential, it needs to be accurately computed
within the ROI (the trapping region). This is achieved
by solving Laplace’s equation in this ROI. For that pur-
pose, the most common approaches use either the finite
element method (FEM) or the finite difference method
(FDM) which require to mesh both the electrodes and the
free space volume. For our study, we have used a home
made C++ Laplace’s solver based on the boundary ele-
ment method (BEM). This solver has been developed by
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one of us and thoroughly validated with analytic examples
and expensive commercial software like simion (FDM) or
comsol (FEM). Compare to FEM and FDM, BEM ex-
hibits several advantages: it only requires to mesh the sur-
face of the electrodes and is thus able to achieve higher
precision with less computation time and memory require-
ments. This is especially true for geometries involving elec-
trodes with large aspect ratios (e.g. a very thin thickness
for very large length and width) for which the 3D meshing
quality would require special care. In addition, BEM can
easily deal with open systems as the boundary conditions
are inherent to the formalism.

Even if our BEM program also handles dielectric mate-
rials, in order to simplify its description, here we shall only
concentrate on sets of electrodes with applied voltages.
A setup is described by Ne electrodes each represented
by its surface. The surface of electrode e (e ∈ [1, Ne]) is
meshed in ne flat polygonal cells (triangles, quadrangles,
...). The full setup is therefore represented by the set of
cells C = {Ci : i ∈ [1, N ]} where N =

∑Ne
e=1 ne is the total

number of cells, each with an a priori unknown associated
surface charge density σi assumed constant over the cell
surface. The ne cells of electrode e obviously share the
same potential applied on the whole electrode. The po-
tential Vi of cell Ci centred at position ri is related to the
surface charge densities σj of cells Cj (j ∈ [1, N ]) through
the superposition principle as:

Vi =

N∑
j=0

σj
4πε0

∫
Cj

1

‖ri − r′‖
d2r′ =

N∑
j=0

Qij σj , (7)

where the integral over the surface of cell Cj only depends
on Cj shape and on the relative position of the target point
ri with respect to Cj location, as σj is assumed constant
over the whole surface of cell Cj . An analytic formula has
been derived for the integral in Eq. (7). This formula is too
complicated to be discussed here and shall be published in
a separate article, but it should be emphasised that special
care has been taken to suppress numerical instabilities in
its evaluation especially when i = j where numerical di-
vergence may occur. Eq. (7) can be written for each cell
Ci, leading to the following set of N equations:

V1

V2

...
VN

 =


Q1,1 Q1,2 · · · Q1,N

Q2,1 Q2,2 · · · Q2,N

...
...

. . .
...

QN,1 QN,2 · · · QN,N



σ1

σ2

...
σN

 , (8)

where Vi are the known potentials applied on electrodes
and σi, i ∈ [1, N ] are the unknown surface charge densities.
The matrix elements Qij are computed for a given elec-
trode assembly/geometry leading to a dense square matrix
on the contrary to FEM and FDM which deal with sparse
matrices of much larger dimensions. The presence of a
dense matrix requires special algorithms to solve Eq. (8)
for the σi: a direct solver such as LU decomposition can
be used to obtain an exact solution or an approximated
solution can also be computed more rapidly with iterative
solvers such as CMRH [11]. Once the charge densities have

been determined, the potential and field components can
be evaluated at any location r in space without interpola-
tion contrary to the FEM and FDM approaches:

V (r) =

N∑
i=0

σi
4πε0

∫
Ci

1

‖r− r′‖
d2r′ (9)

E(r) =

N∑
i=0

σi
4πε0

∫
Ci

r− r′

‖r− r′‖3
d2r′ (10)

As for Eq. (7), integrals in Eqs. (9) and (10) are analyti-
cally evaluated over the surface of each cell.

For our studies we have used two versions of the solver:
a full 3D solver, called electrobem, and a derived ver-
sion, axielectrobem for axially symmetric problems1.
In electrobem, a complex 3D setup can be modelled
with a thorough set of geometric functions handling pre-
defined shapes (flat polygons, ring, cylinder, cone, torus,
...), rotations, translations and symmetry planes as well
as fine tuning of mesh properties. This last point is cru-
cial for the precision of the solution. The software can also
import pre-computed meshes from the open source, reli-
able and user friendly gmsh software [12]. Both gmsh and
root [13] may be used to display the geometry. Electric
potentials are applied to electrodes and then, once the
electrostatic problem has been solved, a complete set of
plotting/mapping functions allows to display and/or ex-
port the potential and field components in 1D, 2D and
3D as illustrated for instance in Figs. 2 and 3. In axi-
electrobem, any shape axially symmetric around z-axis
can be simulated by predefined shapes or by functions
(r = f(z)). The meshing is done along longitudinal z−axis
and radial r−axis. In this version, the number of cells nec-
essary to model a given axisymmetric setup is substan-
tially smaller than it would be in the 3D version for the
same geometry, resulting in a much smaller computation
time. axielectrobem is thus particularly well suited for
the optimisation of the axially symmetric moratrap and
was used in a first phase of our study, whereas the 3D ver-
sion served in a second phase to estimate the effects, on
the trapping potential quality, of possible mechanical mis-
alignment or machining precision which break the setup
axisymmetry. Depending on the version, 2D or 3D, the
potential inside the trap is expanded differently in terms
of multipole coefficients, as shown in next section and in
appendix A.

3 Laplace’s equation: spherical harmonics
series expansion

In a source-free region, i.e. in the absence of charges, the
electric potential satisfies Laplace’s equation ∆V (ρ, θ, ϕ) =
0 with (ρ, θ, ϕ) being the usual spherical coordinates. The
solution of this equation [14], may be expressed in terms

1 In axisymmetric problems, the matrix elements Qij and
other surface integrals are computed differently making use of
complete elliptic integrals.
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Figure 2. gmsh cross section view of moratrap showing
the electrodes along with iso-potential lines obtained with
electrobem. The trap consists of three ring electrode pairs
(R1 − R2, R3 − R4 and R5 − R6) surrounded by two Einzel
lens triplets (E1 −E3 and E4 − E6). A more detailed descrip-
tion is given in Sec. 5. The thin black lines on the electrodes
delimit the perimeter of the polygonal cells used to solve the
electrostatic problem.

Figure 3. root view of the potential along moratrap axis
(r = 0) computed in axielectrobem for 60 V applied on
inner electrodes R1 and R2, all other ones being grounded.

of a uniformly convergent Laplace series also known as
spherical harmonics series expansion in the following way:

V (ρ, θ, ϕ) =

∞∑
n=0

n∑
m=0

√
2n+ 1

4π

(n−m)!

(n+m)!

(
ρ

R0

)n
Pmn (cos θ)

× [αnm cos(mϕ)− βnm sin(mϕ)]

=

∞∑
n=0

n∑
m=0

(
ρ

R0

)n
Pmn (cos θ)

× [Anm cos(mϕ)−Bnm sin(mϕ)] , (11)

where Pmn (cos θ) are the associated Legendre functions of
the first kind, of degree n and order m, and Anm (resp.
Bnm) are the normal (resp. skew) spherical harmonics co-

efficients (αnm and βnm being the corresponding unnor-
malised harmonics). R0 is the convergence radius of the
above series expansion, it must be smaller than the dis-
tance between the origin (ρ = 0) and the closest electrode:
the region of convergence or the ROI must remain a source
free region.

In axisymmetric cases with azimuthal symmetry, the
potential does not depend on the ϕ angle and therefore
we only keep terms with m = 0 in the above expansion.
Dropping the m index and the ϕ dependence, Eq. (11)
reduces to:

V (ρ, θ) =

∞∑
n=0

αn

√
2n+ 1

4π

(
ρ

R0

)n
Pn(cos θ)

=

∞∑
n=0

An

(
ρ

R0

)n
Pn(cos θ) (12)

with Pn(cos θ) the Legendre polynomial of degree n and
An the harmonic coefficient of order n (αn is the corre-
sponding unnormalised harmonics). A0 is a constant term
for the potential and therefore it does not appear in the
field components which enter the ion equations of motion.
A1 is called the dipole harmonics, A2 the quadrupole one
and so on for higher orders. The harmonics A2k+1 with
k = 0, 1, 2, . . . are said to belong to the dipole series
whereas harmonics A4k+2 with k = 0, 1, 2, . . . are said
to belong to the quadrupole series. Because of symmetry
reasons, a potential exhibiting a quadrupole behaviour, is
more likely to have harmonics from the quadrupole se-
ries (A2, A6, A10, . . . ) dominant over other higher order
terms. One should also notice that the general trend of
An is to decrease with increasing n and that the contribu-
tion from An to the potential is weak close to the origin
and increases as ρn. If, in addition to the axial symme-
try, a setup exhibits a symmetry plane at z = 0, then
only harmonics An with even order n will be present in
the expansion. The harmonic coefficient An is obtained by
integration over the sphere S of radius R0 by:

An =
2n+ 1

4π

∫ 2π

0

dϕ

∫ π

0

Pn(cos θ) V (R0, θ) sin θ dθ.

(13)
After integration over ϕ, and assuming a symmetry plane
at z = 0, An becomes:

An = (2n+ 1)

∫ π
2

0

Pn(cos θ) V (R0, θ) sin θ dθ. (14)

In order to determine the An coefficients for a given elec-
trode configuration, Eq. (14) is numerically integrated us-
ing a 64-nodes Gauss-Legendre quadrature with the po-
tential V (R0, θ) calculated on the circle of radius R0 at
the Gauss-Legendre nodes (θi) using the BEM solver de-
scribed in previous section. The extracted harmonic spec-
trum {An} will then be used in the minimisation proce-
dure of an objective function to optimise the trap geome-
try. A similar approach, combined with FFT (Fast Fourier
Transform), is used in 3D to determine the harmonics Anm
and Bnm, but a sphere of radius R0 is used instead of a
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circle to sample the potential V (R0, θ, ϕ). The potential
is determined on a θ−ϕ grid of 180×360 = 64800 points.

Let us now introduce the objective function used in
this study.

4 Objective function

As already mentioned, an ideal Paul trap requires a pure
quadrupole potential, i.e. A2 as large as possible while
An = 0 ∀n > 2. In practice, this is almost impossible
to achieve and higher order harmonics are present in the
potential. The present study aims at optimising the ge-
ometry of the moratrap electrodes by minimising higher
order harmonics in order to avoid the loss of trapped ions
because of trajectory instabilities induced by these higher
order terms. As shown in [9], a necessary condition to sup-
press ions losses is to keep the relative contribution to the
potential from higher harmonics to less than a few %, say
2%, in the ROI (trapping region). Neglecting the constant
term A0 which does not contribute to the field and only
considering n-even terms because of planar symmetry at
z = 0, this condition translates into a relative difference
to the quadrupole A2 as:∑nmax

n=2

(
ρ
R0

)n
|An|−

(
ρ
R0

)2
|A2|(

ρ
R0

)2
|A2|

=

nmax∑
n>2

(
ρ

R0

)n−2∣∣∣∣AnA2

∣∣∣∣ 6 0.02,

(15)
where the series expansion is truncated to nmax whose
value will be discussed in next section. Choosing 2% as an
upper limit is therefore equivalent to find a root ρ2% of a
polynomial of degree nmax − 2 in ρ. Optimising the trap
performances amounts to maximise both the A2 term con-
tribution as well as ρ2%. Both operations can be achieved
by minimising the following objective or fitness function:

f(a) =
1(

ρ2%(a)
R0

)2
A2(a)

, (16)

where ρ2%(a) and A2(a) explicitly show their dependence
on the geometry via the vector a which contains the differ-
ent free parameters describing the electrodes. To keep the
shape of the electrodes as simple as possible and therefore
to facilitate their machining at LPC Caen, we have cho-
sen the following parameters for some conical electrodes
as illustrated in Fig. 4:
– Zmin, the minimal axial distance from the trap r-axis

to the electrode.
– Rmin, the innermost radius which is the minimal radial

distance from the trap z-axis to the electrode.
– the cone angle θ.
– the electrode section thickness Th.

Some other parameters can be derived from these quan-
tities like the gap G between two electrodes, their outer-
most radii as well as the radial and axial angular accep-
tances respectively ΩR and ΩA. These could help impos-
ing some mechanical constrains in the minimisation pro-
cedure.

Figure 4. Definition of the geometric parameters used to
optimise the trap: axial distance Zmin from the radial axis to
the closest point on a ring electrode, minimal radial distance
Rmin, radial thickness of the electrode Th, gap G between two
successive electrodes and cone angle θ from z-axis. ΩA and
ΩR are respectively the axial and radial angular openings. The
circle of radius R0 used to compute the spherical harmonics is
also drawn.

For some exploratory work, we had envisaged and test-
ed more complicated shapes for the electrodes, including
e.g. some splines to describe parts of their section, but
the whole study showed that simpler shapes could suit
our precision needs as we shall see in next section.

5 Optimisation process and results

Maximising the measured statistics with moratrap re-
quires not only the trapping of as many ions as possible
during a period as long as possible, but also a large angular
aperture ΩR in the radial direction where the β and recoil
ions detectors are located. In addition, the D measure-
ment relies on the knowledge of the ion cloud polarisation
which shall be continuously monitored during the experi-
ment [3]. This will be performed with two annular silicon
detectors located along the trap z-axis before and after the
electrodes. The central hole in these Si detectors lets the
ion beam entering and exiting the trap. The axial angular
acceptance of these detectors directly impacts the preci-
sion on the polarisation measurement and is constrained
by the trap angular opening ΩA. All the above constrains
have been taken care of in the optimisation process.

A simplified version of lpctrap (Fig. 5) was used as
a starting point to look for an optimal geometry2 as it
already provides a large enough radial acceptance ΩR [7].

2 In reality some parts of lpctrap electrodes are not axisym-
metric at large distance from the ROI, but we simplified their
geometry and made them cylindrical in the simulation.
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Figure 5. Cross section view of lpctrap geometry. There are
three pairs of ring/tube electrodes with conical extensions and
cylindrical mechanical support. R1 and R2 are the RF elec-
trodes, R3 and R4 are used to inject and extract the ions and
the external electrodes R5 and R6 are used to correct the po-
tential generated along the r-axis and to steer the trajectories
of the decay products. The circle of radius R0 = 10 mm gives
the overall scale.

This starting geometry respects axial symmetry and also
possesses a planar symmetry at z = 0. However, on the
contrary to lpctrap which uses three pairs of tube or
cylinder shaped electrodes, in order to satisfy moratrap’s
requirement of a larger axial acceptance ΩA, conical shapes
were chosen for the two innermost pairs of electrodes. A
third pair of electrodes (R5 − R6) was added to screen
the axially symmetric trap region from the octagonal set
of detectors and associated collimators which might dis-
turb the potential in the ROI (Fig. 1). This outermost set
of electrodes is tube shaped, as in the lpctrap geome-
try. Two Einzel lens triplets, used to focus the incoming
beam and to clean the trap after a measurement cycle,
were also included in the simulation (Fig. 6). The shape
of these lenses and of the outermost tube rings were op-
timised separately to fit some mechanical constrains and
were kept fixed along the whole optimisation process of the
two innermost electrode pairs. Because of their distance
from the ROI they did not have any significant effect on
the potential as will be seen in Sec. 7.

To ease later comparisons with lpctrap performances,
it was decided to use, in the simulation, the same applied
RF voltage of 60 V on the innermost pair of electrodes
even if during moratrap operation we shall use 100 V or
more (all other electrodes are grounded during the trap-
ping period).

To summarise, the parameters related to outermost
electrodes and Einzel lens triplets were already fixed prior
to the whole minimisation process and we have chosen
to optimise seven free parameters linked to the geom-
etry of the internal and middle electrodes (Fig. 4): the
axial distances Zmin,12 and Zmin,34, the radial distances
Rmin,12 and Rmin,34, a common cone angle θ and the
thicknesses Th12 and Th34. The minimisation of the objec-

tive function f(a) (Eq. (16)) was performed within root-
minuit [13,15] and to further reduce the parameter space
to be explored, some lower positive limits were determined
by exploratory simulations and set on the different dis-
tances Zmin andRmin. The optimisation requires the com-
putation of the potential harmonic spectrum. To this pur-
pose, the convergence radius R0 of the expansion was set
to 10 mm which is about 5 times larger than the cloud
radius observed with lpctrap. In addition, for the evalu-
ation of ρ2% from Eq. (15), we have chosen to truncate the
expansion at nmax = 18, as the contribution from the A18

term, belonging to the quadrupole series, is already very
small. Indeed the absolute difference between the potential
computed in electrobem and the potential synthesised
from harmonics up to order 18 is smaller than 2.5×10−7 V
for the 64800 points used to compute the harmonics while
the potential at these points varies from 15 to 37 V.

Rings

Parameter R1/R2 R3/R4 R5/R6

θ (◦) 49 49 0
Zmin (mm) 13.41 6.00 13.00
Thickness (mm) 2.50 4.53 4.50
Inner radius (mm) 8.03 15.56 39.29
Outer radius (mm) 9.67 18.53 43.79

Table 1. Optimised moratrap electrodes dimensions.

Figure 6. Cross section view of the optimised moratrap ge-
ometry. A RF voltage is applied to the innermost ring pair
(R1, R2), while the middle and outer electrodes, as well as the
Einzel lenses are grounded. z-axis is along the beam injection
and extraction. The geometry is symmetric with respect to the
x − y plane and is invariant around the z axis. The circle of
radius R0 = 10 mm gives the overall scale, but more precise
dimensions are given in Table 1.
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Figure 7. Harmonics coefficients for moratrap up to or-
der 18, extracted from potential sampled on a circle of radius
ρ2% = 7.39 mm using axielectrobem, when applying 60 V
on the innermost electrodes and 0 V on all the other electrodes.
Positive and negative harmonics have been separated in order
to display them with logarithmic scale.

After several iterations, minuit converged to a mini-
mum of the objective function at ρ2% = 7.39 mm. The
optimised geometric parameters of the electrodes corre-
sponding to this ρ2% are presented in Table 1 and a cross
section view of moratrap is shown in Fig. 6. The pre-
cision on distances is limited to the machining tolerance
(10 µm). Effects of this limited precision are studied in
Sec. 7. The radial angular acceptance ΩR, as seen from
the trap centre, is 35.9◦. It is limited by the axial position
of rings R3 and R4. The axial angular acceptance ΩA is
55.4◦ and is limited by the inner radius of ring R1 or R2.
This acceptance is large enough to install the two annular
detectors (with a hole radius of 6 mm) before and after
the Einzel lens triplets at 70 mm from the trap centre [3].

The harmonic coefficients An (n ∈ [0, 18]) of the poten-
tial, computed at ρ2%, are presented in Fig. 7. The ratios
A4

A2
, A6

A2
and A8

A2
are respectively around−3.2×10−7, −1.9×

10−2 and −3.3× 10−4, they confirm the dominance of the
quadrupole term A2. Top panel in Fig. 8 shows the po-
tential (without the constant term n = 0) in the trapping
region of moratrap for ρ 6 ρ2%. Middle and bottom pan-
els demonstrate how small the contribution of these higher
multipoles (n > 2) is. Since the octupole term A4 is of the
order of 10−6, the largest contribution comes from the
dodecapole term A6. Bottom panel of Fig. 8 presents in
more details the contribution from harmonics with orders
greater or equal to 8: they are even lowered by about a
factor 10 to 100 depending on the angular position. These
results demonstrate that the minimisation procedure led
to a quadrupole potential with the required quality, a rel-
ative difference to A2 lower than 2% (see Eq. (15)), in a
region with a radius as large as 7.39 mm.

In next section we shall compare these performances
to those of lpctrap.

Figure 8. Contribution to the potential for ρ 6 7.39 mm
in moratrap from different harmonics sets (vertical scale is in
volts). Top panel corresponds to harmonics with n > 2 and
exhibits a strong quadrupole dependence. Middle panel is for
n > 4 and clearly shows the dodecapole contribution. Bottom
picture shows the contribution from all harmonics with n > 8.
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6 Comparison of MORATrap and LPCTrap

It is interesting to compare moratrap performances with
those of lpctrap. For this purpose, the potential gen-
erated in lpctrap (Fig. 5) was simulated in axielec-
trobem and the harmonics were determined as seen in
Fig. 9, where obviously the octupole term is much larger
than in moratrap. One should however notice that A4

and A6 have opposite signs, thus partly compensating
each others in the low radii region before A6 takes over
at larger radii. The ratios A4

A2
, A6

A2
and A8

A2
are respec-

tively around +5.5× 10−3, −1.4× 10−2 and +9.0× 10−5.
The corresponding radius ρ2% is equal to 4.36 mm which
is about 40% smaller than for moratrap. This clearly
demonstrates that we have succeeded to broaden the trap-
ping region in moratrap and to improve the potential
quality compared to lpctrap, given some maximal con-
straints in dimension for the Paul trap. In addition, due
to its tube-shape electrodes, lpctrap has an axial angular
aperture of 43.6◦ whereas for moratrap ΩA = 55.4◦, i.e.
27% larger. The radial angular acceptances ΩR are similar
in both traps, respectively 38.0◦ and 35.9◦ with a small
advantage of 6% for lpctrap. However, it is important to
emphasise that in a trap, the amount of particles which
can be effectively trapped is directly proportional to the
depth of the potential well i.e. the value of A2 and to the
r adius ρ2% (Eq. (6)). One can note that in moratrap, at
ρ = 4.36 mm, to reach the same value of the quadrupole
term as in lpctrap, would require to apply 138 V instead
of 60 V like in the simulations presented throughout this
paper.

Figure 9. Harmonics coefficients for lpctrap up to order 18,
extracted from potential sampled on a circle of radius ρ2% =
4.36 mm using axielectrobem, when applying a 60 V RF
voltage on the innermost electrodes.

To deepen this comparison it is interesting to make
a parallel with an ideal Paul trap, introduced in Sec. 1.
For real Paul traps, one can define an equivalent internal
radius r0 as defined for ideal Paul traps in Eq. (1), rep-
resenting the radius at which the RF voltage would be

applied to yield the same A2 value at a given ρ2%:

r2
0 = ρ2

2%

V0

A2
. (17)

Compared to an ideal Paul Trap, moratrap has an effec-
tive internal radius r0 significantly larger than the one of
lpctrap which explains the relative difference in A2 values
at a given radius for both traps. From the A2, ρ2% and V0

values shown in Figs.7 and 9, one finds an effective inter-
nal radius of 19.24 mm for moratrap, and of 12.86 mm for
lpctrap. This is consistent with what was found in [9] and
is summarised in Table 2. It is important however to note
that simply scaling lpctrap to the same internal radius
as moratrap would not have yielded the same improve-
ments: the 2% radius would have been enlarged to only
6.53 mm, compared to 7.39 mm in the case of moratrap,
and the axial angular acceptance ΩA would still have been
limited by 27% compared to moratrap. The trap capacity
of moratrap, estimated thanks to Eq. (6) and considering
reff ' ρ2%, has been enlarged by more than a factor of 2
compared to the original lpctrap, and by 40% compared
to a scaled version of lpctrap.

lpctrap moratrap lpctrap
scaled

V0 [V] 60 60 60
r0 [mm] 12.86 19.24 19.24
ρ2% [mm] 4.36 7.39 6.53
A2(ρ2%) [V] 6.91 8.58 6.91
ρ2%A2 [V.mm] 30.14 63.44 45.09
Maximum capacity 1.05× 106 2.20× 106 1.56× 106

Table 2. Comparison of moratrap and lpctrap when both
traps are assumed to behave like ideal Paul traps exhibiting
a pure quadrupole potential. The maximum capacity was esti-
mated for a pseudo potential model with a Mathieu parameter
qz = 0.4 and for singly charged positive ions. After rescaling
lpctrap effective internal radius to the r0 of moratrap, its
radius ρ2% is still smaller than the one obtained for moratrap
and its maximum capacity is about 30% smaller.

To further compare both traps, one can investigate the
potential non uniformity as a function of the space coor-
dinates. We can for instance define a radial and an axial
non uniformity respectively by:

URadial(r) =

18∑
n=4

(
r

R0

)n−2 ∣∣∣∣AnPn(0)

A2P2(0)

∣∣∣∣ at z = 0, (18)

UAxial(z) =

18∑
n=4

(
z

R0

)n−2 ∣∣∣∣AnA2

∣∣∣∣ at r = 0, (19)

where the Legendre polynomial Pn(cos θ) present in Eq.
(12) is equal to unity along z-axis and to Pn(0) along
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Figure 10. Radial and axial non uniformities, respectively
given by Eq. (18) and Eq. (19), as a function of the radial and
axial distance from moratrap centre.

r-axis. These quantities are presented in Fig. 10 where,
in agreement with the values of ρ2% found previously, the
region where the radial and axial non uniformities are very
weak is wider in the case of moratrap.

Another way to visualise the difference between the
two traps is to draw a 2D uniformity defined as:

U(r, z) =

∣∣∣∣∣
18∑
n=4

(
r

R0

)n−2
An
A2

Pn(cos θ)

∣∣∣∣∣ . (20)

where the absolute value has been chosen such that a log-
arithmic scale may be used to help distinguishing more
details. Figure 11 shows U(r, z) for ρ 6 4.36 mm in the
case of lpctrap (top panel) and ρ 6 7.39 mm in the case
of moratrap (bottom panel). The dashed black circle on
bottom panel represents the limit of the region where the
potential non uniformity is smaller than 2% in lpctrap.

All these different definitions of the non uniformity
conclude to the improvement of the potential quality and
of the trapping region volume in moratrap compared to
lpctrap.

In next section, we shall investigate how stable is the
potential against misalignment and other mechanical char-
acteristics.

7 Design sensitivity

It is important to check how the mechanical tolerances in
the machining and assembling of the different electrodes
of moratrap can affect the trapping potential. For this
purpose, the effects on the potential due to mechanical
precision, in terms of machining defects or misalignment
of one or several electrodes, were investigated using both
axielectrobem (2D) and electrobem (3D). axielec-
trobem was preferred in case of defects not breaking ax-
isymmetry, whereas electrobem was used in other cases.
When performing simulations within electrobem, the
setup needs to be meshed not only in the axial direction,

Figure 11. Top: Potential non uniformity obtained with
Eq. (20), for lpctrap region of interest, i.e. for ρ =

√
r2 + z2 6

ρ2% = 4.36 mm. Bottom: Same figure for moratrap with
ρ2% = 7.39 mm. The dashed black circle corresponds to the
lpctrap 2% radius.

but also angularly around this axis: a circle is approxi-
mated by a polygon and thus any cone, disk or cylinder
is segmented in many triangular or quadrangular cells. As
mentioned in Sec. 2, the computer RAM usage rapidly
increases when working in 3D compared to axially sym-
metric simulations. On the computer used, the available
RAM allowed us to divide the setup in 84 cells in an-
gle while keeping the same axial segmentation as the one
used in axielectrobem leading to 84 × 414 = 34776
cells in total. Such a meshing has consequences on the
computed harmonics spectrum. Figure 12 shows the ra-
tio of the harmonics from the 2D axisymmetric case to
the 3D one. There is a very good agreement between the
two: it is better than a few percents except for the oc-
tupole term A4, which appears to be very sensitive to the
angular discretisation and dramatically changes not only
in absolute value, but also in sign. Nevertheless, the 3D
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Figure 12. Comparison between harmonics computed with
axielectrobem and electrobem with an angular/polygonal
segmentation of 84 cells around z-axis. Except for A4, all har-
monics are equal to better than a few percents, especially for
low order ones.

computation leads to a value of A4 still about a factor
100 less than A6 and its contribution to the potential is
therefore very limited. When using 3 planes of symme-
try in electrobem, one can simulate 1/8 of moratrap
with as many cells as a full simulation without symmetry
planes. In that case, the 3D harmonics spectrum agrees
with the 2D one within a few 10−6 − 10−5 even for A4.
However, most of the envisaged defects break at least one
of these symmetries. Consequently, the full moratrap has
to be simulated in these studies and the results should be
compared to those from the perfectly aligned 3D version
of moratrap rather than to those from axielectrobem.
The precision on the evaluated potential essentially de-
pends on the characteristics of the electrode mesh and is
constant once this mesh has been fixed. A single mesh
is used to test different trap configurations with or with-
out misalignment. The results obtained for configurations
exhibiting some defects are compared to a reference one
where the electrodes are perfectly aligned and machined
(in the limit of the mesh discretisation) and therefore one
expects that the observed differences are highly significant
overall.

The considered defects included machining tolerances
of δr and δz 6 20 µm, axial and radial translations of
∆x and ∆z 6 200 µm and rotations around r-axis of
∆θ 6 0.2◦. All these values are larger than what can be
mechanically achieved for moratrap. These defects were
simulated for either one half of the trap in a whole or for
electrodes taken individually while keeping the rest of the
trap unchanged.

When dealing with individual electrodes, because of
their relatively large distance from the trap ROI, all types
of defects related to R6, E4, E5 and E6 have been shown to
have very minor influence on the harmonics spectrum and
therefore on the potential quality. This was also the case
for possible machining defects on R1, R2, R3 and R4 as
the computer numerical control machining precision was
assumed better than 20 µm.

Figure 13. Harmonics spectrum obtained when translating
left half of moratrap by ∆z = −100 µm. The expansion has
been computed around a centre located at half of the dis-
placement (z = −50 µm) where the translated potential centre
stands, i.e. where the ion cloud barycentre will be.

The influence of misalignment along the z direction
was studied with axielectrobem by varying electrode(s)
axial position. An axial displacement ∆z of half of the trap
conserves both the axisymmetry and the planar symme-
try: such a displacement shifts the trap centre by ∆z/2
and therefore the potential still exhibits a planar symme-
try around the position of this shifted centre. The po-
tential harmonics expansion should therefore be deter-
mined around this shifted centre to avoid inducing spu-
rious harmonics with odd orders. In the particular case
of ion traps, the ion cloud barycentre will follow the po-
tential centre and, in case of a large shift, this may mod-
ify the acceptance and have some consequences both on
the detector counting rates and on the measured β de-
cay asymmetry. This shall be addressed in other simula-
tions. Figure 13 presents the harmonics spectrum com-
puted around a point located at z = ∆z/2 = −50 µm for
a global translation of all electrodes located at negative z
by ∆z = −100 µm. One clearly sees that odd harmonics
are not present in this spectrum. In this case, the poten-
tial quality is still suitable to trap ions as may be seen in
Fig. 14 which shows the evolution of ρ2%, A2 and the non
uniformity (Eq. (15)) versus the translation ∆z. A non
uniformity of 2.5% is reached for displacements as large
as 0.4 mm and even for such large ∆z, ρ2% is still about
6.9 mm and A2 is only lowered by less than 10%.

To describe and further compare the harmonics in-
duced by all the studied translations and rotations of dif-
ferent setup parts, we shall use the spherical harmonics
with degree n and order m (Eq. (11)) instead of the cylin-
drical harmonics of order n (Eq. (12)) used so far. Indeed,
breaking the axisymmetry and/or the planar symmetry
may induce some harmonics with different degrees n but
also and above all with non zero order m on the con-
trary to what has been seen previously. As an example,
Fig. 15 shows the harmonics corresponding to a setup
where half of the trap has been rotated by ∆θ = 0.2◦

around x-axis. One should notice that even if the po-
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Figure 14. Evolution of the radius ρ2%, the quadrupole term
A2 at ρ2% and the uniformity as a function of ∆z, the trans-
lation distance of the left half of the trap (at z < 0) from its
nominal position. These results were obtained using axielec-
trobem.

tential centre has probably been shifted away from the
reference frame origin, the harmonics expansion is still
performed around this origin. The largest harmonics gen-
erated by the rotation are however a factor 10 smaller
than the main ones and should therefore weakly impact
the quality of the trapping potential. To estimate their
influence and similarly to what was done in Eqs. (15),
(18) and (19), we shall define a 3D non uniformity. This
is more difficult as the associated Legendre functions of
the first kind Pmn (cos θ) are not bounded to [−1, 1] on
the contrary to the Legendre polynomials Pn(cos θ): their

Figure 15. Harmonics spectrum (without the constant term
A0,0) obtained at ρ2% with electrobem for half of the trap
rotated by 0.2◦ around x-axis (vertical scale is in volts). The
series expansion centre is kept at the frame origin which does
not correspond to the minimum of the potential after rota-
tion. Harmonics with absolute values below 10−10 have been
set to zero as their contribution to the potential is completely
negligible.

minimum (resp. maximum) values strongly decrease (resp.
increase) with degree n and orderm. However they always
satisfy max(Pmn (x)) > |min(Pmn (x))|. This inspired us to
define a 3D non uniformity at ρ = R0 = ρ2% (maximising
the radial contribution) by:

U3D =

nmax∑
n=1

n∑
m=0 if n 6=2
m=1 if n=2

max(Pmn (cos θ))
|Anm|+ |Bnm|
|A2,0|

,

(21)
where the numerator and therefore U3D have been max-
imised by setting the functions Pmn (cos θ), cos(mϕ) and
sin(mϕ) to their maximal values and by taking the abso-
lute values of the harmonic coefficients. For the denomi-
nator we only keep |A2,0| without any spatial dependent
function which might become null at some location leading
to an infinite value of U3D. When simulating moratrap in
electrobem without any misalignment, the 3D non uni-
formity U3D is 2.017 %, which shall serve as our reference.
One should notice that this value is weakly above the 2%
limit obtained with axielectrobem, this highlights the
influence of the 3D meshing. The U3D values obtained for
the tested misalignment are presented in Tables 3 and 4
respectively for translations (∆z, ∆x) and rotations (∆θ).
These clearly demonstrate that displacements of either
rings R5 and R6 or Einzel lens triplets have negligible
influence on the potential quality within the ROI. The
largest non uniformities are obtained for translations ∆x
of ring electrode R4 or for the rotation of half of the trap.
Even if these non uniformities were extracted from har-
monics series expansions performed around the reference
frame origin instead of around the potential centre, they
still remain smaller than 2.5%, i.e. at a level sufficient to
maintain the trapping efficiency [9].

All the reasonable mechanical defects studied have been
shown to weakly affect the quality of the potential and the
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Translated ∆z U3D ∆x U3D

part [µm] [%] [µm] [%]

Half trap 100 2.127 200 2.398
R2 100 2.182 200 2.208
R4 100 2.142 200 2.461
R6 100 2.017 200 2.017
E4 100 2.017 200 2.017
E5 100 2.017 200 2.017
E6 100 2.017 200 2.017

Table 3. 3D non uniformity due to ∆z and ∆x misalignment
of the half trap and of individual electrodes.

Rotated ∆θ U3D

part [◦] [%]

Half trap 0.2 2.404
R2 0.2 2.267
R4 0.2 2.159
R6 0.2 2.018
E4 0.2 2.017
E5 0.2 2.017
E6 0.2 2.017

Table 4. 3D non uniformity due to ∆θ misalignment. Here the
series expansion centre is kept at the frame origin. Realistic
mechanical rotations of at most 0.2◦ lead to non uniformities
well below 2.5%.

volume of the trapping region in moratrap if the machin-
ing process and the alignment of the different electrodes
during assembly are kept under control. It was therefore
decided to design, machine and assemble the moratrap
electrodes at LPC Caen. A picture of this realisation is
shown in Fig. 16.

Figure 16. Picture of moratrap on its mechanical support.
It has been machined and assembled at LPC Caen.

8 Conclusion

We have presented a method used to optimise the geom-
etry of the axially symmetric ion trap, moratrap, dedi-
cated to the measurement of the triple correlation param-
eter D in nuclear β-decay of radioactive ions. Our starting
point was the lpctrap geometry, the former used trans-
parent Paul trap, and we succeeded in reducing the con-
tribution to the potential from harmonics of order higher
than 2. This is necessary to achieve a longer storage time
and a better trapping efficiency. According to the pseudo-
potential approximation, the moratrap capacity has been
enlarged by more than a factor of 2 compared to the ini-
tial lpctrap geometry. The optimised geometry exhibits
a larger axial angular acceptance than in lpctrap. This
larger acceptance is necessary for the online monitoring of
the trapped ion cloud polarisation, by detecting β parti-
cles along the axis of the trap. Further simulations are cur-
rently being performed to deeply investigate the ion cloud
dynamics, the trapping efficiency as well as the trapping
time. The optimised trap electrodes could easily be ma-
chined with a mechanical precision of the order of 10 µm.
The whole setup should be soon tested and then installed
at JYFL accelerator facility in University of Jyväskylä
(Finland) before its final operation at GANIL - DESIR
(Caen, France).

The optimisation method described in this study could
easily be applied to other axisymmetric ion traps or elec-
trodes setups. Different types of fitness functions could
bring many improvements to the method and should be
explored in detail.

This work was financially supported by Région Normandie via
its Réseaux d’Intérêts Normands. The authors would like to
thank their collaborators from the LPC Caen CAD group and
workshop for their deep involvement in the design, manufacture
and assembly of moratrap.

A Homogeneous polynomials in cylindrical
axisymmetric coordinates

For completeness, in this appendix, we present a series
expansion for the potential of an axisymmetric system
in cylindrical coordinates (r, z). Starting from the coor-
dinates conversion relations ρ2 = r2 + z2 and cos θ = z/ρ
and introducing the homogeneous harmonic polynomials
Hn(r, z) given by an explicit relation rather than by a
recurrence one:

Hn(r, z) = ρn Pn(cos θ)

=

E[n/2]∑
k=0

n!

(−4)k(n− 2k)! (k! )2
r2k zn−2k, (22)

the potential given by Eq. (12) is rewritten as :

V (r, z) =

∞∑
n=0

An
ρn0

Hn(r, z). (23)
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This series expansion converges for points (r, z) satisfy-
ing
√
r2 + z2 6 ρ0 with ρ0 the convergence radius. Again,

a planar symmetry at z = 0 allows to further reduce the
multipole expansion to even harmonics only. The first har-
monic polynomials are listed up to order 10 in Table 5.

n Hn(r, z)

0 1

1 z

2 1
2

(
2z2 − r2

)
3 1

2

(
2z3 − 3r2z

)
4 1

8

(
3r4 − 24z2r2 + 8z4

)
5 1

8

(
8z5 − 40r2z3 + 15r4z

)
6 1

16

(
−5r6 + 90z2r4 − 120z4r2 + 16z6

)
7 1

16

(
16z7 − 168r2z5 + 210r4z3 − 35r6z

)
8 1

128

(
35r8 − 1120z2r6 + 3360z4r4 − 1792z6r2 + 128z8

)
9 1

128

(
128z9 − 2304r2z7 + 6048r4z5 − 3360r6z3

+315r8z
)

10 1
256

(
−63r10 + 3150z2r8 − 16800z4r6 + 20160z6r4

−5760z8r2 + 256z10
)

Table 5. Harmonic polynomials of degree n 6 10 in axisym-
metric cylindrical coordinates (r, z).
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