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Numerical Cherenkov radiation is a well-known problem of FDTD PIC codes caused by numerical dispersion errors creating spurious radiation around accelerated particles. It is usually dealt with by complex numerical schemes and low-pass filters. In this study we look at a simple way to circumvent this problem for wakefield accelerators simulations by only modifying the field interpolation algorithm. Taking advantage of the highly directional nature of the numerical Cherenkov radiation, we make sure that the resultant force created by the spurious radiation is as close to zero as possible for the accelerated electrons, negating its effects on the accelerated bunch without actually suppressing the numerical radiation. Applying the above to laser wakefield acceleration simulations, we observe both a reduction and a stabilization of the beam normalized emittance during the acceleration process as well as an improved regularity of the oscillating electrons trajectories which might help to further understand radiation processes such as betatron.

Introduction

Particle-in-cell (PIC) codes are known for their versatility and relative speed, they are used to simulate a wide range of phenomena in plasma physics. To solve Maxwell equations, many of them use the finitedifference time-domain (FDTD) method first proposed by K. Yee [START_REF] Yee | Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media[END_REF], a simple second-order method easily parallelizable but suffering from some numerical dispersion error which gives rise to what is known as numerical 5 Cherenkov radiation (NCR). This spurious radiation can couple with the plasma response and lead to the Numerical Cherenkov Instability (NCI). These effects have been studied since the 1970s [START_REF] Godfrey | Numerical cherenkov instabilities in electromagnetic particle codes[END_REF] and many ways to mitigate them have been proposed since [START_REF] Greenwood | On the elimination of numerical cerenkov radiation in pic simulations[END_REF][START_REF] Lehe | Numerical growth of emittance in simulations of laser-wakefield acceleration[END_REF][START_REF] Xu | Numerical instability due to relativistic plasma drift in em-pic simulations[END_REF][START_REF] Godfrey | Suppressing the numerical cherenkov instability in fdtd pic codes[END_REF][START_REF] Lehe | Elimination of numerical cherenkov instability in flowing-plasma particle-in-cell simulations by using galilean coordinates[END_REF][START_REF] Nuter | Suppressing the numerical cherenkov radiation in the yee numerical scheme[END_REF][START_REF] Blinne | A systematic approach to numerical dispersion in maxwell solvers[END_REF][START_REF] Li | Controlling the numerical cerenkov instability in pic simulations using a customized finite difference maxwell solver and a local fft based current correction[END_REF][START_REF] Pukhov | X-dispersionless maxwell solver for plasma-based particle acceleration[END_REF]. Those methods usually rely on complex modification of the computational stencil and/or heavy filtering which can themselves lead to new numerical limitations or reduce the code performance. The effects of NCR are especially important in simulations of wakefield acceleration, one of the most prominent applications of PIC simulations. The wakefield can be created by a beam of charged particles propagating in a plasma, which has given promising results recently [START_REF] Blumenfeld | Energy doubling of 42 gev electrons in a metre-scale plasma wakefield accelerator[END_REF][START_REF] Adli | Acceleration of electrons in the plasma wakefield of a proton bunch[END_REF], or by the propagation of a laser beam. Laser wakefield acceleration (LWFA) in plasmas is not a novel idea as it dates back to the 1970s [START_REF] Tajima | Laser electron accelerator[END_REF] but it has seen renewed interest for the last fifteen years thanks to advancements in experimentations and simulations [START_REF] Faure | A laser-plasma accelerator producing monoenergetic electron beams[END_REF][START_REF] Geddes | High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding[END_REF][START_REF] Mangles | Monoenergetic beams of relativistic electrons from intense laser-plasma interactions[END_REF][START_REF] Kostyukov | Phenomenological theory of laser-plasma interaction in "bubble" regime[END_REF][START_REF] Lu | Nonlinear theory for relativistic plasma wakefields in the blowout regime[END_REF],

and energy up to a few GeV [START_REF] Leemans | Multi-gev electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime[END_REF] have been obtained experimentally.

In this paper we present a new and simple way to circumvent the effects of NCR in simulations of wakefield acceleration. In section 2 we describe in more detail the NCR phenomenon and its characteristics in laserwakefield simulations. Section 3 presents briefly existing methods to deal with NCR as well as their limitations and then describes our new method to limit its effects. We finally discuss in section 4 the results obtained with LWFA simulations using this new scheme and show it suppresses the spurious growth of the accelerated beam emittance as well as limiting the impact on the calculated electron motion.

Numerical Cherenkov Radiation

Numerical Cherenkov in PIC simulations

Cherenkov radiation is the result of a charged particle moving faster than the phase velocity v ϕ (ω) of an electromagnetic mode characterised by its angular frequency ω. It may physically occur with relativistic particles when the dispersion relation allows for a phase velocity lower than the speed of light (v ϕ < c) in a medium where the index of refraction is n > 1. The charged particle with a velocity v p will then generate radiation at all frequencies satisfying v p > v ϕ (ω).

For electromagnetic waves propagating in vacuum, the angular frequency ω and the wave number k = k 2

x + k 2 y + k 2 z are proportional:

ω 2 = c 2 k 2 ,
where k x , k y , k z are the wavevector components along the x, y, z directions. It ensues that no Cherenkov radiation should be possible as particles cannot be faster than v ϕ = c. However, in a PIC code using the Yee scheme [START_REF] Yee | Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media[END_REF], the spatial and temporal discretization leads to the following numerical dispersion relation in vacuum:

1 c 2 ∆t 2 sin 2 ω∆t 2 = 1 ∆x 2 sin 2 k x ∆x 2 + 1 ∆y 2 sin 2 k y ∆y 2 + 1 ∆z 2 sin 2 k z ∆z 2 (1) 
where ∆t, ∆x, ∆y, ∆z refers to the time step and the cell size in each direction. This allows for some high frequency modes discretized on the grid to have v ϕ < c and thus for the creation of numerical Cherenkov radiation by fast-moving particles (β = v p /c ≈ 1) in the simulation when none should physically occur. In the remainder of this paper, x represents the longitudinal direction along which the propagation occurs and y and z are the two transverse directions. The excited modes satisfy the relation β x c = v ϕ,x = ω/k x with β x the particle normalized velocity along x and v ϕ,x the wave phase velocity along x. Thus with Eq. ( 1) we can characterise those modes by :

1 c 2 ∆t 2 sin 2 k x β x c∆t 2 = 1 ∆x 2 sin 2 k x ∆x 2 + 1 ∆y 2 sin 2 k y ∆y 2 + 1 ∆z 2 sin 2 k z ∆z 2 (2)
Wakefield acceleration is a typical case where numerical Cherenkov radiation can be observed and represents a substantial source of error. Reducing its impact in those simulations is thus especially important to obtain realistic results. In wakefield acceleration simulations, electromagnetic waves -whether physical (laser, beam self-field, wakefield) or numerical in origin (NCR) -propagate along the same direction as the accelerated electron beam. We focus in this paper on finding a solution to mitigate the effects of numerical Cherenkov radiation in the context of laser-wakefield simulations. However, the results could be applicable to other wakefield acceleration methods or even to any scenario where physical and numerical electromagnetic waves propagate at a velocity close to c mainly along the same direction as the particles generating NCR.

Laser wakefield acceleration simulations

Laser-wakefield accelerators are created by focusing an ultra-intense laser beam on a gas jet. The laser beam ionizes the gas, propagates inside the created low density plasma and excites a plasma wave in its wake. If the intensity is high enough, the plasma wave takes the form of an ionic cavity devoid of electron. Electrons injected in this cavity -or bubble -can be accelerated to high energies in a short distance thanks to the high amplitude fields created inside the bubble by the charge separation. an accelerating effect on electrons (red zone where E x < 0) while the front is decelerating (blue zone where

E x > 0)
. Electrons injected at the rear of the bubble thus gain energy while travelling within the bubble until they dephase and reach the decelerating zone. This energy gain can be as high as a few GeV [START_REF] Leemans | Multi-gev electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime[END_REF] with current laser technology. While the longitudinal fields are accelerating, the transverse ones are focusing and will thus tend to keep the electron beam on axis and create transverse oscillations of the accelerated electrons.

The numerical simulations presented in this paper have all been made in 3D using the PIC code calder [START_REF] Lefebvre | Electron and photon production from relativistic laser-plasma interactions[END_REF] in a moving window with a 3220 × 200 × 200 grid and ∆x = 0.019 µm, ∆y = ∆z = 0.38 µm and c∆t = 0.993 ∆x.

We consider typical laser-wakefield acceleration parameters: A 4 J laser pulse (λ 0 = 0.8µm) with a FWHM duration τ 0 = 25fs, a waist w 0 = 18 µm giving a normalised peak vector potential a 0 = 4.35 with polarisation along the y direction. a 0 is normalised to mec e with m e and e the mass and charge of an electron. The electronic density is n e = 6.22 × 10 18 cm -3 = 3.57 × 10 -3 n c where n c =

ω 2 0 me 0 e 2
is the critical density at this wavelength with ω 0 = 2π λ0 and 0 the vacuum permittivity. Those parameters have been selected to allow for an important self-injected charge so as to make sure the effects of numerical Cherenkov are easily visible. and 2.b) the low frequency field of the bubble and the beam self-field but also some higher frequency radiation surrounding the injected electron beam. This is even clearer looking in Fourier space (Fig. 2.c and 2.d). The physically relevant frequencies are confined on the left where k x < 2 ω 0 /c with notably the laser field visible in Fig. 2.c around k x = 1 ω 0 /c. Then there is some higher frequency radiation covering quite a large range (2.5 ω 0 /c < k x < 15 ω 0 /c) corresponding to the higher frequency fields surrounding the electron beam as can be seen in Fig. 2.e and 2.f where only fields with k x > 2.5 ω 0 /c have been plotted.

To ensure these are indeed NCR, we can, using Eq. ( 2), characterize theoretical NCR in either plane in Fourier space by:

k y = 2 ∆y arcsin ∆y 1 c 2 ∆t 2 sin 2 k x β x c∆t 2 - 1 ∆x 2 sin 2 k x ∆x 2 (3) 
k z = 2 ∆z arcsin ∆z 1 c 2 ∆t 2 sin 2 k x β x c∆t 2 - 1 ∆x 2 sin 2 k x ∆x 2 (4) 
These equations are represented by the black dashed line in Fig. 2.c and 2.d where we have used β x = 0.99995, corresponding to a 50 MeV beam (p x ≈ 100 m e c). This theoretical prediction correspond pretty well to the observed radiation that is thus conclusively identified as NCR.

It is worth pointing out that the numerical Cherenkov observed here does not couple with the plasma or the beam itself to give rise to NCI so that this work deals only with the direct impact of the generated NCR.

Note also that the numerical Cherenkov radiation does have a longitudinal component which we can observe on E x in the simulations. However its amplitude is lower by more than an order of magnitude compared to the physical simulated fields making it far less impactful on the simulation. We focus therefore in this paper exclusively on the transverse components of NCR.

Electron motion in LWFA

The NCR around the electron beam modify the electromagnetic fields inside the ionic cavity and may hence influence the transverse motion of the electrons inside the bubble. For simplicity's sake, we will mainly consider in the rest of this paper the transverse motion of electrons in the (xy) plane. The effects and equations are quite similar in the (xz) plane. For a particle of charge e moving along the x-axis at v x ≈ c, as is the case of the electrons in the accelerated beam, the transverse force in the y direction is given by: F y = e (E y -v x B z ) ∼ e (E y -cB z ). only the contribution from the cavity fields. In the bubble regime this transverse force is supposed to be linear with the transverse position as F y = 1 2 m e ω 2 p y [START_REF] Kostyukov | Phenomenological theory of laser-plasma interaction in "bubble" regime[END_REF][START_REF] Lu | Nonlinear theory for relativistic plasma wakefields in the blowout regime[END_REF] where ω p = nee 2 0me is the plasma frequency. The strong correlation between F y and y can indeed be observed in Fig. 3 where E y -cB z is stronger off axis and decreasing linearly to become zero on the axis of the bubble. against the position (blue line), to be compared with the theoretical Fy = 1 2 meω 2 p y (red dashed line) (respectively Fz = 1 2 meω 2 p z).

Suppressing Numerical Cherenkov

Existing methods

The simplest method to eliminate the numerical Cherenkov radiation is to remove it through filtering. As the radiation is not confined to a small range of frequencies near the Nyquist frequency, simple binomial filters
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are not enough and more sophisticated low-pass filters are required [START_REF] Greenwood | On the elimination of numerical cerenkov radiation in pic simulations[END_REF][START_REF] Xu | Numerical instability due to relativistic plasma drift in em-pic simulations[END_REF][START_REF] Godfrey | Suppressing the numerical cherenkov instability in fdtd pic codes[END_REF][START_REF] Friedman | A second-order implicit particle mover with adjustable damping[END_REF] Various modified numerical schemes have also been proposed so that the generation of numerical Cherenkov radiation cannot arise at all. The basic principle is to modify the dispersion relation so as to ensure that v ϕ > c.

This can be achieve through modifying the computational stencil in the Maxwell-solver [START_REF] Greenwood | On the elimination of numerical cerenkov radiation in pic simulations[END_REF][START_REF] Lehe | Numerical growth of emittance in simulations of laser-wakefield acceleration[END_REF][START_REF] Xu | Numerical instability due to relativistic plasma drift in em-pic simulations[END_REF][START_REF] Lehe | Elimination of numerical cherenkov instability in flowing-plasma particle-in-cell simulations by using galilean coordinates[END_REF][START_REF] Nuter | Suppressing the numerical cherenkov radiation in the yee numerical scheme[END_REF][START_REF] Blinne | A systematic approach to numerical dispersion in maxwell solvers[END_REF].

However, some of these methods are not straightforward to implement, while other may induce some unreal-120 istic behaviour, such as light propagating faster than c in vacuum. Our proposed solution, besides being easy to implement, relies on a different approach: only the field interpolation is modified, so the Maxwell-solver remains unchanged and no smoothing is used. Our method can thus be used in addition of some of the previously published methods, in order to reduce even further the NCR effects.

Standard Field interpolation with the Yee scheme

In a PIC code with the Yee FDTD scheme [START_REF] Yee | Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media[END_REF], Electric and Magnetic fields are calculated using a leapfrog method. This implies they are defined on different grids which are offset spatially by half a cell but also temporally by ∆t/2. As the fields are only known on specific grid points while the particles move freely in the whole simulated space, it is necessary to interpolate the EM fields at the charged particles positions in order to calculate their motion.

Fig. 5 shows a simple situation with the fields amplitude values known on the different points of the grid and an electron moving freely between those points. To simplify the notations we consider only the longitudinal (a) spatial dimension x, A n i then refers to the value of the field A at the n th time step and the i th point of the spatial grid or in other terms A n i = A (t = n∆t, x = i∆x). Due to the leap-frog nature of the Yee scheme, values of the E y and E z fields are known at integer time-steps and grid points while values for B y and B z are known at half-integer time-steps and grid points. In the remainder of this section, we will only consider E y and B z and then omit the y and z indices when it is not absolutely necessary so as not to clutter the notation.

t ∆t n + 1 2 n n -1 2 x ∆x i -1 i -1 2 i i + 1 2 i + 1 B n+ 1 2 i-1 2 B n+ 1 2 i+ 1 2 E n i-1 E n i E n i+1 B n-1 2 i-1 2 B n-1 2 i+ 1 2 e - (b) t ∆t n + 1 2 n n -1 2 x ∆x i -1 i -1 2 i i + 1 2 i + 1 E n i-1 E n i E n i+1 Bn i-1 2 Bn i+ 1 2
Before the spatial interpolation, a temporal one is necessary in order to get Bn and have the fields known at the same time step. The simplest and most common way being the linear time interpolation Bn = 1 2 (B n-

1 2 + B n+ 1 2
) as is shown in the Fig. 5.a but quadratic time interpolation -with Bn

i+ 1 2 = 3 8 B n+ 1 2 i+ 1 2 + 3 4 B n-1 2 i+ 1 2 -1 8 B n-3 2 i+ 1 2
-can sometimes be used as well to get higher accuracy. Once the E and B fields are known both at the same time step, they are interpolated spatially on the particles. This step is shown in Fig. 5.b. Once again different kinds of spatial interpolation can be used with varying orders of interpolation. The one depicted here is, for simplicity's sake, a 1 st order method (linear interpolation).

Proposed B-Translated Interpolation Scheme

NCR is highly directional with propagation mainly along the axis of propagation of the electron beam, as can be seen in Fig. 2 where k y < 1ω 0 /c k x . Therefore with a particle moving along the x-axis at v x ∼ c, as is the case of electrons in the accelerated beam, the fields should satisfy:

E NCR x ∼ cB NCR x ≈ 0 → F NCR x = e (E NCR x ) ≈ 0 E NCR y ∼ cB NCR z → F NCR y = e E NCR y -v x B NCR z ≈ 0 E NCR z ∼ -cB NCR y → F NCR z = e E NCR z + v x B NCR y ≈ 0
where E NCR , B NCR are the electromagnetic fields due solely to the NCR and F NCR is the force resulting from those fields. As all components of F NCR are close to zero, we should expect NCR to generate a negligible force and thus have a negligible effect in LWFA simulations. Yet, as we have seen, its effect is clearly noticeable and the generated force is far from negligible.

In fact the relation E NCR at the particle position. The idea of our new approach is to modify the interpolation of the EM fields so as to make sure the impact of numerical Cherenkov radiation through its generated force

F NCR is indeed negligible.
Since all the main electromagnetic fields in our LWFA case -the wakefield itself, the laser field, the beam's self field and the NCR -propagate approximately at c along the x direction, then we can assume that B (n∆t, i∆x) ≈ B (n + 1 2 )∆t, (i + 1 2 )∆x , as in half a time step the fields have propagated and advanced of half a cell. This works because while still satisfying the CFL condition, c∆t is very close to ∆x in the simulations. The idea is then to interpolate the fields at the particle position using (

(a) t ∆t n + 1 2 n n -1 2 x ∆x i -1 i -1 2 i i + 1 2 i + 1 B n+ 1 2 i-1 2 B n+ 1 2 i+ 1 2 E n i-1 E n i E n i+1 B n-1 2 i-1 2 B n-1 2 i+ 1 2 (b) t ∆t n + 1 2 n n -1 2 x ∆x i -1 i -1 2 i i + 1 2 i + 1 E n i-1 E n i E n i+1 Bn i-1 Bn i Bn i+1
E n i , Bn i = B n+ 1 2 i+ 1 
2

) instead of (E n i , Bn

i+ 1 2
) as previously shown. This new method is described in Fig. 6.

Using this approximation, there is no need for a temporal interpolation anymore and it also simplifies the spatial interpolation as we now know the magnetic field on the same grid points as the electric field. As the above effectively results in a translation of the calculated B field before the spatial interpolation, we will in the remainder of this paper refer to this new process as the B-Translated Interpolation Scheme (B-TIS). We will also refer to the previous temporal interpolation method as LTI when using the linear time interpolation or QTI for the quadratic one.

3.4. Accuracy comparison of the two methods

Theoretical calculation

Let us discuss in further details the accuracy of the two methods on the computed magnetic fields. We first consider a scalar field B of the form :

B(x, y, z, t) = B 0 cos (k x x + k y y + k z z -ωt) (5) 
Discretized in the simulation, this gives us:

B n i,j,k = B 0 cos (k x i∆x + k y j∆y + k z kδz -ωn∆t) = B 0 cos ϕ n i,j,j .
The linear time interpolation used is defined by: Bn

i,j,k = 1 2 B n+ 1 2 i,j,k + B n-1 2 i,j,k
which we can rewrite with

δϕ = ω∆t 2 as Bn i,j,k = B 0 cos ϕ n i,j,k cos (δϕ) = B n i,j,k cos (δϕ) (6) 
This shows that this temporal interpolation is a good approximation as long as δϕ 1 when cos (δϕ) 1. To highlight the error introduced by this interpolations we will rewrite Bn i,j,k as Bn i,j,k = B n i,j,k + εB with εB being εB = B 0 cos ϕ n i,j,k (cos (δϕ) -1)

Then at the lowest order we have:

εB B 0 1 2 cos ϕ n i,j,k δϕ 2 < 1 2 δϕ 2 (8) 
Similarly, we can show that the quadratic time interpolation defined by Bn i,j,k = 3 8 B

n+ 1 2 i,j,k + 3 4 B n-1 2 i,j,k -1 8 B n-3 2 i,j,k
gives an error εB :

εB = B 0 cos ϕ n i,j,k 9 8 cos (δϕ) - 1 8 cos (3δϕ) -1 + B 0 sin ϕ n i,j,k 1 8 sin (3δϕ) - 3 8 sin (δϕ) (9) 
And at the lowest order: εB

B 0 1 2 sin ϕ n i,j,k δϕ 3 < 1 2 δϕ 3 (10) 
Looking at the accuracy of our new B-TIS, we consider

B n i,j,k = B n+ 1 2 i+ 1 2 ,j,k = B 0 cos ϕ n i,j,k + δϕ (11) 
with δϕ = 1 2 (k x ∆x -ω∆t). As before we will rewrite this so as to have Bn i,j,k expressed as

B n i,j,k = B n i,j,k + ε B with this time ε B being ε B = B 0 cos ϕ n i,j,k cos δϕ -1 -B 0 sin ϕ n i,j,k sin δϕ (12) 
which at the lowest order finally gives us:

ε B B 0 sin ϕ n i,j,k δϕ < δϕ (13) 
So, as long as we can ensure that δϕ < 1 2 δϕ 2 , B-TIS should provide more accurate computation of the B field. For longitudinally propagating waves with ω/k x ≈ c and c∆t ≈ ∆x, as is usually the case for LWFA simulations, δϕ can become very small and the gain should be significant.

If we consider the transverse forces applied to an electron:

F y = -e (E y + v z B x -v x B z ) (14) 
F z = -e (E z + v x B y -v y B x ) (15) 
then the translation or temporal interpolation of B introduce an error on the transverse forces such as:

ε Fy = -e (v z ε Bx -v x ε Bz ) (16) 
ε Fz = -e v x ε By -v y ε Bx [START_REF] Mangles | Monoenergetic beams of relativistic electrons from intense laser-plasma interactions[END_REF] Note that most of the fields in the simulations propagate mainly longitudinally so B 0 , x ≈ 0 making ε Bx really small. Furthermore for most electrons v y v x and v z v x . We can thus safely approximate the error to:

ε Fy ≈ e v x ε Bz (18) 
ε Fz ≈ -e v x ε By [START_REF] Lu | Nonlinear theory for relativistic plasma wakefields in the blowout regime[END_REF] Minimising the error on the transverse magnetic fields will thus minimise the error on the the transverse forces and help reduce the impact of NCR.

Error on Electromagnetic waves in vacuum

The presence of charged particles or a low density plasma may affect the phase velocity of an electromagnetic wave but for the sake of simplicity, we neglect this effect in this section and consider waves propagating in the vacuum. For ease of visualisation, we also consider waves propagating in the (x, y) plane only (k z = 0) but the results can easily be extended to a more general 3D case.

As shown previously, with the Yee scheme, propagating electromagnetic waves abide to the numerical dispersion equation [START_REF] Yee | Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media[END_REF]. We can thus express δϕ and δϕ as :

δϕ = arcsin c∆t ∆x sin 2 k x ∆x 2 + c∆t ∆y sin 2 k y ∆y 2 (20) δϕ = 1 2 k x ∆x -arcsin c∆t ∆x sin 2 k x ∆x 2 + c∆t ∆y sin 2 k y ∆y 2 (21) 
From there it is quite clear that the results will depend heavily on the numerical parameters chosen for the simulation, namely : ∆x, ∆y and ∆t.

Assuming ∆y = ∆z, the choice of the numerical time step ∆t is limited by the CFL condition ∆t < ∆t CFL with:

c∆t CFL = ∆x 1 + 2 ∆x 2 ∆y 2 (22)
Thus, if we express ∆t as a fraction of ∆t CFL , ∆x and ∆y are the only free numerical parameters and we can test the accuracy of our two methods depending on (k x , k y ) by comparing :

˜ = εB B 0 max = max 0<θ<2π |cos (θ) (cos (δϕ) -1)| = |cos (δϕ) -1| (23) = ε B B 0 max = max 0<θ<2π cos (θ) cos δϕ -1 -sin (θ) sin δϕ (24)
When there is no laser to model, as is the case for beam-driven acceleration, the grid size must be small enough so as to accurately describe plasma oscillations. It is thus common to use ∆x = ∆y chosen between λ p /25 and λ p /50. For LWFA simulations, it is in addition necessary to accurately describe the laser pulse longitudinally. To that end ∆x is usually chosen between λ 0 /25 and λ 0 /50 and, as λ p is usually 10 times bigger than λ 0 , it is more efficient to use ∆x ∆y.

In order to look at the impact of the cell size on accuracy, we compare the error values of LTI and B-TIS Note that if we take ∆x = λ 0 /40 then k 0 ∆x/π = 0.05, so everything above 0.01 can be considered as high frequency, which is mostly some noise and not some physically relevant component. Knowing that, it is clear that LTI ensures good accuracy for low frequency fields (which are phisically relevant) but its precision decreases rapidly outside of that range. Increasing the ratio ∆y/∆x increase the accuracy for transverse high frequency fields but reduces it for those with high longitudinal frequency. On the other hand, the accuracy of B-TIS is maximum when v ϕ = ω/k ≈ c and increasing the ratio ∆y/∆x improves significantly the accuracy for the whole spectrum as c∆t becomes increasingly closer to the value of ∆x.

LTI is better with ∆y = ∆x, but as soon as ∆y is at least four times bigger than ∆x, B-TIS gives similar or better accuracy to LTI for the laser field and lower frequency fields and much better accuracy for the high The precision with B-TIS is then better than with LTI and on the same order of magnitude as with QTI.

As stated in Section 2, the frequency of NCR satisfy ω = k x β x c with β x being the normalized velocity of the particle generating the NCR along the x direction. This means, with the same notation as previously that δϕ = 1 2 β x k x ∆t and δϕ = 1 2 k x (∆x -β x c∆t). Using our particular numerical parameters and β x = 0.99995 (p x ≈ 100m e c) we get, for all possible values of k x : 0.011 ≤˜ (k x ) ≤ 0.99 (28)

0.0016 ≤ ˜ (k x ) ≤ 1.10 (29) 0.0010 ≤ (k x ) ≤ 0.011 (30)
As expected the results are significantly better for B-TIS for all the possible spectrum of NCR but especially for higher frequencies where the difference can be as big as two orders of magnitude. Note that for those highest frequencies QTI is no better than LTI.

Error on Wakefield and beam self-field

Beam self-field and wakefield are not purely electromagnetic fields so they do not satisfy the numerical dispersion relation given by Eq. 1. Instead, as long as the quasistatic approximation can be applied [START_REF] Sprangle | Nonlinear theory of intense laser-plasma interactions[END_REF], these fields are characterised by ω = vk x where v = v b is the beam velocity in the case of the beam self-field or v = v wf is the wakefield velocity in the wakefield case, both moving along the x axis.

Thus, in that case, δϕ = kxv∆t 2 and δϕ = 1 2 k x (∆x -v∆t) and we can show similarly to previous cases that: The value of v has a very small impact on the precision as in both cases v ≈ c though its effect is more noticeable with B-TIS. For very low frequencies such as the wakefield frequency k p (k p ∆x/π ≈ 0.005 if ∆x ≈ λ 0 /40 ≈ λ p /400), LTI ensures a better precision than B-TIS but both methods give very small errors in that case. The error of LTI increases very rapidly with the longitudinal frequency so that for higher frequencies B-TIS again gives an error at least an order of magnitude smaller.

˜ (k x ) 1 2 δϕ 2 (k x ) (31) ˜ (k x ) 1 2 δϕ 3 (k x ) (32) (k x ) δϕ(k x ) (33) 
Using again the numerical parameters of the simulation introduced in section 2, we can compute the error for typical values of k x for the wakefield and the beam self-field. Choosing k x = k p for the wakefield we get: For those typical values, LTI and B-TIS give pretty similar values resulting in good accuracy for both methods.

However higher frequencies may arise due to inhomogeneities in the electron beam or high electron density gradients in the wake, those would benefit from the improved accuracy of B-TIS at higher frequencies. Beam 245 hosing or transverse evolution of the bubble may also occur but would result in very low longitudinal frequency oscillations where both method give good results.

Implementation of B-TIS in Calder

We show in Fig. 11 

F LTI y (x, y, z) = e i,j,k S i,j,k (x, y, z) E n i,j,k -S i+ 1 2 ,j,k (x, y, z) c Bn i+ 1 2 ,j,k (36) 
F B-TIS y (x, y, z) = e i,j,k S i,j,k (x, y, z) E n i,j,k -S i,j,k (x, y, z) c Bn i,j,k (37) 
where i,j,k are the indices on the spatial grid along the x,y,z directions respectively, and S i,j,k (x, y, z) is the interpolation form factor. A third order form factor (cubic interpolation) was used here as in the simulations 250 for spatial interpolation. When calculating F y = e (E y -cB z ), the laser field, the beam self field and NCR are expected to cancel out leaving only the transverse force created by the bubble fields. Yet we can clearly see in Fig. 11 on the first row that F y has some higher frequency components. At the front of the bubble we can observe oscillations clearly due to the laser beam while there are even higher frequency perturbations all along the beam position.

Looking at the right-most picture, we can estimate that λ ≈ 4∆x or k x ≈ 10ω 0 /c which is coherent with NCR characteristics as seen in Fig 2 , we can therefore conclude that the aforementioned perturbations are indeed caused by NCR.

The spurious rapid oscillations of the field are effectively suppressed when using B-TIS instead of LTI and only the expected transverse bubble field are left on the bottom row of Fig. 11. Coincidentally, the error due to the laser fields in front of the bubble is reduced as expected according to the error levels reported earlier.

From the above observations, we conclude that B-TIS provides better accuracy than the other above-mentioned methods with regards to the motion of particles in LWFA simulations.

Comparison of results for LWFA simulations

Influence on the bubble and the beam

We implemented the modified interpolation scheme B-TIS into calder, applying it for every particle with p x > 50 m e c. Indeed, the underlying approximation works well inside the cavity for the injected electrons with v x ≈ c but would give poor results with slower electrons. It shall therefore only be applied to particles satisfying β x > 0.9998 (p x > 50 m e c) while other particles shall be treated using the previously existing temporal interpolation method.

A 3D simulation was run with the exact same parameters as presented in Sec.2 but using our newly implemented B-TIS instead of the previous LTI method. Comparison of their results reveal a high degree of similarity, with almost identical bubbles -same shape, same fields -the differences coming from the accelerated beam itself and its generated fields. Fig. 12 shows electron density maps in the two different cases, the shape of the bubble appears identical in both instances but the injected beam is much more narrow with the modified scheme. In fact, only the transverse spatial distribution of the beam seems to be really affected by the change, with higher local electron density because of the beam focusing.

Looking at Fig. 13, the injection process appears unaffected. The injected charge is almost identical for the whole duration of the simulation and the linear density of the beam is also extremely similar. Four autoinjection events can clearly be identified in Fig. 13.a when the injected charge jumps from one plateau to another.

The third event is the most important and occurring for a relatively long time. The energy spectrum of the accelerated electrons is also quite comparable although differences are more noticeable there, highlighting how NCR can impact the acceleration process of the electrons.

The above results seem to confirm that our modified scheme does not impact the physics of wakefield creation, injection or acceleration process but merely corrects the spurious effect of NCR on the accelerated beam without actually suppressing the radiation.

Looking at the electromagnetic fields in the simulation with B-TIS, the numerical Cherenkov radiation is indeed still present as expected. Fig. 14 presents maps of the electric fields E y and E z and their respective Fourier transform, to be compared with Fig. 2. Once again the bubbles and their associated fields are extremely similar in both cases, the numerical Cherenkov radiation is the main observable difference between the two 290 simulations. The NCR is much more intense around the electron bunch in the new simulation, especially at the front of the beam, and seems more focused and clearly defined in Fourier space, this is likely due to the beam being much more narrow and more uniform in motion. The differences in terms of transverse force, though not visible when looking at the fields, translate into important difference in terms of beam emittance. Fig. 15 and Fig. 16 present the evolution with time of the 295 normalized emittance of sections of the electron beam.

The colored bunches were defined by the number of injection events occurring during the simulation as can be seen on Fig 13.a. We can observe the spurious growth of emittance described by Lehe [START_REF] Lehe | Numerical growth of emittance in simulations of laser-wakefield acceleration[END_REF] for all sections of the beam and in both directions for the simulations using LTI. Instead, with B-TIS, the emittance of the beam is smaller, but in addition it also tends to stay constant during the acceleration of the beam. This is in line with 300 what is expected according to theoretical models: in the case of a fully evacuated plasma bubble, the transverse 

Influence on electrons trajectories

Looking in more details into the individual electron trajectories, the effect of the modification is quite remarkable. Fig. 17 presents an example of such trajectories to be compared to those from Fig. 4. The oscillations of the electrons are far more regular and there is a much stronger correlation between the position of the particle and the transverse force especially in the (xz)-plane. There are still however some remaining disparities along the y direction which we will discuss further on.

Fig. 18 shows a comparison between the two simulations of the average difference between the recorded transverse force and its theoretical value for every recorded particles. The difference between the theoretical values and the recorded values are quite significant when using the LTI scheme revealing that the electrons are influenced by something other than the ideal EM fields of a perfect bubble. These effects are much less visible when B-TIS is used, especially in the (xz)-plane.

The difference of behaviour between the two planes can be explain by the polarisation of the laser beam along the y-axis. A 'wiggling' of the bubble in that plane is frequently observed in LWFA simulations and is indeed visible in Fig. 12. It is a well-known physical effect due to the increasing dissymmetry of the laser beam as it is depleted. This 'wiggling' may affect the electromagnetic fields inside the cavity leading to significant disparity with the theoretical fields inside the bubble. This effect is actually visible on Fig. 17. Note how the trajectory along the y direction is still somewhat irregular and the correlation between F y and y -although much better than previously -is not as good as between F z and z. This is the consequence of the asymmetry of the bubble in the y plane due to its 'wiggling'. The axis of the bubble where F y ≈ 0 is effectively constantly displaced thus impacting the correlation between F y and the particle position along y.

This effect may be as important as the error introduced by NCR which would explain the small improvement in the (xy)-plane relative to the one in the (xz)-plane. Using B-TIS allows us to clearly see the impact of this effect while it was previously masked by the effects of NCR. Our new improved scheme thus enables us to study rather subtle physical effects that might otherwise be lost due to numerical errors. is the force recorded by the particle (ie computed using Eq. 36 and 37) and F theor y = 1 2 meω 2 p y . Blue dots represents results using the LTI while the red squares are obtained with B-TIS. The picture on the right shows the same for the z direction.

Conclusion

We showed that the simple Yee scheme used by most PIC codes, though quite robust, has some intrinsic problems when simulating wakefield accelerators leading to an overestimation of the transverse size and emittance of the accelerated beam as well as a misrepresentation of the particle trajectories due to non physical numerical Cherenkov radiation. By using a simple modification of the interpolation scheme, we were able to significantly reduce the impact of this spurious radiation and improve the accuracy of our LWFA simulations. The improved accuracy on particle trajectories might especially help better understand electron motion and thus subtle beam evolution or even betatron radiation sources which are one very promising application of LWFA.

Though this paper is focused on LWFA, this work could be extended to study other wakefield acceleration methods, or even any simulation of charged particles propagating relativistically in a plasma as long as all the main EM fields propagate at a velocity close to c in the beam propagation direction. In addition, as it does not modify the Maxwell solver, our B-TIS could potentially be used with any FDTD scheme, especially with a dispersion free scheme that can allow use of ∆t = ∆x, making it a simple yet versatile tool to deal with NCR.

Finally, B-TIS might prove useful to improve the simulated motion of the particles for any simulation of relativistic particles co-propagating with electromagnetic fields such as direct laser acceleration or vacuum laser accelerations cases where electrons are accelerated directly by the co-propagating laser field, in order to improve the accuracy on the interaction.
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Fig. 1 Figure 1 :

 11 Fig.1shows a snapshot of a numerical simulation with an electron bunch accelerated in the wake of a laser pulse. The longitudinal field E x presents two distinct regions inside the cavity: the rear of the bubble has
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  In LWFA simulations, numerical Cherenkov radiation can appear around the accelerated electron beam. It creates high frequency radiation inside the ionic cavity which leads to a non-physical growth of the transverse size, divergence and beam emittance[START_REF] Lehe | Numerical growth of emittance in simulations of laser-wakefield acceleration[END_REF]. Fig. 2 illustrates such occurrence of NCR by showing the transverse electric fields of the wakefield accelerator. The laser pulse is clearly visible on Fig. 2.a as well as (on both Fig. 2.a

Figure 2 :

 2 Figure 2: Numerical Cherenkov radiation in a LWFA simulation: (a) shows a map of the transverse field Ey in the (xy) plane while (b) shows a map of Ez in the (xz) plane. (c) and (d) show their respective spatial Fourier transform with the black dashed lines corresponding to Eq. (3) and (4) respectively for a particle with px ≈ 100 mec. (e) and (f) show maps of the electric transverse fields for kx > 2.5 ω 0 /c only.

Fig. 3

 3 Fig. 3 shows a map of the difference E y -cB z . Note that, since the laser and the beam self-field both propagates at v ϕ ≈ c along the x direction, their contributions cancel out as E laser y ≈ cB laser z and E self-field y

Figure 3 :

 3 Figure 3: Map of Ey -cBz, slicecut in the (xy)-plane. Only the contribution from the bubble fields is still apparent.

Figure 4 :

 4 Figure 4: Examples of particle trajectories in presence of Numerical Cherenkov radiation. The top row is along the y-axis and the bottom one along the z-axis. On the left is the y (respectively z) position of the electron with time, the color showing the transverse force Fy = Ey -vxBz (respectively Fz = Ez + vxBy) recorded by the particle. On the right the transverse force has been plotted

Figure 5 :

 5 Figure 5: Usual interpolation process of EM fields on a 1D spatial grid at the n th time step in order to get the transverse force F n y applied on the particle represented by the yellow dot. (a) shows the initial configuration where the fields values are known at different times and spatial points. The temporal interpolation to get Bn is shown with dashed lined arrows. Then (b) shows the subsequent spatial interpolation of E n and Bn on the particle (again with dashed lined arrows and first order).

y

  ∼ cB NCR z holds only when the fields are not interpolated. Even with small grid spacings and time steps, high frequency fields such as the numerical Cherenkov radiation may vary noticeably in one time step and over one cell size. Using the average Bn then introduces an error on the magnetic field which might be small in absolute value but becomes quite important when one considers the difference E NCR y -cB NCR z . Spatial interpolation of E and B from different points as shown in Fig. 5 may also increase the error on the computed E NCR y -cB NCR z

Figure 6 : 2 i+ 1 2

 621 Figure 6: Modified interpolation process of EM fields: B-TIS on a 1D grid at the n th time step. (a) shows the same initial configuration as Fig. 5 (a) but instead of the temporal interpolation of B, the relation Bn i = B n+ 1 2 i+ 1 2

  across the field of possible k x and k y for different sets of numerical parameters. We present next the results of

Figure 7 :

 7 Figure 7: Absolute error on B field using (a) LTI ˜ (kx, ky) or (b) B-TIS (kx, ky) with ∆y = ∆x and ∆t = 0.99 ∆tCFL. The black line describe possible NCR modes according to eq. 3 with βx = 0.99995 (px ≈ 100mec).

Figure 8 :

 8 Figure 8: Absolute error on B field using (a) LTI ˜ (kx, ky) or (b) B-TIS (kx, ky) with ∆y = 4∆x and ∆t = 0.99 ∆tCFL. The black line describe possible NCR modes (and aliases) according to eq. 3 with βx = 0.99995 (px ≈ 100mec).
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 9911 Figure 9: Absolute error on B field using (a) LTI ˜ (kx, ky) or (b) B-TIS (kx, ky) with ∆y = 20∆x and ∆t = 0.99 ∆tCFL. The black line describe possible NCR modes (and aliases) according to eq. 3 with βx = 0.99995 (px ≈ 100mec).

Figure 10

 10 Figure 10 compares the errors ˜ (k x ) of LTI and (k x ) of B-TIS, both for v = v wf = 0.99822 (case of laser-driven wakefield in a plasma with n e = 0.00357n c ) and v = v b = 0.99995 (case of a 50 MeV electron beam).

˜ ≈ 1 .

 1 10 -5 , ˜ ≈ 4. 10 -8 , ≈ 4. 10 -5 (34) and choosing k x = 4k p for the beam self-field (assuming a electron beam as long as a quarter of the bubble length) we get: ˜ ≈ 2. 10 -4 , ˜ ≈ 3. 10 -6 , ≈ 1. 10 -4

Figure 10 :

 10 Figure 10: Absolute error on B field using LTI or B-TIS with ∆t = 0.99 ∆tCFL.

  a comparison of the resulting transverse force F y = e (E y -cB z ) calculated with either LTI or B-TIS. The pictures are successive zooms in the (xy) plane of the simulation. The first one shows the bubble in its entirety while the second focuses on fine details around the axis of the bubble and in the rightmost one grid points used to calculate the EM fields are visible. Between those grid points, the fields are interpolated in the same way as they would in calder to calculate fields at the particles positions. The force F y that would apply to an electron is the difference between the interpolated E y and interpolated B z , F LTI y is shown on the first row and F B-TIS y on the second, with:

Figure 11 :

 11 Figure11: Successive zooms on a map of the interpolated transverse force Fy that would apply to an electron.The first row when using LTI, the second row when using B-TIS. For each on the rightmost picture, + and × materialize the grid points used for the spatial interpolation: + for E n , × for Bn and × for Bn .

Figure 12 :

 12 Figure 12: Comparison of the bubble and beam shape. Those are slice-cuts showing the electronic density normalised to the critical density ne/nc. (a) and (c) are slices in the (xy) and (xz) planes respectively in the case using LTI, while (b) and (d) are their counterparts with B-TIS.

Figure 13 :

 13 Figure 13: Comparison of beam properties when using the LTI scheme or the new B-TIS: (a) Total injected charge (px > 50mec) with the length of propagation in the plasma. (b) Beam distribution along the x axis and (c) energy spectrum of the accelerated electrons, both after 2.25 mm propagation in the plasma.

Figure 14 :

 14 Figure 14: Similar results to Fig. 2 but using the B-TIS for electrons with px > 50mec: (a) shows a map of the transverse field Ey in the (xy) plane while (b) shows a map of Ez in the (xz) plane. (c) and (d) show their respective spatial Fourier transform with the black dashed lines corresponding to Eq. (3) and (4) respectively for a particle with px ≈ 100 mec. (e) and (f) show maps of the transverse field for kx > 2.5 ω 0 /c only.

Figure 15 :

 15 Figure 15: Beam transverse size and emittance in the (xy) plane. (a) and (c) : map of the longitudinal electric field Ex and distribution of the beam particles (colored circles). (b) and (d) : Evolution of the normalized emittance εy of the different electron bunches defined in Fig. 13. The results in (a) and (b) are obtained using LTI, while (c) and (d) used B-TIS.

Figure 16 :

 16 Figure 16: Beam transverse size and emittance in the (xz) plane. (a) and (c) : map of the longitudinal electric field Ex and distribution of the beam particles (colored circles). (b) and (d) : Evolution of the normalized emittance εz of the different electron bunches defined in Fig. 13. The results in (a) and (b) are obtained using LTI, while (c) and (d) used B-TIS.
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Figure 17 :

 17 Figure 17: Trajectories of a electron from the simulation with the modified scheme B-TIS. The top row is along the y-axis, the bottom one along the z-axis. On the left is the y (respectively z) position of the electron with time, the color showing the transverse force Fy = Ey -vxBz (respectively Fz = Ez + vxBy) recorded by the particle. On the right the transverse force has been plotted against the position (blue line), to be compared with the theoretical Fy = 1 2 meω 2 p y (red dashed line) (respectively Fz = 1 2 meω 2 p z).

Figure 18 :

 18 Figure 18: The picture on the left presents the temporal average |F rec y -F theor y
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