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By using complex angular momentum techniques, we study the electromagnetic radiation generated
by a charged particle falling radially from infinity into a Schwarzschild black hole. We consider both
the case of a particle initially at rest and that of a particle projected with a relativistic velocity and we
construct complex angular momentum representations and Regge pole approximations of the partial wave
expansions defining the Maxwell scalar ϕ2 and the energy spectrum dE=dω observed at spatial infinity.
We show, in particular, that Regge pole approximations involving only one Regge pole provide effective
resummations of these partial wave expansions permitting us (i) to reproduce with very good agreement the
black hole ringdown without requiring a starting time, (ii) to describe with rather good agreement the tail of
the signal and sometimes the preringdown phase, and (iii) to explain the oscillations in the electromagnetic
energy spectrum radiated by the charged particle. The present work as well as a previous one concerning
the gravitational radiation generated by a massive particle falling into a Schwarzschild black hole
[A. Folacci and M. Ould El Hadj, Phys. Rev. D 98, 064052 (2018)] highlight the benefits of studying
radiation from black holes in the complex angular momentum framework (they obviously appear when the
approximations obtained involve a small number of Regge poles and have a clear physical interpretation)
but also to exhibit the limits of this approach (this is the case when it is necessary to take into account
background integral contributions).

DOI: 10.1103/PhysRevD.102.024026

I. INTRODUCTION

In a recent article [1], we advocated for an alternative
description of gravitational radiation from black holes
(BHs) based on complex angular momentum (CAM)
techniques, i.e., analytic continuation in the CAM plane
of partial wave expansions, duality of the S-matrix,
effective resummations involving its Regge poles and the
associated residues, Regge trajectories, semiclassical inter-
pretations, etc. In this previous article as well as in more
recent works [2,3] where we have provided CAM and
Regge pole analyses of scattering of scalar, electromag-
netic, and gravitational waves by a Schwarzschild BH, we
have justified the interest of such an approach in the context
of BH physics and we shall not return here on this subject.
We refer the interested reader to these articles and, more
particularly, to the introduction of Ref. [1] as well as to
references therein for other works dealing with the CAM
approach to BH physics.
In the present article, by using CAM techniques, we

shall revisit the problem of the electromagnetic radiation
generated by a charged particle falling radially into a

Schwarzschild BH. We shall consider both the case of a
particle initially at rest and that of a particle projected with
a relativistic or an ultrarelativistic velocity and we shall
construct CAM representations and Regge pole approx-
imations of the partial wave expansions defining the
Maxwell scalar ϕ2 and the energy spectrum dE=dω
observed at spatial infinity. This work extends our previous
work concerning the CAM and Regge pole analyses of
the gravitational radiation generated by a massive particle
falling into a Schwarzschild BH [1]. Both highlight the
benefits of working within the CAM framework and
strengthen our opinion concerning the interest of the
Regge pole approach for describing radiation from BHs.
Problems dealing with the excitation of a BH by a charged

particle and the generation of the associated electromagnetic
radiation have been considered, since the early 1970s, in the
literature (for pioneering works on this subject, see the
lectures by Ruffini [4] in Ref. [5] and references therein, as
well as Refs. [6–9] for articles directly relevant to our study)
and, currently, an ever-increasing importance is given to
them. Indeed, such problems are of great interest with the
emergence of multimessenger astronomy, which combines
the detection and analysis of gravitational waves with those
of other types of radiation for a better understanding of our
“violent Universe” but also in order to test the BH hypothesis
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and Einstein’s general relativity in the strong-field regime
(see, e.g., Refs. [10–12]). In this context, it is particularly
interesting to study the electromagnetic partner of the
gravitational radiation generated during the accretion of a
charged fluid by a BH [13,14].
Our paper is organized as follows. In Sec. II, we first

construct the Maxwell scalar ϕ2 describing the outgoing
electromagnetic radiation at infinity which is generated by
a charged particle falling radially into a Schwarzschild BH.
To do this, by using Green’s function techniques, we solve
in the frequency domain the Regge-Wheeler equation for
arbitrary ðl; mÞ modes and we proceed to their regulari-
zation. We also extract from the multipole expansion
of ϕ2 the quasinormal ringdown of the BH. In Sec. III,
we provide two different CAM representations of the
multipolar waveform ϕ2: the first one is based on the
Poisson summation formula [15] while the second one is
constructed from the Sommerfeld-Watson transformation
[16–18]. From each of them, we extract, as approximations
of ϕ2, the Fourier transform of a sum over Regge poles and
Regge-mode excitation factors. It is important to note that,
in order to evaluate numerically these two Regge pole
approximations, we need the Regge trajectories (i.e., the
curves traced out in the CAM plane by the Regge poles and
by the associated residues as a function of the frequency ω).
In Sec. IV, we numerically compare the multipolar wave-
form ϕ2 constructed by summing over a large number of
partial modes (this is particularly necessary for a particle
projected with a relativistic or an ultrarelativistic velocity)
as well as the associated ringdown with the Regge pole
approximations obtained in Sec. III. This permits us to
emphasize the benefits of working with these particular
approximations of the Maxwell scalar ϕ2. In Sec. V,
we focus on the electromagnetic energy spectrum
dE=dω radiated by the charged particle falling into the
Schwarzschild BH and we numerically compare it with its
CAM representation obtained from the Poisson summation
formula. In the Conclusion, we summarize the main results
obtained and briefly discuss some possible extensions of
our approach.
Throughout this article, we adopt units such that

G ¼ c ¼ ϵ0 ¼ μ0 ¼ 1, we use the geometrical conventions
of Ref. [19], and we perform the numerical calculations
using Mathematica [20]. We, furthermore, consider that
the exterior of the Schwarzschild BH is defined by
the line element ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dθ2þ
r2 sin2 θdφ2, where fðrÞ ¼ 1–2M=r and M is the mass
of the BH while t ∈� −∞;þ∞½, r ∈�2M;þ∞½, θ ∈ ½0; π�
and φ ∈ ½0; 2π� are the usual Schwarzschild coordinates.

II. MAXWELL SCALAR ϕ2 AND ASSOCIATED
QUASINORMAL RINGDOWN

In this section, we shall construct the Maxwell scalar ϕ2

describing the outgoing radiation at infinity due to a

charged particle falling radially from infinity into a
Schwarzschild BH. Moreover, we shall extract from the
multipole expansion of ϕ2 the associated ringdown
waveform.

A. Multipole expansion of the Maxwell scalar ϕ2

We consider a charged particle (we denote bym0 its mass
and by q its electric charge) falling radially into a
Schwarzschild BH. The timelike geodesic followed by
such a particle is defined by the coordinates tpðτÞ, rpðτÞ,
θpðτÞ, and φpðτÞ, where τ is its proper time. Without loss
of generality, we can consider that this particle moves in
the BH equatorial plane along the positive x axis and in
the negative direction, i.e., we assume that θpðτÞ ¼ π=2,
φpðτÞ ¼ 0, and drpðτÞ=dτ < 0. The functions tpðτÞ, rpðτÞ
as well as the function tpðrÞ can be then obtained from the
geodesic equations (see, e.g., Ref. [21])

fðrpÞ
dtp
dτ

¼ E
m0

ð1aÞ

and

�
drp
dτ

�
2

−
2M
rp

¼
�

E
m0

�
2

− 1: ð1bÞ

Here, E is the energy of the particle. It is a constant of
motion which can be related to the velocity v∞ of the
particle at infinity and to the associated Lorentz factor γ by

E
m0

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðv∞Þ2

p ¼ γ: ð2Þ

The electromagnetic radiation generated by this particle
can be described by using the gauge-invariant formalism
introduced by Ruffini et al. in Ref. [6] (see also
Refs. [22,23]) and by working in the framework of the
Newman-Penrose formalism (see, e.g., Chap. 8 of
Ref. [24]). We shall therefore focus on the Maxwell scalar
ϕ2 which can be expressed at spatial infinity as

ϕ2 ¼
1

2
ffiffiffi
2

p fðEθ − iEφÞ þ iðBθ − iBφÞg; ð3Þ

where Eθ, Eφ, Bθ, and Bφ denote the components of the
electromagnetic field ðE;BÞ observed for r → ∞. Here, it
is important to note that we have defined ϕ2 with respect to
the null basis ðl; n;m;m�Þ which is normalized such that
the only nonvanishing scalar products involving the vectors
of the tetrad are lμnμ ¼ −1 and mμm�

μ ¼ 1 and which is
given by (our conventions slightly differ from those of
Ref. [24])
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lμ ¼
�

1

fðrÞ ; 1; 0; 0
�
; ð4aÞ

nμ ¼ 1

2

�
1;−

1

fðrÞ ; 0; 0
�
; ð4bÞ

mμ ¼ 1ffiffiffi
2

p
r

�
0; 0; 1;

i
sin θ

�
; ð4cÞ

m�μ ¼ 1ffiffiffi
2

p
r

�
0; 0; 1;

−i
sin θ

�
: ð4dÞ

We recall that the radially infalling particle only
excites the even (polar) electromagnetic modes of the
Schwarzschild BH and that, in the usual orthonormalized
basis ðêr; êθ; êφÞ of the spherical coordinate system, the
components of the electric field can be expressed in terms
of the gauge-invariant master functions ψlmðt; rÞ and
expanded on the (even) vector spherical harmonics
Ylm
θ ðθ;φÞ and Ylm

φ ðθ;φÞ in the form [25]

E ¼

��������
Er ¼ 0

Eθ ¼ − 1
r

Pþ∞
l¼1

Pþl
m¼−l

1
lðlþ1Þ ∂rψlmYlm

θ

Eφ ¼ − 1
r sin θ

Pþ∞
l¼1

Pþl
m¼−l

1
lðlþ1Þ ∂rψlmYlm

φ ;

ð5Þ

while the magnetic field B can be obtained from the
Maxwell-Faraday equation and its components expressed
in terms of those of the electric field. Indeed, for r → þ∞,
we have ∂tψlm ¼ −∂rψlm and we can write

B ¼

��������
Br ¼ 0

Bθ ¼ −Eφ

Bφ ¼ þEθ:

ð6Þ

It should be noted that the vector spherical harmonics
appearing in Eq. (5) are given in terms of the standard scalar
spherical harmonics Ylmðθ;φÞ by

Ylm
θ ¼ ∂

∂θ Y
lm and Ylm

φ ¼ ∂
∂φYlm ð7Þ

and satisfy the “orthonormalization” relation

Z
S2

dΩ2

�
Ylm
θ ðθ;φÞ½Yl0m0

θ ðθ;φÞ��

þ 1

sin2θ
Ylm
φ ðθ;φÞ½Yl0m0

φ ðθ;φÞ��
�
¼ lðlþ 1Þδll0δmm0 :

ð8Þ

Here dΩ2 ¼ sin θdθdφ denotes the area element on the unit
sphere S2. We also recall that the gauge-invariant master
functions ψlmðt; rÞ appearing in Eq. (5) can be written in
the form

ψlmðt; rÞ ¼
1ffiffiffiffiffiffi
2π

p
Z þ∞

−∞
dωψωlmðrÞe−iωt; ð9Þ

where their Fourier components ψωlmðrÞ satisfy the Regge-
Wheeler equation

�
d2

dr2�
þ ω2 − VlðrÞ

�
ψωlmðrÞ ¼ SωlmðrÞ: ð10Þ

Here, SωlmðrÞ is a source term, r� denotes the tortoise
coordinate which is defined in terms of the radial
Schwarzschild coordinate r by dr=dr� ¼ fðrÞ and is given
by r�ðrÞ ¼ rþ 2M ln½r=ð2MÞ − 1� while

VlðrÞ ¼ fðrÞ
�
lðlþ 1Þ

r2

�
ð11Þ

denotes the Regge-Wheeler potential.
As far as the source term SωlmðrÞ appearing in the right-

hand side (rhs) of the Regge-Wheeler equation (10) is
concerned, it depends on the components, in the basis of
vector spherical harmonics, of the current associated with
the charged particle [25]. Its expression can be derived from
Eqs. (1) and (2) and we obtain

SωlmðrÞ ¼ ½Ylmðπ=2; 0Þ��S̃ωðrÞeþiωtpðrÞ; ð12Þ

where

S̃ωðrÞ ¼
qffiffiffiffiffiffi
2π

p fðrÞ
�
þiω

r
ðγ2 − 1Þrþ 2M

−
Mγffiffiffi

r
p ½ðγ2 − 1Þrþ 2M�3=2

�
ð13aÞ

and with

tpðrÞ
2M

¼ −
2

3

�
r
2M

�
3=2

− 2

�
r
2M

�
1=2

þ ln

� ffiffiffiffiffi
r
2M

p þ 1ffiffiffiffiffi
r
2M

p
− 1

�
þ t0
2M

ð13bÞ

for the particle starting at rest from infinity (i.e., for
γ ¼ 1) and

ELECTROMAGNETIC RADIATION GENERATED BY A CHARGED … PHYS. REV. D 102, 024026 (2020)

024026-3



tpðrÞ
2M

¼ −
γ

ðγ2 − 1Þ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ðγ2 − 1Þ r

2M

��
ðγ2 − 1Þ r

2M
þ 1

�s
−
γð2γ2 − 3Þ
ðγ2 − 1Þ3=2 ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ2 − 1Þ r

2M

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ2 − 1Þ r

2M
þ 1

r �

þ ln

2
64γ

ffiffiffiffiffi
r
2M

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ2 − 1Þ r

2M þ 1
q

γ
ffiffiffiffiffi
r
2M

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ2 − 1Þ r

2M þ 1
q

3
75þ t0

2M
ð13cÞ

for a particle projected with a finite kinetic energy at
infinity (i.e., for γ > 1). In Eqs. (13b) and (13c), t0 is an
arbitrary integration constant.

B. Regge-Wheeler equation and S-matrix

The Regge-Wheeler equation (10) can be solved by
using the machinery of Green’s functions (see, e.g.,
Ref. [26] for its use in the context of BH physics).
Mutatis mutandis, taking into account Eq. (12), the
reasoning of Sec. II C of Ref. [27] permits us to obtain
the asymptotic expression, for r → þ∞, of the partial
amplitudes ψωlmðrÞ. We have

ψωlmðrÞ ¼ eþiωr�ðrÞ K½l;ω�
2iωAð−Þ

l ðωÞ
½Ylmðπ=2; 0Þ�� ð14aÞ

with

K½l;ω� ¼
Z þ∞

2M

dr0

fðr0Þϕ
in
ω;lðr0ÞS̃ωðr0Þeiωtpðr

0Þ: ð14bÞ

Here, we have introduced the solution ϕin
ω;lðrÞ of the

homogeneous Regge-Wheeler equation

�
d2

dr2�
þ ω2 − VlðrÞ

�
ϕin
ω;l ¼ 0; ð15Þ

which is defined by its behavior at the event horizon
r ¼ 2M (i.e., for r� → −∞) and at spatial infinity r → þ∞
(i.e., for r� → þ∞):

ϕin
ω;lðr�Þ ∼

� e−iωr�ðr� → −∞Þ
Að−Þ
l ðωÞe−iωr� þ AðþÞ

l ðωÞeþiωr�ðr� → þ∞Þ:
ð16Þ

The coefficients Að−Þ
l ðωÞ and AðþÞ

l ðωÞ appearing in
Eqs. (14) and (16), are complex amplitudes. By evaluating,
first for r� → −∞ and then for r� → þ∞, the Wronskian
involving the function ϕin

ωl and its complex conjugate, we
can show that they are linked by

jAð−Þ
l ðωÞj2 − jAðþÞ

l ðωÞj2 ¼ 1: ð17Þ

Moreover, with the numerical calculation of the Maxwell
scalar ϕ2 as well as the study of its properties in mind, it is
important to note that

ϕin
−ω;lðrÞ ¼ ½ϕin

ω;lðrÞ��; ð18aÞ

Að�Þ
l ð−ωÞ ¼ ½Að�Þ

l ðωÞ��: ð18bÞ

It is worth pointing out that the boundary conditions (16)
for ϕin

ω;lðrÞ and therefore the expression (14) of the partial
amplitudes ψωlmðrÞ involve the S-matrix defined by (see,
e.g., Ref. [28])

SlðωÞ ¼
 

1=Að−Þ
l ðωÞ AðþÞ

l ðωÞ=Að−Þ
l ðωÞ

−½AðþÞ
l ðωÞ��=Að−Þ

l ðωÞ 1=Að−Þ
l ðωÞ

!
:

ð19Þ

Due to Eq. (18b), this matrix satisfies the symmetry
property Slð−ωÞ ¼ ½SlðωÞ�� and, due to Eq. (17), it is
in addition unitary, i.e., it satisfies SS† ¼ S†S ¼ 1. Here, it

is interesting to recall that, in Eq. (19), the term 1=Að−Þ
l ðωÞ

and the term AðþÞ
l ðωÞ=Að−Þ

l ðωÞ are, respectively, the trans-
mission coefficient TlðωÞ and the reflection coefficient
Rin
l ðωÞ corresponding to the scattering problem defined by

Eq. (16). As far as the coefficient −½AðþÞ
l ðωÞ��=Að−Þ

l ðωÞ is
concerned, it can be considered as the reflection coefficient
Rup
l ðωÞ involved in the scattering problem defining the

modes ϕup
ω;lðrÞ [28].

C. Compact expression for the multipole expansion
of the Maxwell scalar ϕ2

We first insert Eq. (14a) into Eq. (9) and we have

ψlmðt; rÞ ¼ ψlðt; rÞ½Ylmðπ=2; 0Þ��; ð20aÞ

where

ψlðt; rÞ ¼
1ffiffiffiffiffiffi
2π

p
Z þ∞

−∞
dωe−iω½t−r�ðrÞ�

K½l;ω�
2iωAð−Þ

l ðωÞ
: ð20bÞ

We now substitute Eq. (20) into Eq. (5). Furthermore,
without loss of generality, we assume that the electromag-
netic radiation is observed in a direction lying in the BH
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equatorial plane and making an angle φ ∈ ½0; π� with the
trajectory of the particle (due to symmetry considerations,
we can restrict our study to this interval). By then using the
addition theorem for scalar spherical harmonics in the form

Xþl

m¼−l
Ylmðθ;φÞ½Ylmðπ=2; 0Þ�� ¼ 2lþ 1

4π
Plðsin θ cosφÞ;

ð21Þ

where PlðxÞ denotes the Legendre polynomial of degree
l [29], we obtain, for r → þ∞,

rEθðt; r; θ ¼ π=2;φÞ ¼ 0 ð22Þ

and

rEφðt; r; θ ¼ π=2;φÞ

¼ −
1ffiffiffiffiffiffi
2π

p
Z þ∞

−∞
dωe−iω½t−r�ðrÞ�

×

�
1

4π

Xþ∞

l¼1

2lþ 1

lðlþ 1Þ
K½l;ω�
2Að−Þ

l ðωÞ
WlðcosφÞ

�
: ð23Þ

In Eq. (23), we have introduced the angular function

WlðcosφÞ ¼
∂
∂φPlðcosφÞ: ð24Þ

Finally, taking into account Eq. (6), we can write by
inserting Eqs. (22) and (23) into Eq. (3)

ffiffiffi
2

p
r

i
ϕ2ðt; r; θ ¼ π=2;φÞ

¼ 1ffiffiffiffiffiffi
2π

p
Z þ∞

−∞
dωe−iω½t−r�ðrÞ�

×

�
1

4π

Xþ∞

l¼1

2lþ 1

lðlþ 1Þ
K½l;ω�
2Að−Þ

l ðωÞ
WlðcosφÞ

�
ð25Þ

for r → þ∞.

D. Regularization of the partial waveform amplitudes
ψωlm and the Maxwell scalar ϕ2

To construct the Maxwell scalar ϕ2, we need to regu-
larize the partial amplitudes ψωlmðrÞ or, more precisely,
K½l;ω�. Indeed, the partial waveforms (14) as integrals
over the radial Schwarzschild coordinate are divergent
at infinity. This is due to the behavior of the source (13)
for r → ∞.
To regularize K½l;ω�, we integrate twice by parts and

use the homogeneous Regge-Wheeler equation (15). Then,
by dropping intentionally the boundary terms at r → ∞
(regularization), we obtain

K½l;ω� ¼ qlðlþ 1Þ K̃½l;ω�
iω

ð26aÞ

with

K̃½l;ω� ¼ 1ffiffiffiffiffiffi
2π

p
Z þ∞

2M
dr0ϕin

ω;lðr0Þ
eiωtpðr0Þ

r02
: ð26bÞ

Now, by inserting Eqs. (26a) and (26b) into Eq. (25), we
obtain for the Maxwell scalar

ffiffiffi
2

p
r

iq
ϕ2ðt; r; θ ¼ π=2;φÞ

¼ 1ffiffiffiffiffiffi
2π

p
Z þ∞

−∞
dωe−iω½t−r�ðrÞ�

×

�Xþ∞

l¼1

2lþ 1

4π

K̃½l;ω�
2iωAð−Þ

l ðωÞ
WlðcosφÞ

�
: ð27Þ

It is in addition interesting to note that, by inserting
Eqs. (26a) and (26b) into the partial waveform amplitudes
(14), we can recover the amplitude term derived by Cardoso
et al. in Ref. [9] working in the Zerilli gauge [30,31].
Moreover, with the numerical calculation of the Maxwell

scalar ϕ2 as well as the study of its properties in mind, we
can observe that

K̃½l;−ω� ¼ ½K̃½l;ω��� ð28aÞ

and

K̃½l;−ω�=Að−Þ
l ð−ωÞ ¼ ½K̃½l;ω�=Að−Þ

l ðωÞ�� ð28bÞ

as a consequence of Eqs. (18a) and (18b). Due to relation
(28b), we can see that the term in square brackets in
Eq. (27) satisfies the Hermitian symmetry property and, as
a consequence, that the Maxwell scalar ϕ2 is a purely
imaginary quantity. Similarly, it is worth pointing out that
the electromagnetic field is a real quantity.

E. Two alternative expressions for the multipole
expansion of the Maxwell scalar ϕ2

It is important to realize that Eq. (27) can also be
written as

ffiffiffi
2

p
r

iq
ϕ2ðt; r; θ ¼ π=2;φÞ

¼ 1ffiffiffiffiffiffi
2π

p
Z þ∞

−∞
dωe−iω½t−r�ðrÞ�

×
�Xþ∞

l¼0

2lþ 1

4π

K̃½l;ω�
2iωAð−Þ

l ðωÞ
WlðcosφÞ

�
: ð29Þ
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Indeed, it is possible to start at l ¼ 0 the discrete sum over
l by noting that

W0ðcosφÞ ¼
∂
∂φP0ðcosφÞ ¼ 0 ð30Þ

and that we have formally

Að−Þ
0 ðωÞ ¼ 1 and K̃½0;ω� regular: ð31Þ

These last two results are due to the fact that, for l ¼ 0, the
solution of the problem (15) and (16) is ϕin

ω;0ðrÞ ¼ e−iωr�

because the Regge-Wheeler potential (11) vanishes. Of
course, in general, it is more natural to work with the
multipole expansion (27) of the Maxwell scalar ϕ2 but, in
Sec. III C, we shall take (29) as a departure point because it
will permit us to use the Poisson summation formula in its
standard form.
Similarly, it is important to note that Eq. (29) can be

rewritten in the form

ffiffiffi
2

p
r

iq
ϕ2ðt; r; θ ¼ π=2;φÞ

¼ 1ffiffiffiffiffiffi
2π

p
Z þ∞

−∞
dωe−iω½t−r�ðrÞ�

×

�Xþ∞

l¼0

ð−1Þl 2lþ 1

4π

K̃½l;ω�
2iωAð−Þ

l ðωÞ
Wlð− cosφÞ

�
:

ð32Þ

Indeed, we can recover Eq. (29) from Eq. (32) by using the
relation [29]

Plð− cosφÞ ¼ ð−1ÞlPlðcosφÞ ð33Þ

in connection with the definition (24). In Sec. III D, we
shall take Eq. (32) as a departure point because it will
permit us to use the Sommerfeld-Watson transform in its
standard form.

F. Quasinormal ringdown associated
with the Maxwell scalar ϕ2

The quasinormal ringdown ϕQNM
2 generated by the

charged particle falling radially from infinity into a

FIG. 1. Regge trajectories of the first three Regge poles corresponding to electromagnetism in the Schwarzschild BH (2M ¼ 1). The
relation (43) permits us to describe the Regge trajectories for ω < 0 by noting that Re½λnðωÞ� and Im½λnðωÞ� are, respectively, even and
odd functions of ω. We observe, in particular, the migration of the Regge poles in the CAM plane.
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Schwarzschild BH can be extracted from Eq. (27) by
following, mutatis mutandis, the reasoning of Sec. II E of
Ref. [1]. We then obtain

ffiffiffi
2

p
r

iq
ϕQNM
2 ðt; r; θ ¼ π=2;φÞ

¼ −2
ffiffiffiffiffiffi
2π

p
Re

�Xþ∞

l¼1

Xþ∞

n¼1

2lþ 1

4π
Bln

K̃½l;ωln�
AðþÞ
l ðωlnÞ

× e−iωln½t−r�ðrÞ�WlðcosφÞ
�
; ð34Þ

where

Bln ¼
�
1

2ω

AðþÞ
l ðωÞ

d
dωA

ð−Þ
l ðωÞ

�
ω¼ωln

ð35Þ

denotes the excitation factor associated with the ðl; nÞ
quasinormal mode (QNM) of complex frequency ωln. Its

expression involves the residue of the function 1=Að−Þ
l ðωÞ

at ω ¼ ωln. It should be noted that Eq. (34) has been
obtained by gathering the contributions of the quasinormal
frequencies ωln and −ω�

ln taking into account the relations
(18b) and (28a), which remain valid in the complex ω
plane. As a consequence, the quasinormal ringdown wave-
form ϕQNM

2 appears clearly as a purely imaginary quantity.
Let us finally recall that, due to the exponentially

divergent behavior of the terms e−iωln½t−r�ðrÞ� as t decreases,
the ringdown waveform ϕQNM

2 does not provide physically
relevant results at early times. It is therefore necessary
to determine, from physical considerations, a starting
time tstart for the BH ringdown. In general, by taking
tstart ¼ tpð3MÞ, i.e., the moment the particle crosses the
photon sphere, we can obtain physically relevant results.

III. MAXWELL SCALAR ϕ2, ITS CAM
REPRESENTATIONS, AND ITS REGGE

POLE APPROXIMATIONS

In this section, we shall derive two exact CAM repre-
sentations of the Maxwell scalar ϕ2, the first one by using
the Poisson summation formula [15] and the second one
by working with the Sommerfeld-Watson transformation
[16–18]. These representations can be written as (the
Fourier transform of) a sum over Regge poles plus back-
ground integrals along the positive real axis and the
imaginary axis of the CAM plane. We shall also consider
the Regge pole part of these representations as approx-
imations of the Maxwell scalar ϕ2 which can be evaluated
numerically from the Regge trajectories followed by the
Regge poles and by the excitation factors of the associated
Regge modes.
In order to construct the two CAM representations of

the Maxwell scalar ϕ2 and the associated Regge pole

approximations, we shall follow, mutatis mutandis, Sec. III
of Ref. [1].

A. Some preliminary remarks concerning analytic
extensions in the CAM plane

The CAM machinery permitting us to derive the
CAM representations of the multipolar waveform ϕ2

requires us to replace in Eqs. (29) and (32) the angular
momentum l ∈ N by the angular momentum λ ¼
lþ 1=2 ∈ C and therefore to work into the CAM plane.
As a consequence, we need to have at our disposal the

functions Wλ−1=2ðcosφÞ, Wλ−1=2ð− cosφÞ, Að�Þ
λ−1=2ðωÞ, and

K̃½λ − 1=2;ω�, which are “the” analytic extensions of

FIG. 2. Regge trajectories of the Regge-mode excitation factors
(2M ¼ 1). We consider the Regge modes corresponding to the
first three Regge poles of which the behavior has been displayed
in Fig. 1. The relation (45) permits us to describe the Regge
trajectories for ω < 0 by noting that Re½βnðωÞ� and Im½βnðωÞ�
are, respectively, odd and even functions of ω.
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WlðcosφÞ, Wlð− cosφÞ, Að�Þ
l ðωÞ, and K̃½l;ω� in the

complex λ plane. We recall that the uniqueness problem
for such analytic extensions is a difficult problem. We have
briefly discussed it in Sec. III A of Ref. [1] (see also
Chap. 13 of Ref. [18]). Here, in order to construct these
analytic extensions, we shall adopt minimal prescriptions
that will be justified by the results we shall obtain
in Sec. IV.
The angular functions WlðcosφÞ, Wlð− cosφÞ are

defined from the Legendre polynomial PlðzÞ [see
Eq. (24)] of which the analytic extension usually consid-
ered is the hypergeometric function [29]

Pλ−1=2ðzÞ ¼ Fð1=2 − λ; 1=2þ λ; 1; ð1 − zÞ=2�: ð36Þ

As a consequence, it is natural to take

Wλ−1=2ð� cosφÞ

¼ ∂
∂φFð1=2 − λ; 1=2þ λ; 1; ð1 ∓ cosφÞ=2� ð37Þ

and it is worth noting that, due to the properties of the
hypergeometric function, we have

W−λ−1=2ð� cosφÞ ¼ Wλ−1=2ð� cosφÞ ð38Þ

and

Wλ−1=2ð� cosφÞ ¼ ½Wλ�−1=2ð� cosφÞ��: ð39Þ

Here, it is crucial to keep in mind that, while the angular
functions Wlð� cosϕÞ are well defined for φ ∈ ½0; π�,
this is not the case for their analytic extensions
Wλ−1=2ð� cosϕÞ. Indeed, due to the pathologic behavior
of Pλ−1=2ðzÞ at z ¼ −1, Wλ−1=2ðcosϕÞ diverges in the limit
φ → π and Wλ−1=2ð− cosϕÞ diverges in the limit φ → 0.
Due to the problems they generate on the Regge pole
approximations of ϕ2, we shall return to these results later.

Analytic extensions Að�Þ
λ−1=2ðωÞ and K̃½λ − 1=2;ω� of

Að�Þ
l ðωÞ and K̃½l;ω� are obtained by assuming that the

function ϕin
ω;λ−1=2ðrÞ and the coefficients Að�Þ

λ−1=2ðωÞ can be
defined by the problem (15) and (16), where now l ∈ N is
replaced by λ − 1=2 ∈ C. Such prescription permits us,
in particular, to extend in the CAM plane the properties
(18a), (18b), (28a), and (28b). In the following, we shall
therefore consider that

(a) (b)

(c) (d)

FIG. 3. The Maxwell scalar ϕ2 and its Regge pole approximation ϕRPðPÞ
2 for v∞ ¼ 0 (γ ¼ 1) and φ ¼ π=6. (a) The Regge pole

approximation constructed from only one Regge pole is in very good agreement with the Maxwell scalar ϕ2 constructed by summing
over the first 13 partial waves. The associated quasinormal response ϕQNM

2 obtained by summing over the ðl; nÞ QNMs with n ¼ 1 and
l ¼ 1;…; 13 is also displayed. At intermediate timescales, it matches very well the Regge pole approximation. (b) Semilog graph
corresponding to (a) and showing that the Regge pole approximation describes very well the ringdown, correctly the preringdown phase,
and roughly the waveform tail. (c), (d) Taking into account an additional Regge pole does not improve the Regge pole approximation.
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ϕin
−ω;λ−1=2ðrÞ ¼ ½ϕin

ω;λ�−1=2ðrÞ��; ð40aÞ

Að�Þ
λ−1=2ð−ωÞ ¼

h
Að�Þ
λ�−1=2ðωÞ

i�
; ð40bÞ

and that

K̃½λ − 1=2;−ω� ¼ ½K̃½λ� − 1=2;ω���; ð41aÞ

K̃½λ − 1=2;−ω�=Að−Þ
λ−1=2ð−ωÞ

¼
h
K̃½λ� − 1=2;ω�=Að−Þ

λ�−1=2ðωÞ
i�
: ð41bÞ

B. Regge poles, Regge modes, and associated
excitation factors

In the next two subsections, contour deformations in the
CAM plane will permit us to collect, by using Cauchy’s
residue theorem, the contributions from the Regge poles of
the S-matrix or, more precisely, from the poles, in the
complex λ plane and for ω ∈ R, of the matrix Sλ−1=2ðωÞ. It
should be noted that these poles can be defined as the zeros

λnðωÞ with n ¼ 1; 2; 3;… and ω ∈ R of the coefficient

Að−Þ
λ−1=2ðωÞ [see Eq. (19)]. They therefore satisfy

Að−Þ
λnðωÞ−1=2ðωÞ ¼ 0: ð42Þ

The Regge poles corresponding to electromagnetism in
the Schwarzschild BH have been studied in Refs. [32,33]. It
should be recalled that, for ω > 0, the Regge poles lie in the
first and third quadrants of the CAM plane, symmetrically
distributed with respect to the origin O of this plane. In this
article, due to the use of Fourier transforms, we must be
able to locate the Regge poles even for ω < 0. In fact, from
the symmetry relation (40b), we have

λnð−ωÞ ¼ ½λnðωÞ�� ð43Þ

and we can see immediately that, for ω < 0, the Regge
poles lie in the second and fourth quadrants of the CAM
plane, symmetrically distributed with respect to the origin
O of this plane. Moreover, if we consider the Regge
trajectories λnðωÞ with ω ∈� −∞;þ∞½, we can observe
the migration of the Regge poles. More precisely, as ω

(a) (b)

(c) (d)

FIG. 4. The Maxwell scalar ϕ2 and its Regge pole approximation ϕRPðPÞ
2 for v∞ ¼ 0 (γ ¼ 1) and φ ¼ π=3. (a) The Regge pole

approximation constructed from only one Regge pole is in very good agreement with the Maxwell scalar ϕ2 constructed by summing
over the first 13 partial waves. The associated quasinormal response ϕQNM

2 obtained by summing over the ðl; nÞ QNMs with n ¼ 1 and
l ¼ 1;…; 13 is also displayed. At intermediate timescales, it matches very well the Regge pole approximation. (b) Semilog graph
corresponding to (a) and showing that the Regge pole approximation describes very well the ringdown, correctly the preringdown phase,
and roughly the waveform tail. (c), (d) Taking into account an additional Regge pole does not improve the Regge pole approximation.
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decreases, the Regge poles lying in the first (third) quadrant
of the CAM plane migrate in the fourth (second) one.
It should be noted that the solutions of the problem (15)

and (16) with l replaced by λnðωÞ − 1=2 are modes
that are purely outgoing at infinity and purely ingoing
at the horizon. They are the “Regge modes” of the
Schwarzschild BH [32,33]. Because of the analogy with
the QNMs, it is natural to define excitation factors for
these modes. In fact, they will appear in the CAM
representations of the Maxwell scalar ϕ2. By analogy
with the excitation factor associated with the ðl; nÞ QNM
of complex frequency ωln [see Eq. (35)], we define the
excitation factor of the Regge mode associated with the
Regge pole λnðωÞ by

βnðωÞ ¼
"
1

2ω

AðþÞ
λ−1=2ðωÞ

d
dλA

ð−Þ
λ−1=2ðωÞ

#
λ¼λnðωÞ

: ð44Þ

Its expression involves the residue of the matrix Sλ−1=2ðωÞ
[or, more precisely, of the function 1=Að−Þ

λ−1=2ðωÞ] at

λ ¼ λnðωÞ. It should be noted that, due to Eq. (40b),
we have

βnð−ωÞ ¼ −½βnðωÞ��: ð45Þ

We have displayed the Regge trajectories of the first
three Regge poles as well as the Regge trajectories of the
corresponding excitation factors in Figs. 1 and 2. These
numerical results have been obtained by using, mutatis
mutandis, the methods that have permitted us to obtain, in
Refs. [25,27], for the electromagnetic field and for gravi-
tational waves, the complex quasinormal frequencies of the
QNMs, and the associated excitation factors (see, e.g.,
Sec. IVA of Ref. [27]).
It is important to point out that, in Refs. [32,34], we have

established a connection between the Regge modes and the
(weakly damped) QNMs of the Schwarzschild BH. It will
play a central role in the interpretation of our results in
Sec. IV, and we recall that, for a given n, the Regge
trajectory λnðωÞ with ω ∈ R encodes information on the
complex quasinormal frequencies ωln with l ¼ 1; 2; 3;….

(a) (b)

(c) (d)

FIG. 5. The Maxwell scalar ϕ2 and its Regge pole approximation ϕRPðPÞ
2 for v∞ ¼ 0 (γ ¼ 1) and φ ¼ π=2. (a) The Regge pole

approximation constructed from only one Regge pole is in rather good agreement with the Maxwell scalar ϕ2 constructed by summing
over the first 13 partial waves. The associated quasinormal response ϕQNM

2 obtained by summing over the ðl; nÞ QNMs with n ¼ 1 and
l ¼ 1;…; 13 is also displayed. At intermediate timescales, it matches very well the Regge pole approximation. (b) Semilog graph
corresponding to (a) and showing that the Regge pole approximation describes very well a large part of the ringdown, correctly the
preringdown phase, and roughly the waveform tail. (c), (d) Taking into account an additional Regge pole does not improve the Regge
pole approximation.
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In fact, the index n ¼ 1; 2; 3;… not only permits us to
distinguish between the different Regge poles but is also
associated with the family of quasinormal frequencies
generated by the Regge modes.

C. CAM representation and Regge pole approximation
of the Maxwell scalar ϕ2 based on the Poisson

summation formula

The first CAM representation of the Maxwell scalar ϕ2

can be derived from Eq. (29) by using the Poisson
summation formula [15] as well as Cauchy’s residue
theorem. This can be achieved by following, mutatis
mutandis, the reasoning of Sec. III C of Ref. [1], which
has permitted us to construct a CAM representation of the
Weyl scalarΨ4. In fact, it is even possible to avoid repeating
in detail this reasoning: indeed, we can note that Eq. (24)
of Ref. [1] defining Ψ4 and which is the departure of the

reasoning of Sec. III C of Ref. [1] and Eq. (29) of the
present article are related by the correspondences

rΨ4ðt; r; θ ¼ π=2;φÞ ↔
ffiffiffi
2

p
r

iq
ϕ2ðt; r; θ ¼ π=2;φÞ; ð46aÞ

iωK½l;ω�
4Að−Þ

l ðωÞ
↔

K̃½l;ω�
2iωAð−Þ

l ðωÞ
; ð46bÞ

ZlðcosφÞ ↔ WlðcosφÞ: ð46cÞ

As a consequence, Eqs. (48) and (49) of Ref. [1], which
provide a CAM representation of theWeyl scalarΨ4, can be
translated to obtain directly a CAM representation of the
Maxwell scalar ϕ2. We can write

ϕ2ðt; r; θ ¼ π=2;φÞ ¼ ϕBðPÞ
2 ðt; r; θ ¼ π=2;φÞ þ ϕRPðPÞ

2 ðt; r; θ ¼ π=2;φÞ; ð47Þ

where

(a) (b)

(c) (d)

FIG. 6. The Maxwell scalar ϕ2 and its Regge pole approximation ϕRPðPÞ
2 for v∞ ¼ 0 (γ ¼ 1) and φ ¼ 3π=4. (a) The Regge pole

approximation constructed from only one Regge pole does not match correctly the Maxwell scalar ϕ2 constructed by summing over
the first 13 partial waves. The associated quasinormal response ϕQNM

2 obtained by summing over the ðl; nÞ QNMs with n ¼ 1 and
l ¼ 1;…; 13 is also displayed. The discrepancy with the Regge pole approximation is obvious. (b) Semilog graph corresponding to (a)
and showing that the Regge pole approximation describes correctly a small part of the ringdown. (c), (d) Taking into account an
additional Regge pole does not improve the Regge pole approximation.

ELECTROMAGNETIC RADIATION GENERATED BY A CHARGED … PHYS. REV. D 102, 024026 (2020)

024026-11



ffiffiffi
2

p
r

iq
ϕBðPÞ
2 ðt; r; θ ¼ π=2;φÞ ¼ 1ffiffiffiffiffiffi

2π
p

Z þ∞

−∞
dωe−iω½t−r�ðrÞ�

�Z
∞

0

dλ
λ

2π

K̃½λ − 1=2;ω�
2iωAð−Þ

λ−1=2ðωÞ
Wλ−1=2ðcosφÞ

−
1

4π

Z þi∞

0

dλ
λeiπλ

cosðπλÞ
K̃½λ − 1=2;ω�
2iωAð−Þ

λ−1=2ðωÞ
Wλ−1=2ðcosφÞ

−
1

4π

Z
−i∞

0

dλ
λe−iπλ

cosðπλÞ
K̃½λ − 1=2;ω�
2iωAð−Þ

λ−1=2ðωÞ
Wλ−1=2ðcosφÞ

�
ð48aÞ

is a background integral contribution and where

ffiffiffi
2

p
r

iq
ϕRPðPÞ
2 ðt; r; θ ¼ π=2;φÞ ¼ 1ffiffiffiffiffiffi

2π
p

Z þ∞

−∞
dωe−iω½t−r�ðrÞ�

×

�
−HðωÞ

Xþ∞

n¼1

λnðωÞβnðωÞeiπλnðωÞ
cos½πλnðωÞ�

K̃½λnðωÞ − 1=2;ω�
2AðþÞ

λnðωÞ−1=2ðωÞ
WλnðωÞ−1=2ðcosφÞ

þHð−ωÞ
Xþ∞

n¼1

λnðωÞβnðωÞe−iπλnðωÞ
cos½πλnðωÞ�

K̃½λnðωÞ − 1=2;ω�
2AðþÞ

λnðωÞ−1=2ðωÞ
WλnðωÞ−1=2ðcosφÞ

�
ð48bÞ

(a) (b)

(c) (d)

FIG. 7. The Maxwell scalar ϕ2 and its Regge pole approximation ϕRPðPÞ
2 for v∞ ¼ 0.75 (γ ≈ 1.51) and φ ¼ π=6. (a) The Regge pole

approximation constructed from only one Regge pole is in very good agreement with the Maxwell scalar ϕ2 constructed by summing
over the first 15 partial waves. The associated quasinormal response ϕQNM

2 obtained by summing over the ðl; nÞ QNMs with n ¼ 1 and
l ¼ 1;…; 15 is also displayed. At intermediate timescales, it matches very well the Regge pole approximation. (b) Semilog graph
corresponding to (a) and showing that the Regge pole approximation describes very well the preringdown and ringdown phases and
correctly approximates the waveform tail. (c), (d) Taking into account an additional Regge pole does not improve the Regge pole
approximation.
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is the Fourier transform of a sum over Regge poles. In these
expressions, H denotes the Heaviside step function and we
have introduced the analytic extensions discussed in
Sec. III A as well as the Regge poles and the associated
excitation factors considered in Sec. III B.
We can again check that ϕ2 is a purely imaginary

quantity by now considering this new expression.
Indeed, due to the relations (39) and (41b), the first term
as well as the sum of the second and third terms within the
square brackets on the rhs of Eq. (48a) satisfy the Hermitian
symmetry property. Such a property is also satisfied by the
sum of the two terms within the square brackets on the rhs
of Eq. (48b) as a consequence of the relations (39), (40b),
(41a), (43), and (45).
Of course, Eqs. (47) and (48) provide an exact repre-

sentation for the Maxwell scalar ϕ2, equivalent to the initial
expression (25). From this CAM representation of ϕ2,

we can extract the contribution denoted by ϕRPðPÞ
2 and given

by Eq. (48b) which, as a sum over Regge poles, is only
an approximation of ϕ2. In Sec. IV, we shall compare it
with the exact expression (25) of ϕ2. However, when

considering the term ϕRPðPÞ
2 alone, we shall encounter

some problems due to the pathological behavior of
WλnðωÞ−1=2ðcosφÞ for φ → π (see Sec. III A). In fact, both

the Regge pole approximation ϕRPðPÞ
2 and the background

integral contribution ϕBðPÞ
2 are divergent in the limit φ → π

but it is worth pointing out that their sum (47) does not
present any pathology.

D. CAM representation and Regge pole
approximation of the Maxwell scalar ϕ2 based

on the Sommerfeld-Watson transform

The second CAM representation of the Maxwell scalar
ϕ2 can be derived from Eq. (32) by using the Sommerfeld-
Watson transformation [16–18] as well as Cauchy’s residue
theorem. This can be achieved by following, mutatis
mutandis, the reasoning of Sec. III D of Ref. [1], which
has permitted us to construct a CAM representation of the
Weyl scalar Ψ4. Here again, we avoid repeating in detail
this reasoning: we note that Eq. (26) of Ref. [1] definingΨ4

and which is the departure of the reasoning of Sec. III D of
Ref. [1] and Eq. (32) of the present article are related by the
correspondences (46a), (46b), and

(a) (b)

(c) (d)

FIG. 8. The Maxwell scalar ϕ2 and its Regge pole approximation ϕRPðPÞ
2 for v∞ ¼ 0.90 (γ ≈ 2.29) and φ ¼ π=6. (a) The Regge pole

approximation constructed from only one Regge pole is in very good agreement with the Maxwell scalar ϕ2 constructed by summing
over the first 15 partial waves. The associated quasinormal response ϕQNM

2 obtained by summing over the ðl; nÞ QNMs with n ¼ 1 and
l ¼ 1;…; 15 is also displayed. At intermediate timescales, it matches very well the Regge pole approximation. (b) Semilog graph
corresponding to (a) and showing that the Regge pole approximation describes very well the whole signal. (c), (d) Taking into account an
additional Regge pole does not improve the Regge pole approximation.
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Zlð− cosφÞ ↔ Wlð− cosφÞ: ð49Þ

As a consequence, Eqs. (52) and (53) of Ref. [1], which
provide a CAM representation of the Weyl scalar Ψ4,
permit us to obtain directly a CAM representation of the
Maxwell scalar ϕ2. We have

ϕ2ðt; r; θ ¼ π=2;φÞ ¼ ϕBðSWÞ
2 ðt; r; θ ¼ π=2;φÞ

þ ϕRPðSWÞ
2 ðt; r; θ ¼ π=2;φÞ; ð50Þ

where

ffiffiffi
2

p
r

iq
ϕBðSWÞ
2 ðt; r; θ ¼ π=2;φÞ ¼ 1ffiffiffiffiffiffi

2π
p

Z þ∞

−∞
dωe−iω½t−r�ðrÞ� ×

�
−

1

8π

Z þi∞

−i∞
dλ

λ

cosðπλÞ
K̃½λ − 1=2;ω�
ωAð−Þ

λ−1=2ðωÞ
Wλ−1=2ð− cosφÞ

�

ð51aÞ

is a background integral contribution and where

ffiffiffi
2

p
r

iq
ϕRPðSWÞ
2 ðt; r; θ ¼ π=2;φÞ ¼ 1ffiffiffiffiffiffi

2π
p

Z þ∞

−∞
dωe−iω½t−r�ðrÞ� ×

�Xþ∞

n¼1

λnðωÞβnðωÞ
2i cos½πλnðωÞ�

K̃½λnðωÞ − 1=2;ω�
AðþÞ
λnðωÞ−1=2ðωÞ

WλnðωÞ−1=2ð− cosφÞ
�

ð51bÞ

is the Fourier transform of a sum over Regge poles.
We can again check that ϕ2 is a purely imaginary quantity by now considering this last expression. Indeed, due to the

relations (39) and (41b), the term within the square brackets on the rhs of Eq. (51) satisfies the Hermitian symmetry

(a) (b)

(c) (d)

FIG. 9. The Maxwell scalar ϕ2 and its Regge pole approximation ϕRPðPÞ
2 for v∞ ¼ 0.99 (γ ≈ 7.09) and φ ¼ π=6. (a) The Regge pole

approximation constructed from only one Regge pole is in impressive agreement with the Maxwell scalar ϕ2 constructed by summing
over the first 19 partial waves. The associated quasinormal response ϕQNM

2 obtained by summing over the ðl; nÞ QNMs with n ¼ 1 and
l ¼ 1;…; 19 is also displayed. At intermediate timescales, it matches very well the Regge pole approximation. (b) Semilog graph
corresponding to (a) and showing that the Regge pole approximation describes very well the whole signal. (c), (d) Taking into account an
additional Regge pole does not improve the Regge pole approximation.
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property. Such a property is also satisfied by the term
within the square brackets on the rhs of Eq. (51b) as a
consequence of the relations (39), (40b), (41a), (43),
and (45).
It is important to note that Eq. (50) provides an exact

expression for the Maxwell scalar ϕ2, equivalent to the
initial expression (25) and to the expression (48) obtained
from the Poisson summation formula. From this CAM
representation of ϕ2, we can extract the contribution

denoted by ϕRPðSWÞ
2 and given by Eq. (51b), which, as a

sum over Regge poles, is only an approximation of ϕ2. In
Sec. IV, we shall compare it with the exact expression (25)

of ϕ2 and with the Regge pole approximation ϕRPðPÞ
2

obtained in Sec. III C. However, when considering the

term ϕRPðSWÞ
2 alone, we shall encounter some problems

due to the pathological behavior of WλnðωÞ−1=2ð− cosφÞ for
φ → 0 (see Sec. III A). In fact, both the Regge pole

approximation ϕRPðSWÞ
2 and the background integral con-

tribution ϕBðSWÞ
2 are divergent in the limit φ → 0 but it is

worth pointing out that their sum (50) does not present any
pathology.

IV. COMPARISON OF THE MAXWELL SCALAR
ϕ2 WITH ITS REGGE POLE APPROXIMATIONS

In this section, we shall construct numerically the
multipolar waveform ϕ2 given by Eq. (25) by summing
over a large number of partial modes. This is particularly
necessary for the radially infalling relativistic or ultra-
relativistic particle. We shall also construct the associated
quasinormal ringdown ϕQNM

2 given by Eq. (34). We shall
then compare these two waveforms with the Regge pole

approximations ϕRPðPÞ
2 and ϕRPðSWÞ

2 respectively given by
Eqs. (48b) and (51b) and constructed by considering one or
two Regge poles. This will allow us to highlight the
benefits of working with the Regge pole approximations
of ϕ2.

A. Computational methods

To construct numerically the Maxwell scalar ϕ2 as well
as its quasinormal and Regge pole approximations, we use,
mutatis mutandis, the computational methods developed in
Refs. [25,27], which allowed us to describe the electro-
magnetic field and the gravitational waves generated by a

(a) (b)

(c) (d)

FIG. 10. The Maxwell scalar ϕ2 and its Regge pole approximation ϕRPðPÞ
2 for v∞ ¼ 0.75 (γ ≈ 1.51) and φ ¼ π=3. (a) The Regge pole

approximation constructed from only one Regge pole is in very good agreement with the Maxwell scalar ϕ2 constructed by summing
over the first 15 partial waves. The associated quasinormal response ϕQNM

2 obtained by summing over the ðl; nÞ QNMs with n ¼ 1 and
l ¼ 1;…; 15 is also displayed. At intermediate timescales, it matches very well the Regge pole approximation. (b) Semilog graph
corresponding to (a) and showing that the Regge pole approximation describes very well the ringdown and correctly the preringdown
phase and the waveform tail. (c), (d) Taking into account an additional Regge pole does not improve the Regge pole approximation.

ELECTROMAGNETIC RADIATION GENERATED BY A CHARGED … PHYS. REV. D 102, 024026 (2020)

024026-15



particle plunging from the innermost stable circular orbit
into a Schwarzschild BH (see, e.g., Sec. IVA of Ref. [25]).

B. Results and comments

We have compared the multipolar waveform ϕ2 and the
associated quasinormal ringdown with the Regge pole

approximations ϕRPðPÞ
2 in Figs. 3–12 and with the Regge

pole approximation ϕRPðSWÞ
2 in Figs. 13–17. This has been

done for various values of the angle φ ∈ ½0; π� excluding
the cases φ ¼ 0 and φ ¼ π for which the Maxwell scalar ϕ2

vanishes. More precisely, we have considered the case of
(i) a particle initially at rest at infinity [v∞ ¼ 0 (γ ¼ 1)],
(ii) a particle projected with a relativistic velocity at infinity
[we have considered the configurations v∞ ¼ 0.75
(γ ≈ 1.51) and v∞ ¼ 0.90 (γ ≈ 2.29)], and (iii) a particle
projected with an ultrarelativistic velocity at infinity
[v∞ ¼ 0.99 (γ ≈ 7.09)]. It should be specified that, in order
to obtain numerically stable results, the number of partial
modes to include in the sum (25) strongly depends on the
initial velocity of the particle: the sum over l has been
truncated at l ¼ 13 for v∞ ¼ 0, at l ¼ 15 for v∞ ¼ 0.75

and v∞ ¼ 0.90, and at l ¼ 19 for v∞ ¼ 0.99. It should be
noted that the terminology we used in Ref. [1] to describe
the different parts of the multipolar waveform Ψ4 is also
adopted for the waveform ϕ2: we shall thus designate by
“preringdown phase” the early time response of the BH
and, as usual, we shall refer to the ringdown phase and to
the tail of the signal for those parts of the waveform
corresponding respectively to intermediate timescales and
to very late times.
In Figs. 3–6, we have compared the multipolar waveform

ϕ2 generated by a particle initially at rest at infinity with

its Regge pole approximation ϕRPðPÞ
2 obtained from the

Poisson summation formula. In Figs. 3–5, for φ ¼ π=6,
π=3, and π=2, we can observe that the Regge pole
approximation constructed from only one Regge pole is
in good or very good agreement with the exact waveform,
and that an additional Regge pole does not really improve
this approximation. More precisely, it is interesting to note
that the Regge pole approximation matches the ringdown,
describes correctly the preringdown phase and roughly the
waveform tail. It is moreover important to note that it
provides a description of the ringdown that does not

(a) (b)

(c) (d)

FIG. 11. The Maxwell scalar ϕ2 and its Regge pole approximation ϕRPðPÞ
2 for v∞ ¼ 0.90 (γ ≈ 2.29) and φ ¼ π=3. (a) The Regge pole

approximation constructed from only one Regge pole is in very good agreement with the Maxwell scalar ϕ2 constructed by summing
over the first 15 partial waves. The associated quasinormal response ϕQNM

2 obtained by summing over the ðl; nÞ QNMs with n ¼ 1 and
l ¼ 1;…; 15 is also displayed. At intermediate timescales, it matches very well the Regge pole approximation. (b) Semilog graph
corresponding to (a) and showing that the Regge pole approximation describes very well the ringdown, correctly the preringdown phase,
and roughly approximates the waveform tail. (c), (d) Taking into account an additional Regge pole does not improve the Regge pole
approximation.
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necessitate determining a starting time, in contrast to the
ringdown waveform constructed from the QNMs, which
is exponentially divergent as t decreases. In Fig. 6, for
φ ¼ 3π=4, we can observe that the Regge pole approxi-
mation is no longer so interesting. Indeed, it only roughly
describes the BH response. Here, it should be recall that the

Regge pole approximation ϕRPðPÞ
2 diverges for φ → π and,

as a consequence, for φ ¼ 3π=4 (i.e., for a value of φ rather
close to π), it would be necessary to consider the back-

ground integral contribution ϕBðPÞ
2 given by Eq. (48) to

correctly describe the multipolar waveform ϕ2.
In Figs. 7–12, we have compared, for φ ¼ π=6 and π=3,

the multipolar waveform ϕ2 generated by a particle
projected with a relativistic or an ultrarelativistic velocity

at infinity with the Regge pole approximation ϕRPðPÞ
2

obtained from the Poisson summation formula. We can
observe that the whole signal is impressively described by
the Regge pole approximation constructed from only one
Regge pole and that this approximation is even more
efficient in the ultrarelativistic context.
In Fig. 13, for φ ¼ 3π=4, we have compared the

multipolar waveform ϕ2 generated by a particle initially

at rest at infinity with the Regge pole approximation

ϕRPðSWÞ
2 obtained from the Sommerfeld-Watson transfor-

mation. We recall that, while ϕRPðPÞ
2 constructed from the

Poisson summation formula diverges in the limit φ → π,

the Regge pole approximation ϕRPðSWÞ
2 is regular in the

same limit (it only diverges for φ → 0). As a consequence,
the latter approximation should provide better results than
the former one for φ close to π. By comparing Fig. 13
with Fig. 6, we can see that this seems to be the case if we
focus on the ringdown phase of the waveform but that the
preringdown phase is not described at all. In fact, here, to
correctly describe the waveform ϕ2 we should take into

account the background integral contribution ϕBðSWÞ
2 given

by Eq. (51a).
In Figs. 14–17, for φ ¼ 5π=6, we have displayed the

multipolar waveform ϕ2 generated by a particle initially at
rest at infinity and by a particle projected with a relativistic
or an ultrarelativistic velocity, and we have compared it

with the Regge pole approximation ΨRPðSWÞ
4 obtained from

the transformation of Sommerfeld-Watson. Here again,
the Regge pole approximation constructed from a single
Regge pole does not describe the preringdown phase of the

(a) (b)

(c) (d)

FIG. 12. The Maxwell scalar ϕ2 and its Regge pole approximation ϕRPðPÞ
2 for v∞ ¼ 0.99 (γ ≈ 7.09) and φ ¼ π=3. (a) The Regge pole

approximation constructed from only one Regge pole is in very good (and even impressive) agreement with the Maxwell scalar ϕ2

constructed by summing over the first 19 partial waves. The associated quasinormal response ϕQNM
2 obtained by summing over the

ðl; nÞ QNMs with n ¼ 1 and l ¼ 1;…; 19 is also displayed. At intermediate timescales, it matches very well the Regge pole
approximation. (b) Semilog graph corresponding to (a) and showing that the Regge pole approximation describes very well the whole
signal. (c), (d) Taking into account an additional Regge pole does not improve the Regge pole approximation.
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Maxwell scalar ϕ2, but it matches a large part of the
ringdown phase and approximates the tail rather correctly.

V. ELECTROMAGNETIC ENERGY SPECTRUM
dE=dω AND ITS CAM REPRESENTATION

In this section, we shall focus on the electromagnetic
energy spectrum dE=dω observed at infinity which is
generated by the charged particle falling radially into the
Schwarzschild BH. We shall provide its CAM representa-
tion from the Poisson summation formula and Cauchy’s
theorem and discuss the interest of this representation and
of the corresponding Regge pole approximation.

A. Total energy radiated by the particle and associated
electromagnetic energy spectrum

The electromagnetic power P radiated at spatial infinity
by the charged particle, i.e., the rate dE=dt at which the
electromagnetic field generated by this particle carries
energy to infinity, can be obtained as the flux of the
Poynting vector R across a spherical surface SðrÞ with
radius r → ∞: we have

P ¼ dE
dt

¼ lim
r→∞

Z
SðrÞ

R · dS ð52Þ

with R ¼ E ∧ B and dS ¼ r2 sin θdθdφêr. By using
Eqs. (5), (6), and (20) as well as the orthonormalization
relation (8) for the vector spherical harmonics and the
addition theorem for scalar spherical harmonics (21),
we obtain

dE
dt

ðtÞ ¼ 1

4π

X
lm

2lþ 1

lðlþ 1Þ j∂tψlðt; r → þ∞Þj2 ð53aÞ

or, more explicitly, by using Eqs. (20b) and (26a),

dE
dt

ðtÞ ¼ q2

4π

Xþ∞

l¼1

ð2lþ 1Þlðlþ 1Þ

×

���� 1ffiffiffiffiffiffi
2π

p
Z þ∞

−∞
dω

e−iω½t−r�ðrÞ�

2iωAð−Þ
l ðωÞ

K̃½l;ω�
����2

ð53bÞ

with r → þ∞.

(a) (b)

(c) (d)

FIG. 13. The Maxwell scalar ϕ2 and its Regge pole approximation ϕRPðSWÞ
2 for v∞ ¼ 0 (γ ¼ 1) and φ ¼ 3π=4. (a), (b) The

preringdown phase of the Maxwell scalar ϕ2 constructed by summing over the first 13 partial waves is not described by the Regge pole
approximation constructed from only one Regge pole. However, this approximation matches a large part of the ringdown and roughly
approximates the waveform tail. The quasinormal response ϕQNM

2 obtained by summing over the ðl; nÞ QNMs with n ¼ 1 and
l ¼ 1;…; 13 is also displayed. At intermediate timescales, it matches correctly the Regge pole approximation. (c), (d) Taking into
account an additional Regge pole does not improve the Regge pole approximation.
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The previous result provides, by integration over t, the
total energy E radiated by the charged particle during its fall
in the BH. We have

E ¼
Z þ∞

−∞
dt

dE
dt

ðtÞ ð54aÞ

¼ q2

4π

Xþ∞

l¼1

ð2lþ 1Þlðlþ 1Þ

×
Z þ∞

−∞
dt

���� 1ffiffiffiffiffiffi
2π

p
Z þ∞

−∞
dω

e−iωt

2iωAð−Þ
l ðωÞ

K̃½l;ω�
����2
ð54bÞ

[note that the dependence in r now disappears due to
the change of variable t → tþ r�ðrÞ]. We can obtain an
alternative expression for the total energy E by applying the
Parseval-Plancherel theorem to Eq. (54b). This gives
immediately

E ¼ q2

4π

Xþ∞

l¼1

ð2lþ 1Þlðlþ 1Þ
Z þ∞

−∞
dω

���� K̃½l;ω�
2iωAð−Þ

l ðωÞ

����2:
ð55Þ

This new form of E permits us to derive the expression of
the (total) electromagnetic energy spectrum dE=dω radi-
ated by the particle. Indeed, from a physical point of view, it
is defined for ω ≥ 0 and satisfy

E ¼
Z þ∞

0

dω
dE
dω

ðωÞ: ð56Þ

Then, by using Eq. (28b) in Eq. (55), we obtain

E¼ q2

2π

Xþ∞

l¼1

ð2lþ1Þlðlþ1Þ
Z þ∞

0

dω

���� K̃½l;ω�
2iωAð−Þ

l ðωÞ

����2 ð57Þ

and by comparing Eq. (57) with Eq. (56) we have

dE
dω

ðωÞ ¼
Xþ∞

l¼1

dEl

dω
ðωÞ; ð58aÞ

where

dEl

dω
ðωÞ ¼ q2

8πω2
× ð2lþ 1Þlðlþ 1ÞΓlðωÞjK̃½l;ω�j2

ð58bÞ

(a) (b)

(c) (d)

FIG. 14. The Maxwell scalar ϕ2 and its Regge pole approximation ϕRPðSWÞ
2 for v∞ ¼ 0 (γ ¼ 1) and φ ¼ 5π=6. (a), (b) The

preringdown phase of the Weyl scalar ϕ2 constructed by summing over the first 13 partial waves is not described by the Regge pole
approximation constructed from only one Regge pole. By contrast, this approximation matches correctly a large part of the ringdown
and roughly approximates the waveform tail. The quasinormal response ϕQNM

2 obtained by summing over the ðl; nÞ QNMs with n ¼ 1

and l ¼ 1;…; 13 is also displayed. At intermediate timescales, it matches correctly the Regge pole approximation. (c), (d) Taking into
account an additional Regge pole does not improve the Regge pole approximation.
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denotes the partial energy spectrum corresponding to the
lth mode. It is very important to note that in Eq. (58b), we
have chosen to introduce explicitly the greybody factors

ΓlðωÞ ¼
1

jAð−Þ
l ðωÞj2

ð59Þ

of the Schwarzschild BH corresponding to the electromag-
netic field. It is worth pointing out that we can write E given
by Eqs. (56) and (58) in the form

E ¼
Xþ∞

l¼1

El; ð60aÞ

where

El ¼
Z þ∞

0

dω
dEl

dω
ðωÞ ð60bÞ

denotes the partial energy radiated in the lth mode.
Finally, it is important to note that Eq. (58) can also be

written as

dE
dω

ðωÞ¼ q2

8πω2

Xþ∞

l¼0

ð2lþ1Þlðlþ1ÞΓlðωÞjK̃½l;ω�j2: ð61Þ

Indeed, here again, as in Sec. II E, it is possible to start at
l ¼ 0 the discrete sum over l due to the relations (31).
In the next subsection, we shall take Eq. (61) as a starting
point because it will permit us to use the Poisson summa-
tion formula in its standard form.

B. CAM representation based on the Poisson
summation formula

In order to start the CAM machinery permitting us to
derive a CAM representation of the electromagnetic energy
spectrum dE=dω, it is necessary to replace in Eq. (61)
the angular momentum l ∈ N by the angular momentum
λ ¼ lþ 1=2 ∈ C and therefore to have at our disposal
the analytic extensions in the complex λ plane of all the
functions of l appearing in Eq. (61). In fact, in Sec. III A,
we have already discussed the construction of the

analytic extensions of Að�Þ
l ðωÞ and K̃½l;ω�. It should be

however noted that, here, the situation is a little bit more
complicated: indeed, we need the analytic extensions

of ΓlðωÞ ¼ 1=jAð−Þ
l ðωÞj2 and jK̃½l;ω�j2. Fortunately, in

Sec. II of Ref. [35], where the absorption problem for a
massless scalar field propagating in a Schwarzschild BH
has been considered, the analytic extension Γλ−1=2ðωÞ

(a) (b)

(c) (d)

FIG. 15. The Maxwell scalar ϕ2 and its Regge pole approximation ϕRPðSWÞ
2 for v∞ ¼ 0.75 (γ ≈ 1.51) and φ ¼ 5π=6. (a), (b) The

preringdown phase of the Maxwell scalar ϕ2 constructed by summing over the first 15 partial waves is not described by the Regge pole
approximation constructed from only one Regge pole. By contrast, this approximation matches correctly a large part of the ringdown
and the waveform tail. The quasinormal response ϕQNM

2 obtained by summing over the ðl; nÞ QNMs with n ¼ 1 and l ¼ 1;…; 15 is
also displayed. At intermediate timescales, it matches very well the Regge pole approximation. (c), (d) Taking into account an additional
Regge pole does not improve the Regge pole approximation.
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of the greybody factor ΓlðωÞ has been discussed.
Here, we shall adopt the same prescription, i.e., we shall
assume that

Γλ−1=2ðωÞ ¼
1

Að−Þ
λ−1=2ðωÞ½Að−Þ

λ�−1=2ðωÞ��
: ð62Þ

We recall that this particular extension permits us to work
with an even function of λ which is purely real. [For more
details concerning the properties of the greybody factor
Γλ−1=2ðωÞ, we refer to Sec. II of Ref. [35].] Furthermore,
we shall adopt an analogous prescription for the analytic
extension of jK̃½l;ω�j2 by considering that it is given
by K̃½λ − 1=2;ω�½K̃½λ� − 1=2;ω���.
In order to derive a CAM representation of the electro-

magnetic energy spectrum dE=dω, the use of CAM
techniques requires in addition the determination of the
singularities of the analytic extensions in the complex λ
plane of all the functions of l appearing in Eq. (61).
Here, the only singularities to consider are the simple
poles of the greybody factor Γλ−1=2ðωÞ. In fact, they have
been also studied in Sec. II of Ref. [35]. Let us just
recall that

(i) The singularities of the function Γλ−1=2ðωÞ are the
Regge poles λnðωÞ, i.e., the zeros of the function

Að−Þ
λnðωÞ−1=2ðωÞ [see Eq. (42)], as well their complex

conjugates ½λnðωÞ��, i.e., the zeros of the function

½Að−Þ
λ�−1=2ðωÞ��. For ω > 0, the Regge poles λnðωÞ lie

in the first and in the third quadrant of the CAM
plane, symmetrically distributed with respect to
the origin O of this plane and, as a consequence,
the Regge poles ½λnðωÞ�� lie in the second and in the
fourth quadrant of this plane.

(ii) The residues of the function Γλ−1=2ðωÞ at the poles
λnðωÞ and ½λnðωÞ�� are complex conjugate of each
other and we have in particular

γnðωÞ ¼ Res½Γλ − 1=2ðωÞ�λ¼λnðωÞ

¼ 1

½ð ddλAð−Þ
λ−1=2ðωÞÞ½Að−Þ

λ�−1=2ðωÞ���λ¼λnðωÞ
: ð63Þ

We have now at our disposal all the ingredients
permitting us to obtain a CAM representation of the
electromagnetic energy spectrum dE=dω by using the

(a) (b)

(c) (d)

FIG. 16. The Maxwell scalar ϕ2 and its Regge pole approximation ϕRPðSWÞ
2 for v∞ ¼ 0.75 (γ ≈ 2.29) and φ ¼ 5π=6. (a), (b) The

preringdown phase of the Maxwell scalar ϕ2 constructed by summing over the first 15 partial waves is not described by the Regge pole
approximation constructed from only one Regge pole. By contrast, this approximation matches correctly a large part of the ringdown
and roughly approximates the waveform tail. The quasinormal response ϕQNM

2 obtained by summing over the ðl; nÞ QNMs with n ¼ 1

and l ¼ 1;…; 15 is also displayed. At intermediate timescales, it matches very well the Regge pole approximation. (c), (d) Taking into
account an additional Regge pole does not improve the Regge pole approximation.
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Poisson summation formula [15] as well as Cauchy’s
residue theorem. In fact, this can be achieved by following,
mutatis mutandis, the reasoning of Sec. II of Ref. [35]
where a CAM representation of the absorption cross section
of the Schwarzschild BH has been derived [we invite the
reader to compare Eq. (3) of Ref. [35] with Eq. (61) of the
present article]. Taking into account the previous consid-
erations concerning the greybody factor Γλ−1=2ðωÞ, its
poles, and the associated residues, we obtain

dE
dω

ðωÞ ¼ dE
dω

B;ReðωÞ þ dE
dω

B;ImðωÞ þ dE
dω

RPðωÞ; ð64Þ

where

dE
dω

B;ReðωÞ ¼ q2

4πω2

Z þ∞

0

dλλðλ2 − 1=4ÞΓλ−1=2ðωÞ

× jK̃½λ − 1=2;ω�j2 ð65aÞ

is a background integral contribution along the real axis,

dE
dω

B;ImðωÞ ¼ −
q2

4πω2

Z þi∞

0

dλλðλ2 − 1=4ÞΓλ−1=2ðωÞ

× jK̃½λ − 1=2;ω�j2 eiπλ

cosðλπÞ ð65bÞ

is a background integral contribution along the imaginary
axis, and

dE
dω

RPðωÞ

¼ −
q2

2ω2
Re

�Xþ∞

n¼1

eiπ½λnðωÞ−1=2�λnðωÞðλnðωÞ2 − 1=4ÞγnðωÞ
sin½πðλnðωÞ − 1=2Þ�

× K̃½λnðωÞ − 1=2;ω�½K̃½½λnðωÞ�� − 1=2;ω���
�

ð66Þ

is a sum over the Regge poles lying in the first quadrant
of the CAM plane. Of course, Eqs. (64), (65), and (66)
provide an exact CAM representation of the electromag-
netic energy spectrum dE=dω, equivalent to the initial
partial wave expansion (58).

(a) (b)

(c) (d)

FIG. 17. The Maxwell scalar ϕ2 and its Regge pole approximation ϕRPðSWÞ
2 for v∞ ¼ 0.75 (γ ≈ 7.09) and φ ¼ 5π=6. (a), (b) The

preringdown phase of the Maxwell scalar ϕ2 constructed by summing over the first 19 partial waves is not described by the Regge
pole approximation constructed from only one Regge pole. This approximation roughly matches the ringdown and the waveform tail.
The quasinormal response ϕQNM

2 obtained by summing over the ðl; nÞ QNMs with n ¼ 1 and l ¼ 1;…; 19 is also displayed. At
intermediate timescales, it matches very well the Regge pole approximation. (c), (d) Taking into account an additional Regge pole does
not improve the Regge pole approximation.
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C. Computational methods

To construct numerically the electromagnetic energy
spectrum (58) radiated by a charged particle falling
radially into the Schwarzschild BH and its CAM

representation (64)–(66), we have used the computational
methods that have allowed us to obtain numerically the
Maxwell scalar ϕ2 and its Regge pole approximations in
Sec. IV. It should be noted that here, we have in addition

FIG. 18. The partial electromagnetic energy spectra radiated by a charged falling radially into a Schwarzschild BH. The results are
given for v∞ ¼ 0, 0.75, 0.90, and 0.99.
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evaluated the background integral along the real axis (65a)
by taking λ ∈ ½0; 25� and the background integral along the
imaginary axis (65b) by taking λ ∈ ½0; 6i� (due to the term
eiπλ= cos½λπ� in the expression of its integrand, this integral
converges rapidly).

D. Numerical results and comments

We now display and discuss a few results concerning the
electromagnetic energy radiated by the charged particle
falling radially into a Schwarzschild BH. Here again, as in
Sec. IV B, we have focused our attention on (i) a particle
initially at rest at infinity [v∞ ¼ 0 (γ ¼ 1)], (ii) a particle
projected with a relativistic velocity at infinity [we have
considered the configurations v∞ ¼ 0.75 (γ ≈ 1.51) and
v∞ ¼ 0.90 (γ ≈ 2.29)], and (iii) a particle projected with an
ultrarelativistic velocity at infinity [v∞ ¼ 0.99 (γ ≈ 7.09)].
In Fig. 18, we have displayed some partial electromag-

netic energy spectra dEl=dω corresponding to the lowest
modes. Our results are in perfect agreement with those
already obtained in the literature (see Refs. [7,9] but note in
these articles, the authors used Gaussian units while we
consider electromagnetism in the Heaviside system). In
Fig. 19, we have displayed the total electromagnetic energy
spectrum dE=dω for the configurations considered in
Fig. 18. It should be noted that, in order to obtain
numerically stable results, the number of modes to include
in the sum (58a) strongly depends on the initial velocity of

the particle. This clearly appears if we examine the ordinate
scales used in the semilog graphs of Fig. 18. In fact, we
have truncated the sum over l at l ¼ 10 for v∞ ¼ 0,
at l ¼ 15 for v∞ ¼ 0.75 and v∞ ¼ 0.90, and at l ¼ 20
for v∞ ¼ 0.99.
In Table I, we have used Eq. (60) to compute the total

energy E radiated by the charged particle for the values
v∞ ¼ 0, 0.75, 0.90, and 0.99 of its velocity at infinity. As
expected, E increases with v∞ (see also Refs. [7,9]), while
the rate of convergence of the series over the partial
energies El which defines it decreases. In other terms,
i.e., from a physical point of view, we can observe that for
v∞ ¼ 0, the l ¼ 1 mode radiates the largest amount of
energy (83.20%), and that summing over the first five
modes, we reach 99.99% of the total electromagnetic
energy radiated; on the other hand, for v∞ ¼ 0.99, the
l ¼ 1 mode is responsible for only 16.54% of the total
electromagnetic energy radiated, while the sum over the
first five modes represents only 63.41% of this energy.
In Fig. 20, we have compared the electromagnetic energy

spectrum dE=dω given by Eq. (58) with its CAM repre-
sentation (64)–(66). This permits us to emphasize the
respective role of the background integrals (65a) and
(65b) and of the Regge pole sum (66). In particular, we
can observe that, for very low frequencies, in order to
match the exact energy spectrum, it is necessary to take into
account these two background integrals and to consider
the first two Regge poles in the Regge pole sum. Out of this
frequency regime, the exact energy spectrum can be
perfectly described by only considering the background
integral along the real axis and a single Regge pole in the
Regge pole sum. Here, it is worth pointing out that the
Regge pole approximation cannot be used to resum the
total electromagnetic energy spectrum because the CAM
representation is dominated by the background integrals.
However, we can observe in Fig. 21 that it is the Regge pole
approximation which explains the oscillations appearing in
the electromagnetic energy spectrum. Due to the connec-
tion existing between the Regge modes and the (weakly
damped) QNMs of the Schwarzschild BH [32,34], we can
also associate these oscillations with the quasinormal
frequencies of the BH.

FIG. 19. The total electromagnetic energy spectrum radiated by
a charged falling radially into a Schwarzschild BH. The results
are given for v∞ ¼ 0, 0.75, 0.90, and 0.99.

TABLE I. The total energy E radiated by the charged particle is
considered for the values v∞ ¼ 0, 0.75, 0.90, and 0.99 of its
velocity at infinity. The percentage of energy radiated in the
l ¼ 1 mode and in the first five modes is also considered. Here,
we have taken 2M ¼ 1.

v∞ðγÞ ð1=qÞ2E ð1=qÞ2E1 ð1=qÞ2P5
l¼1 El

0(1) 3.4049 × 10−3 83.20% 99.99%
0.75(1.51) 1.0181 × 10−2 69.20% 99.83%
0.90(2.29) 2.3251 × 10−2 49.45% 97.68%
0.99(7.09) 1.0726 × 10−1 16.54% 63.41%
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FIG. 20. The electromagnetic energy spectrum radiated by a charged particle falling radially into a Schwarzschild BH compared
with its CAM representation. The respective roles of the background integrals (65a) and (65b) and of the Regge pole sum (66) clearly
appear.
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VI. CONCLUSION

In this paper, we have revisited the problem of the
electromagnetic radiation generated by a charged particle
falling radially into a Schwarzschild BH. We have obtained
a series of results which highlight the benefits of working
within the CAM framework and strengthen our opinion
concerning the interest of the Regge pole approach for
describing radiation from BHs because they are fairly close
to those previously reported in Ref. [1], where we discussed
an analogous problem in the context of gravitational
radiation.

We have described the electromagnetic radiation by the
Maxwell scalar ϕ2 and we have extracted from its multi-
pole expansion (27) the Fourier transform of a sum over
the Regge poles of the BH S-matrix involving, in addition,
the excitation factors of the Regge modes. It constitutes an
approximation of ϕ2 which can be evaluated numerically
from the Regge trajectories associated with the Regge
poles and their residues. In fact, we have constructed two
different Regge pole approximations of ϕ2: the first one,
which has been obtained from the Poisson summation
formula, is given by Eq. (48b) and provides very good
results (even impressive results for relativistic particles)
for observation directions in a large angular sector around
the particle trajectory; the second one, which has been
derived by using the Sommerfeld-Watson transformation,
is given by Eq. (51b) and is helpful in a large angular
sector around the direction opposite to the particle
trajectory. More precisely, it should be noted that, in
general, these two Regge pole approximations can repro-
duce with very good agreement the quasinormal ringdown
(it is worth pointing out that, in contrast to the QNM
description of the ringdown, the Regge pole description
does not require a starting time) as well as with rather
good agreement the tail of the signal and that the first
approximation even describes the preringdown phase. All
our results have been achieved by taking into account only
one Regge pole. To understand the interest of this fact, it is
important to recall that the partial wave expansion defin-
ing ϕ2 is a slowly convergent series, especially in the case
of a particle projected with a relativistic or an ultra-
relativistic velocity into the BH; its Regge pole approx-
imations are efficient resumations which permit us, in
addition, to extract the physical information it encodes. It
is interesting to recall that, for the analogous problem in
the context of gravitational radiation [1], we have obtained
rather similar results for the Weyl scalar Ψ4 but that, in this
case, taking into account additional Regge poles some-
times improves the Regge pole approximations. It should
be finally noted that we have also considered the electro-
magnetic energy spectrum dE=dω (a topic we did not
touch on in Ref. [1]) and, by using the Poisson summation
formula, we have constructed from its multipole expan-
sion (58) its CAM representation given by Eqs. (64)–(66).
Unfortunately, here the full CAM representation is neces-
sary to describe the whole electromagnetic energy spec-
trum but the corresponding Regge pole approximation
(66) is however helpful to understand its oscillations and
associate them with QNMs.
In future work, we would like to go beyond the

relatively simple problems examined in the present paper
and in Ref. [1] by revisiting, using CAM techniques,
the problem of the radiation generated by a particle with
an arbitrary orbital angular momentum plunging into a
Schwarzschild or a Kerr BH. It would be in addition

FIG. 21. The oscillations in the electromagnetic energy spec-
trum radiated by a charged particle falling radially into a
Schwarzschild BH explained by the Regge pole approximation.
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interesting to extract asymptotic expressions from the
background integral contributions appearing in the vari-
ous CAM representations in order to improve the physical
interpretation of the results. We would also like to go

beyond the case of BHs by considering that of neutron
stars and white dwarfs. In this context, the recent CAM
analysis of scattering by compact objects [36] could be a
natural starting point.
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