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Abstract

We propose an exact solution method for a Logistics Service Network Design Problem (LSNDP) inspired by

the management of restaurant supply chains. In this problem, a distributor seeks to source and fulfill customer

orders of products (fruits, meat, napkins, etc.) through a multi-echelon distribution network consisting of supplier

locations, warehouses, and customer locations in a cost-effective manner. As these products are small relative to

vehicle capacity, an effective strategy for achieving low transportation costs is consolidation. Specifically, routing

products so that vehicles transport multiple products at a time, with each product potentially sourced by a different

supplier and destined for a different customer. As instances of this problem of sizes relevant to the operations

of an industrial partner are too large for off-the-shelf optimization solvers, we propose a suite of techniques for

enhancing a Benders decomposition-based algorithm, including a strengthened master problem, valid inequalities,

and a heuristic. Together, these enhancements enable the resulting method to produce provably high-quality

solutions to multiple variants of the problem in reasonable run-times.

Keywords: Logistics, Service Network Design, Supply Chain, Benders Decomposition

1. Introduction

In this paper, we propose an exact solution method for a Logistics Service Network Design Problem (LSNDP)

inspired by the management of restaurant supply chains. In this problem, a distributor seeks to source and fulfill

customer orders of products (fruits, meat, napkins, etc.) through a multi-echelon distribution network consisting

of supplier locations, warehouses, and customer locations in a cost-effective manner. The primary goal of the

LSNDP is to determine a cost-effective transportation plan. As these products are small relative to vehicle capacity,

an effective strategy for achieving low transportation costs is consolidation. Specifically, routing products so that

vehicles transport multiple products at a time, with each product potentially sourced by a different supplier and

destined for a different customer. Depending on the industrial context, the LSNDP may consider different capacity

constraints, such as warehouse storage capacity and/or the limits on the number of vehicle departures from a
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facility during a given period of time. While the problem has received little attention to date, one relevant paper

is Dufour et al [13], which focuses on managing logistics in the humanitarian sector. The LSNDP can also be

viewed as a variant of the Service Network Design Problem (SNDP) [8, 23], which seeks to determine a plan for

transporting shipments through a known network of terminals.

While the LSNDP considered in this paper and the SNDP are similar, they also differ in some fundamental

ways. In the LSNDP considered in this paper, products flow from suppliers to customers (albeit through a

distribution network). Thus, the LSNDP seeks to design a “forward flow” network. The SNDP, on the other

hand, makes no presumptions regarding the direction of product/shipment flows. In a sense, these unidirectional

flows make the LSNDP easier to solve than the SNDP, as they imply structure to the network that can be exploited

algorithmically. That said, most SNDP models studied in the literature presume that the origin and destination

locations for each shipment to be transported is specified a priori. In the LSNDP, however, customers request

delivery of products that may be manufactured by multiple suppliers, as in the Logistics Network Design Problem

(LNDP). As a result, the LSNDP involves a sourcing decision, as it determines the supplier and origin location

for each transported product request. In this sense, the LSNDP is harder to solve than the general SNDP as it

considers an additional dimension of decision-making.

Many real-world instances of the SNDP involve large numbers of shipments, which in turn leads to instances

of the SNDP that are too large for off-the-shelf optimization solvers. Inspired by the operations of an industrial

partner, we seek to solve similarly-sized instances of the LSNDP. We propose a Benders decomposition-based

solution approach similar in spirit to the Partial Benders Decomposition approach proposed in [12] for speeding

up the solution of scenario-based stochastic programs. In [12], information is derived from the scenarios used to

define the stochastic program and used to strengthen the relaxation, referred to as the master problem, solved

in the course of executing a Benders-type algorithm. Computational results in [12] indicate that the information

added to the relaxation greatly strengthens the bound it yields and increases the rate of convergence of the

algorithm as a whole. In this paper, we propose a Partial Benders decomposition-type strategy for a deterministic

network design problem, similar to the work of Fontaine et al. [14] on a different problem.

Traditional Benders-type methods for solving deterministic network design problems solve a master problem

where the need to route shipments/products is relaxed, leaving a relaxation whose solution provides a weak bound

on the objective function value of the optimal solution to the original problem. We propose strengthening the

master problem with variables and constraints that model the need to route a single product that is an aggregation

of the different products requested by customers. We prove the validity of this new master problem and with

an extensive computational study illustrate that it yields significantly stronger bounds than the master problem

traditionally solved. By examining the structures required in a solution to the LSNDP, we derive valid inequalities

with which we further strengthen the master problem. Finally, we complement these techniques for strengthening

the dual bound with a heuristic for quickly producing high-quality solutions. The primary motivation for these
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algorithmic developments is to solve a LSNDP inspired by the logistical considerations of our industrial partner.

However, to highlight how they can be generalized, we also adapt them to a variant of the LSNDP that models

capacity considerations not faced by our industrial partner.

To summarize, this paper makes the following contributions. First, it introduces a new master problem for

Benders decomposition-based methods applied to network design problems, particularly those where instances

have many products/shipments. Second, it proposes a set of valid inequalities that leverage the information used

to reinforce the master. Third, it proposes a heuristic that derives primal solutions from infeasible subproblems.

These algorithmic techniques are developed, and their correctness shown, for an optimization model that recognizes

many operational considerations seen in supply chain management. Finally, we analyze the results of an extensive

computational study to show that collectively, the techniques yield a method that can produce provably high-

quality solutions to instances larger than those that have been solved in the literature. We also perform a detailed

analysis of the impact of each technique on the performance of the overall method.

The remainder of the paper is organized as follows. In Section 2, we review relevant literature. In Section 3,

we introduce decision-makers and formulation of our Logistics Service Network Design. In Section 4, we present

the Benders decomposition-based scheme and detail its acceleration techniques. In Section 5, we present and

interpret the results of an extensive computational study of the algorithm performance. Finally, in Section 6, we

finish with conclusions and a discussion of future work.

2. Literature review

We first review the literature relevant to our problem. Then, as we propose a Benders decomposition-based

algorithm, we review the literature relevant to the application of that algorithmic strategy to problems similar to

what we seek to solve.

The problem we study, the LSNDP, contains many features that are seen in other, supply chain optimization-

type problems. As already noted, the problem is similar to the Service Network Design Problem, in that it focuses

on transportation planning decisions within a terminal network. However, it differs in the direction of desired flows

through the network, as the LSNDP focuses on a forward flow network from suppliers to customers while the SNDP

considers more general flows. While different variants of the SNDP consider different operational considerations

regarding asset/resource/vehicle management [17, 11, 22], the nature our industrial partners’ logistics operations

does not necessitate modeling such concerns.

Arguably the biggest difference between the problem we solve and the variants of the SNDP considered in the

literature [8, 23] is that the LSNDP involves a sourcing decision. Specifically, customers place orders for products

which are potentially manufactured by multiple suppliers. As a result, the LSNDP must determine which supplier

to use to source each order. This is different from the majority of the literature on the SNDP, which focuses

on transporting shipments from given origins to given destinations. This sourcing decision adds an inventory
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management dimension to the problem, as the LSNDP also determines inventory levels of products at warehouses

within the distribution network.

Optimizing the sourcing and fulfillment of orders through a multi-echelon distribution network is also considered

in supply chain optimization problems [1] such as the Logistics Network Design Problem (LNDP) [21] and the

Supply Chain Network Design Problem (SCNDP) [16]. These problems also aim to determine the flow of materials

and/or products through a supply chain, as well as inventory levels at warehouses. However, they primarily focus

on strategic decisions such as facility location [5, 3] and do not model transportation costs precisely.

In Table 1, we compare the LSNDP to the LNDP/SCNDP and the SNDP. We report the characteristics of

these problems, as well as the decisions they adress. Note that this comparison is not based on all possible variants

of each problem, but those variants that are considered in the literature. For example, the SNDP can consider

shipments that do not have an a priori specified origin. However, we are unaware of such a variant being studied

in the literature.

Table 1: Comparison of the LNDP/SCNDP, the SNDP and the LSNDP

Logistic features Decisions involved

Problem Multi-echelon network Shipment origin not fixed Location Production Distribution Inventory Vehicle utilization

LNDP/SCNDP X X X X X X -

SNDP - - - - X X X

LSNDP X X - - X X X

We next turn our attention to the algorithmic strategy we use to solve our problem, Benders decomposition.

In 1962, Jacques Benders proposed a decomposition-based algorithm [2] for solving combinatorial optimization

problems. This method divides the computational burden of solving a problem into solving a master problem and

solving one or more subproblem(s). Solutions to the master problem prescribe values for a subset of the variables,

often referred to as first-stage variables. The subproblems are solved to determine values for the remaining

variables based on the values of those first-stage variables determined by solving the master. Information from the

solution of subproblems is used to determine whether the solution composed of both first-stage and subproblem

variable values is optimal. When it is not, that information is then used to generate constraints to add to the

master problem, which is then solved again, and the procedure repeats. When subproblems are linear programs,

the approach is guaranteed to converge to an optimal solution.

Benders decomposition has been the basis of an effective solution approach for a wide range of problems

[6, 18]. However, algorithms based on the standard Benders decomposition are generally inefficient, and require

an excessive amount of time and memory before converging. Instead, an effective Benders decomposition-based

algorithm typically requires acceleration techniques [15, 7, 18]. Rahmaniani et al. [18] provides an exhaustive

review of such techniques, which include strengthening the master problem with problem-specific valid inequalities,

techniques for generating constraints from subproblem information that speed up convergence towards an optimal
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solution, and changes to the decomposition strategy itself. Regarding network design, Costa [6] reviews Benders

decomposition-based algorithms for solving problems from this class. More recently, examples of the effectiveness

of Benders as the basis of a solution approach for such problems can be found in [20, 7, 14, 24]. Acceleration

techniques for Benders applied to Stochastic Network Design problems can be found in [19].

3. Problem definition and mathematical model

In this section, we first define the problem considered in this paper. We then present a mathematical model of

that problem.

3.1. Problem definition

We focus on planning the transportation operations for a logistics company tasked with distributing products

from suppliers to customers through a distribution network over a fixed planning horizon. In the context of

supplying restaurants that are part of the same chain, a customer corresponds to an individual restaurant. That

restaurant could then request for the coming month the delivery of napkins (the product) on each Friday at 9 in

the morning. Note that products are packed and transported in pallets of homogeneous size that contain a single

type of product, and always in the same quantity. Therefore, in the rest of the article we define a unit of product

as a pallet of this product. On the supply side, each product is produced at one or more supplier facilities. Each

supplier has a limited product line (e.g. a supplier may specialize in paper products). The number of vehicles

that can depart a supplier on a daily basis may be limited due to constraints imposed by their outbound logistics

operations. Relatedly, there may be limitations on the total quantity of product a supplier may ship each day.

However, we presume that delivery requests are communicated long enough in advance to enable production plans

that avoid stockouts.

On the demand side, each customer requests deliveries of quantities of products from the distribution company,

and do not specify a supplier in the request. Thus, the distribution company must determine how to source each

request. While the customer may request the same product to be delivered multiple times over the course of the

planning horizon, the quantity requested need not be the same and each request may be sourced from a different

supplier. Relatedly, a customer may request delivery of several products that cannot all be sourced by the same

supplier. For example, an indivudal restaurant may request a delivery of meats, vegetables and paper products,

which requires shipments from several suppliers. To coordinate with their inbound logistics operations, each

customer specifies time windows during which product deliveries can occur. These time windows are periodic, e.g.

a customer may request deliveries on Friday mornings from 8 to 10 a.m. Thus, each delivery request also includes

a delivery day and time window. Note delivery requests need not be periodic. For the first week of a month,

a customer may request delivery of two pallets of napkins on Friday between 8 a.m. and 10 a.m. However, for

the second week of a month, that same customer may request delivery of one pallet of napkins and one pallet of

bananas on Friday between 8 a.m. and 10 a.m.
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The distribution company may transport products directly from a supplier facility to a customer location.

However, customer order quantities that are typically small relative to vehicle capacity. As a result, the distribution

company may instead transport product through a distribution network that connects supplier facilities with

customer locations in order to consolidate orders. Terminals within this distribution network are referred to as

Warehouses and offer both cross-docking and warehousing of products. However, storing product at a warehouse

incurs a per-unit, per-unit-of-time cost. A warehouse may also have limited storage for holding products. Like

supplier locations, the number of vehicles that can depart a warehouse on a daily basis may be limited. A vehicle

dispatched from a supplier to a warehouse or from a warehouse to another warehouse can transport products

intended for different customers. However, for this industrial partner, a vehicle dispatched to a customer can only

transport products intended for that customer. We illustrate such a network in Figure 1, wherein Sx indicates a

supplier facility, Cx indicates a customer location, and Wx indicates a warehouse within the distribution network.

Figure 1: Distribution network

We refer to transportation between warehouses in this network, as well as from a supplier facility or to a

customer location, as a service. Associated with a service is a departure time from its origin and an arrival time

at its destination. While the distribution company plans the execution of services, it relies on a third party carrier

for the execution. As this carrier has other customers, the distribution company does not manage the resources

needed for transportation (e.g. the distribution company communicates to the carrier needs for point-to-point

transportation moves). Relatedly, the distribution company presumes that the carrier’s fleet is of sufficient size

to satisfy the services it wants executed. In addition to identifying to the carrier which services to execute, the

distribution company also specifies a desired capacitiy for each service in fixed units, with each unit of capacity

coming at a cost. Ultimately, the distribution company seeks to determine which suppliers satisfy customer

requests as well as the services and capacities needed to support those deliveries in order to minimize costs.
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3.2. Problem formulation

We model the supply chain with the directed network G = (N ,A), wherein the set N contains nodes that

represent supply locations S, customer locations C, and warehouses W, and the arc set A contains arcs that

represent transportation between such locations. We model the products to be delivered with the set P, with the

set supplied by supplier i denoted by P i . As products are not delivered to suppliers, A does not contain arcs that

model transportation to a supplier. Similarly, as we only consider the delivery of products to customers, A does

not contain arcs that model transportation from a customer. Formally, A is a subset of (S × W) ∪ (S × C) ∪

(W ×W) ∪ (W × C). Associated with each arc a = (i , j) ∈ A, is a travel time tij ∈ N∗, a per unit of flow cost

cij ∈ R+∗, a unit of capacity, û, and a fixed cost per unit of capacity, fij ∈ R+∗. For the industrial partner that

inspired this problem, the unit of capacity models the capacity of one vehicle.

We presume the distribution company seeks to develop a transportation plan for a fixed planning horizon of

length T periods, which is a multiple of the number of days D in the planning horizon. Thus, there exists a

∆ ∈ N∗ such that T = D × ∆. As an example, if there are 20 days in the planning horizon, and a period

represents half of a day, then T = 40 and ∆ = 2. To model the time aspect of the problem, we extend the static

network, G, to a time-expanded network GT = (NT ,HT ∪ AT ). To construct the graph GT , each physical node

i ∈ N is duplicated |T | times. As a result, the set NT contains pairs (i , t) for each i ∈ N and t ∈ T . Time-

expanded nodes of NT are either time-expanded suppliers ST , or time-expanded customers CT , or time-expanded

warehouses WT . Arcs in HT represent storing products at a warehouse. To model this opportunity, for each

i ∈ W and each t ∈ [1, |T |− 1], there is a time-expanded arc ((i , t), (i , t + 1)) in HT with a per-unit-of-flow cost

cii , which represents the per unit, per unit of time storage cost at warehouse i . Note this parameter cii depends

on the length of time modeled by a period in the time-expanded network. Arcs in AT represent transportation

between locations as well as departure and arrival times. To construct these, for each (i , j) ∈ A and each time

t ∈ T such that t + tij ≤ |T |, we build a time-expanded arc ((i , t), (j , t + tij )). Thus, a transportation arc

((i , t), (j , t + tij )) in AT models transporting goods from i to j , leaving at time t and arriving at time t + tij .

We note that before creating the network, GT , it may be necessary to modify the values tij to ensure that arcs

(i , j) ∈ A can be mapped to arcs of the form ((i , t), (j , t +tij )). Figures 2 and 3 illustrates how the time dimension

of the problem is modelled.

Figure 2: Static network G Figure 3: Corresponding time-expanded network GT , with |T | = 5
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Figure 2 represents a static network with one supplier, one warehouse, one customer and three transportation

arcs with a transit time of one unit. Figure 3 illustrates the time-expanded version of that static network,

considering a planning horizon of 5 units such that each node of G is duplicated 5 times in GT . In Figure 3,

transportation and holding arcs are colored in green and blue, respectively.

To model capacity constraints that span multiple periods (e.g. a daily limit on the number of vehicle departures

from a warehouse and periods that represent half-days), we link each t ∈ T with its corresponding day d(= d t
∆e)

in the planning horizon. To ease the reading of the paper, we denote that correspondance as t ∈ d . Other model

parameters include dp
ct , which is the amount of product p ∈ P requested by customer c ∈ C to be delivered at

time t ∈ [1, |T |]. Each warehouse i ∈ W has a storage capacity: wlimi . The daily supply capacity of a supplier

i ∈ S is slimi . Finally, the maximum number of vehicles that can be dispatched from a supplier or a warehouse

i ∈ S ∪W on each day is ylimi .

Thus, we next formulate the Logistics Service Network Design problem defined over a time-expanded network

GT (LSND(GT )). The integer variable, y tt′

ij , represents the number of vehicles dispatched on transportation arc

((i , t), (j , t ′)) ∈ AT . The continuous variable, xptt′

ij , represents the quantity of product p that flows along the

arc ((i , t), (j , t ′)) ∈ HT ∪ AT (note as this includes holding arcs, it may be that i = j). Also, if p /∈ P i (i.e.

supplier i does not supply product p), then the continuous variables xptt′

ij are not defined for all arcs ((i , t), (j , t ′)).

Formally, the LSND(GT ) seeks to

minimize z(GT ) =
∑

((i ,t),(j ,t′))∈AT

fij y
tt′

ij +
∑

((i ,t),(j ,t′))∈AT

∑
p∈P

cij x
ptt′

ij +
∑

((i ,t),(i ,t+1))∈HT

∑
p∈P

cii x
ptt+1
ii (1)

Under the following constraints :

∑
((i ,t),(j ,t′))∈AT ∪HT

xptt′

ij −
∑

((j ,t′),(l ,t′′))∈AT ∪HT

xpt′t′′

jl = 0, ∀(j , t ′) ∈ WT ,∀p ∈ P (2)

∑
((i ,t),(j ,t′))∈AT

xptt′

ij ≥ dp
jt′ , ∀(j , t ′) ∈ CT ,∀p ∈ P (3)

∑
p∈P

xptt′

ij ≤ ûy tt′

ij , ∀((i , t), (j , t ′)) ∈ AT (4)

∑
p∈P

xptt+1
ii ≤ wlimi , ∀((i , t), (i , t + 1)) ∈ HT (5)

∑
((i ,t),(j ,t′))∈AT

t∈d

∑
p∈P

xptt′

ij ≤ slimi , ∀i ∈ S,∀d ∈ [1, |D|] (6)
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∑
((i ,t),(j ,t′))∈AT

t∈d

y tt′

ij ≤ ylimi , ∀i ∈ S ∪W,∀d ∈ [1, |D|] (7)

xptt′

ij ∈ R+, ∀((i , t), (j , t ′)) ∈ AT ∪HT , ∀p ∈ P i (8)

y tt′

ij ∈ N+, ∀((i , t), (j , t ′)) ∈ AT (9)

Objective (1) minimizes the sum of fixed costs on transportation arcs (first term), variable costs on trans-

portation arcs (second term), and variable costs on holding arcs (third term), i.e. holding costs. Constraints

(2) enforce flow conservation at each warehouse. Returning to Figure 3, flow conservation constraints associated

with node (w , 2) are: xp12
sw + xp12

ww = xp23
wc + xp23

ww ,∀p ∈ P. Constraints (3) impose the respect of each customer

demands. Constraints (4) ensure sufficient vehicle capacity is dispatched to transport products. Constraints (5)

limit the total amount of product stored by each warehouse. Constraints (6) impose the respect of each supplier’s

daily supply capacity. Constraints (7) ensure that the daily number of vehicles that can be dispatched from each

supplier or warehouse is respected. Constraints (8) and (9) define the variable domains.

4. An enhanced Benders decomposition-based strategy

In this section, we propose an algorithmic strategy for solving LSND(GT ). Our method is a Benders decomposition-

based scheme based on Partial Benders decomposition [10, 12]. It is enhanced with both valid inequalities (Section

4.2) for strengthening the relaxation solved by the Benders decomposition-based scheme and a heuristic (Section

4.3) to reduce the time needed to find high-quality solutions. We next discuss the scheme in detail.

4.1. Partial Benders decomposition

Benders decomposition is a solution strategy for large mixed-integer linear problems that decomposes a problem

into a master problem and a set of subproblems. As we consider a single subproblem in our method, we describe

the method in that context. The master problem is a relaxation of the original problem that considers a subset of

the variables in the original problem and an estimate of the optimal objective function value of the subproblem.

Solving the master problem yields a dual bound on the optimal objective function value of the original problem and

variable values that are used to formulate the subproblem that determine values for the remaining variables. When

the subproblem is feasible, a feasible solution to the original problem can be constructed. This feasible solution

yields a primal bound on the optimal objective function value of the original problem. When the objective function

value of the subproblem does not agree with the estimate in the master problem, a Benders cut known as an

Optimality cut is generated. This type of cut is typically generated from an extreme point of the dual polyhedron
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associated with the subproblem. When the subproblem is not feasible, a Benders cut known as a Feasibility cut is

generated. This type of cut is typically generated from an extreme ray of the dual polyhedron associated with the

subproblem. Generated cuts are added to the master problem, which is then re-solved. The process repeats until

the primal and dual bounds are within some pre-defined optimality tolerance, ε, or no Benders cuts are generated.

For the LSND(GT ), the standard Benders decomposition yields a master problem that allocates trucks on

transportation arcs and a subproblem that routes product flows using the capacity allocated by the master. With

Ω and Γ representing the extreme rays and extreme points of the subproblem dual polyhedron, the master problem,

CMP, is formulated as follows:

min
∑

((i ,t),(j ,t′))∈AT

fij y
tt′

ij + z (10)

∑
((i ,t),(j ,t′))∈AT

t∈d

y tt′

ij ≤ ylimi , ∀i ∈ S ∪W,∀d ∈ [1, |D|] (7)

0 ≥
∑

(c,t)∈CT

∑
p∈P

dp
ctρ

p
ct +

∑
((i ,t),(i ,t+1))∈HT

wlimiρ
tt+1
ii +

∑
i∈S

∑
d∈[1,|D|]

slimiρ
d
i −

∑
((i ,t),(j ,t′))∈AT

ûρtt′

ij y tt′

ij , ∀ρ ∈ Ω

(11)

z ≥
∑

(c,t)∈CT

∑
p∈P

dp
ctπ

p
ct +

∑
((i ,t),(i ,t+1))∈HT

wlimiπ
tt+1
ii +

∑
i∈S

∑
d∈[1,|D|]

slimiπ
d
i −

∑
((i ,t),(j ,t′))∈AT

ûπtt′

ij y tt′

ij , ∀π ∈ Γ

(12)

y tt′

ij ∈ N+, ∀((i , t), (j , t ′)) ∈ AT (13)

z ∈ R+ (14)

The objective function, (10), computes the total vehicle costs and an approximation of the costs associated

with routing products. Constraints (7) are considered in the master problem as they only involve y variables.

Feasibility constraints (11) and optimality constraints (12) are standard Benders cuts added dynamically after

solving the subproblem.

Given an allocation of vehicles ȳ , the subproblem SP(ȳ) is formulated as:

min
∑

((i ,t),(j ,t′))∈AT

∑
p∈P

cij x
ptt′

ij +
∑

((i ,t),(i ,t+1))∈HT

∑
p∈P

cii x
ptt+1
ii (15)

(2)-(3)-(5)-(6)∑
p∈P

xptt′

ij ≤ ûȳ tt′

ij , ∀((i , t), (j , t ′)) ∈ AT (16)

xptt′

ij ∈ R+, ∀((i , t), (j , t ′)) ∈ AT ∪HT , ∀p ∈ P i (17)
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Given a vehicle allocation ȳ , the subproblem seeks to satisfy customer requests for products, while minimizing

the routing and storage costs incurred while doing so. Therefore, the subproblem has the same flow constraints

(2)-(3)-(5)-(6) as the complete program. Constraints (16) ensure that on each transportation arc the total flow

cannot exceed the available capacity. It has been recognized that this form of decomposition leads to poor

computational performance [18] because the master problem and subproblem are unbundled. In particular, the

master problem is unlikely to yield a high-quality solution in the early iterations of the algorithm as it is only

constrained by the Benders cuts.

To mitigate these problems, Crainic et al. [10, 12] propose a Partial Benders Decomposition technique in

the context of solving two-stage stochastic programs. The master problem is strengthened by the addition of

information derived from the subproblem(s). For our problem, we add to the master problem variables and

constraints related to the routing of a super-product, χ, that is derived from aggregating all the products p ∈ P.

The demand at a node (c , t) ∈ CT for this super-product, which we denote by Dχ
ct , is obtained by summing

the demands for all products to be delivered to customer c at time t: Dχ
ct =

∑
p∈P

dp
ct . Relatedly, for each arc

((i , t), (j , t ′)) and product p such that a flow variable xptt′

ij is defined in the LSNDP, a super-product flow variable

xχtt′

ij is defined in our master problem. All suppliers can produce the super-product. This fact induces a loss of

information as we cannot restrict suppliers to only ship products they manufacture. Figures 4 and 5 illustrate an

example, respectively before and after aggregating the products. In this example, the customer demands a unit

of product p1 and a unit of product p2. The supplier s1 (respectively, s2) can only produce p1 (respectively, p2).

Figure 4: Customer requests one unit of each of two products,

each of which supplied by a different supplier.

Figure 5: Customer requests two units of the “super-product”

that can be supplied by either supplier.

The resulting enhanced master problem (EMP) allocates vehicle capacities on transportation arcs in order to

satisfy the routing of the super-product:
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min
∑

((i ,t),(j ,t′))∈AT

fij y
tt′

ij + z (18)

∑
((i ,t),(j ,t′))∈AT ∪HT

xχtt′

ij −
∑

((j ,t′),(l ,t′′))∈AT ∪HT

xχt′t′′

jl = 0, ∀(j , t ′) ∈ WT (19)

∑
((i ,t),(j ,t′))∈AT

xχtt′

ij ≥ Dχ
jt′ , ∀(j , t ′) ∈ CT (20)

xχtt′

ij ≤ ûy tt′

ij , ∀((i , t), (j , t ′)) ∈ AT (21)

xχtt+1
ii ≤ wlimi , ∀((i , t), (i , t + 1)) ∈ HT (22)

∑
((i ,t),(j ,t′))∈AT

t∈d

xχtt′

ij ≤ slimi , ∀i ∈ S,∀d ∈ [1, |D|] (23)

z ≥
∑

((i ,t),(j ,t′))∈AT

cij x
χtt′

ij +
∑

((i ,t),(i ,t+1))∈HT

cii x
χtt+1
ii (24)

(7)-(11)-(12)

xχtt′

ij ∈ R+, ∀((i , t), (j , t ′)) ∈ AT ∪HT (25)

y tt′

ij ∈ N+, ∀((i , t), (j , t ′)) ∈ AT (26)

z ∈ R+ (27)

The objective function remains unchanged. Constraints (19) enforce the conservation of super-product flow at

each warehouse node. Constraints (20) ensure each customer demand for the super-product is fulfilled. Constraints

(21) ensure that enough vehicle capacity is allocated to support the flows of super-product. Constraints (22) limit

the total amount of super-product stored by each warehouse. Constraints (23) impose that the flow of super-

product shipped per day from a supplier does not exceed its daily supply capacity. Constraints (7) are the same

as in the original master problem as they do not involve flow variables. Constraint (24) bounds the flow cost

approximation z . Constraints (11) and (12) are the Benders cuts generated dynamically. Constraints (25), (26),

and (27) define the decision variables and their domain. It can be shown that this model is a relaxation of

LSND(GT ) (see Appendix A for proof). As such, a Benders-based algorithm that solves this master problem

will converge to an optimal solution of the LSND(GT ). Next, we describe additional acceleration techniques for

improving the performance of our Benders decomposition-based algorithm.
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4.2. Valid inequalities

Formulating the EMP with an aggregated product leaves a master problem with no knowledge regarding which

products each supplier can supply. This loss of information enables the master problem to prescribe vehicle

allocations that leave suppliers disconnected from customers, and thus an infeasible subproblem. Thus, to try

and prevent such disconnections we next present three valid inequalities with which we strengthen the master

problem. The first two seek to ensure that solutions to the master problem induce physical paths from suppliers

to customers. The third seeks to ensure that those physical paths reach customers by the times the products they

request are to be delivered. We next describe these valid inequalities in detail. The validity of each inequality is

proven in Appendix A.

4.2.1. Super-source inequalities

We illustrate this valid inequality with a static network, but it has a natural analog in a time-expanded network.

Specifically, Figure 6 illustrates two suppliers, with s1 manufacturing product p1 and s2 manufacturing product p2.

On the demand side, customer c requires one unit of each product. Vehicle capacity is 10. There are transportation

arcs (s1, c) and (s2, c), but the variable and fixed costs associated with (s1, c) are less than those with (s2, c).

To formulate the EMP, we aggregate products p1 and p2 into one super-product χ, which is manufactured by

both s1 and s2. Customer c ’s demand of the super-product is obtained by summing the demands of p1 and p2,

Dχ
c =

∑
p∈P

dp
c = dp1

c + dp2
c = 2 Given the cost structure in this instance, the optimal solution to the EMP is to

route 2 units of the super-product from s1 to c . This solution is illustrated in Figure 7.

Figure 6: LSND(G) Instance Figure 7: EMP optimal solution Figure 8: Valid inequalities

Figure 9: EMP optimal solution

with inequalities

However, such a solution to the EMP will induce an infeasible subproblem as the vehicle allocation does not

provide a path from s2 to c , which is necessary for c to receive product p2. To avoid such a solution, for each

product p ∈ P we add to the network what we refer to as a “super-source” ssp (see figure 8). Then, for each

supplier node s ∈ S such that p ∈ Ps , we add to A the arc (ssp, s) with zero transit time, linear cost and fixed

cost. In addition, we compute the total demand over all customers for each product, Dp =
∑

(c,t)∈CT
dp

ct . We
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then add constraints to EMP to ensure that at least Dp units of the super-product is shipped from ssp and that

supplier nodes observe flow conversation with respect to the super-product.

Returning to our example, as the total demand for each of p1 and p2 is one unit, the proposed valid inequalities

ensure that both ss1 and ss2 ship at least one unit of super-product. As the super-sources have outcoming arcs

only to the suppliers that manufacture their products, in a solution to the EMP, s1 and s2 must receive one unit

of super-product respectively from ss1 and ss2 (see Figure 8). Also, as we enforce flow conservation for s1 and s2,

any solution to the EMP must flow one unit of super-product from s1 to c and from s2 to c , meaning the vehicle

allocations in the optimal solution to the EMP will induce a feasible subproblem (Figure 9).

Formally, we add the following constraints to the EMP:∑
((ssp),(j ,t))∈AT

xχt
ssp j ≥ Dp, ∀p ∈ P (28)

∑
((i ,t),(j ,t′))∈AT

xχtt′

ij −
∑

((j ,t′),(l ,t′′))∈AT

xχt′t′′

jl = 0, ∀(j , t ′) ∈ ST (29)

4.2.2. Direct supply inequalities

Like the previous valid inequality, we illustrate this inequality with a static network, as in Figure 10. We again have

that suppliers s1 and s2 manufacture products p1 and p2, respectively. Now, however, there are two customers,

each of which request one unit of both p1 and p2. Because each supplier only makes one of the two products

requested, the “direct” arcs (s1, c1) and (s2, c2) cannot fully satisfy those customer demands. Instead, given

this network, any feasible solution to the original problem requires that shipments from s1 and s2 be transported

through warehouse w . To formulate the EMP, the products are aggregated, leaving c1 and c2 with the following

super-product demands: Dχ
c1

=
∑

p∈P
dp

c1
= 2 and Dχ

c2
=
∑

p∈P
dp

c2
= 2. For some cost structures, the optimal

solution to the EMP will be the solution illustrated in figure 11.

Figure 10: LSND(G) instance

Figure 11: EMP optimal solu-

tion Figure 12: Valid inequalities

Figure 13: EMP optimal solu-

tion with inequalities

However, such a solution induces an infeasible subproblem as the vehicle allocations it prescribes do not provide

a path from s1 to c2 (or from s2 to c1). To avoid such an allocation, we use a valid inequality that restricts the
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flows of super-product on direct arcs. Specifically, given a supplier s ∈ S with product set Ps , and a customer

c ∈ C, we compute how much demand c can receive from s: d s
c =

∑
p∈Ps

dp
c . We then restrict the quantity of

super-product flow on the direct arc (s, c) to be no greater than d s
c .

We illustrate these inequalities in Figure 12. As s1 only manufactures p1, the flow of super-product on the

direct arc (s1, c1) cannot exceed dp1
c1

= 1. Similarly, the flow of super-product on direct arc (s2, c2) cannot exceed

dp2
c2

= 1. With the inequalities illustrated in Figure 12, an optimal solution to the EMP may be the solution

illustrated in Figure 13, which induces a feasible subproblem.

In the context of a time-expanded network, given a time-expanded supplier (s, t) ∈ ST with product set Ps ,

and a time-expanded customer (c , t ′) ∈ CT , we denote d st
ct′ =

∑
p∈Ps

dp
ct′ as the demand that (c , t ′) can receive

directly from (s, t). Formally, we add the following valid inequality to the EMP:

xχtt′

sc ≤ d st
ct′ , ∀((s, t), (c , t ′)) ∈ AT , (s, t) ∈ ST , (c , t ′) ∈ CT (30)

4.2.3. Time-based Super-source shipment inequalities

Unlike the previous two inequalities, this valid inequality considers the timing of shipment activities. Like the

previous two inequalities, we explain this inequality with an example. Specifically, Figure 14 illustrates a time-

expanded network associated with the network depicted in Figure 6, wherein the time horizon is 3 days. Customer

c ’s demand is zero for both products at time t1. However, c requests one unit of each product at times t2 and t3.

As a result, to formulate the EMP, the products are aggregated to yield the following super-product demands:

Dχ
ct1

= 0, Dχ
ct2

= Dχ
ct3

= 2

.

A potential optimal solution to the resulting EMP is the solution depicted in Figure 15, which does not induce

a feasible subproblem as the vehicle allocation does not provide a path from s2 that arrives at c by day 2, when

the delivery of one unit of p2 is requested. We avoid such allocations in a manner similar to the super-source

inequalities described in subsection 4.2.1, but we now consider the timing of shipment activities.

Specifically, for each product p ∈ P and each time t ∈ T , we sum the demands over all customers and obtain

a global demand:

Dp
t =

∑
c∈C

dp
ct , ∀p ∈ P,∀t ∈ T

Then, for each product p ∈ P and each time t ∈ T , we sum the global demands requested before time t or

at time t and obtain a cumulative global demand:

D̄p
t =

∑
t′≤t

Dp
t′ , ∀p ∈ P,∀t ∈ T
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Figure 14: LSND(GT ) instance Figure 15: EMP optimal solution

For the example considered in Figure 15, the global demands and cumulative global demands are as given in

the following tables. The left table corresponds to product p1, the right table corresponds to product p2. The

first line shows the global demands while the second line shows the cumulative global demands.

t 1 2 3

Dp1
t 0 1 1

D̄p1
t 0 1 2

t 1 2 3

Dp2
t 0 1 1

D̄p2
t 0 1 2

Given a period t wherein there is an increase in the cumulative global demand for a product (e.g. day 3

for p1 in our example), we derive a latest time at which that product can be shipped from the corresponding

super-source and be delivered on time. To do so, we determine in G the shortest-path (in terms of time) between

each super-source and each customer. Recall that each arc (ssp, s) from a super-source to a supplier has a null

transit time. We denote the length of this shortest path, in terms of time, by tmin
sspc . Then, for each super-source,

ssp, we determine the shortest possible delivery time, tmin
ssp

= min
∀c∈C

tmin
sspc . This duration indicates the smallest transit

time between super-source ssp and a customer for its product. Thus, given a cumulative global demand D̄p
t such

that D̄p
t > ¯Dp

t−1, if the total amount of product p shipped from super-source ssp before t − tmin
ssp

is strictly less

than D̄p
t , the demands of product p at time t cannot be satisfied.

In G, the shortest-path duration from ss2 to c is tmin
ss2c = 1. As c is the only customer, we have that tmin

ss2
= 1.

Thus, for each t∗ ∈ T such that D̄p2
t∗ >

¯Dp2

t∗−1, we must enforce that the flow of super-product from ss2 to supply

nodes (s, t) with t ≤ t∗ − tmin
ss2

is at least D̄p2
t∗ . For example, as D̄p2

t2
> D̄p2

t1
the super-product flow from ss2

to (S2, T1) must be greater or equal to D̄p2
t2

= 1, which is not the case in the solution depicted in Figure 15.

Similar reasoning can be applied to p1. We illustrate these valid inequalities in Figure 16 and the resulting optimal

solution to the EMP in Figure 17, which will induce a feasible subproblem.
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Figure 16: Valid inequalities Figure 17: EMP optimal solution with inequalities

Formally, for each product p ∈ P and each time t∗ ∈ T such that D̄p
t∗ >

¯Dp
t∗−1 - we add the following

constraints to EMP:

∑
((ssp),(j ,t))∈AT

t≤t∗−tmin
ssp

xχt
ssp j ≥ D̄p

t∗ , ∀p ∈ P, ∀t∗ ∈ T , D̄p
t∗ >

¯Dp
t∗−1 (31)

4.3. Slope scaling heuristic

A standard Benders decomposition-based solution method only produces primal solutions when the solution to

the master problem induces a feasible subproblem. Thus, to speed up the search for high-quality primal solutions,

we propose a heuristic that will derive primal solutions from a vehicle allocation, ȳ , that induces an infeasible

subproblem. In short, we first determine whether we should attempt to repair the vehicle allocation, ȳ , so that

it may yield a feasible subproblem, and then we repair that allocation. We next describe each step in detail.

Algorithm 1 provides a high-level description of the procedure.

To determine whether to repair a vehicle allocation, ȳ , we formulate a subproblem SPs(ȳ) with slack variables

to identify how “close” the subproblem is to being feasible given that allocation. The premise being that the

closer the subproblem is to being feasible, the more likely a high-quality solution can be derived by making just a

few modifications to ȳ . The subproblem, SPs(ȳ), is formulated as follows:

min
∑

((i ,t),(j ,t′))∈AT

∑
p∈P

cij x
ptt′

ij +
∑

((i ,t),(i ,t+1))∈HT

∑
p∈P

cii x
ptt+1
ii +

∑
(i ,t)∈CT

∑
p∈P

cprohibsp
it (32)

(2)-(5)-(6)-(16)
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Algorithm 1 Build heuristic solution

Require: EMP solution (x̄χ, ȳ), threshold r̄

if SP(ȳ) is infeasible then

Add the corresponding Benders feasibility cut to the master

Build SPs(ȳ) with slack variables sp
jt for each customer’s demand

Solve SPs(ȳ) to obtain (ẋ , ṡ)

Evaluate the percentage, r , of demand quantities, dp
jt , served with slack variables

if r < r̄ then

Determine initial vehicle allocation ẏ from ẋ

for Each demand dp
jt served by slack variables in decreasing order do

Route demand dp
jt with a slope-scaling linear program

Update (ẋ , ẏ)

end for

if (ẋ , ẏ) has a better objective value than the incumbent and is feasible for the original program then

Update the incumbent

end if

Solve SP(ẏ) and add the corresponding Benders cut to the master

end if

end if
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∑
((i ,t),(j ,t′))∈AT

xptt′

ij + sp
jt′ ≥ dp

jt′ ∀(j , t ′) ∈ CT ,∀p ∈ P (33)

xptt′

ij ∈ R+, ∀((i , t), (j , t ′)) ∈ AT ∪HT ,∀p ∈ P i (34)

sp
it ∈ R+, ∀(i , t) ∈ CT (35)

This linear program differs from the original subproblem by the extra slack variables, sp
jt , which appear in the

objective, and the replacement of constraints (3) with constraints (33). We note that the slack variables guarantee

that this suproblem is feasible. The method we propose chooses an objective function coefficient, cprohib, for these

slack variables that is high enough that an optimal solution to SPs(ȳ) will only assign positive values to the slack

variables when the original subproblem is infeasible. Given an optimal solution (ẋ , ṡ) to SPs(ȳ), we compute the

percentage of customer demands that cannot be met with the allocation ȳ :

r =

∑
(i ,t)∈CT

∑
p∈P

ṡp
it∑

(i ,t)∈CT

∑
p∈P

dp
it

This measure is our indicator of how “close” the allocation of vehicle capacities, ȳ , is to inducing a feasible

subproblem. We compare this percentage with a threshold, r̄ , to determine whether we should attempt to repair

the solution ȳ so that it induces a feasible subproblem, SP(ȳ).

Given a vehicle allocation that is to be repaired, the heuristic determines the minimum vehicle allocation

needed to route the product flows, ẋptt′

ij , specified by the subproblem. Specifically, the heuristic computes ẏ tt′

ij =
∑

p∈P
ẋptt′

ij

û

, ∀((i , t), (j , t ′)) ∈ AT . The heuristic then iterates through customer demands served by slack

variables in decreasing order of size, dp
jt′ , and finds a route for each demand via a slope-scaling-type ([9]) procedure

that we next describe.

The slope-scaling procedure for demand request dp
jt′ begins by computing the remaining capacity on each arc

given the vehicle allocations, ẏ tt′

ij . It does so by computing restt′

ij = ûẏ tt′

ij −
∑

p∈P
ẋptt′

ij , ∀((i , t), (j , t ′)) ∈ AT .

Then, the procedure determines how many “extra” vehicles are needed on an arc if it is to transport the demand

request. Specifically, it calculates for dp
jt′ the quantity extratt′

ij = max

(
0,

⌈
dp

jt′−restt′
ij

û

⌉)
. These quantities are

then used to compute the terms, c̃ tt′

ij , that linearize the fixed costs associated with allocating additional vehicles

to arcs. Specifically, the quantities c̃ tt′

ij =
cij d

p

jt′+fij extratt′
ij

dp

jt′
= cij +

fij extratt′
ij

dp

jt′
are computed. In addition, to take

account of the storage capacities and the daily supply capacities, the procedure determines the remaining storage

capacities, ẋ tt+1
ii , and the actual amount of products shipped per day per supplier, ẋd

i . More specifically, it

computes ẋ tt+1
ii =

∑
p∈P

ẋptt+1
ii , ∀((i , t), (i , t + 1)) ∈ HT , and ẋd

i =
∑

((i ,t),(j ,t′))∈AT
t∈d

∑
p∈P

ẋptt′

ij , ∀i ∈ S,∀d ∈ [1, |D|].

Based on these terms, we formulate and solve the following linear program for routing dp
jt′ .

19



min
∑

((i ,t),(j ,t′))∈AT

c̃ tt′

ij x tt′

ij +
∑

((i ,t),(i ,t+1))∈HT

c tt+1
ii x tt+1

ii (36)

subject to

∑
((i ,t),(j ,t′))∈AT ∪HT

x tt′

ij −
∑

((j ,t′),(l ,t′′))∈AT ∪HT

x t′t′′

jl = 0, ∀(j , t ′) ∈ WT (37)

∑
((i ,t),(j ,t′))∈AT

x tt′

ij ≥ dp
jt′ , ∀(j , t ′) ∈ CT (38)

x tt′

ii ≤ wlimi − ẋ tt′

ii , ∀((i , t), (i , t + 1)) ∈ HT (39)

∑
((i ,t),(j ,t′))∈AT

t∈d

x tt′

ij ≤ slimi − ẋd
i , ∀i ∈ S,∀d ∈ [1, |D|] (40)

x tt′

ij ∈ R+, ∀((i , t), (j , t ′)) ∈ AT ∪HT ., p ∈ P i (41)

The objective function of this linear program computes the total approximated routing costs on transportation

arcs and storage costs associated with holding arcs. Flow conservation is enforced by (37), while the satisfaction

of demand dp
jt′ is enforced by (38). Constraints (39) ensure that warehouse storage capacities are not exceeded.

Constraints (40) ensure that daily supply capacities are not violated while routing the demand request. Given a

solution ẍ to this linear program, the heuristic updates the overall solution, (ẋ , ẏ) as follows:

ẏ tt′

ij =

⌈
ẋptt′

ij + ẍ tt′

ij

û

⌉
, ∀((i , t), (j , t ′)) ∈ AT ,

ẋptt′

ij = ẋptt′

ij + ẍ tt′

ij , ∀((i , t), (j , t ′)) ∈ AT ∪HT .

After executing these steps for each demand served by slack variables, we obtain a heuristic solution that

respects constraints (2)-(3)-(4)-(5)-(6). Recall that constraints (7) are not modeled in the slope scaling heuristic,

if the obtained heuristic solution also respects constraints (7) then it is feasible for the original problem. In that

case, if the the current best solution provides a higher bound than the newly-found solution, we update it. In

addition, note that we solve subproblem SP(ẏ) whether the heuristic solution found is feasible or not. This enables

us to generate a new Benders cut for the master.
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5. Computational study

In this section, we assess the efficiency of our proposed algorithm through a computational study. We first

describe the instances used and then how the study was performed. We then analyze results from that study

derived from solving two variants of the LSNDP with the proposed algorithm. The first variant is inspired by the

operational considerations of our industrial partner. In this model, constraints (6) and (7) are removed, leaving

only capacity constraints related to warehouses. While we focus much of our analysis on this case, we also analyze

the performance of the algorithm on a second model wherein all presented constraints are in place to study its

performance on a more general problem.

5.1. Instances

We tested the algorithm on a set of instances produced by a random generator inspired by the operations of

our industrial partner. We next describe this generator, including its key parameters. We first describe how it

generates a physical network. One parameter to the generator is the size of the node set. Given that size, the

generator randomly generates the graph, G, on a square area of size 100× 100. In all instances, 30% of the nodes

are labeled as supplier locations and 50% labeled as customer locations. This distinction is made randomly and

the percentages are based on the supply chain of our industrial partner. Amongst the remaining nodes, two are

labeled as central warehouses whereas the remaining are labeled as regional warehouses. This ratio of central to

regional warehouses is also based on the supply chain of our industrial partner.

Regarding transportation arcs, A contains an arc from each supplier to the nearest central warehouse and

from each central warehouse to each regional warehouse. In addition, there is a transportation arc in A to each

customer from its nearest regional warehouse. A second parameter to the generator, α, is a connectivity radius

value that is used to determine other arcs in A. Specifically, transportation arcs are added to A for pairs of

locations that are less than α units apart.

The travel times and fixed costs for an arc are set to be proportional to its length. For the travel time, we

set a maximum of t
max
ij = 24h. We calculate dmin and dmax , the smallest and largest distances between nodes

of G. Then, given two nodes i and j with distance dij , we set the travel time as: t ij = t
max
ij ∗

(
dij−dmin

dmax−dmin

)
. The

truck fixed cost is set to 0.55 per unit of distance: fij = 0.55dij . Finally, on each arc we set a flow cost of 0.4 for

loading and unloading each pallet of product, yielding cij = 0.8.

The temporal aspect of an instance is determined by two more parameters: (1) D, the number of days in

the planning horizon, and, (2) ∆, the time granularity. The time granularity ∆ expresses the number of time

points per day in the time-expanded graph. For example, if ∆ = 2 there are 2 time points per day and each pair

of contiguous time points is separated by a time interval of 12 hours. Then, the time horizon for the model is

T = [1, D ×∆]. To express the travel time of an arc in terms of time points, we set tij = d t ij ∗∆/24e, where

the original travel time of arc (i , j) ∈ G is t ij .
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The last parameter to the generator is the size of the product set, P. Regarding suppliers, each supplier has

a 15% chance of manufacturing a product. Regarding customers, each customer has a demand for each product

one, two or three times each week with the determination made randomly. These days are chosen randomly. The

volume of each demand is randomly chosen in the interval [0; 5]. Vehicle capacities are set to 60.

Regarding values of the capacity parameters, discussions with the industrial partner indicate that the maximum

capacities (wlimi ) of central and regional warehouses are 10,000 and 5,000 pallets, respectively. For each supplier,

we randomly chose a daily supply capacity (slimi ) from the interval [200, 300]. The number of vehicles that can be

dispatched from a facility on each day (ylimi ) is based on the number of vehicles that can be loaded hourly at that

facility. We assume that no more than 4 vehicles can be processed hourly by a supplier or a regional warehouse.

We assume that no more than 8 vehicles can be loaded hourly at a central warehouse. As facilities operate 16

hours per day, no more than 64 vehicles can be dispatched daily from a supplier or a regional warehouse. Similarly,

no more than 128 vehicles can be dispatched daily from a central warehouse.

For our experiments, we generate instances based on the following values for the other parameters: |G| = {50},

α = {10, 30}, D = 30 days, ∆ = {2, 3, 4}, and |P| = {100, 200, 300, 400, 500}. Thus, there are 30 possible

combinations of parameter values and for each combination we generated 5 instances, leaving 150 instances in

total.

5.2. Setup of study

To assess the efficiency of each component of the proposed algorithm, we tested several methods on the instances

detailed above. The first method, SPBD, is the Partial Benders decomposition-based scheme, wherein the

super-product master problem, EMP, is used, but the valid inequalities and heuristic are not used. Then, to

test the effectiveness of the valid inequalities, the methods SPBD1, SPBD2 and SPBD3 are Super-Product

Benders Decomposition methods supplemented with the a priori cuts described in subsections 4.2.1 (SPBD1),

4.2.2 (SPBD2), and 4.2.3 (SPBD3). The method SPBD123 employs all three a priori cuts. The method

SPBD123H adds the proposed heuristic.

We consider three other methods as benchmarks. The first method, CBD is the Classic Benders Decompo-

sition, wherein none of the enhancements proposed in this paper are used. The second, CPLEX, is the CPLEX

implementation of branch-and-cut. The last, CPLEX-Benders, is CPLEX’s implementation of an automatic

Benders decomposition.

All Benders decomposition-based methods are implemented with the callback framework wherein subproblems

are solved within the context of the branch-and-bound tree used to solve the master problem. Specifically,

whenever an integral solution is found in the tree, the subproblem is solved. The resulting cut is then embedded

in every node of the tree, and may cut-off the incumbent. The process terminates once the optimality gap is

closed. We initiate every method with a heuristic solution (xh, yh) obtained by setting each vehicle variable, y tt′

ij

to the ceiling of its value in the optimal solution of the linear relaxation of the LSND(GT ). Note that while we
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implemented versions of the Benders decomposition-based methods that generated pareto-optimal cuts ([15]),

doing so did not improve performance.

All algorithms are coded in C++ and executed on an Intel Xeon E5-2695 processor with 16 GB of memory

under Linux 16.04. Linear and integer programs were solved using Cplex 12.7. All algorithms are executed with a

stopping criteria of a proven optimality gap of 1% or less and a maximum run-time of 1.5 hours. For SPBD123H,

The threshold parameter, r̄ , on the percentage of customer demands that can not be fulfilled with the vehicle

allocations prescribed by the solution to the master problem for the allocation to be repaired by the heuristic is

set to 30%. This value was determined through a set of tuning experiments.

5.3. Results for variant of the LSNDP relevant to industrial partner

Due to its relevance to our industrial partner, we next investigate the performance of our Benders strategy on the

first variant of the LSND, which does not include constraints (6) and (7).

5.3.1. Effectiveness of SPBD123H

We first benchmark SPBD123H against CBD, CPLEX, and CPLEX-Benders by comparing optimality gaps at

termination for each method. We note that none of the instances could be solved by any method in the time

limit given. We present in Table 2 averages of these gaps over instances with the same number of products |P|.

We present more detailed results in Appendix B. Specifically, Table B.1 reports average lower and upper bounds

Table 2: Optimality gaps comparison of CBD, CPLEX-Benders, CPLEX and SPBD123H

|P| CBD CPLEX-Benders CPLEX SPBD123H

Opt. gap Opt. gap Opt. gap Opt. gap

100 98.48% 77.01% 13.10% 4.89%

200 98.94% 75.67% 40.11% 6.68%

300 99.19% 74.98% 59.24% 6.65%

400 99.33% 73.63% 69.36% 5.64%

500 99.60% 76.89% 76.89% 4.35%

on the optimal objective function values. To give a fuller picture of the relative performance of the methods, we

display distributions (in deciles) of the gaps for |P| = 300 in Figure 18. We note that the distributions for other

numbers of products are similar.

We observe that SPBD123H yields better gaps at termination, on average, than our three benchmarks for

every set of instances. We also observe that the performance of CPLEX degrades as the number of products

increases. On the other hand, SPBD123H remains effective for the larger instances. We also observe that the

average gap at termination reported by SPBD123H decreases as the number of products increases. We will
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Figure 18: Gap at termination distribution for |P| = 300

analyze why this occurs later. For another perspective, we report in Table 3 the relative gap between the lower

and upper bounds produced by SPBD123H and the best lower and upper bounds produced by any method.

Table 3: Relative gaps between the LB/UB computed by SPBD123H and the best LB/UB found over all methods

|P| LB relative gap UB relative gap

100 0.84% 0.00%

200 0.54% 0.18%

300 0.36% 0.22%

400 0.06% 0.00%

500 0.00% 0.00%

We clearly see that the lower optimality gaps yielded when executing SPBD123H are because SPBD123H

nearly always produces the strongest lower bound and highest-quality primal solution. Having established the

effectiveness of SPBD123H, we next turn our attention to how its features impact its ability to produce a strong

lower bound.

5.3.2. Improving the lower bound

We first study the impact of using the super-product master problem, EMP, on the lower bound produced at

termination. To do so, we report in Table 4 the average lower bound reported by SPBD and each of our three

benchmarks at termination. We see that CBD yields a very weak lower bound, while CPLEX and CPLEX-

Benders produce stronger lower bounds. SPBD produces the strongest lower bound, one that is 32.99% greater,
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on average, in value than the bound produced by the best benchmark (CPLEX). Thus, we conclude that the

Benders decomposition-based scheme based on the super-product master problem is superior to the benchmark

methods with respect to the lower bound produced at termination.

Table 4: Average lower bound reported at termination

CBD CPLEX CPLEX-Benders SPBD

1,272 66,232 42,449 98,971

Having established the effectiveness of using EMP in the context of Benders decomposition, we next assess the

impact of the proposed valid inequalities. To do so, we compare the performance of SPBD, SPBD1, SPBD2,

SPBD3 and SPBD123 with respect to the average optimality gaps and lower bounds reported at termination

as well as the average number of feasibility and optimality cuts generated during execution. We present these

results, averaged over all instances, in Table 5.

Table 5: Gaps, lower bounds and number of Benders cuts found by SPBD, SPBD1, SPBD2, SPBD3 and SPBD123

Method Opt. gap Lower bound Feasibility cuts Optimality cuts

SPBD 44.34% 98,971 29.18 0.0

SPBD1 43.06% 101,201 15.82 0.0

SPBD2 12.65% 154,263 4.48 0.0

SPBD3 42.69% 101,863 9.67 0.0

SPBD123 8.86% 161,024 3.11 0.03

The use of each valid inequality leads to a decrease in the optimality gap at termination as well as an increase

in the lower bound compared to SPBD. When considered individually, the first and third valid inequalities have a

smaller impact than the second valid inequality. However, amongst these methods, the best results are obtained

with SPBD123, indicating that all three valid inequalities, together, are the most effective. We also see that

the valid inequalities have a significant impact on the number of feasibility cuts generated. Recalling that the

valid inequalities are designed to render infeasible vehicle allocations that will not yield a feasible subproblem,

this suggests the inequalities are having the intended effect. Ultimately, we conclude from this section that one

reason the proposed algorithm produces solutions with a provably smaller optimality gap is that the new master

problem and valid inequalities enable the algorithm to produce a much stronger lower bound than the benchmark

methods.

5.3.3. Improving the upper bound

We next analyze the impact the heuristic has on the ability of SPBD123H to produce high-quality primal

solutions. To do so, we measure for an instance and a method the improvement in the primal solution over that
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of the initial heuristic solution, (xh, yh), by computing the primal gap:

primal-gapMethod
UB =

z(xh, yh)− UBMethod

z(xh, yh)
× 100

Here, UBMethod represents the objective function value of the best primal solution found by the method Method

during its execution. We benchmark SPBD123H against CPLEX and SPBD123, and present averages of these

primal gaps over instances with the same number of products in Table 6. Column ”% Method impr.” of Table

6 reports the percentage of instances for which the considered method was able to produce a primal solution

with lower objective function value than the initial primal solution. The column ”primal-gapMethod
UB ” indicates the

average primal gap obtained over instances for which the initial primal solution is improved.

Table 6: Comparison of upper bounds produced by CPLEX, SPBD123 and SPBD123H

|P| % CPLEX impr. primal-gapCPLEX
UB % SPBD123 impr. primal-gapSPBD123

UB % SPBD123H impr. primal-gapSPBD123H
UB

100 70.00 % 4.71 % 6.67 % 4.17 % 100.00 % 12.48%

200 16.67 % 3.19 % 0.00 % - 70.00 % 5.57%

300 16.67 % 2.26 % 0.00 % - 46.67 % 1.76%

400 0.00 % - 0.00 % - 10.00 % 0.44%

500 0.00 % - 0.00 % - 0.00 % -

We first observe that CPLEX has a better performance than SPBD123 for every set of instances. Thus,

implementing the EMP and the valid inequalities in the Benders strategy does not allow to obtain better primal

solutions than those computed by CPLEX. However, with the addition of the slope-scaling heuristic into the

Benders strategy, SPBD123H is able to improve upon the initial primal solution more often than CPLEX, and

with a greater magnitude. Lastly, we note that as the number of products increases, all methods struggle to

improve the initial primal solution.

We next directly compare the objective function values of the best primal solutions obtained by SPBD123H

and those of the best solutions found by CPLEX. To do so, for each instance, we compute a primal gap:

ub-gap =
UBCPLEX − UBSPBD123H

UBCPLEX
× 100

In Table 7, we report the average primal gaps over instances with the same number of products. We see that

Table 7: Comparison of CPLEX, SPBD123H with respect to primal solution quality

|P| 100 200 300 400 500

ub-gap 9.41% 3.36% 0.44% 0.04% 0%

SPBD123H outperforms CPLEX for sets of instances with 100 and 200 products. However, as both methods

struggle to improve the upper bound for instances with larger numbers of products, the gap tends to 0 as the

number of products grows.
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We return our attention to Table 2, and the observation that the optimality gap reported by SPBD123H

at termination decreases as the number of products increases. At the same time, we see that the impact of the

heuristic on the ability of SPBD123H to produce improved primal solutions worsens as the number of products

increases. We conclude from these observations that the ability of SPBD123H to produce strong lower bounds

improves as the number of products increases. We (partially) attribute this to the fact that the size of the super-

product master problem, EMP, (in terms of number of variables and constraints) is independent of |P|. Thus,

solving the master problem does not become more computationally challenging. At the same time, the number

of valid inequalities does increase as the number of products increases. As the valid inequalities strengthen

the master problem, more of them likely leads to a stronger lower bound. In addition, the demand volumes

that must be routed in the master problem increase as the number of products increases. As these increased

volumes likely require an increase in vehicle allocations, y tt′

ij , we hypothesize that they also strengthen the master

problem. Ultimately, we conclude from this section that one reason the proposed algorithm produces solutions

with a provably smaller optimality gap is that the heuristic often enables the proposed algorithm to produce primal

solutions with lower objective function values than the benchmark methods.

5.4. Results on a more general variant

To study the robustness of the proposed Benders-based approach, we next investigate its performance on the

variant that considers all capacity constraints. Given the performance of the various methods on the first variant,

we limit our comparison to SPBD123H and CPLEX. Specifically, we first compare the (average) optimality gaps

reported by each method at termination. Like the first variant, we note that none of the instances could be solved

by either method within the time limit. Note that, certain instances are infeasible when the capacity constraints

(6) and (7) are in place. More specifically, one out of the 30 instances with 400 products becomes infeasible.

Among instances with 500 products, 13 out of 30 become infeasible.

In Table 8, we report the optimality gaps obtained by CPLEX and SPBD123H. These gaps are averaged

over instances with the same number of products |P|.

Table 8: Optimality gaps comparison of CPLEX and SPBD123H

|P| CPLEX SPBD123H

Opt. gap Opt. gap

100 13.89% 5.72%

200 24.69% 7.95%

300 47.93% 6.87%

400 65.37% 4.63%

500 83.24% 3.08%
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These results are quite similar to those corresponding to the first variant. For every set of instances our

Benders strategy outperforms CPLEX. Again, the performance of CPLEX is significantly impacted by the number

of products, while our Benders strategy remains effective for the largest instances.

As with the first variant, we next analyze the quality of the primal solutions produced by both CPLEX and

SPBD123H over instances with the same number of products. In Table 9, we report the percentage of instances

for which each method managed to improve the initial primal solution. We also display the average primal gap

obtained over instances for which the initial primal solution is improved.

Table 9: Comparison of upper bounds produced by CPLEX and SPBD123H

|P| % CPLEX impr. primal-gapCPLEX
UB % SPBD123H impr. primal-gapSPBD123H

UB

100 56.67% 2.75% 100.00% 12.09%

200 24.39% 0.79% 63.41% 5.98%

300 6.67% 0.18% 0.00% -

400 0.00% - 0.00% -

500 0.00% - 0.00% -

We see that SPBD123H is again more likely than CPLEX to produce a primal solution that is better than

the initial solution, and when it does, it is of higher quality.

6. Conclusions and future work

In this paper, we studied a transportation problem inspired by restaurant supply chains, the Logistics Service

Network Design Problem (LSNDP). The goal of the LSNDP is to determine a cost-effective plan for transporting

products from suppliers to customers through a multi-echelon distribution network. As these products are small

relative to vehicle capacity, a critical strategy for achieving low transportation costs is consolidation. Specifically,

to route products so that vehicles transport multiple products at a time, with each product potentially sourced

by a different supplier and destined for a different customer.

As a result, the problem we studied can be viewed as a special case of the Service Network Design Problem

(SNDP). However, the problem also has some special features, which the proposed algorithm exploits. For

example, as suppliers feed (potentially multiple levels of) warehouses, which then feed customers, the LSNDP

seeks to design a “forward flow” network. This is different from the type of network designed by the SNDP,

wherein flows are typically omnidirectional. In addition, as customers request products that can be manufactured

by multiple suppliers, the LSNDP also determines the supplier (and corresponding supply location in the network)

for each customer request. This differs from the general SNDP typically studied in the literature, wherein the

origins of shipments to be transported are known a priori. Relatedly, the instances we used to test the proposed

algorithm are often much larger than the SNDP instances considered in the literature.
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To solve the LSNDP, we proposed a Benders decomposition-based solution approach. More specifically, we

proposed an algorithm based on the recently-proposed Partial Benders Decomposition, wherein information is

retained in the master problem solved at an iteration in order to strengthen the bound it provides and speed up

the convergence of the algorithm as a whole. Here, the information retained in the master problem is characterized

by a “super-product” that is an aggregation of all the products to be routed. We proved the validity of this new

master problem and computationally demonstrated the effectiveness of solving it in the context of a Benders

decomposition-type algorithm instead of the master problem typically used for this type of problem. We proposed

additional speed-up techniques, including valid inequalities and a heuristic for finding high-quality solutions. An

extensive computational study illustrated that the resulting algorithm produced solutions that are of provably

high-quality for different variants of the problem.

We see multiple avenues for future algorithmic work. In the context of solving the LSNDP, we intend to

explore three potential enhancements to the method. The first enhancement is to develop Benders feasibility

cuts customized for our problem. In the computational study, we observed that very few master solutions yield

feasible subproblems. Thus, strenghtening the feasibility cuts can significantly speed up the convergence of the

algorithm. A related opportunity is to derive combinatorial Benders cuts [4] from infeasible subproblems. The

second enhancement is to consider multiple super-products in the master. In that case, the number of super-

products should be an input parameter. This parameter would determine how many sets to partition the set of

products into, with a super-product created for each product set. The third enhancement would again consider

multiple super-products, but in a dynamic manner. Namely, the number of super-products considered in the

master problem would change during the course of the Benders algorithm. More generally, while we have focused

our algorithmic work on the LSNDP as it is the problem faced by our industrial partner, many of the proposed

algorithmic ideas are also valid for the general SNDP. Thus, another avenue for future work is to adapt our

approach to the general SNDP, or to SNDP variants that address practical features such as the management of

the vehicle fleet or the consideration of products with heterogeneous sizes.
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Appendix A.

Theorem 1. The enhanced master problem, EMP, is a relaxation of the Logistics Service Network Design

problem, LSND(GT ).

Proof. We prove this claim by showing that any feasible solution to the LSND(GT ) is also feasible for the EMP

and has the same objective function value. To do so, we let (x , y) be a feasible solution of the LSND(GT ).

Consider a solution (xχ, y , z) such that:

xχtt
′

ij =
∑
p∈P

xptt
′

ij , ∀((i , t), (j , t ′)) ∈ AT ∪HT , z =
∑

((i ,t),(j ,t′))∈AT

cijx
χtt′

ij +
∑

((i ,t),(i ,t+1))∈HT

ciix
χtt′

ii

It is easy to prove this solution is feasible for the enhanced master problem. By construction, for each variable xptt
′

ij

in the LSNDP, there is a corresponding variable xχtt
′

ij in EMP. We know that for each warehouse (j , t ′) ∈ WT
and each product p ∈ P:

∑
((i ,t),(j ,t′))∈AT ∪HT

xptt
′

ij −
∑

((j ,t′),(l ,t′′))∈AT ∪HT
xpt
′t′′

jl = 0. If we sum this expression on

the products, we obtain:∑
((i ,t),(j ,t′))∈AT ∪HT

∑
p∈P

xptt
′

ij −
∑

((j ,t′),(l ,t′′))∈AT ∪HT

∑
p∈P

xpt
′t′′

jl = 0 ⇐⇒
∑

((i ,t),(j ,t′))∈AT ∪HT

xχtt
′

ij −
∑

((j ,t′),(l ,t′′))∈AT ∪HT

xχt
′t′′

jl = 0

Therefore, (xχ, y , z) respects constraints (19). As (x , y) respects constraints (3)-(4)-(5)-(6)-(7), it is trivial to

demonstrate (xχ, y , z) also respects constraints (20)-(21)-(22)-(23)-(7). By construction of z , (xχ, y , z) respects

constraint (24) which makes it an admissible solution to the enhanced master problem.

Let Q(x , y) be the objective value of (x , y):

Q(x , y) =
∑

((i ,t),(j ,t′))∈AT

fijy
tt′

ij +
∑

((i ,t),(j ,t′))∈AT

∑
p∈P

cijx
ptt′

ij +
∑

((i ,t),(i ,t+1))∈HT

∑
p∈P

ciix
ptt′

ii

=
∑

((i ,t),(j ,t′))∈AT

fijy
tt′

ij +
∑

((i ,t),(j ,t′))∈AT

cijx
χtt′

ij +
∑

((i ,t),(i ,t+1))∈HT

ciix
χtt′

ii =
∑

((i ,t),(j ,t′))∈AT

fijy
tt′

ij +z = Q(xχ, y , z)

Solution (xχ, y , z) that replicates solution (x , y) by an aggregation of flows, is feasible for the enhanced problem.

The two solutions have identical objective function value. Thus EMP is a relaxation of the LSNDP.

Theorem 2. The proposed inequalities (28)-(29) are valid.

Proof. We first define the LSNDP over a time-expanded graph with super-sources. We demonstrate that the new

problem is equivalent to the original one. Then, we demonstrate that any feasible solution for the new problem

is equivalent to a solution for the EMP that respects (28)-(29).

Let (x , y) be a feasible solution for the LSND(GT ). Let us extend GT similarly to what was done in subsection

4.2.1. For each p ∈ P, we add a super-source ssp to GT . In addition, for each (s, t) ∈ ST such that p ∈ Ps ,

we add a time-expanded arc ((ssp), (s, t)) with null linear cost and null fixed cost to GT . We name the new
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time-expanded network as G+T . On each time-expanded arc ((ssp), (s, t)) ∈ G+T , let us define a continuous variable

xptssp . Let us add the following constraints to the LSND(G+T ):∑
((ssp),(j ,t))∈AT

xptssp j ≥ Dp, ∀p ∈ P (A.1)

∑
((i ,t),(j ,t′))∈AT

xptt
′

ij −
∑

((j ,t′),(l ,t′′))∈AT

xpt
′t′′

jl = 0, ∀(j , t ′) ∈ ST (A.2)

We now extend a solution for the LSND(GT ) to a solution for the LSND(G+T ). By construction, for each

(s, t) ∈ ST and for each p ∈ Ps , the only arc of G+T incoming to (s, t) such that a flow variable is defined for

product p is ((ssp), (s, t)). Thus, for each (s, t) ∈ ST , the only way to satisfy constraints (A.2) is to set the

flow value of product p on arc ((ssp), (s, t)) to
∑

((s,t),(j ,t′))∈AT
xptt

′

sj . As the original solution satisfies all customer

demands, for each p ∈ P we have
∑

(s,t)∈ST

∑
((s,t),(j ,t′))∈AT

xptt
′

sj ≥ Dp. Thus, the extended solution satisfies

constraints (A.1) and is feasible for the LSND(G+T ).

Each solution for the LSND(GT ) admits a single corresponding solution for the LSND(G+T ). In addition, both

solutions have identical objective values. Thus, the LSND(GT ) is equivalent to the LSND(G+T ).

Let (x , y)+ be a feasible solution for the LSND(G+T ). Let (xχ, y , z) be the solution for the EMP that replicates

(x , y)+ by an aggregation of flows. As (x , y)+ respects constraints (A.1) and (A.2), by construction (xχ, y , z)

respects constraints (28) and (29). Thus, constraints (28) and (29) do not cut off (xχ, y , z) that replicates a

feasible solution for the LSND(G+T ), and inequalities (28) and (29) are valid.

Theorem 3. The proposed inequality (30) is valid.

Proof. Let (x , y) be an optimal solution for the LSND(GT ). Let ((i , t), (j , t ′)) ∈ AT such that (i , t) ∈ ST and

(j , t ′) ∈ CT . For each product p ∈ P i , xptt
′

ij cannot be greater than dp
jt′ , as otherwise (x , y) would not be optimal

for the LSND(GT ). As a result,
∑

p∈P i

xptt
′

ij ≤
∑

p∈P i

dp
jt′ . Let (xχ, y , z) be a solution for the EMP solution that

replicates (x , y) by an aggregation of flows. By construction, for each ((i , t), (j , t ′)) ∈ AT such that (i , t) ∈ ST
and (j , t ′) ∈ CT , we have xχtt

′

ij =
∑

p∈P i

xptt
′

ij ≤
∑

p∈P i

dp
jt′ . Thus, constraints (30) do not cut off (xχ, y , z) that

replicates an optimal solution for the LSNDP, and inequality (30) is valid.

Theorem 4. The proposed inequality (31) is valid.

Proof. Let (x , y) be a feasible solution for the LSND(GT ). Let consider p ∈ P and t∗ ∈ T such that D̄p
t∗ >

¯Dp
t∗−1.

Thus, there exists a customer (c , t∗) ∈ CT such that dp
ct∗ > 0. tmin

ssp is the smallest transit time between all supplier

of product p and a customer for its product. Thus, the total amount of product p shipped from suppliers before

or at time t∗ − tmin
ssp must be greater or equal than D̄p

t∗ , i.e.:∑
(s,t)∈ST
t≤t∗−tmin

ssp

∑
((s,t),(j ,t′))∈AT

xptt
′

sj ≥ D̄p
t∗
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As in Theorem 2, we extend (x , y) and obtain a feasible solution (x , y)+ for the LSND(G+T ). By construction,

we have: ∑
((ssp),(s,t))∈AT

t≤t∗−tmin
ssp

xptssps
+ =

∑
(s,t)∈ST
t≤t∗−tmin

ssp

∑
((s,t),(j ,t′))∈AT

xptt
′

sj ≥ D̄p
t∗

Let (xχ, y , z) be the EMP solution that replicates (x , y)+ by an aggregation of flows. By construction, we

have:

∑
((ssp),(s,t))∈AT

t≤t∗−tmin
ssp

xχtssps =
∑

((ssp),(s,t))∈AT
t≤t∗−tmin

ssp

xptssps
+ ≥ D̄p

t∗

Thus, constraints (31) do not cut off (xχ, y , z) that replicates a feasible solution for the LSND(G+T ), and

inequality (31) is valid.

Appendix B.

Table B.1: Comparison of the lower/upper bounds produced by CBD, CPLEX-Benders, CPLEX and SPBD123H

CBD CPLEX-Benders CPLEX SPBD123H

|P| LB UB LB UB LB UB LB UB

100 1,022 67,214 15,481 67,214 56,329 64,983 55,858 58,728

200 1,301 124,216 30,193 124,216 72,915 123,577 111,225 119,353

300 1,413 173,951 43,475 173,951 69,271 173,324 160,953 172,498

400 1,515 225,885 59,621 225,885 68,969 225,885 212,999 225,787

500 1,107 275,959 63,672 275,959 63,672 275,959 263,951 275,959
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