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Abstract

In this paper, we propose a general framework to design accumulation scenarios
that can be used to anticipate the impact of a massive cyber attack on an insurance
portfolio. The aim is also to emphasize the role of countermeasures in stopping the
spread of the attack over the portfolio, and to quantify the benefits of implementing
such strategies of response. Our approach consists of separating the global dynamic
of the cyber event (that can be described through compartmental epidemiological
models), the effect on the portfolio, and the response strategy. This general frame-
work allows us to obtain Gaussian approximations for the corresponding processes,
and sharp confidence bounds for the losses. A detailed simulation study, which mim-
ics the effects of a Wannacry scenario, illustrates the practical implementation of the
method.
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1 Introduction

The growing cyber threat encourages companies into subscribing insurance policies to
complete their arsenal of protection. The cyber-insurance market is increasingly develop-
ing (see for example Camillo (2017)), with important uncertainties on the real value of the
guarantees. Recently, efforts have been made to quantify the risk with a traditional fre-
quency/severity approach, as in Eling and Loperfido (2017), Forrest et al. (2016), Farkas
et al. (2019) or Bessy-Roland et al. (2020). Apart from the difficulty to evaluate a fast
evolving risk with a relative lack of consistent historical data, the systemic potential of
a "cyber hurricane" is a major concern. Indeed, a global failure of the portfolio would
break the mutualisation principle at the core of the insurance business. Such type of crisis
is referred to as an "accumulation scenario", see Eling and Schnell (2016). The aim of
the present paper is to discuss a general framework to design such accumulation scenarii,
in order to simulate their impact on an insurance portfolio, depending on the intensity
of the attack, and the response of the company and of the policyholders. This methodol-
ogy may help insurance companies to conceive their strategies in dealing with such cyber
hurricanes.

Moreover, we develop an approach which is adapted to the particular nature of the
services included in typical cyber contracts, generally a combination of financial repair,
and of the fast intervention of expert teams to assist the policyholder in restarting his/her
activity. Stamping out the crisis via such assistance is a component of the total cost, and if
the company is unable to provide such help, this may increase the total bill considerably.
Indeed, if a large number of policyholders are simultaneously victims of an attack, a
saturation of this response capacity may occur. Depending on the situation, this may
cause an increase of the cost of intervention per policyholder, or an impossibility to honor
the contract (by lack of ressources that could be mobilized). We propose a way to quantify
the probability of such a saturation from a given capacity of response of the insurer.
Typically, this requires not only to model the total number of claims during the cyber
episode, but also the dynamics of the crisis, by tracking, at each instant, the number of
infected policyholder requiring assistance.

The core of our approach is to mix epidemiological models to describe the strength of
the attack at a global level, and Gaussian approximation theory to simulate the resulting
impact on the insurance portfolio.
Epidemiological models are widely studied in mathematical modeling for biology, to model
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the spread of an infectious disease, starting from the standard deterministic SIR model
introduced in the seminal papers of McKendrick (1925) and Kermack and McKendrick
(1927). While deterministic versions of the SIR model are based on differential equations,
stochastic SIR models use Markov chains, branching and diffusion processes. Various
extensions have been proposed in the literature, that include vaccination, jumps pertur-
bations, or demographic models. For example, Artalejo and Lopez-Herrero (2014) com-
pute for a stochastic SIR model the whole probability distribution of the time to reach a
specific state, and the time to reach a critical number of infections. El Koufi et al. (2019)
discuss a stochastic SIR epidemic model with vaccination and environmental fluctuations
on the transmission rate, and provide sufficient conditions for the extinction (resp. for
the persistence) of the disease. Zhang and Wang (2013) study the asymptotic behavior of
a stochastic SIR model with jumps perturbation. Montagnon (2019) points out the role
of the population renewal in the persistence of an endemic disease, and thus proposes a
model coupling epidemiological multi-type stochastic processes with demographic models.
Epidemiological compartmental models have also been used to describe the impact of an
epidemic on an insurance portfolio, either using deterministic SIR as in Chen and Cox
(2009) or Runhuan Feng (2011), or using a stochastic version as in Lefèvre et al. (2017).
Our approach is designed to rely on such compartmental models, but can also be adapted
to any other patterns of infection. Indeed, we make the assumption that the contagion
does not come from the inside, but more likely from outside the portfolio, since it only
gathers a small part of the global affected population. Hence we separately model the
global dynamics of the cyber epidemic, and the resulting impact on the portfolio. The
framework we develop can be generalized easily to any other type of models for describing
the timeline and the strength of the attack.

The rest of the paper is organized as follows. In Section 2, we introduce the general
setting that we use to model a cyber event and its result on a portfolio. In Section 3,
we use Gaussian approximation theory to approximate the evolution of such episodes
for large portfolios, and to derive deviation bounds that help to quantify the probability
of saturation of the response. In Section 4, we calibrate a Wannacry-type scenario and
discuss the impact of the reaction of the insurance company and of the policyholders
through simulation studies.
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2 Portfolio

In this section, we introduce a counting process approach to describe the evolution through
time of the number of infected policyholders. In Section 2.1, the different variables used
to describe the time of infection and the response are described. Section 2.2 is devoted
to the description of a SIR (Susceptible - Infected - Recovered) model widely used in
epidemiological modeling. Section 2.3 discusses the different measures we use to quantify
the impact of a cyber event on the portfolio.

2.1 Modeling the effects of a cyber attack on policyholders

We consider an insurance portfolio composed of n policyholders who are all susceptible
of being victim of the contagious cyber-attack. Our approach consists in considering that
three types of events may affect a given policyholder :

• infection by the attack;

• if infected, time at which assistance is no longer required;

• immunization by implementing the appropriate patches to the protection strategy.

Each policyholder j will be infected at a different random time Tj (potentially infinite),
and then starts the recovery process. Time 0 denotes the origin of the cyber crisis. The
attack is stopped for policyholder j at time Tj + Uj, where Uj ≥ 0. The terminology
"stopped" may have various meanings depending on the situation and on the structure
of the policy. This can simply mean stopping the spread of a malware in the network
of the victim, but many cyber policies also include additional help to the policyholder
(crisis communication, help to restart the activity of a company...) that can change the
duration of the crisis. These examples will be detailed in the application in Section 4.2.
The random vector (Tj, Uj)1≤j≤n is assumed to be independent and identically distributed
(i.i.d.), with the same distribution as a generic random vector (T, U).

The independence assumption may not be entirely true, since some of the policyholders
may be in contact, and thus can be able to transmit a malware more easily to one another.
However, if we assume the portfolio to be large enough and if the subscription policy has
avoided to constitute significant clusters of connected policyholders, such phenomena
should be marginal and thus can be neglected. Typically this independence assumption
reflects the fact that, if n is much smaller that the size of the national population (or even
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global population), the infection is more likely to come from outside the portfolio that
from inside. On the other hand, assuming that (Tj, Uj)1≤j≤n are identically distributed
may not be true if the heterogeneity of the portfolio is too strong. If it is the case, the
portfolio should be segmented into risk classes.

Additionally, some countermeasures against the attack can exist. For example, the
policyholders will progressively be warned about the threat and update their security
system, making them "immune" to the attack. This process is similar to vaccination in
classical epidemiology. We will denote by Cj the random time at which the policyholder
j gains immunity. We again assume that these variables (Cj)1≤j≤n are i.i.d. (with same
distribution as a generic variable C), and independent from (Tj, Uj)1≤j≤n. The variables
Cj act like right-censoring variables in survival analysis, see for example Fleming and
Harrington (2011), in the sense that there is a "competition" between two time variables:
if protection of the policyholder j occurs before the infection by the virus, Tj will never be
observed. Let us define Yj = inf(Tj, Cj), that is the time at which the policyholder j is no
longer susceptible to be affected, either because immunity has been acquired, or because
contamination has occurred. Introducing δj = 1Tj≤Cj , the chronology of the events for
policyholder j is summarized in Table 1 below.

Variable Signification for policyholder j

Tj Infection time
Uj Duration of the assistance required by the victim
Tj + Uj Time at which the assistance to the victim stops
Cj Time at which policyholder j becomes immune
δj = 1Tj≤Cj Indicates if the policyholder j managed to become immune before infection

Table 1: Summary of the variables involved in the chronology of the cyber event at a
policyholder level.

In the following, we will assume that T , U and C are independent. As the three
variables (T, U, C) are duration variables, it is natural to define their distributions using
their hazard rate. For a continuous random variable Z, the corresponding hazard rate
function, denoted λZ in the following, is defined as

λZ(t) = lim
dt→0+

1

dt
P(Z ∈ [t, t+ dt]|Z ≥ t).

The functions λU and λC reflect the response of the insurance company to the event. In
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Section 4, we describe standard choices to model λU and λC , depending on the type of
response and the reactivity of the company. On the other hand, λT is crucial since it
describes the strength of the event itself and its dynamic. We now discuss in the following
section how epidemiological models may be used to determine this λT .

2.2 Modeling the contagion

The distribution of T describes the force of the contagion. As we already mentioned in the
previous section, we assume that contagion does not come from inside the portfolio itself,
but from the outside. This approximation seems reasonable if the size of the portfolio is
negligible compared to the global population of potential victims.

Hence the spread of the attack is defined as a global level, and it is quite natural to look
at compartmental epidemiological models to describe this evolution of the environment. A
standard choice is to consider SIR models. SIR models are commonly used to describe the
evolution of epidemic, and more recently for modeling the spread of a malware through
a network. SIR stands for "Susceptible" (exposed individuals), "Infected" (number of
individuals affected by the disease) and "Recovered" (number of cured people). In some
cases, the number of "recovered" people can also include individuals who died from the
infection, and therefore can not be considered as contagious anymore. If st denotes the
number of susceptible individuals in the population at time t, it the number of infected
ones at time t and rt the number of recovered ones, the model is described by the following
set of differential equations

dst
dt

= −βstit (2.1)

dit
dt

= βstit − γit (2.2)

drt
dt

= γit (2.3)

where β is the contagion rate and γ the "recovery" rate. The total size of the population,
denoted by N, is then constant, with N = st + it + rt. Also, in the simple model (2.1)-
(2.3), recovered people do not become susceptible again. Many extensions have been
proposed in the literature, to take vaccination into account, or the effect of various types
of treatments.

From an initial value s0 ≈ N, r0 = 0 and i0 ≈ 0, the system evolves to an epidemic or
to an extinction of the crisis depending on the value of the "basic reproduction number"
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defined as R0 = Nβ/γ. If R0 > 1, an epidemic appears, otherwise it vanishes rapidly. The
dynamics of the epidemic hence depends on three parameters:

• β describing the strength of the contagion;

• γ a "recovery" parameter, which describes the rate at which an infected entity stops
contributing to spread the malware;

• N the total number of entities exposed to the infection by the malware.

In our applications, we assume that

λT (t) = βit, (2.4)

where it comes from the SIR model (2.1)-(2.3). This reflects the fact that our portfolio
is a sample of the global population, whose evolution can be considered as deterministic
because of its large size.

Remark 2.1 Let us recall that ST (t) = P(T ≥ t), the survival function of T, can be
expressed as ST (t) = exp

(
−
∫∞
t
λT (u)du

)
. The limit value ST (∞) is not necessarily 0.

In the special case where T can be infinite with non-zero probability (which means that
some people will never be infected no matter how long the episode lasts), ST (∞) = P(T =

∞). Hence we are sure that the hazard function defined by (2.4) always corresponds to
a probability distribution (potentially of a variable taking infinite values). Such variables
are regularly considered in the survival analysis literature when it comes to studying "cure
models", see Othus et al. (2012).

2.3 Measuring the impact on the portfolio

Based on the description of the attack at a policyholder level, the insurance company is
interested by the aggregation of these risks. We will introduce notations for the quantity
we will be focusing on in the following. Let us define (recalling δj = 1Tj≤Cj)

Nt =
n∑
j=1

δj1Yj≤t =
n∑
j=1

δj1Tj≤t,

Rt =
n∑
j=1

δj1Yj+Uj≤t =
n∑
j=1

δj1Tj+Uj≤t,

It = Nt −Rt.

7



Nt denotes the cumulative number of infected policyholders at time t, while Rt is the
number of infected who have recovered before time t, and It is the number for which
the crisis is still ongoing. By "recovered", we only mean that these policyholders do not
require a short-term assistance, and hence do not contribute anymore to saturation of the
short-term response of the insurer. The total recovery may be much longer: in Section 4
we consider a cyber crisis who lasts a few days, while business disruption may be much
longer, see Low (2017).

Let us now focus on the cost of the cyber event for the insurance company. We consider
in this work three types of cost functions that can be combined:

c1 = C sup
t≥0

Nt = C lim
t→∞

Nt,

c2 = 1supt It≥K ,

c3 =

∫ td

0

φ

(
It
n

)
dt,

where C and K are positive constants, td is the duration of the attack and φ is a positive
function. The cost function c3 could equivalently be written in terms of the numbers of
infected It, the writing with the proportion of infected It/n being more convenient for the
formulation of convergence results in Section 3. These different types of costs functions
correspond to the different situations we wish to model:

• the cost function c1 corresponds to a fixed cost per policyholder. In this case, only
the total number of victims inside the portfolio is important, no matter the dynamics
of the crisis. To simplify the situation, we did not consider random claim values,
but C should be understood as a mean value for these claims. An adaptation to
random claim values is straightforward but requires an additional modeling of the
severity distribution.

• the function c2 is introduced to describe the limited capacity of the insurance com-
pany to respond to the incident. The capacity of the assistance teams of the insurer
can be overloaded if the number of policyholders to be helped becomes too large.
This incapacity of the insurance company to intervene appropriately in a short
amount of time may induce additional losses (financial penalties, loss of reputation,
but also increased damages for the policyholders, left alone with no assistance). For
example, if an insurance company can only help K policyholders at the same time,
c2 = 1 if the response system collapses.
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• the cost function c3 is another way to consider saturation of the response. Here,
we consider that there is a different cost per unit of time depending on the current
number of policyholders requiring assistance. Indeed, such a situation may require
to mobilize additional ressources, and hence an additional cost.

In health risk analysis, the question to evaluate the cost for a portfolio, based on the
evolution of the current number of infected people (which is our It) has been considered
for example by Lefèvre et al. (2017), in a different framework (a compartmental stochastic
SIR model). This corresponds to the particular case where φ in c3 is the identity function.

To analyse the behavior of these random functions c1 to c3, we need to get the dis-
tribution of Nt and It (and, consequently, of Rt). Section 3 hence aims at deriving
approximations of these distributions.

3 Approximation of the evolution of the portfolio through

Gaussian processes

To analyse the result of a cyber scenario on a portfolio, we need to determine the distribu-
tion of the evolution through time of infected policyholders and of those who have already
been assisted by the company. Once whole distributions of the variables described in the
framework Section 2 have been set, it is theoretically possible to simulate the whole evo-
lution. In the present section, we derive asymptotic convergence results for the processes
describing the evolution of the attack. The Gaussian approximations we derive allows us
to understand the impact of such an attack on a large portfolio, either by avoiding to
rely on simulations, or by simplifying the simulation process through the use of Gaussian
variables. They also allow us to derive confidence bounds.

In Section 3.1, we first study the most simple problem, that is the distribution of
the total number of infected policyholders during the episode. In this case, no under-
standing of the dynamics is required, only the final state of the portfolio. Section 3.2
shows how a Gaussian approximation for the processes involved in the infection can be
obtained. As a corollary, Section 3.3 focuses on the cost function c3 which considers the
case where the response cost per unit of time is function of the current proportion of
infected policyholders.
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3.1 Limit behavior of Nt

From the Law of Large Numbers, the limit behavior of the cumulated number of infected
policyholders Nt is given by

n−1 sup
t≥0

Nt = n−1 lim
t→∞

Nt = n−1
n∑
j=1

δj =

∫ ∞
0

SC(t)fT (t)dt = ν a.s., (3.1)

using the fact that T and C are independent, and where SC(t) = P(C ≥ t) is the survival
function of the vaccination variable C and fT (t) = −S ′T (t) is the density of T.

The final proportion of victims is then the result of a competition between the variable
T and the vaccination process C. A fast and efficient response C to the attack will lead
to a fast decreasing SC . On the other hand, if the spread of the attack is fast, which
corresponds to a density fT whose mass is concentrated near 0 (where SC is close to 1),
the proportion will be close to the totality of the portfolio.

On the other hand, from the Central Limit Theorem, we can easily get the asymptotic
distribution of c1, since

n−1/2
{

sup
t≥0

Nt − nν
}

=⇒ N (0, ν(1− ν))

in which =⇒ denotes the convergence in distribution, when n tends to ∞.

3.2 Gaussian approximation for Nt, Rt and It

To study cost functions like c2 and c3, we do not only need the distribution of the final
number of victims, but the distribution of the whole stochastic process describing the
evolution of the epidemic. This multivariate process is defined as Z = (Zt)t≥0, with

Zt =

(
Nt

Rt

)
.

Let us define vtr the transposition of a vector v. The central scenario is the expectation
of Zt, which is nzt where zt = (ν(t), ρ(t))tr, with

ν(t) =

∫ t

0

SC(u)fT (u)du, and ρ(t) =

∫ t

0

SC(u)fV (u)du,

introducing fT the density of T and fV the density of T + U (that is fT ∗ fU where ∗
denotes the convolution product and fU the density of U). We define also

ηY,U(t, h) =

∫ t

0

SC(u) {SU(u)− SU(t+ h)} fT (u)du,

10



where SU is the survival function of U . The deviations of (Zt)t≥0 from the central scenario
are asymptotically distributed according to the results of Proposition 3.1 below.

Proposition 3.1 Let Zc = (Zct)t≥0 denote the centered process defined by

Zct =
Zt − nzt
n1/2

.

Then (Zct)t≥0 converges in distribution towards a 2-dimensional Gaussian process (Zt)t≥0

Zc =⇒n→∞ Z

where Z is centered with covariance structure

Σ(t, h) = E
[
(Z(1)

t ,Z(2)
t )tr(Z(1)

t+h,Z
(2)
t+h)

]
=

(
ν(t)(1− ν(t+ h)) ηY,U(t, h)− ν(t)ρ(t+ h)

ρ(t)(1− ν(t+ h)) ρ(t)(1− ρ(t+ h))

)
,

Proof. Let us introduce the class of functions

F =
{

(t, c, u)→ 1t≤c(1t≤x,1t+u≤x)
tr : x ∈ [0,∞)

}
. (3.2)

Then Zt/n can be seen as the empirical measure applied to this class of functions. Hence,
Proposition 3.1 is a straightforward application of Theorem 19.5 in van der Vaart (1998).
Moreover, the process Z can be seen as a Gaussian process on F , and is a PC−Brownian
bridge (see definition in Section 6.3), where PC is a subprobability measure defined in
section 6.3 (and related to the distribution of the response C).

The result of Proposition 3.1 has, at least, two implications: it shows the convergence
at rate n1/2 of our stochastic process towards a central scenario, and it provides an ap-
proximation for the deviations with respect to this scenario via the process Z. In the
simulation study of Section 4, the processes (Zt)t≥0 is easy to simulate directly (without
relying on this approximation). Nevertheless, we explain how to simulate Z in the general
case in Section 6.3.

The asymptotic distribution of (It)t≥0 can be easily obtained as a corollary.

Corollary 3.2 Let ZI = (ZI
t )t≥0 denote the centered Gaussian process with covariance

structure
σI(t, t+ h) = ι1(t)− ι2(t)ι2(t+ h),
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where

ι1(t) = ν(t)− ηY,U(t, h), and ι2(t) = ν(t)− ρ(t).

Then the centered process (I.−nι2(.))
n1/2 converges in distribution towards ZI

t→ (It − nι2(t))
n1/2

=⇒n→∞ ZI.

In particular, this means that the central scenario for the evolution of (It)t≥0 is t→ nι2(t),

with Gaussian errors around this trend. That is for a large portfolio, the proportion of
infected policyholders is closed to ι2(t) =

∫ t
0
SC(u)(fT (u)− fV (u))du. In this decomposi-

tion, the difference of the density of the infection times and the recovery times, is weighted
by the survival function of the security implementation : the faster the vaccination, the
smaller the proportion of infected policyholders.
Corollary 3.2 gives also an approximation of the whole distribution of (It)t≥0, hence an
approximation of P(c2 = 1) = P(supt≥0 It ≥ K). Distribution-free deviation bounds can
also be derived in Proposition 3.3.

Proposition 3.3 For all x ≥ 0,

P
(
n−1/2 sup

t≥0
|It − nι2(t)| ≥ x

)
≤ 2.5 exp

(
−2x2 + Cx

)
,

for some absolute constant C.

The proof is postponed to the appendix section, see Section 6.1. The constant C is hard
to track, nevertheless its contribution becomes negligible when x is large.

3.3 Asymptotic distribution for c3

The asymptotic distribution of c3 is a consequence of Proposition 3.1. Indeed, let Φ denote
the application

Φ : ι2 →
∫ td

0

φ(ι2(t))dt. (3.3)

The application Φ is Hadamard differentiable (see van der Vaart (1998) and section 6.2),
and the asymptotic distribution of c3 is then a consequence of the functional delta method
(see Theorem 20.8 in van der Vaart (1998)). These arguments are detailed in Section 6.2
of the appendix, leading to the following Proposition 3.4.
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Proposition 3.4 Assume that the function φ : [0, 1] → R is continuously differentiable
with ‖φ′‖∞ <∞. Then

n1/2

{
c3 −

∫ td

0

φ(ι2(t))dt

}
=⇒ N

(
0, σ2

)
,

where
σ2 =

∫ td

0

∫ td

0

φ′(ι2(t))φ
′(ι2(u)) {ι1(t ∧ u)− ι2(t ∧ u)ι1(t ∨ u)} dtdu,

introducing the notation t ∧ u = min(t, u) and t ∨ u = max(t, u).

3.4 Explicit computations for constant intensities

We provide here some explicit computations in the particular case of constant intensities
λT , λU and λC for the infection time, the recover period and the immunization time. Then
(for λT 6= λU)

SC(t) = e−λCt, fT (t) = λT e
−λT t and ν(t) =

λT
λT + λC

(1− e−(λT+λC)t).

By convolution, the density of the random variable V = T + U is given by

fV (t) =
λTλU
λT − λU

(
e−λU t − e−λT t

)
, ρ(t) =

λTλU
λT − λU

(
1− e−(λU+λC)t

λU + λC
− 1− e−(λT+λC)t

λT + λC

)
.

ηY,U(t, h) = λT

(
1− e−(λT+λC+λU )t

λT + λC + λU
− e−λU (t+h)1− e

−(λT+λC)t

λT + λC

)
.

Thus, for a large portfolio, the proportion of infected policyholders is approximated by

i2(t) =
λT

λT − λU

(
λT

λT + λC
(1− e−(λT+λC)t)− λU

λU + λC
(1− e−(λU+λC)t)

)
. (3.4)

The proportion of infected policyholders increases up to the peak reached at time log(λT )−log(λU )
λT−λU

,
and then decreases. Remark that the immunization intensity λC does not impact this peak
time, but it impacts the peak value i2( log(λT )−log(λU )λT−λU

) which is decreasing in λC : the faster
the immunization, the smaller the proportion of infected policyholders.
Remark: For λT = λU , taking the limit for λU → λT in the previous formula, or a direct
computation leads to a Γ(2, 1

λT
) distribution for V = T + U (fV (t) = λ2T te

−λT t) and

i2(t) =
λ2T

λT + λC
te−(λT+λC)t +

(λTλC)

(λT + λC)2
(1− e−(λT+λC)t). (3.5)

Then the proportion of infected policyholders increases up to the peak(
λT

λT + λC

)2(
λC
λT

+ e
− (λT+λC )

λT

)
reached at time 1

λT
.
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4 Simulation procedure

In this section, we illustrate how the simulation of a Wannacry-type scenario can be
conducted, and how one can measure the efficiency of the response. The calibration of
the Wannacry scenario is explained in Section 4.1. The different type of responses we
consider are described in Section 4.2. The simulation results are gathered in Section 4.3.

4.1 Calibration of a Wannacry-type scenario

In this section, we discuss the parameters used for the contagion in our simulation setting.
Rather than taking some arbitrary values for the parameter of the SIR model, we try to
mimic an emblematic cyber-crisis episode.

Wannacry (Mohurle and Patil (2017)) is a famous ransomware global attack that stroke
in May 2017. The hackers used the EternalBlue exploit, see Kao and Hsiao (2018). The
ransomware propagated via Microsoft Windows users who did not patched their system
against this vulnerability. More than 200 000 computers were affected by this attack,
leading to massive immediate losses and business interruptions.

Using a SIR model to replicate the attack is a difficult task, since few available data
support the calibration of the parameters. The SIR model depends on two parameters
(β, γ), the initial number of infected i0, and the size of the exposed population N.

In the description of classical epidemics, the parameter γ is linked to the time after
which infected people move to the "recovered" category. In our case, it should not be
understood as the time of full recovery (business interruption may last a long period),
but as the time at which the infected entity stops being "contagious". In case of a
Wannacry-type ransomware, one may consider that contagion is stopped relatively fast
by introducing containment measures. That is why, in the following, we take 1/γ = 1
day. On the other hand, alternative choices can be made for γ reflecting the fastness of
the response. For example, in case of a dormant infection, 1/γ may be larger to reflect
the time to detect the problem.

The initial number of infected entities i0 is not a real problem, since it is supposed to
be taken small, and then grow once the dynamics of the epidemic has fully started.

On the other hand, taking reasonable values for β and N is a much harder task.
Indeed, there is no precise public data on the intensity of the contagion. On the other
hand, the total exposure to risk, N, is unknown. A possible (disputable) way to proceed
would be to consider that these susceptibles are all Windows users who did not update
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their system. Even if the exact number of Windows users were easy to obtain, evaluating
the ones that did not update their system is almost impossible. Rather than looking into
this direction, we tried to fit this number using other characteristics of the SIR model and
of the publicly available data on the Wannacry episode.

Introducing imax = supt it and recalling the notation R0 = Nβ/γ (the "Basic Repro-
duction Ratio"), we use the two following relationship for a SIR model,

imax = S0

(
1− 1 +R0

R0

)
, (4.1)

r∞ = lim
t→∞

rt = S0

(
1− exp

(
−β
γ
r∞

))
. (4.2)

From the knowledge of imax and r∞, we are able to find back S0 and β, under the assump-
tion that the SIR dynamic holds.

The quantity r∞ is the total number of infected, since, in the SIR model, every in-
fected ends up as recovered. According to Chen and Bridges (2017), the Wannacry made
approximatively 300,000 victims, although the exact number may be difficult to properly
evaluate. On the other hand, determination of imax requires to have a knowledge of the
real-time evolution of the epidemic. Few data are (at least publicly) available to track
the function t → it directly, except when it comes to the payment of ransoms (who is
much less than the total estimated losses, see for example Field (2018)). Indeed, the ran-
somware was asking victims for bitcoins on three distinct adresses, see Willman (2017).
The transactions are public, and allow to see at which time and date the ransoms have
been paid. Of course, all victims did not pay a ransom (the total number of paid ransoms
between 12th and 21th May 2017 is 320), but we may consider that the evolution of the
number of payments reflects the kinetics of the epidemic. Let Pt denote the number of
ransoms paid on day t, a rough assumption consists in assuming that Pt = αit, where α
is a fix proportion. The ratio between the total number of ransoms and the total number
of victims leads to α = 937.5. Moreover, the supremum of t → Pt is achieved on 15th
May with 93 paid ransoms, leading to imax = 87, 188. These values lead to the set of
parameters and characteristics in the corresponding SIR model shown in Table 2.

The corresponding estimated function t→ it during the ten first days of the Wannacry
crisis is shown in Figure 1. Let us observe that, if we compare to the modeling of epidemics
in human epidemiology, the Basic Reproduction Ratio R0 we obtain is very close to 1. This
quantity is commonly used in epidemiology to describe the contagiousness of a disease:
an epidemic can start only if R0 > 1 (which is the case here, but one is very close to the
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Value

β 2.556 ×10−7

γ 1
N 4064279
R0 1.04
imax 87188
r∞ 300,000

Table 2: Parameters and main characteristics for a SIR model calibrated from the Wan-
nacry ransomware attack.

limit). Moreover, the larger R0, the wider the disease spreads, see for example Lefèvre
and Picard (1996) for more details.
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Figure 1: Corresponding function t → it estimated for the first ten days of Wannacry
using the parameters of Table 2.

Again, we do not claim the SIR model of Table 2 to be accurate to describe the
spread of the Wannacry epidemic, the calibration of the parameters and the underlying
assumptions are too rough for that. Our objective is only to design a setting for our
simulation that is reasonable according to past events like Wannacry, and the discussion
above only aims at explaining in which sense we consider it "reasonable".
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4.2 Behavior of the response

The response to the attack is linked to the variables U and C. In this section, we describe
the set of distributions we use to describe different types of behaviors.

The variable U describes the response after infection, that is how long it takes for the
infected policyholder to recover from the attack. What we mean by "recovery" may de-
pend on the practical situation. According to studies like Low (2017), a full recovery after
an attack may be a matter of weeks, months, even years for some victims. Even imme-
diate business interruptions may be quite long. Since we are interested in the immediate
response to a cyber crisis, the mean values of U we consider will be of the same magnitude
as the length of the epidemic (which is around 10 days in case of a Wannacry-type sce-
nario). This reflects the fact that we are interested in evaluating the potential saturation
of the assistance that the insurance company brings to its policyholders. Hence, U has
to be understood, in our case, as the time devoted to short-term measures in the first
instants of the infection. We consider exponential distributions for U, and different values
of the parameter to distinguish scenarios with fast or slow response.

The variable C describes the ability to react to the crisis. It reflects the fastness to
identify the incident and to communicate on countermeasures that may prevent the spread
of the attack through the portfolio. It also reflects the behavior of the policyholders, in
their way to be immediately receptive or not to the alerts.

We consider three scenarii regarding the response variable C :

• a translated exponential distribution, λ(1)C (t) = c11t≥τ1 . This means that, once the
response has begun (at time τ1), the proportion of policyholders per time who update
their security system is constant (equal to c1) through time;

• a Pareto-type distribution, λ(2)C (t) = c2(t − τ2 + 1/2)−α21t≥τ2 , for α2 > 0. This
corresponds to a situation where the vigilance of the policyholders decreases through
time: the more careful ones perform update short after the date of response τ2, while
the ones who did not instantaneously perform this update are more likely to ignore
the threat;

• a Weibull-type distribution, λ(3)C (t) = c3(t− τ3)α31t≥τ3 , for α3 > 0. This corresponds
to a progressive attention devoted to this threat among policyholders.

In each case, the parameters (τj)1≤j≤3 represents the reactivity of the response.
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4.3 Simulation results

We consider two portfolios of respectively n = 5000 and n = 10, 000 exposed policies. For
each portfolio, we perform 10, 000 simulations of the impact of a cyber epidemic with the
same attack intensity as Wannacry. For each type of response, we consider three delays
of reaction: a fast response (τj =3 days after the start of the event), a medium response
(τj =5 days), and a slow response (τj =7 days). The values of the parameters of the three
types of responses described above are taken so that E[Cj − τj|Cj ≥ τj] = 1, that is the
response only differs by the shape of its hazard function (thus making comparisons more
legitimate).

For each replication, we focus on the three types of cost functions cj, j = 1, ..., 3

described in Section 2.3.

4.3.1 Cost function c1.

The cost function c1 is proportional to the total number of policyholders that have been
affected. Summary statistics are shown in Table 3 below. One can observe that a fast
response can reduce up to 63% the number of affected policyholders, while this reduction
is only around 23% for a slow response. The magnitude of the reduction is of the same
order between the different types of distributions for C. Nevertheless, one can observe
that the Pareto reaction gives globally better result.

Type of reaction Mean Standard deviation Median Min Max

No reaction 737.63 26.20 737 625 860

Slow Exponential 596.50 23.73 596 486 694

Slow Pareto 575.21 23.37 575 486 666

Slow Weibull 595.54 23.62 596 503 693

Medium Exponential 453.06 21.06 453 382 536

Medium Pareto 427.33 20.49 427 357 505

Medium Weibull 448.74 20.95 449 377 527

Fast Exponential 301.54 17.22 301 240 380

Fast Pareto 274.41 16.44 274 215 348

Fast Weibull 296.22 17.16 296 231 373

Table 3: Summary statistics for the total number of victims from 10,000 simulations
(n = 10, 000) depending on the reaction.
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4.3.2 Cost function c2.

The cost function c2 focuses on the maximum number of policyholders requiring immediate
assistance, that is supt It. Two typical simulated trajectories of (It)t≥0 are shown in Figure
2. Some empirical statistics on supt≥0 It are shown in Tables 4 and 5 below. The confi-
dences intervals computed in these tables are bilateral: after ordering the 10,000 values
for supt≥0 It, the left bound of the interval is the 250-th value, and the right-hand side is
the 9750-th (in case of a 95% confidence interval). In other words, the upper bound K we
obtain for the 95% confidence interval satisfies approximatively P(supt≥0 It ≥ K) = 0.025.

0 2 4 6 8 10

0
20

40
60

80
10
0

Evolution of the number of victims needing immediate assistance

Time

N
um

be
r i

nf
ec

te
d

No action
Fast exponential
Medium exponential
Slow exponential
Fast Pareto
Medium Pareto
Slow Pareto
Fast Weibull
Medium Weibull
Slow Weibull

0 2 4 6 8 10

0
50

10
0

15
0

20
0

Evolution of the number of victims needing immediate assistance

Time

N
um

be
r i

nf
ec

te
d

No action
Fast exponential
Medium exponential
Slow exponential
Fast Pareto
Medium Pareto
Slow Pareto
Fast Weibull
Medium Weibull
Slow Weibull

Figure 2: Two simulated trajectories of t → It (left-hand side: size of the portfolio
n = 5000, right-hand side n = 10, 000.)
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Type of reaction Mean Standard deviation 95% confidence interval

No reaction 114.7122 8.91404 (98,133)

Slow Exponential 108.8625 9.241057 (92,128)

Slow Pareto 109.8391 9.269941 (93,129)

Slow Weibull 110.0568 9.213971 (93,129)

Medium Exponential 98.1915 9.220256 (81,117)

Medium Pareto 99.9944 9.378708 (82,119)

Medium Weibull 100.5861 9.292267 (83,119)

Fast Exponential 78.3415 8.359442 (63,95)

Fast Pareto 80.9131 8.712046 (64,98)

Fast Weibull 82.4775 8.667168 (66,100)

Table 4: Summary statistics on supt≥0 It, n = 5000.

Type of reaction Mean Standard deviation 95% confidence interval

No reaction 222.469 12.78206 (198,248)

Slow Exponential 212.6108 13.34208 (187,240)

Slow Pareto 214.622 13.38092 (189,242)

Slow Weibull 214.7712 13.2952 (190,242)

Medium Exponential 192.366 13.09089 (167,219)

Medium Pareto 196.3496 13.29188 (171,223)

Medium Weibull 197.0575 13.19889 (172,224)

Fast Exponential 153.595 11.87992 (131,177)

Fast Pareto 159.5131 12.33206 (136,184)

Fast Weibull 162.0158 12.23092 (138,187)

Table 5: Summary statistics on supt≥0 It, n = 10, 000.
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Additionally, we show the histograms for the variable supt It in the different settings
for n = 10, 000, in Figure 3 and 4. We see that all three types of responses lead to a
similar impact on supt It (which is not entirely surprising since the expectation of these
three distributions has been taken identical). Some differences in terms of variance still
exist. The main parameter seems to be the time of response. A slow response will hardly
diminish the burden of the assistance teams (reduction of around 4% only), while a fast
response in 3 days significantly reduces (up to 30%) the magnitude of supt It.
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Figure 3: Histogram for supt It (10, 000 simulations, size of the portfolio n = 10, 000) in
case of absence of response to the attack.
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Figure 4: Histogram for supt It (10, 000 simulations, size of the portfolio n = 10, 000) for
different types of responses and delays.
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4.3.3 Cost function c3.

As already mentioned, a particular situation consists in considering φ(u) = αu for some
α > 0 in the definition of c3. This corresponds to the classical situation where a policy-
holder is assumed to generate the same cost per time of assistance, no matter the number
of others requiring assistance at the same time. The two types of functions φ we study in
the following consists of introducing a capacity of response K. As long as the number of
policyholder to assist as a given time stays under K, the cost per policyholder is the same.
After reaching this capacity of response K, additional ressources have to be mobilized,
and the cost per policyholder becomes higher. More precisely, the two functions φl and
φexp that we consider are

φl(u) = n {u+ (1 + a)(u−K/n)1nu>K} ,

φexp(u) = nu+ exp(a(nu−K))1nu>K .

Those functions, written in terms of u the proportion of infected, have the equivalent
formulation in terms of number of infected i = nu

ϕl(i) = φl(nu) = i+ (1 + a)(i−K)1i>K , ϕexp(i) = φexp(nu) = i+ exp(a(i−K))1i>K .

We consider two values for the slope a, a = 0.3 and a = 0.5. The influence of the slope
for both corresponding cost functions can be seen in Table 6 and 7 below, where we took
K = 100.

In Figures 5 and 6, we show how the threshold K has impact on the global cost in the
different situations we considered. Hence, the potential benefits of increasing or not the
capacity of response K can be quantified.
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Type of reaction Mean Standard deviation 95% confidence interval

No reaction, a = 0.3 2478.938 174.0935 (2141.704,2823.295)

No reaction, a = 0.5 2614.677 188.9222 (2248.99,2988.31)

Slow Exponential, a = 0.3 2173.087 171.6736 (1839.464,2512.994)

Slow Exponential, a = 0.5 2282.245 186.2669 (1920.66,2651.64)

Slow Pareto, a = 0.3 2128.768 169.6647 (1800.44,2468.661)

Slow Pareto, a = 0.5 2234.205 183.9841 (1878.74,2602.65)

Slow Weibull, a = 0.3 2196.921 171.721 (1867.764,2536.462)

Slow Weibull, a = 0.5 2308.166 186.3041 (1950.745,2676.685)

Medium Exponential, a = 0.3 1613.999 146.8447 (1333.837,1907.814)

Medium Exponential, a = 0.5 1678.619 158.3834 (1376.475,1995.25)

Medium Pareto, a = 0.3 1540.346 141.0674 (1269.801,1821.101)

Medium Pareto, a = 0.5 1600.994 151.862 (1309.02,1903.835)

Medium Weibull, a = 0.3 1626.793 145.6381 (1347.454,1917.305)

Medium Weibull, a = 0.5 1693.389 156.9928 (1392.78,2005.565)

Fast Exponential, a = 0.3 977.4292 106.331 (776.874,1194.924)

Fast Exponential, a = 0.5 1000.037 113.2298 (787.26,1231.595)

Fast Pareto, a = 0.3 897.8224 99.27368 (711.538,1096.531)

Fast Pareto, a = 0.5 918.1532 105.3581 (721.52,1128.995)

Fast Weibull, a = 0.3 985.268 106.0769 (787.357,1199.369)

Fast Weibull, a = 0.5 1010.295 112.923 (800.205,1238.93)

Table 6: Summary statistics on the global loss using φl in function c3, n = 10, 000,
K = 100.
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Type of reaction Mean Standard deviation 95% confidence interval

No reaction, a = 0.3 1840.934 106.9957 (1634.27,2051.824)

No reaction, a = 0.5 2041.347 136.2028 (1781.106,2313.277)

Slow Exponential, a = 0.3 1657.649 104.4508 (1454.838,1866.687)

Slow Exponential, a = 0.5 1810.415 130.3399 (1560.442,2072.158])

Slow Pareto, a = 0.3 1631.331 103.7804 (1431.185,1838.067)

Slow Pareto, a = 0.5 1779.667 129.1652 (1532.008,2041.084)

Slow Weibull, a = 0.3 1672.122 104.7121 (1471.087,1878.891)

Slow Weibull, a = 0.5 1829.272 130.9318 [1580.514,2090.615]

Medium Exponential, a = 0.3 1307.649 92.90756 (1129.475,1493.088)

Medium Exponential, a = 0.5 1392.445 110.7826 (1182.142,1614.805)

Medium Pareto, a = 0.3 1253.033 90.74329 (1078.413,1434.561)

Medium Pareto, a = 0.5 1333.28 107.613 (1128.313,1550.503)

Medium Weibull, a = 0.3 1311.385 92.76599 (1132.492,1495.747)

Medium Weibull, a = 0.5 1400.128 110.8163 (1188.073,1622.126)

Fast Exponential, a = 0.3 870.2776 73.73921 (727.8004,1017.968)

Fast Exponential, a = 0.5 896.8764 82.40487 (739.458,1063.679)

Fast Pareto, a = 0.3 801.4578 70.61689 (666.1171,940.8641)

Fast Pareto, a = 0.5 825.6652 78.37562 (677.5672,981.6228)

Fast Weibull, a = 0.3 866.5024 73.82209 (725.2235,1013.799)

Fast Weibull, a = 0.5 896.6537 82.78573 (739.9383,1063.005)

Table 7: Summary statistics on the global loss using φexp in function c3, n = 10, 000,
K = 100.
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Figure 5: Evolution of the average loss depending on the threshold K in case there is no
reaction. The black (resp. blue) curves correspond to functions of type φl (resp. φexp).
The size of the portfolio is n = 10, 000.
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response, black to a Pareto response, red to a Weibull response. On the left-hand (resp.
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5 Conclusion

In this paper, we proposed a general framework to describe the impact of a cyber event
on an insurance portfolio, allowing to design accumulation scenarii to assess the resilience
against such types of massive attacks. The framework is flexible, since we distinguish be-
tween a global dynamic - here described through compartmental epidemiological models,
but alternative models can easily be used - and the result at the portfolio level, which can
be easily described through Gaussian approximation. We also gave a particular attention
to different type of cost functions, which do not only take into account the total number of
victims, but also the additional cost caused by a large number of policyholders requiring
assistance simultaneously. Our model is also a tool to quantify the gain obtained through
different strategies of reaction and/or prevention. Additional modifications could be done
to enrich the model. In the present form, we considered, to simplify, a "perfect" reaction:
once the risk has been identified, and means to act against it have been reported to the
policyholders, they implement the countermeasures perfectly (after some delay, but then
they are considered as fully protected). In practice, this may not be true, for example with
large organizations that may not be able to identify and correct all their vulnerabilities.
In which case, a reduction of the risk to be infected will be observed, but not necessarily
a total cancellation of this risk. Moreover, a careful attention must be brought to the
definition of realistic global scenarii to describe such a cyber epidemic. For now, there is
a lack of public data to clearly identify precise timelines of massive cyber attacks. The
example we took, inspired by the Wannacry crisis, should only be considered as a rough
benchmark, due to the number of assumptions that have been done to try to mimic this
episode.

6 Appendix

6.1 Proof of Proposition 3.3

The proof of Proposition 3.3 relies on Theorem 5 in Bitouzé et al. (1999). A version of
this theorem adapted to our situation is summarized in Proposition 6.1 below. Before
stating this result, we need to define the L2(P)−entropy with bracketing of a class of
functions F . An L2(P) − ε−bracket is a set of functions [l, g] = {k : l ≤ k ≤ g}, where l
and g are two functions such that l ≤ g P−almost surely, and

∫
(l(ω)− g(ω))2dP(ω) ≤ ε2.
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The L2(P)−entropy with bracketing is the function ε → HF(ε) = log(N[](ε, L
2(P),F))

where N[](ε, L
2(P),F) is the smallest number of ε−brackets required to cover the class

F (i.e. there exists a sequence of ε−brackets [li, gi] such that F ⊂ ∪N[](ε,L
2(P),F)

i=1 [li, gi]).
L2(P)−entropy with bracketing is a classical way to measure the complexity of a class of
functions, see for example van der Vaart (1998) for more details.

Proposition 6.1 Let (Zi)1≤i≤n denote an i.i.d. random vector. Let F denote a class of
functions such that

∀f ∈ F , 0 ≤ f ≤M.

Let HF denote the L2(P)−entropy with bracketing of F , and assume that HF(ε) ≤ γε−1

for some γ ∈ R. Then there exists an absolute constant C such that

P
(

sup
f∈F

∣∣∣∣∑n
i=1 f(Zi)− E[f(Zi)]

n1/2

∣∣∣∣ ≥ λ

)
≤ 2.5 exp(−2λ2/M2 + Cλ).

To derive Proposition 3.3, we need to apply Proposition 6.1 to the class of functions

F = {(t, c, u)→ 1t≤c[1t≤x − 1t+u≤x] : x ≥ 0} .

Consider ([l
(1)
i , g

(1)
i ])1≤i≤n1 (resp. ([l

(2)
i , g

(2)
i ])1≤i≤n2) a L2(P) − (ε/2)−bracket of the class

of functions F1 = {t → 1t≤x} (resp. F2 = {(t, u) → 1t+u≤x}) where, from example 19.6
in van der Vaart (1998), max(n1, n2) ≤ 4/ε. For a given x ≥ 0, there exists (i1, i2) such
that

l
(1)
i1

(t) ≤ 1t≤x ≤ g
(1)
i1

(t),

l
(2)
i2

(t) ≤ 1t+u≤x ≤ g
(2)
i2

(t).

Hence, define

li1,i2(t, c, u) = 1t≤c(l
(1)
i1

(t)− g(2)i2
(t)),

gi1,i2(t, c, u) = 1t≤c(g
(1)
i1

(t)− l(2)i2 (t)).

By construction, the sets of brackets [li1,i2(t, c, u), gi1,i2(t, c, u)], for all i1 ≤ n1 and i2 ≤ n2

forms an L2(P)− ε−bracket of F . Its size is less than n1n2, which shows that

HF(ε) ≤ log(16/ε2).

Hence Proposition 6.1 applies, and the result of Proposition 3.3 follows.
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6.2 Proof of Proposition 3.4 using functional Delta-Method

Let D denote the set of bounded "cadlag" functions (see, for example, van der Vaart
(1998) p.257, cadlag means right continuous functions whose limits from the left exist
everywhere). A map Ψ : D → R is said Hadamard differentiable at f ∈ D if there exists
Ψ′f : D→ R such that, for all h ∈ D and for any direction hx (allowed to change with x)
such that ‖hx − h‖∞ →x→0 0,∣∣∣∣Ψ(f + xhx)−Ψ(f)

x
−Ψ′f (h)

∣∣∣∣→x→0 0.

The function Φ : ι2 →
∫ td
0

φ(ι2(t))dt defined in (3.3) is a map from D to R, and under
the assumptions of Proposition 3.4 on φ, it is Hadamard differentiable at ι2. Indeed, from
a first order Taylor-expansion,∫ td

0

φ(ι2(t) + xhx(t))dt−
∫ td

0

φ(ι2(t))dt = x

∫ td

0

hx(t)φ
′(gh(t, x))dt,

where gh(t, x) is between ι2(t) and ι2(t) + xhx(t). Hence, for all t, hx(t)φ′(gh(t, x))→x→0

h(t)φ′(ι2(t)). From Lebesgue’s convergence theorem (since ‖φ′‖∞ < ∞), we get that∫ τ
0
hx(t)φ

′(gh(t, x))dt→
∫ τ
0
h(t)φ′(ι2(t))dt, leading to the existence of Φ′ι2 defined as

Φ′ι2 : h ∈ D→
∫ td

0

h(t)φ′(ι2(t))dt.

From Corollary 3.2, n1/2
{

I
n
− ι2

}
=⇒ ZI. The functional Delta-method Theorem for

Hadamard differentiable maps (see Theorem 20.8 in van der Vaart (1998)) then leads to

n1/2

{
Φ

(
I

n

)
− Φ(ι2)

}
=⇒ Φ′ι2

(
ZI
)
,

leading to the result of Proposition 3.4.

6.3 PC−Brownian motion on a set of functions

Consider a class of functions G taking values in R. For a measure µ with finite mass, a
µ−Brownian motion on G is defined as the centered Gaussian process (Wµ(φ))φ∈G with
covariance structure

E[Wµ(φ)W tr
µ (φ̃)] =

∫
φ(z)φ̃tr(z)dµ(z) =< φ, φ̃tr >µ .

In our case, we want to consider process on the class F defined in (3.2). However, we can
observe that all functions in F are of the type 1t≤cφ(z), where φ belongs to the class

G =
{

(t, u)→ (1t≤x,1t+u≤x)
tr : x ∈ [0,∞)

}
.
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Moreover, let us observe that (recalling that δ = 1T≤C and Y = inf(T,C))

E [δφ(Y, U)] = E[SC(T )φ(T, U)] =

∫
SC(t)φ(t, u)dP(t, u),

using the independence between C and (T, U). Hence it is natural to define the limit
processes as processes on G, and to rely on the weighted measure µ = PC , such that

PC(φ) =

∫
SC(t)φ(t, u)dP(t, u),

instead of P.
Now, considering two classes of functions taking values in R, say G1 and G2 containing

the function q0 ≡ 1, and G = G1 ∪ G2, define the process

∀(φ1, φ2) ∈ G1 × G2, BPC (φ1, φ2) =

(
WPC (φ1)− < φ1, q0 > WPC (q0)

WPC (φ2)− < φ2, q0 > WPC (q0)

)
,

where WPC is a PC−Brownian motion on G. Each component of BPC is a PC−Brownian
bridge (see Khmaladze (2016)) on G1 or G2. The covariance structure of BPC is given by

E
[
BPC (φ1, φ2)B

tr
PC (φ̃1, φ̃2)

]
=

(
PC(φ1φ̃1)− PC(φ1)PC(φ̃1) , PC(φ1φ̃2)− PC(φ1)PC(φ̃2)

PC(φ2φ̃1)− PC(φ2)PC(φ̃1) , PC(φ2φ̃2)− PC(φ2)PC(φ̃2)

)
,

Considering the classes of functions

G1 =
{

(t, u)→ φ1,x(t, u) = 1t≤x : x ∈ R+
}
,

G2 =
{

(t, u)→ φ2,x(t, u) = 1t+u≤x : x ∈ R+
}
.

The process (B(x))x≥0 defined as B(x) = BPC (φ1,x, φ2,x) is a Gaussian process on R+, and
it is easy to check that its covariance structure is the same as the process Z defined in
Proposition 3.1. Hence, to simulate Z, a simple way to proceed is to simulate BPC , which
itself can be deduced from the simulation of W(x) = (WPC (φ1,x),WPC (φ2,x))

tr.

The simulation of W is relatively easy, since, for all h > 0, W(x + h) − W(x) is
independent from (W(x′))x′≤x. Indeed, introducing the notation ∆hφj,x = φj,x+h−φj,x for
j = 1, 2, we have

W(x+ h)−W(x) ∼ N

((
0

0

)
,

(
< ∆hφ1,x,∆hφ1,x > , < ∆hφ1,x,∆hφ2,x >

< ∆hφ2,x,∆hφ1,x > , < ∆hφ2,x,∆hφ2,x >

))
.

The covariance matrix can be rewritten as( ∫ x+h
x

SC(u)fT (u)du ,
∫ x+h
x

SC(u)FU(x+ h− u)fT (u)du∫ x+h
x

SC(u)FU(x+ h− u)fT (u)du ,
∫ x+h
x

SC(u)fV (u)du

)
.
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When h is small, this can be approximated by

h×

(
SC(x)fT (x) , SC(x)FU(h)fT (x)

SC(x)FU(h)fT (x) , SC(x)fV (x)

)
. (6.1)

Hence, when it comes to simulating such a process, (6.1) can be used to simulate W
through its increments. Then, B can be easily deduced.
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