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ABSTRACT: Here we disclose a simple route to
nanoscopic 2D woven structures reminiscent of the
methods used to produce macroscopic textiles. We find
that the same principles used in macroscopic weaving can
be applied on the nanoscale to create two-dimensional
molecular cloth from polymeric strands, a molecular
thread. The molecular thread is composed of
Co6Se8(PEt3)4L2 superatoms that are bridged with L =
benzene bis-1,4-isonitrile to form polymer strands. As the
superatoms that make up the polymer chain are electro-
chemically oxidized, they are electrostatically templated by
a nanoscale anion, the tetragonal Lindqvist polyoxometa-
late Mo6O19

2−. The tetragonal symmetry of the dianionic
template creates a nanoscale version of the box weave. The
crossing points in the weave feature π-stacking of the
bridging linker. By examining the steps in the weaving
process with single crystal X-ray diffraction, we find that
the degree of polymerization at the crossing points is
crucial in the cloth formation. 2D nanoscale cloth will
provide access to a new generation of smart, multifunc-
tional materials, coatings, and surfaces.

In this study, we describe a method to weave a two-
dimensional cloth from polymeric strands of electroactive

superatoms. Weaving nanoscale building blocks promises to
endow a nanomaterial with the strength and toughness typically
associated with everyday textiles but also to incorporate the
emergent and tunable properties of the nanoscale subunits. It is
easy to imagine that two-dimensional nanoscale cloth would
provide a new generation of smart, multifunctional materials,
coatings, and surfaces;1,2 yet despite this promising vision,
whereas a variety of interwoven coordination polymers
exist,3−11 there are only limited and highly specific methods
available to covalently form two-dimensional, woven nanoma-
terials.12 Here we disclose a simple route to nanoscopic 2D
woven structures reminiscent of the weaving that produces
macroscopic textiles in that an electrostatic template directs the
directionality of the weaving.
The simplest weave is a box weave, in which the strands

outline a square (Figure 1A). This square acts as a template that
directs the strands to create four points where the strands cross
over and under each other. We show here that the same
principle can be applied on the nanoscale to create two-

dimensional molecular cloth with polymeric strands (molecular
thread).
For the nanoscale weaving, we utilize an anionic template to

direct and organize the position and concurrent polymerization
of a superatom monomer. The counterion plays an important
role in tuning and stabilizing the assembly and properties of
certain cluster-based materials.13,14 Here, the anionic template
and the growing strands are attracted to each other through
ionic charge complementarity, and the directionality of the
weave is determined by the symmetry of the template. For our
initial target of the box weave, we used the Lindqvist dianion
Mo6O19

2− (1, Figure 1B) because of its tetragonal symme-
try.15−19 Furthermore, the shared oxygen atoms on the surface
of 1 are the most basic and are known to act as hydrogen bond
acceptors.15 The nanoscale threads within the weave are formed
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Figure 1. (A) Two-dimensional box weave. The magenta square
represents a template for the box weave. (B) Lindqvist dianion
Mo6O19

2− 1 and its polyhedral representation. (C) Trans-
Co6Se8(PEt3)4(CNC6H4NC)2 (2) and cartoon. (D) Two-step
a s s e m b l y b e t w e e n t h e M o 6 O 1 9

2 − t e m p l a t e a n d
[Co6Se8(PEt3)4(CNC6H4NC)2]

1+ to form a box weave.
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from the linking of synthetically programmed, trans-substituted
Co6Se8(PEt3)4(CNC6H4NC)2 clusters (2), which we call
superatoms,20−23 into one-dimensional polymers through
isonitrile−cobalt bonds (Figure 1C).24 In general, the
superatoms are electroactive, and each can give up to three
electrons. Recent studies have shown that these and similar
metal chalcogenide clusters have low ionization potentials and
can form charge-transfer complexes with electron-deficient
moieties.20,25,26 When the superatom is substituted with bis-
isonitriles to form 2 only the first of these oxidations is
reversible (Figure S1 contains the cyclic voltammetry of 2). We
have also observed that the isonitriles on the oxidized clusters
became more labile and would thus encourage the substitution
reaction to form the macromolecular strands. We anticipated
that the cationic superatoms would associate with the anionic
template and as the polymer chains grew they would express
the 4-fold symmetry of the template (Figure 1D). The charge
complementarity between the components creates a long-range
ordered electrostatic “loom”. This loom is further reinforced by
the phenyl-to-phenyl distance in 2, which corresponds to the
edge length of the anionic template and encourages π−π
stacking in the crossing points of the woven material.
To accomplish this chemical weaving, we combined 1 and 2

in an electrocrystallization cell. Electrocrystallization is an
invaluable tool for growing high quality electronic and magnetic
materials in which a constant electrical current adjusts the state
of oxidation of the growing components and assembles them in
the solid state.27 Figure 2 displays the structure from single

crystal X-ray diffraction (SCXRD) of the assembled box weave
fabric resulting from the electrocrystallization of these two
components. These crystals were first grown using electro-
crystallization, and subsequently annealed at 150 °C to remove
any remaining, unbound isonitriles. The annealing is a crystal-
to-crystal transformation that preserves the tetragonal space
group, P4/ncc and long-range order of the lattice that was
established by the initial electrocrystallization (Supporting
Information).28

SCXRD reveals that in the annealed crystal, monodisperse
polymer strands of 2 are woven into a two-dimensional
material, or molecular “cloth” (Figure 2A). Each of the Co6Se8
clusters has a single positive charge, and the Mo6O19 cluster is
dianionic, thus the chemical formula for the nanoscale cloth is
{[Co6Se8(PEt3)4

+](CNC6H4NC)}2[Mo6O19
2−]. Each Co−C−

N angle is bent from linear by about 10° to allow each strand to
undulate as necessary to form the box weave. Figure 2B shows
how the Mo6O19

2− directs the perpendicular arrangement of
strands. In addition to the electrostatic templating, the
Mo6O19

2− further expresses its tetragonal symmetry through
directional hydrogen bonds with the oligomeric strands.
Neighboring strands cross at the aromatic rings of their linkers.
The neighboring isonitriles are rotated 90° with respect to each
other, and they are stacked, cofacially, within their van der
Waals radii of ∼3.4 Å (Figure 2C). If we substitute in the
electrocrystallization experiment the Lindqvist dianion with a
dianion that lacks tetragonal symmetry [(W6Cl14)(TBA)2], we
do not observe the crystalline woven structure.
It is even more remarkable that the layers of the cloth pack as

alternating charged layers into a stack of nanoscale fabric. The
layer-by-layer packing has the anionic layer of Mo6O19

2− anions
compensated by the cationic layer of nanoscale cloth (Figure
2D). Moreover, the different cationic layers are stacked in
registry, thus the Lindqvist dianion not only directs the
formation of two-dimensional cloth, but also of the three-
dimensional fabric.
The molecules-to-fabric transformation occurs in two general

stages: the formation of the ionic “loom”, and the subsequent
interweaving of the polymeric “thread.″ We know this because
when we omit the post-electrocrystallization annealing step, we
arrest the weaving process at a partially polymerized stage and
isolate the intermediate that we call the “protocloth”. Figure 3
displays the SCXRD structure of the partially polymerized
strands within the protocloth. The protocloth is a solid solution
that has long-range order containing both woven (bridging
isonitriles) and unwoven (terminal isonitriles) oligomeric
fragments (details of the refinement can be found in the
Supporting Information).
We find that nanoscale weaving has a further analogy to

macroscopic weaving. When weaving, a “warp” strand is the
stationary strand held in place by a loom through which the
“weft” strand weaves. In the protocloth, there are covalently
bound polydisperse, oligomeric strands, the “warp” strands, and
there are segments in the crystals where the bridging reaction
has not yet occurred and an extra equivalent of the bis-isonitrile
linker remains, the “weft” strands (Figures 3A). The crystallo-
graphic occupancies in the crystal for the “warp” (woven) and
“weft” (unwoven) strands in the protocloth are 0.64 to 0.36,
respectively, for a total stoichiometry of 1.62 bis-isonitrile per
cluster. Thus, the overall formula is {[Co6Se8(PEt3)4

+]-
[(CNC6H4NC)0.36(CNC6H4NC)1.28]}2[Mo6O19

2−]·THF.
The bis-isonitrile ligands are distributed with unbalanced

occupancies over the four crossing points in the unit cell with
distinct spatial configurations. We define the three possible
crossing points as “weft−weft”, “weft−warp”, and “warp−warp”
crossings (Figure 3B). From the crystal structure refinement, it
is clear that “warp−warp” crossings cannot exist in the
protocloth because this would impose an energetically
unfavorable 2.7 Å π-to-π distance between aryl rings. However,
a mixture of “warp−weft”, “weft−weft”, and “weft−warp”
crossing points are present. The “weft” strands are held in place
by the electrostatic templating of the superatoms with the

Figure 2. (A) SCXRD showing the woven structure formed from
building blocks 1 and 2. The triethyl phosphine groups and hydrogen
atoms have been removed to clarify the view. (B) The templation
utilizes the 4-fold axis of Mo6O19

2−. (C) π-to-π interactions holding
the strands in registry. (D) Side view of the crystal packing showing
the cationic and anionic layers (a-axis). Note that the ethyl groups
from the phosphine subunits, which envelop the surface of the
templating Lindqvist nanooxides with directional C−H···O hydrogen
bonds, have been omitted in B and D to clarify the view.
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anions and by a loose π-stacking (∼3.5 Å) between the
dangling aryl-isonitriles. As such, these free isonitriles, which are
in excess in the lattice, are held in a perfectly predisposed
position to bridge upon heating to release the bis-isonitrile.
This last transformation forms the woven cloth.29

Beyond the box weave there are other basic textile weaves
such as the hexagonal weave and the octagonal weave that
should now be possible (Figure 4).30 The higher order weaves
differ by how the strands of thread are oriented with respect to
each other. For a box weave, two strands cross each other, for a

hexagonal weave three strands cross over each other, and so on
for the octagonal weave. These types of weaves on the
nanoscale will adjust their durability and their topology. To
create these higher order nanoscale weaves, it will be necessary
to utilize electrostatic templates with hexagonal symmetry and
octagonal symmetry (Figure 4).26 This study reveals a method
to make a new type of two-dimensional nanomaterial, a woven
cloth. These materials are interesting because they could be
exfoliated electrochemically to release the free-standing, two-
dimensional sheet. The electronic and magnetic properties of
this new two-dimensional cloth will be coupled with its
presumed strength and toughness that is imparted by the
weave.
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