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In this paper we provide trigonometric expansions and innite products for the theta functions θ j (u, τ ), j = 1, 2, 3, 4. This allows us to highlight some complete monotonicity properties for log θ j (u,iπt) θ j (0,iπt) , j = 2, 3, 4 and log θ 1 (u,iπt) θ 1 (0,iπt) as functions with respect to t > 0. We also interested in the quotients S j (u, v, t) = θ j ( u 2 ,iπt) θ j ( u 2 ,iπt) . Some others functions related to θ j will be considered.

1 chouikha

Introduction

Consider the following boundary conditions of the heat equation

∂ 2 f ∂u 2 = ∂f ∂t , f (0, t) = f (1, t), f (u, 0) = π∂(u - 1 2 ), 0 < u < 1 (1) 
where ∂(u) is the Dirac delta function. Then the general solution of the boundary problem is 

θ(u, t) = 2
When we write q = e πiτ with t = Imτ > 0, this solution takes the form

θ 1 (u, τ ) = +∞ -∞ (-1) n-1 2 q (n+ 1 
2 ) 2 e iπ(2n+1)u = 2 n≥0 (-1) n q (n+ 1 2 ) 2 sin((2n + 1)πu)

which is the rst of the four Jacobi theta functions. It is known it suces to change the boundary conditions to obtain other theta functions. The corresponding solution of the boundary problem

∂f (0, t) ∂u = ∂f (1, t) ∂u = 0, f (u, 0) = π∂(u - 1 2 
), 0 < u < 1 is given by

θ 4 (u, τ ) = +∞ -∞ (-1) n q n 2 e iπ2nu = 1 + 2 n≥1 (-1) n q n 2 cos(2nπu)
The function θ 1 (u, τ )) is periodic of period 2. From θ 1 we obtain the second theta if we increment u by 1/2

θ 2 (u, τ ) = +∞ -∞ q (n+ 1 2 ) 2 e iπ(2n+1)u = 2 n≥0 q (n+ 1 
2 ) 2 cos((2n + 1)πu)

Hence, a CM function cannot vanish for any t > 0. Notice obviously that the sum and product of CM functions are CM. Observe that if f (t) is CM then f 2m (t) and -f 2m+1 (t) are also CM. It is known that that if f (t) is CM and h(t) be with a CM derivative then f (h(t)) also is CM.

CM functions have a lot of applications in various elds. These functions have remarkable applications in dierent branches. In particular, they play a role in potential theory, probability theory, physics, numerical and asymptotic analysis, and combinatorics, [START_REF] Alzer | Some classes of completely monotonic functions[END_REF], [START_REF] Chouikha | On Properties of Elliptic Jacobi Functions and Applications[END_REF].

There is another class of functions very closed to such functions : the class of logarithmically completely monotonic (LCM).

A function f : [0, ∞[→ [0, ∞[ is logarithmically completely monotonic if f is C ∞ and (-1) k (log f (t)) (k) ≥ 0, k = 1, 2, ...
Remark for k = 0 we may only require that f (t) > 0. Notice that every LCM function is CM. If this inequality is strict for all t > 0 and k = 1, 2, ... then f is said to be strictly logarithmically completely monotonic. A function f on ]0, ∞[ is called a Stieltjes transform if it can be written in the form

f (t) = a + ∞ 0 dµ(s) s + t
where a is a non-negative number and µ a non-negative measure on ]0, ∞[ such that ∞ 0 dµ(s)

1+t < ∞.
It is proved that every Stieltjes transform is a LCM function.

1.2. Statements of results. This paper is organized as follows. In the rst part we describe trigonometric expansions of the four Jacobi theta functions θ j (u, τ ), j = 1, 2, 3, 4. We provide the following expansions:

log θ 4 (v, τ ) θ 4 (0, τ ) =   - p≥1 k≥0 1 p sin πv (sin(k + 1 2 )πτ ) 2p   log θ 3 (v, τ ) θ 4 (0, τ ) =   - p≥1 k≥0 1 p sin πv (cos(k + 1 2 )πτ ) 2p   log θ 2 (v, τ ) (cos πv)θ 2 (0, τ ) =   - p≥1 k≥0 1 p sin πv cos kπτ 2p   log θ 1 (v, τ ) π(sin πv)θ 1 (0, τ ) =   - p≥1 k≥0 1 p sin πv sin kπτ 2p   .
This permits us to deduce in particular innite product expansions for θ j (v, τ ).

In the second part we are interested in the complete monotonicity properties of these theta functions. We prove that for any xed u real such that 0 < u < 1 and τ = iπt, the following functions

θ 4 (u, t) θ 4 (0, t) , θ 3 (u, t) θ 4 (0, t) , θ 2 (u, t) (cos πu)θ 1 (0, t) , θ 1 (u, t) (sin πu)θ 1 (0, t)
are logarithmically completely monotonic (LCM) with respect to t > 0.

In the third part, we are interested in the complete monotonicity properties of their quotients. More precisely, for u, v ∈ C and τ = iπt with Re t > 0, dene the quotient of theta functions:

S j := S j (u, v, t) = θ j ( u 2 , iπt) θ j ( u 2 , iπt)
.

Some authors recently interested in monotonicity and convexity of these quotients [START_REF] Dixit | Solynin Monotonicity of quotients of theta functions related to an extremal problem on harmonic measure[END_REF], [START_REF] Dixit | Zaharescu Convexity of quotients of theta functions[END_REF], [START_REF] Yu | Solynin Harmonic measure of radial line segments and symmetrization Math[END_REF]. In [7, 

Conj 1.1], one conjectured for u, v such that 0 ≤ u < v < 1 the functions ∂ ∂t S 1 (u, v; t), S 2 (u, v; t), S 3 (u, v; t) and ∂ ∂t S 4 (u, v; t) are CM for 0 < t < ∞.
We will prove that the quotients S j , j = 1, 2, 3, 4 are LCM under the condition on t : sinh π 2 t > 1. More precisely, we prove in particular for xed u, v such that 0 ≤ u < v < 1 the functions 1 Sj ( ∂ ∂t S j ) for j = 1, 4 as well as the functions -( ∂ ∂t Sj ) Sj for j = 2, 3 are completely monotonic for t ∈]0, ∞[. Most of the proofs will be given in the last section.

2. Fourier expansions of log θ j (u, iπτ ), j = 1, 2, 3, 4

From the knowledge of the zeros of these functions it is possible to obtain innite products representing the theta functions. For example the function θ 4 (v, τ ) satises the triple product

θ 4 (v, τ ) = n≥1 (1 -q 2n )(1 -q 2n+1 e 2iπv )(1 -q 2n-1 e -2iπv )
where q = e iπτ , v ∈ C, τ ∈ H + . From these products the Fourier expansions of log(θ j (u, iπt) and θ j θj follow. Trigonometric expansions of theta functions can be proved by the methods of residue calculus as described by [8, p.358] and [11, p.489].

Thus, one obtains the following series expansions for log θ j : Let q = e iπτ , | q |< 1. The functions θ 3 and θ 4 have the following expansions

log θ 4 (v, τ ) θ 4 (0, τ ) = 4 n≥1 q n 1 -q 2n (sin nπv) 2 n (3) log θ 3 (v, τ ) θ 3 (0, τ ) = 4 n≥1 (-1) n q n 1 -q 2n (sin nπv) 2 n (4) log θ 2 (v, τ ) θ 2 (0, τ ) = log(cos πv) + 4 n≥1 (-1) n q 2n 1 -q 2n (sin nπv) 2 n (5) log θ 1 (v, τ ) πθ 1 (0, τ ) = log(sin πv) + 4 n≥1 q 2n 1 -q 2n (sin nπv) 2 n . (6) 
θ 4 (v, τ ) = θ 4 (0, τ ) exp   - p≥1 k≥0 1 p sin πv (sin(k + 1 2 )πτ ) 2p   , (7) 
θ 3 (v, τ ) = θ 3 (0, τ ) exp   - p≥1 k≥0 1 p sin πv (cos(k + 1 2 )πτ ) 2p   (8) = θ 4 (0, τ ) exp   - p≥1 k≥0 1 p cos πv (sin(k + 1 2 )πτ ) 2p   .
The above expressions of θ 3 and θ 4 are valid in the "strip" | Imv |< 1 2 Imτ.

Theorem 2-3

Let q = e iπτ , | q |< 1. The functions θ 1 and θ 2 have the following expansions

θ 2 (v, τ ) = θ 2 (0, τ ) exp   log(cos πv) - p≥1 k≥0 1 p sin πv cos kπτ 2p   (9) = πθ 1 (0, τ ) exp   log(cos πv) - p≥1 k≥1 1 p cos πv sin kπτ 2p   θ 1 (v, τ ) = πθ 1 (0, τ ) exp   log(sin πv) - p≥1 k≥1 1 p sin πv sin kπτ 2p   (10) 
(where θ 1 (0, t) = ∂θ1 ∂u (0, t)).

The above expressions of θ 1 and θ 2 are valid in the "strip" | Imv |< Imτ. have interesting arithmetic properties. Indeed, under the action of modular group Γ(1); τ, τ + 1, -1 τ we nd relations between coecients c 2p,3 , c 2p,2 , c 2p,1 . The transformation theory of order n; n = 1, 2... deals with the relations between coefcients. For example when we examine the theta relations

θ 4 (v + 1 2 , τ + 1) = θ 4 (v, τ ), or θ 4 ( v τ , -1 τ ) = (-iτ ) 1/2 exp(iπv 2 /τ )θ 2 (v, τ ) we nd c 2p,4 (τ + 1) = - 1 p k≥0 4q 2k+1 (1 + q 2 k + 1) 2 p = (-1) p k≥p k p c 2k (τ ) - 2 τ 2 c 2p,4 ( -1 τ ) = 1 + (-1) p 2 p p k≥1 q 2k 1 + q 2k p .
See [START_REF] Chouikha | On Properties of Elliptic Jacobi Functions and Applications[END_REF][START_REF]Chouikha Expansions of Theta Functions and Applications ArXiv[END_REF] for more details.

Starting from Theorems 2-1 and 2-3 we deduce other innite products expansions Let q = e iπτ , | q |< 1. The functions θ j , j = 1, 2, 3, 4 may also be expressed as innite products Proof Indeed, we will prove only for θ 4 (v, τ ) the others will be deduced by the same way. Starting from [START_REF] Dixit | Zaharescu Convexity of quotients of theta functions[END_REF] and notice that

θ 4 (v, τ ) = θ 4 (0, τ ) k≥0 1 - sin πv sin(k + 1 2 )πτ 2 (11) 
θ 3 (v, τ ) = θ 3 (0, τ ) k≥0 1 - sin πv cos(k + 1 2 )πτ 2 (12) 
θ 1 (v, τ ) = (π sin πv) θ 1 (0, τ ) k≥1 1 - sin πv sin kπτ 2 (13) θ 2 (v, τ ) = (cos πv) θ 2 (0, τ ) k≥1 1 - sin πv cos kπτ 2 (14) 
log θ 4 (v, τ ) θ 4 (0, τ ) =   - p≥1 k≥0 1 p sin πv (sin(k + 1 2 )πτ ) 2p   = -2 k≥0 p≥1 1 2p (X k ) 2p
where

X k = sin πv (sin(k + 1 2 )πτ )
On the other hand we may calculate

-2 p≥1 1 2p (X k ) 2p = log(1 -(X k ) 2 ).
it follows that

log θ 4 (v, τ ) θ 4 (0, τ ) = k≥0 log(1 -(X k ) 2 ) = k≥0 log 1 - sin πv (sin(k + 1 2 )πτ ) 2
Therefore we obtain the innite product of θ 4

θ 4 (v, τ ) = θ 4 (0, τ ) k≥0 1 - sin πv sin(k + 1 2 )πτ 2 
From Corollary 2-7 we deduce the following Corollary 2-8

Let q = e iπτ , | q |< 1. The logarithmic derivative of functions θ j , j = 1, 2, 3, 4 with respect to v may be expressed

1 θ 4 ∂θ 4 ∂v (v, τ ) = -π k≥0 sin 2πv sin(k + 1 2 )πτ 2 -(sin πv) 2 1 θ 3 ∂θ 3 ∂v (v, τ ) = π k≥0 sin 2πv cos(k + 1 2 )πτ 2 -(sin πv) 2 1 θ 2 ∂θ 2 ∂v (v, τ ) = -(tan πv) + π k≥1 sin 2πv (cos kπτ ) 2 -(sin πv) 2 1 θ 1 ∂θ 1 ∂v (v, τ ) = (cot πv) -π k≥1 sin 2πv (sin kπτ ) 2 -(sin πv) 2 θ 3 and θ 4 is dened in the "strip" | Imv |< 1 2 Imτ, while θ 1 and θ 2 is dened in the "strip" | Imv |< Imτ.
Proof Indeed, by logarithmic dierentiation [START_REF] Whittaker | A course of Modern Analysis Cambridge[END_REF] and ( 13) with respect to v we obtain 1 θ4 ∂θ4 ∂v and 1 θ1 ∂θ1 ∂v . The others are deduced in incrementing v by

1 2 1 θ 1 ∂θ 4 ∂v (v + 1 2 , τ ) = 1 θ 3 ∂θ 3 ∂v (v, τ ), 1 θ 1 ∂θ 1 ∂v (v + 1 2 , τ ) = 1 θ 2 ∂θ 2 ∂v (v, τ ).
Remarks 2-9 1 -Starting from these expansions we may easily derive innite products for the Jacobi elliptic functions. For example, the function

dn(z) = θ 4 (0, τ ) θ 4 (v, τ ) θ 4 (v, τ ) θ 3 (0, τ )
for z = v(θ 3 (0, τ )) 2 may be expressed as

dn(z) = k≥0 cos(k + 1 2 )πτ 2 -(sin πv) 2 sin(k + 1 2 )πτ 2 -(sin πv) 2 .
Recall the classical innite product of that function, [START_REF] Erdelyi | Higher transcendental functions[END_REF], [START_REF] Whittaker | A course of Modern Analysis Cambridge[END_REF]:

dn(z) = θ 2 (0, τ ) θ 3 (0, τ ) n≥1 1 + 2q 2n-1 (cos 2z) + q 4n-2 1 -2q 2n-1 (cos 2z) + q 4n-2 .
2 -Since we have θ 4 (v + 1 2 , τ + 1) = θ 4 (v, τ ) then we deduce

θ 4 (0, τ ) k≥0 1 - sin πv sin(k + 1 2 )πτ 2 = θ 4 (0, τ + 1) k≥0 1 - cos πv cos(k + 1 2 )πτ 2 = θ 3 (0, τ ) k≥0 1 - cos πv cos(k + 1 2 )πτ 2 .
However we know [START_REF] Erdelyi | Higher transcendental functions[END_REF] that

θ 3 (0, τ ) θ 4 (0, τ ) = n≥0 1 + q 2n+1 1 -q 2n+1 2 = n≥0 (coth π(n + 1 2 )τ ) 2 .
We thus obtain the equality k≥0

[(cos(k + 1 2 )πτ ) 2 -(cos πv) 2 ] = k≥0 [(sin(k + 1 2 )πτ ) 2 -(sin πv) 2 ] (15) valid for | Imv |< 1 2 Imτ. Since θ 2 (0, τ ) θ 1 (0, τ ) = n≥1 1 + q 2n 1 -q 2n 2 = n≥1 (coth πnτ ) 2 .
it seems we may also establish

k≥1 [(cos kπτ ) 2 -(cos πv) 2 ] = k≥1 [(sin kπτ ) 2 -(sin πv) 2 ] (16) valid for | Imv |< Imτ.
3. Complete monotonicity of log θj (v,τ ) θj (0,t)

From the knowledge of the zeros of theta functions it is possible to obtain innite products representing these functions, see [8, p.357] or [11, p.470]. For example the function θ 4 (v, τ ) satises the triple product

θ 4 (v, t) = n≥1 (1 -q 2n )(1 -q 2n+1 e 2iπv )(1 -q 2n-1 e -2iπv )
where q = e iπτ , v ∈ C, τ ∈ H + . From these products the Fourier expansions of log(θ j (v, iπτ ) and θ j θj follow. Trigonometric expansions of theta functions can be proved by the methods of residue calculus as described by [8, p.358] and [START_REF] Whittaker | A course of Modern Analysis Cambridge[END_REF].

More precisely, one has the following series expansions for log θ j :

log θ 4 (v, τ ) θ 4 (0, τ ) = 4 n≥1 q n 1 -q 2n (sin nπv) 2 n (17) log θ 3 (v, τ ) θ 3 (0, τ ) = 4 n≥1 (-1) n q n 1 -q 2n (sin nπv) 2 n (18) log θ 2 (v, τ ) θ 2 (0, τ ) = log(cos πv) + 4 n≥1 (-1) n q 2n 1 -q 2n (sin nπv) 2 n (19) log θ 1 (v, τ ) πθ 1 (0, τ ) = log(sin πv) + 4 n≥1 q 2n 1 -q 2n
(sin nπv) 2 n .

(20)

Expressions of θ 3 and θ 4 are valid in the "strip"

| Imv |< 1 2 Imτ,
those relating to θ 1 and θ 2 are valid in the "strip" | Imv |< Imτ.

In the sequel we will consider the case τ = iπt and will denote

θ j (v, τ ) = θ j (v, iπt) = θ j (v, t).
Our main result is the following Theorem 3-1 For any xed u real and τ = iπt, the following quotients of Jacobi theta functions :

θ 4 (u, t) θ 4 (0, t) , θ 1 (u, t) θ 1 (0, t) θ 3 (u, t) θ 4 (0, t) , θ 2 (u, t) θ 1 (0, t) ,
(where θ 1 (0, t) = ∂θ1 ∂u (0, t)) are logarithmically completely monotonic (LCM) with respect to t > 0. That means for k = 0, 1, 2, ....

(-1) k ∂ k ∂t k log θ 4 (u, t) θ 4 (0, t) > 0, (-1) k ∂ k ∂t k log θ 3 (u, t) θ 3 (0, t) > 0, (-1) k ∂ k ∂t k log θ 2 (u, t) θ 2 (0, t) > 0, (-1) k ∂ k ∂t k log θ 1 (u, t) θ 1 (0, t) > 0.
Proof of Theorem 3-1

From Corollary 2-7, (12) may be rewritten with q = e iπτ = e -π 2 t θ 4 (u, t) θ 4 (0, t)

= k≥0 1 + sin πu sinh(k + 1 2 )π 2 t 2 .
Thus

log θ 4 (u, t) θ 4 (0, t) = k≥0 log 1 + sin πu sinh(k + 1 2 )π 2 t 2 .
By the same way 12) may be expressed

θ 1 (u, t) (sin πu)θ 1 (0, t) = k≥1 1 + sin πu sinh kπ 2 t 2 log θ 1 (u, t) (sin πu)θ 1 (0, t) = k≥1 log 1 + sin πu sinh kπ 2 t 2 Remark that since θ 4 (u + 1 2 , t) = θ 3 (u, t) then (
θ 3 (u, t) θ 3 (0, t) = k≥0 1 - sin πu cosh(k + 1 2 )π 2 t 2 and log θ 3 (u, t) θ 3 (0, t) k≥0 log 1 - sin πu cosh(k + 1 2 )π 2 t 2 log θ 3 (u, t) θ 4 (0, t) = k≥0 log 1 + cos πu sinh(k + 1 2 )π 2 t 2
Since θ 1 (u + 1 2 , t) = θ 2 (u, t) then (15) may be expressed

θ 2 (v, τ ) = (cos πv) θ 2 (0, τ ) k≥1 1 - sin πv cos kπτ 2 log θ 2 (u, t) (cos πu)θ 1 (0, t) = k≥1 log 1 + cos πu sinh kπ 2 t 2
To prove this theorem we need the following Lemma 3-2 The following functions are LCM (logarithmically completely monotonic) for t > 0:

1 e t -1 , 1 1 -e -t , coth(t), 1 sinh(t)
Proof of Lemma 3-2 Recall that a constant function φ(t) = α, α ≥ 0 is CM as well as for φ(t) = e -αx , α ≥ 0.

To prove that these functions are LCM we follow Chun-Fu Wei1, Bai-Ni Guo [START_REF] Wei1 | Complete Monotonicity of Functions Connected with the Exponential Function and Derivatives[END_REF] who considered the functions

1 e ∓t -1
and their i nth derivative

F i (t) = (-1) i d i dt i ( 1 e t -1
) and G i (t) = (-1)

i d i dt i ( 1 1 -e -t )
where i = 0, 1, 2, .... They proved that F i , G i are CM for all t > 0. But

F 0 (t) = 1 e t -1 and G 0 (t) = 1 1 -e -t
are LCM for all t > 0.

In fact, to see that, it suces to prove that G 0 (t) is LCM for all t > 0 then F 0 (t) follows too, because we have

G 0 (t) = 1 + F 0 (t) = e t F 0 (t)
and the sum and the product of two LCM functions are also LCM. Consequently, we have

1 + 2F 0 (t) = e t + 1 e t -1 = coth t 2
is LCM for all t > 0 as well as for

1 sinh t = 2e t F 0 (2t) = 2e -t G 0 (2t) = 2e -t (1 + F 0 (2t)).
By this lemma we may assert that the following functions with respect to t > 0

1 sinh(nπ 2 t) = 2e nπ 2 t F 0 (2nπ 2 t) = 2e -nπ 2 t G 0 (2nπ 2 t)
are LCM functions for n ∈ IN . Since the product of LCM functions is also LCM, it follows that the functions

1 + sin πu sinh(k + 1 2 )π 2 t 2 , 1 + cos πu sinh(k + 1 2 )π 2 t 2 ,
as well as

1 + sin πu sinh kπ 2 t 2 , 1 +
cos πu sinh kπ 2 t 2 are LCM. Thus, we prove by recurrence on k that their products are LCM. Therefore the 4 quotients θ4(u,t) θ3(0,t) θ4(u,t) θ4(0,t) θ2(u,t) θ 1 (0,t) θ1(u,t) θ 1 (0,t) are CM. The following gives an alternative proof that θ4(u,t) θ4(0,t) and θ1(u,t) (sin πu)θ 1 (0,t) are LCM. The method that we use seems not run for the 2 other theta functions For any xed u real such that 0 < u from expressions (15) and (18) we may deduce that θ 4 (u, t) θ 4 (0, t)

, and θ 1 (u, t) (sin πu)θ 1 (0, t) are logarithmically completely monotonic with respect to t > 0.

Proof of Corollary 3-4 The above expansion (16) may be rewritten with q

= e iπτ = e -π 2 t log θ 4 (u, t) θ 4 (0, t) = 4 n≥1 q n 1 -q 2n (sin nπu) 2 n = 4 n≥1 e -nπ 2 t 1 -e -2nπ 2 t (sin nπu) 2 n log θ 4 (u, t) θ 4 (0, t) = 2 n≥1 1 sinh(nπ 2 t) (sin nπu) 2 n .
By the same way (19) may be rewritten

log θ 1 (u, t) πθ 1 (0, t) = log(sin πu) + 4 n≥1 q 2n 1 -q 2n (sin nπu) 2 n .
Moreover,

n≥1 e -2nπ 2 t 1 -e -2nπ 2 t (sin nπu) 2 n = n≥1 1 e 2nπ 2 t -1 (sin nπu) 2 n .
Then

log θ 1 (u, t) π(sin πu)θ 1 (0, t) = 4 n≥1 1 e 2nπ 2 t -1 (sin nπu) 2 n
By Lemma 3-2 the following functions with respect to t > 0 are LCM functions.

1 sinh(nπ 2 t) = 2e nπ 2 t F 0 (2nπ 2 t) = 2e -nπ 2 t G 0 (2nπ 2 t) 1 e 2nπ 2 t -1 = F 0 (2nπ 2 t) = G 0 (2nπ
Remark 3-5 1 -Notice that the quotients θ3(u,t) θ3(0,t) and θ2(u,t) θ2(0,t) seem not to be complete monotonic. Indeed, write

θ 3 (u, t) θ 3 (0, t) = θ 3 (u, t) θ 4 (0, t) θ 4 (0, t) θ 3 (0, t) , θ 2 (u, t) θ 2 (0, t) = θ 2 (u, t) θ 1 (0, t) θ 1 (0, t) θ 2 (0, t)
It is known [START_REF] Erdelyi | Higher transcendental functions[END_REF] that

θ 3 (0, t) θ 4 (0, t) = n≥0 1 + q 2n+1 1 -q 2n+1 2 = n≥0 (coth π 2 (n + 1 2 )t) 2 θ 2 (0, t) θ 1 (0, t) = n≥1 1 + q 2n 1 -q 2n 2 = n≥1 (coth π 2 nt) 2 .
By Lemma 3-2 the function u → coth(u) is complete monotonic for u > 0. Then θ3(0,t) θ4(0,t) and θ2(0,t) θ 1 (0,t) are also CM, but not their inverse θ4(0,t) θ3(0,t) and θ 1 (0,t) θ2(0,t) . Taking the logarithmic derivatives of the innite products (11-14) one obtains the following after replacing τ = iπt The logarithmic derivatives with respect to t > 0 of the Jacobi theta functions may be expressed

θ 4 θ 4 (u, t) - θ 4 θ 4 (0, t) = -π 2 k≥0 (2k + 1)[coth(k + 1 2 )π 2 t][sin πu] 2 sinh(k + 1 2 )π 2 t 2 + [sin πu] 2 , θ 3 θ 3 (u, t) - θ 3 θ 3 (0, t) = -π 2 k≥0 (2k + 1)[tanh(k + 1 2 )π 2 t][sin πu] 2 cosh(k + 1 2 )π 2 t 2 -[sin πu] 2 where | Imu |< 1 2 πt, θ 1 θ 1 (u, t) - θ 1 θ 1 (0, t) = -π 2 k≥1 2k[coth kπ 2 t][sin πu] 2 [sinh kπ 2 t] 2 + [sin πu] 2 θ 2 θ 1 (u, t) - θ 2 θ 2 (0, t) = -π 2 k≥1 2k[tanh kπ 2 t][sin πu] 2 [cosh kπ 2 t] 2 -[sin πu] 2
where | Imu |< πt.

Some applications on the quotients of theta functions

For u, v ∈ C and τ = iπt with Re t > 0, consider the quotient of theta functions as follows

S j := S j (u, v, t) = θ j ( u 2 , iπt) θ j ( u 2 , iπt)
.

In [START_REF] Dixit | Solynin Monotonicity of quotients of theta functions related to an extremal problem on harmonic measure[END_REF], [START_REF] Dixit | Zaharescu Convexity of quotients of theta functions[END_REF], [START_REF] Yu | Solynin Harmonic measure of radial line segments and symmetrization Math[END_REF] one interested in monotonicity and convexity of these quotients. This is related to the problem of completely monotonic functions. A. Solynin and A. Dixit, [START_REF] Dixit | Zaharescu Convexity of quotients of theta functions[END_REF], [START_REF] Yu | Solynin Harmonic measure of radial line segments and symmetrization Math[END_REF] proved the monotonicity of S j (u, v, t) = θj ( u 2 ,iπt) θj ( u 2 ,iπt) . More precisely they stated for xed u, v such that 0 ≤ u < v < 1, the functions S 1 (u, v; t) and S 4 (u, v; t) are positive and strictly increasing for t ∈]0, ∞[ while S 2 (u, v; t) and S 3 (u, v; t) are positive decreasing for t ∈]0, ∞[. A. Dixit, A. Roy and A. Zaharescu [7, Th 1.2] proved for u, v such that 0 ≤ u < v < 1 the functions S 2 (u, v; t) and S 3 (u, v; t) are stricly convex for t ∈]0, ∞[. However, one conjectured [7, Conj 1.1] for u, v such that 0 ≤ u < v < 1 the functions ∂ ∂t S 1 (u, v; t), S 2 (u, v; t), S 3 (u, v; t) and ∂ ∂t S 4 (u, v; t) are CM for 0 < t < ∞. Many numerical calculus thanks to Maple suggest us that the odd and even derivatives in t of log(S j (u, v, t)) (and not only S j (u, v, t)) have alternating signs. Thus, one naturally may ask if quotients of theta functions are LCM (logarithmically completely monotonic). This is precisely what we are trying to prove Theorem 4-1 For xed u, v such that 0 ≤ u < v < 1, the quotients of theta functions S j := S j (u, v, t) = θj ( u 2 ,t) θj ( v 2 ,t) , j = 1, 2, 3, 4 are strictly LCM (logarithmically completely monotonic) for some t > 0 verifying sinh(

π 2 t 2 ) ≥ sup (sin( πv 2 ), cos( πv 2 
))

. More precisely we have :

-

for j = 2, 3 inequalities (-1) k ∂ k ∂t k ( 1 Sj ∂Sj ∂t ) > 0 hold for k = 1, 2, 3... -for j = 1, 4 inequalities (-1) k ∂ k ∂t k ( 1 Sj ∂Sj ∂t ) < 0 hold for k = 1, 2, 3...
Some consequences of Theorem 4-1 may be derived. At rst, we nd again the following which has been proved in [START_REF] Dixit | Zaharescu Convexity of quotients of theta functions[END_REF], [START_REF] Yu | Solynin Harmonic measure of radial line segments and symmetrization Math[END_REF] Corollary 4-3

For xed u, v such that 0 ≤ u < v < 1, the functions S 1 (u, v; t) and S 4 (u, v; t) are positive and strictly increasing for t > 0 while S 2 (u, v; t) and S 3 (u, v; t) are positive decreasing for t > 0.

Proof Notice that

∂ ∂t ( 1 S j ∂S j ∂t )(u, v, t) = θ j θ j ( u 2 , t) - θ j θ j ( v 2 , t), j = 1, 2, 3, 4
By Corollary 3-6 we derive

∂ ∂t ( 1 S 4 ∂S 4 ∂t )(u, v, t) = θ 4 θ 4 ( u 2 , t) - θ 4 θ 4 ( v 2 , t) = k≥0 (2 k + 1) coth k + 1 2 π 2 t sin π v 2 2 sinh k + 1 2 π 2 t 2 + sin π v 2 2 - (2 k + 1) coth k + 1 2 π 2 t sin π u 2 2 sinh k + 1 2 π 2 t 2 + sin π u 2 2 = k≥0 (2 k + 1) cosh 1 2 (2 k + 1) π 2 t sinh 1 2 (2 k + 1) π 2 t cos π u 2 2 -cos π v 2 2 sinh k + 1 2 π 2 t 2 + sin π u 2 2 sinh k + 1 2 π 2 t 2 + sin π v 2 2 > 0.
Then ∂ ∂t ( ∂S4 ∂t )(u, v, t) > 0. By the same way using again Corollary 3-6, we prove

∂ ∂t ( ∂S1 ∂t )(u, v, t) > 0, ∂ ∂t ( ∂S2 ∂t )(u, v, t) < 0, and ∂ ∂t ( ∂S3 ∂t )(u, v, t) < 0..

The following extends Theorem 1.2 of [10]

Corollary 4-4 For xed u, v such that 0 ≤ u < v < 1, the functions S j are such that -For any t > 0 the second derivatives ∂ 2 ∂t 2 S j (u, v, t) < 0 for j = 1, 4. -For any t > 0 the second derivatives ∂ 2 ∂t 2 S j (u, v, t) > 0 for j = 2, 3.

Proof We will show the result only for S 4 . We will operate in the same way for others S j , j = 1, 2, 3,.

Derive another time the function

∂ ∂t ( 1 S4 ∂S4 ∂t )(u, v, t). We obtain thank to Maple ∂ 2 ∂t 2 ( 1 S 4 ∂S 4 ∂t )(u, v, t) = - k≥0 cos(π u 2 ) 2 -cos(π v 2 ) 2 (2 k + 1) 2 π 2 A k B k
where

A k = -2 cos π u 2 2 cosh 1 2 (2 k + 1) π 2 t 2 cos π v 2 2 + cos π u 2 2 cosh 1 2 (2 k + 1) π 2 t 2 + cos π u 2 2 cos π v 2 2 +2 cosh 1 2 (2 k + 1) π 2 t 6 -3 cosh 1 2 (2 k + 1) π 2 t 4 + cosh 1 2 (2 k + 1) π 2 t 2 cos π v 2 2 B k = 2 cosh 1 2 (2 k + 1) π 2 t -cos π v 2 2 cosh 1 2 (2 k + 1) π 2 t + cos π v 2 2 × cosh 1 2 (2 k + 1) π 2 t -cos π u 2 2 cosh 1 2 (2 k + 1) π 2 t + cos π u 2 2
Here X > 1, (cos πv) 2 < (cos πu) 2 < 1. B is a square and Maple shows that A is non negative.

Then ∂ 2 ∂t 2 ( 1 S4 ∂S4 ∂t )(u, v, t) = ∂ 2 S 4 ∂t 2 S4 -( ∂S 4 ∂t S4 ) 2 < 0. As well as ∂ 2 ∂t 2 S 4 (u, v, t) < 0.

Concluding Remarks 4-5

1 -It seems that the hypothesis sinh(

π 2 t 2 ) ≥ sup (sin( πv 2 ), cos( πv 2 
)) is superuous and that we can extend Theorem 4-1 for t > 0 as conrmed by calculations. It is clear we should use another approach to get around this obstacle. Recall that Corollaries 4-3 and 4-4 conrm this fact.

-

As we have seen before by the result of S.N. Bernstein and D. Widder we may deduce that : -there exists a non-decreasing function ω j such that S j (u, v; t) = ∞ 0 e -νt dω j (u)dν for j = 2, 3 and ∂ ∂t S j (u, v; t) = ∞ 0 e -νt dω j (u)dν for j = 3, 4.

-there exists a non-decreasing function ω j such that θj (u,t) θj (0,t) = ∞ 0 e -νt dω j (u)dν for j = 1, 2, 3, 4.

3 -Since every Stieltjes transform f is a LCM function, in the sense that

f (t) = a + ∞ 0 dµ(s) s + t
where a is a non-negative number and µ a non-negative measure on ]0, ∞[. It is natural to ask if the quotients θj (u,t) θj (0,t) and S j (u, v; t) share this property. 4 -Among the interesting questions that may arise; what possible applications of this new property of theta functions which yet are very well known? are there other functions of the same type sharing this property of monotonicity? Concerning the second question we may have an answer. For example the sigma functions of Weierstrass

σ 0 (z) = e ηz 2 2ω θ 1 (v) θ 1 (0) σ α (z) = e ηz 2 2ω θ α+1 (v) θ α+1 (0) , α = 1, 2, 3
where (see [START_REF] Whittaker | A course of Modern Analysis Cambridge[END_REF] p.473) z = 2ωv, τ = ω ω , and

η = - θ (0, τ ) 12ωθ (0, τ ) = 24 n≥1 q 2n (1 -q 2n ) 2 -1 = 24 n≥1 1 (sinh nπ 2 t) 2 -1
When ω = 1 and τ = ω = iπt we then deduce from Theorems 3-1 or Corollary 3-5 The sigma functions of Weierstrass σ α (z), α = 0, 1, 2, 3 such that ω = 1 and η = -θ α (0,iπt) 12θ α (0,iπt) are logarithmically completely monotonic as functions with respect to t > 0.

6. Proofs 6.1. Proof of Theorem 2-1. We shall compare dierent trigonometric expansions for the theta functions. This will allow us to establish the expression of the coecients.

1-Expansion of θ 4 (v, τ ) By (3) we have

θ 4 (v, τ ) = θ 4 (0, τ ) exp   4 n≥1 q n 1 -q 2n (sin nπv) 2 n   .
Comparing the latter with the expansion The coecients c 2p dened above may be written as

c 2p (τ ) = - 1 p k≥0 1 (sin(k + 1 2 )πτ ) 2p = - 1 p k≥0 (-4)q 2k+1 (1 -q 2k+1 ) 2 p .
In particular, we have

c 2 (τ ) = 4 n≥1 nq n (1 -q 2n ) = 1 2π 2 θ 4 (0, τ ) θ 4 (0, τ ) Proof of Lemma 2-2
It is enough to express cos(2nα) in terms of sin α as It can also be rewritten

cos(2nα) = (-1) n 2 (2 sin α) 2n + n-1 k=0 (-1) n+k+1 2n k + 1 2n -k + 1 k (2 sin α) 2n-2k-2 = n 0≤p≤n (-1) p (n + p -1)! (2p)!(n -p)! ( 
b 2p,n = n (-1) p (n + p -1)! (2p)!(n -p)! 2 2p for 0 ≤ p ≤ n.
Furthermore, we may use

log θ 4 (v, τ ) θ 4 (0, τ ) = 2 n≥1 γ n -2 n≥1 γ n cos(2nv) = p≥1 c 2p (τ )(sin πv) 2p ,
where

γ n = q n n(1 -q 2n )
.

So, we obtain the relations

c 2p = -2 n≥p γ n b 2p,n = -(-1) p 2 2p γ p b 2p,p + n≥p q n (n -p)(1 -q 2n ) n + p -1 n -p -1 .
Therefore

c 2p = -2(-1) p 2 2p-1 q p 1 -q 2p + (-1) p+1 2 2p+1 m>p m + p -1 m -p -1 q m (m -p)(1 -q 2m ) .
i.e.,

c 2p (τ ) = (-1) p+1 2 2p+1 (2p)! n≥p (n + p -1)! (n -p)! q n (1 -q 2n ) .
In particular, for p = 1,

c 2 (τ ) = 2 2 q 1 -q 2 + 8 m>1 m m -2 q m (m -1)(1 -q 2m ) ,
and

c 2 (τ ) = 2 2 q 1 -q 2 + 4 m>1 mq m (1 -q 2m ) = 4 n≥1 nq n (1 -q 2n ) .
Thus,

c 2 = 4 n≥1 nq n (1 -q 2n ) = 1 2π 2 θ 4 (0, τ ) θ 4 (0, τ )
We have also

c 4 = 1 3 θ 4 2 (0, τ )θ 4 3 (0, τ ) + 1 3 c 2 .
These series c 2p (τ ) can be expressed as

(-1) p+1 (2p)! 2 2p+1 c 2p (τ ) = n≥p (n + p -1)! (n -p)! q n (1 -q 2n ) = n≥p q n (n + p -1)! (n -p)! k≥0 q 2kn = k≥0,n≥p (n + p -1)! (n -p)! q 2kn+n = k≥0 q (2k+1)p n≥p (n + p -1)! (n -p)! q (2k+1)(n-p) = k≥0 g p (q 2k+1 ),
where and one gets

g p (z) = n≥p (n + p -1)! (n -p)! z n = z p m≥0 (m + 2p -1)! (m)! z m .

Now using the notation

1 (2p -1)! g p (z) = z p m≥0 (2p) m (m)! z m .
However, we know that

z p m≥0 (2p) m (m)! z m = z p 2 F 1 (2p, α, α, z) = z p (1 -z) 2p . g p (τ ) = (2p -1)! z p (1 -z) 2p .
As a result, after replacing we derive the expression

c 2p (τ ) = (-1) p+1 2 2p+1 (2p)! k≥0 g p (q 2k+1 ) = (-1) p+1 2 2p+1 2p k≥0 q (2k+1)p (1 -q 2k+1 ) 2p . Finally, c 2p (τ ) = (-1) p+1 2 2p+1 2p k≥0 q 2k+1 (1 -q 2k+1 ) 2 p = - 1 p k≥0 1 (sin(k + 1 2 )πτ ) 2p . 2-Expansion of θ 3 (v, τ )
This function is related with the preceding by two manners, [START_REF] Alzer | Some classes of completely monotonic functions[END_REF], [START_REF] Whittaker | A course of Modern Analysis Cambridge[END_REF]. Under the action of the modular group Γ(1) in changing v by v + 1 or τ by τ + 1 we nd the relations

θ 3 (v, τ ) = θ 4 (v, τ + 1) = θ 4 (v + 1, τ )
We then deduce expressions for θ 3

θ 3 (v, τ ) = θ 4 (v + 1, τ ) = θ 4 (0, τ ) exp   - p≥1 k≥0 1 p cos πv (sin(k + 1 2 )πτ ) 2p   θ 3 (v, τ ) = θ 4 (v, τ + 1) = θ 4 (0, τ + 1) exp   - p≥1 k≥0 1 p sin πv (cos(k + 1 2 )πτ ) 2p   = θ 3 (0, τ ) exp   - p≥1 k≥0 1 p sin πv (cos(k + 1 2 )πτ ) 2p   .
On the other hand

| Imv |< 1 2 Imt implies | sin πv (sin(k+ 1 2 )πτ ) |< 1 and | sin πv (cos(k+ 1 2 )πτ ) |< 1.

Moreover we may prove

c 2 (τ + 1) = -4 k≥0 q 2k+1 (1 + q 2k+1 ) 2 = 1 2π 2 θ 3 (0) θ 3 (0)
.

The proof of Theorem 2-1 is then achieved.

6.2. Proof of Theorem 2-3. 1-Expansion of θ 2 (v, τ )

We will proceed as before. Consider (3)

θ 2 (v, τ ) = θ 2 (0, τ ) exp   log(cos πv) + 4 n≥1 (-1) n q 2n 1 -q 2n (sin nπv) 2 n   .
Comparing the latter with the expansion

θ 2 (v, τ ) = θ 2 (0, τ ) exp   p≥1 d 2p (τ )(sin πv) 2p   one derives the following Lemma 2-4
The coecients d 2p dened above may be written as

d 2p (τ ) = - 1 p k≥1 1 (cos kπτ ) 2p .
In particular, we have where γ n = (-1) n q 2n n(1 -q 2n ) .

So, we obtain the relations Finally, d 2p (τ ) = -2 2p p k≥0 q 2k+2 (1 + q 2k+2 ) 2 p = -2 2p p k≥0 1 (q -(k+1) + q (k+1) ) 2 This function is related with the preceding by changing v in v + 1 2 , [B], [W-W]:

θ 1 (v, τ ) = -θ 2 (v + 1 2 , τ ) = exp(iπ)θ 2 (v + 1 2 , τ )
We then deduce a rst expression for (

) 21 
To obtain the other expansion we start from (6) and we proceed as above Comparing the latter with the expansion The coecients e 2p dened above may be written as In particular, we have The proof of Theorem 2-3 is then achieved. 

n≥0(- 1 )

 1 n e -(2n+1) 2 πt 4 sin((2n + 1)πu)

Remark 2 - 6 1 p k≥0 1 ((sin(k+ 1 2

 26111 These coecients c 2p,4 (τ ) = )πτ )) 2p

Corollary 3- 6

 6 

θ 4 ( 4 p≥1c

 44 v, τ ) = θ 4 (0, τ ) exp   2p (τ )(sin πv) 2p

  2 sin α) 2p = n p=0 b 2p,n (sin α) 2p , where b 2n,n = (-1) n 2 2n-1 ; b 0,n = 1; and b 2p,n = (-1) p 2 2p n n -p n + p -1 n -p -1 for n = p.

(

  2p) n = 2p(2p + 1).....(2p + n -1), then (m + 2p -1)! = (2p) m (2p -1)!,

d 2 2π 2 θ 2 (- 1 ) 4 n≥1(- 1 ) 2 n≥1 γ n - 2 n≥1γ

 22214122 (τ ) = 4 n≥1 n(-1) n q 2n (1 -q 2n ) = 1 (0, τ ) θ 2 (0, τ ) Proof of Lemma 2-4Take again the expression of cos(2nα) in terms of sin α asp (n + p -1)! (2p)!(n -p)! (2 sin x) 2p = n p=0 b 2p,n (sin α) 2p , where b 2n,n = (-1) n 2 2n-1 ; b 0,n = 1; and b 2p,n = (-1) p 2 2p n n -p n + p -1 n -p -1 for n = p. = n (-1) p (n + p -1)! (2p)!(n -p)! 2 2p for 0 ≤ p ≤ n.Consider the expansionlog θ 2 (v, τ ) θ 2 (0, τ ) = log(cos(πv)) + n q 2n 1 -q 2n (sin(nπv)) 2 n = n cos(2nv) = p≥1 d 2p (τ )(sin πv) 2p ,

d 2p = - 2 n≥pγ

 2 n b 2p,n = -(-1) p 2 2p γ p b 2p,p + n≥p (-1) n q 2n (n -p)(1 -q 2n ) n + p -1 n -p -1 .

  k + 1)πτ ) 2p . 2-Expansion of θ 1 (v, τ )

θ 1 θ 1

 11 (v, τ ) = -θ 2 (0, τ ) exp   log(sin πv) -

θ 1

 1 (v, τ ) = πθ 1 (0, τ ) exp   log(sin πv) + n≥1 q 2n 1 -q 2n (sin nπv) 2 n   .

θ 1 (

 1 v, τ ) = πθ 1 (0, τ ) exp

e 2p (τ ) = - 1 p k≥1 1 (

 1 sin kπτ ) 2p .

2 θ 1

 21 (0, τ ) πθ 1 (0, τ ) We may demonstrate this lemma exactly with the same techniques as those used for the proofs of Lemma 2-2 and 2-4. On the other hand | Imv |< Imτ implies | sin πv (sin kπτ ) |< 1 and | sin πv (cos kπτ ) |< 1.

  Expressions ofθ 3 and θ 4 are valid in the "strip" | Imv |< 1 2 Imτ, those relating to θ 1 and θ 2 are valid in the "strip" | Imv |< Imτ.

	Theorem 2-1
	Now we propose the following

  θ 3 and θ 4 is dened in the "strip" | Imv |< 1 2 Imτ, while θ 1 and θ 2 is dened in the "strip" | Imv |< Imτ.

  6.3. Proof of Theorem 4-1. Starting from relations (7-10) we nd the following expressions for S j (u, v, t).

	(7) implies								
		log S 4 (u, v, t) = log θ 4 (	u 2	, t) -log θ 4 (	v 2	, t) = log	θ 4 ( u 2 , t) θ 4 (0, t)	-log	θ 4 ( v 2 , t) θ 4 (0, t)
	=	  -	p≥1 k≥0	(-1) p p	sin π u 2 (sinh(k + 1 2 )π 2 t)	2p	  -	  -	p≥1 k≥0	(-1) p p	sin π v 2 (sinh(k + 1 2 )π 2 t)

2p

 

Therefore d 2p = -2(-1) p 2 2p-1 q p 1 -q 2p + (-1) p+1 2 2p+1 m>p m + p -1 m -p -1 (-1) m q 2m (m -p)(1 -q 2m ) .

i.e., d 2p (τ ) = (-1) p+1 2 2p+1 (2p)! n≥p (n + p -1)! (n -p)! (-1) n q 2n (1 -q 2n ) .

In particular, we have

These series d 2p (τ ) can be expressed as

where and one gets

Now using the notation

However, we have m≥0

We then derive the expression

By the same way (8) implies

. ( 9) implies

By the same way [START_REF] Yu | Solynin Harmonic measure of radial line segments and symmetrization Math[END_REF] 

Notice that since u < v < 1 then we have

We have also

Thus the bracket (b 1 ) is non-positive for all integer p ≥ 1. This means that log S 4 (u, v, t) may be viewed as a polynomial of 1 (sinh(k+ 1 2 )π 2 t) 2 with negative coefcients. We proceed exactly with the same manner to establish that log S 1 (u, v, t) may be viewed as a polynomial of 1 (sinh kπ 2 t) 2 with negative coecients. Turn out to the other quotients. We rewrite

We will prove that the bracket

is non-negative. Indeed, the following function

is increasing and the following inequalities hold

We may assert when sinh(

Recall that since u < v < 1 then cos(π u

Thus the bracket (b 2 ) is non-negative for all integer p ≥ 1. This means that log S 3 (u, v, t) may be viewed as a polynomial of

2 )π 2 t) 2 with positive coefcients. We proceed exactly with the same manner to establish that log S 2 (u, v, t) may be viewed as a power series of Moreover, any combination with positive coecients of CM functions is also an CM function.

We have seen that p≥1 (-1) p p

are series power of Then we deduce by recurrence on k that -log S 3 (u, v, t) and -log S 2 (u, v, t) are CM. The proof of Theorem 4-1 is then achieved.