Communication Dans Un Congrès Année : 2020

Combining probabilistic and non-deterministic choice via weak distributive laws

Résumé

Combining probabilistic choice and non-determinism is a long standing problem in denotational semantics. From a category theory perspective, the problem stems from the absence of a distributive law of the powerset monad over the distribution monad. In this paper we prove the existence of a weak distributive law of the powerset monad over the finite distribution monad. As a consequence, we retrieve the well-known convex powerset monad as a weak lifting of the powerset monad to the category of convex algebras. We provide applications to the study of trace semantics and behavioral equivalences of systems with an interplay between probability and non-determinism.
Fichier principal
Vignette du fichier
probabilityandnondeterminism.pdf (798.05 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02564365 , version 1 (05-05-2020)

Identifiants

Citer

Alexandre Goy, Daniela Petrişan. Combining probabilistic and non-deterministic choice via weak distributive laws. LICS '20: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science, Jul 2020, Saarbrücken, Germany. pp.454-464, ⟨10.1145/3373718.3394795⟩. ⟨hal-02564365⟩
148 Consultations
856 Téléchargements

Altmetric

Partager

More