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Abstract

This paper studies the asymptotic behavior of the constant step Stochastic Gradient
Descent for the minimization of an unknown function F , defined as the expectation of
a non convex, non smooth, locally Lipschitz random function. As the gradient may not
exist, it is replaced by a certain operator: a reasonable choice is to use an element of
the Clarke subdifferential of the random function; another choice is the output of the
celebrated backpropagation algorithm, which is popular amongst practioners, and whose
properties have recently been studied by Bolte and Pauwels [8]. Since the expectation of
the chosen operator is not in general an element of the Clarke subdifferential BF of the
mean function, it has been assumed in the literature that an oracle of BF is available.
As a first result, it is shown in this paper that such an oracle is not needed for almost
all initialization points of the algorithm. Next, in the small step size regime, it is shown
that the interpolated trajectory of the algorithm converges in probability (in the compact
convergence sense) towards the set of solutions of the differential inclusion 9x “ ´BF pxq.
Finally, viewing the iterates as a Markov chain whose transition kernel is indexed by the
step size, it is shown that the invariant distribution of the kernel converge weakly to the
set of invariant distribution of this differential inclusion as the step size tends to zero.
These results show that when the step size is small, with large probability, the iterates
eventually lie in a neighborhood of the critical points of the mean function F .

Keywords: Clarke subdifferential, Backpropagation algorithm, Differential inclusions,
Non convex and non smooth optimization, Stochastic approximation.

1 Introduction

In this work, we study the asymptotic behavior of the constant step Stochastic Gradient
Descent (SGD) when the objective function is neither differentiable nor convex. Given an
integer d ě 1 and a probability space pΞ,T , µq, let f : Rd ˆ Ξ Ñ R, px, sq ÞÑ fpx, sq be a
function which is assumed to be locally Lipschitz, generally non-differentiable and non-convex
in the variable x, and µ-integrable in the variable s. The goal is to find a local minimum, or
at least a critical point of the function F pxq “

ş

fpx, sqµpdsq “ Efpx, ¨q, i.e., a point x‹ such
that 0 P BF px‹q, where BF is the so-called Clarke subdifferential of F . It is assumed that the
function f is available to the observer along with a sequence of independent Ξ-valued random
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variables pξkqkPN on some probability space with the same probability law µ. The function F
itself is assumed unknown due to, e.g., the difficulty of computing the integral Efpx, ¨q. Such
non-smooth and non-convex problems are frequently encountered in the field of statistical
learning. For instance this type of problem arises in the study of neural networks when the
activation function is non-smooth, which is the case of the commonly used ReLU function.

We say that a sequence of random variables pxnqnPN on Rd is a SGD sequence with step
size γ ą 0 if, with probability one,

xn`1 “ xn ´ γ∇fpxn, ξn`1q (1)

for every n such that the function fp¨, ξn`1q is differentiable at point xn, where ∇fpxn, ξn`1q

represents the gradient w.r.t. the variable xn. When fp¨, ξn`1q is non-differentiable at xn, the
update equation xn Ñ xn`1 is left undefined. The practioner is free to choose the value of
xn`1 according to a predetermined selection policy. Typically, a reasonable choice is to select
xn`1 in the set xn´γBfpxn, ξn`1q, where Bfpx, sq represents the Clarke subdifferential of the
function fp¨, sq at the point x. When such a policy is used, the resulting sequence will be
referred to as a Clarke-SGD sequence. A second option used by practioners is to compute the
derivative using the automatic differentiation provided in popular API’s such as Tensorflow,
PyTorch, etc. i.e., for all n,

xn`1 “ xn ´ γafp¨,ξn`1qpxnq (2)

where ah stands for the output of the automatic differentiation applied to a function h. We
refer to such a sequence as an autograd sequence. This approach is useful when fp¨, sq is a
composition of matrix multiplications and non-linear activation functions, of the form

fpx, sq “ `pσLpWLσL´1pWL´1 ¨ ¨ ¨σ1pW1Xsqqq, Ysq , (3)

where x “ pW1, ¨ ¨ ¨ ,WLq are the weights of the network represented by a finite sequence
of L matrices, σ1, ¨ ¨ ¨ , σL are vector-valued functions, Xs is a feature vector, Ys is a label
and `p¨, ¨q is some loss function. In such a case, the automatic differentiation is computed
using the chain rule of function differentiation, by means of the celebrated backpropagation
algorithm. When the mappings σ1, ¨ ¨ ¨ , σL, `p¨, Ysq are differentiable, the chain rule indeed
applies and the output coincides with the gradient. However, the chain rule fails in case of
non-differentiable functions. The properties of the map ah are studied in the recent work
[8]. In general, ahpxq may not be an element of the Clarke-subdifferential Bhpxq. It can
even happen that ahpxq ‰ ∇hpxq at some points x where h is differentiable. However, the
set of such peculiar points is proved to be Lebesgue negligible. As a consequence, if the
initial point x0 is chosen random according to some density w.r.t. the Lebesgue measure, an
autograd sequence can be shown to be a SGD sequence in the sense of Equation (1) under
some conditions.

The aim of this paper is to analyze the asymptotic behavior of SGD sequences in the case
where the step γ is constant.

About the literature. In two recent papers [18] and [10], a closely related algorithm
is analyzed under the assumption that the step size is vanishing, i.e., γ is replaced with a
sequence pγnq that tends to zero as n Ñ 8. From a theoretical point of view, the vanishing
step size is convenient because, under various assumptions, it allows to demonstrate the almost
sure convergence of the iterates xn to the set

Z :“ tx P Rd : 0 P BF pxqu (4)
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of critical points of F . However, in practical applications such as neural nets, a vanishing step
size is rarely used because of slow convergence issues. In most computational frameworks, a
possibly small but nevertheless constant step size is used by default. The price to pay is that
the iterates are no longer expected to converge almost surely to the set Z but to fluctuate in
the vicinity of Z as n is large. In this paper, we aim at establishing a result of the type

@ε ą 0, lim sup
nÑ8

Ppdpxn,Zq ą εq ÝÝÑ
γÓ0

0, (5)

where d is the Euclidean distance between xn and the set Z. Although this result is weaker
than in the vanishing step case, constant step stochastic algorithms can reach a neighborhood
of Z faster than their decreasing step analogues, which is an important advantage in the
applications where the accuracy of the estimates is not essential. Moreover, in practice they
are able to cope with non stationary or slowly changing environments which are frequently
encountered in signal processing, and possibly track a changing set of solutions [5, 16].

The second difference between the present paper and the papers [18] and [10] lies in the
algorithm under study. In [18, 10], the iterates are supposed to satisfy the inclusion

xn`1 ´ xn
γn`1

P ´BF pxnq ` ηn`1 (6)

for all n, where pηnq is a martingale increment noise w.r.t. the filtration pσpx0, ξ1, . . . , ξnqqně1.
Under the assumption that γn Ñ 0 as nÑ8, the authors of [18, 10] prove that almost surely,
the continuous time linearly interpolated process constructed from a sequence pxnq satisfying
(6) is a so-called asymptotic pseudotrajectory [4] of the Differential Inclusion (DI)

9xptq P ´BF pxptqq , (7)

that will be defined on R` “ r0,8q. Heuristically, this means that a sequence pxnq sat-
isfying (6) shadows a solution to (7) as n tends to infinity. This result is one of the key
ingredients to establish the almost sure convergence of xn to the set Z. Unfortunately, a
SGD sequence does not satisfy the condition (6) in general (setting apart the fact that γ is
constant). To be more precise, consider a Clarke-SGD sequence as defined above. For all n,
xn`1 “ xn ´ γBfpxn, ξn`1q, which in turn implies

xn`1 ´ xn
γ

P ´EBfpxn, . q ` ηn`1 ,

where pηnq is a martingale increment noise sequence, and where EBfpx, . q represents the
set-valued expectation

ş

Bfpx, sqdµpsq. The above inclusion is analogous to (6) in the case
where BF pxq “ EBfpx, ¨q for all x i.e., if one can interchange the expectation E and the Clarke
subdifferential operator B. Although the interchange holds if e.g., the functions fp¨, sq are
convex (in which case Bfpx, sq would coincide with the classical convex subdifferential), one
has in general BEfpx, ¨q Ă EBfpx, ¨q and the inclusion can be strict [9, Proposition 2.2.2]. As
a consequence, a Clarke-SGD sequence does not admit the oracle form (6) in general. For
such a sequence, the corresponding DI reads

9xptq P ´EBfpxptq, . q , (8)

but unfortunately, the flow of this DI may contain spurious equilibria (an example is provided
in the paper). In [18] the authors restrict their analysis to regular functions [9, §2.4], for
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which the interchange of the expectation and the subdifferentiation applies. However, this
assumption can be restrictive, since a function as simple as ´|x| is not regular at the critical
point zero.

A second example where the oracle form Equation (6) does not hold is given by autograd
sequences. Such an example is studied in [8], assuming that the step size is vanishing and that
ξ takes its values over a finite set. It is proved that, the autograd sequence is an almost sure
asymptotic pseudotrajectory of the DI 9xptq P ´Dpxptqq, for some set-valued map D which
is shown to be a conservative field with F as a potential. Properties of conservative fields
are studied in [8]. In particular, it is proved that D “ t∇fu Lebesgue almost everywhere.
Despite this property, the DI 9xptq P ´Dpxptqq substantially differs from (7). In particular,
the set of equilibria may be strictly larger than the set Z of critical points of F .

Contributions

• We analyze the SGD algorithm (1) in the non-smooth, non-convex setting, under real-
istic assumptions: the step size is assumed to be constant along the iterations, and we
neither assume the regularity of the functions involved, nor the knowledge of an ora-
cle of BF as in (6). Our assumptions encompass Clarke SGD sequences and autograd
sequences as special cases.

• Under mild conditions, we prove that when the initialization x0 is randomly chosen
with a density, all SGD sequences coincide almost surely, irrespective to the particular
selection policy used at the points of non-differentiability. In this case, xn almost never
hits a non-differentiable point of fp¨, ξn`1q and Equation (1) actually holds for all n.
Moreover, we prove that

xn`1 ´ xn
γ

“ ´∇F pxnq ` ηn`1 ,

where pηnq is a martingale difference sequence, and ∇F pxnq is the true gradient of F at
xn. This argument allows to bypass the oracle assumption of [18, 10].

• We establish that the continuous process obtained by piecewise affine interpolation of
pxnq is a weak asymptotic pseudotrajectory of the DI (7). In other words, the interpolated
process converges in probability to the set of solutions to the DI, as γ Ñ 0, for the metric
of uniform convergence on compact intervals.

• We establish the long run convergence of the iterates xn to the set Z of Clarke critical
points of F , in the sense of Equation (5). This result holds under two main assumptions.
First, it assumed that F admits a chain rule, which is satisfied for instance if F is a
so-called tame function. Second, we assume a standard drift condition on the Markov
chain (1). Finally, we provide verifiable conditions of the functions fp¨, sq under which
the drift condition holds.

• In many practical situations, the drift conditions alluded to above are not satisfied. To
circumvent this issue, we analyze a projected version of the SGD algorithm, which is
similar in its principle to the well-known projected gradient algorithm in the classical
stochastic approximation theory.
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Paper organization

Section 2 recalls some known facts about Clarke subdifferentials, conservative fields and dif-
ferential inclusions. In Section 3, we study the elementary properties of almost-everywhere
gradient functions, defined as the functions ϕpx, sq which coincide with ∇fpx, sq almost ev-
erywhere. Practical examples are provided. In Section 4, we study the elementary properties
of SGD sequences. Section 5 establishes the convergence in probability of the interpolated
process to the set of solutions to the DI. In Section 6, we establish the long run convergence
of the iterates to the set of Clarke critical points. Section 7 is devoted to the projected
subgradient algorithm. The proofs are found in Section 8.

2 Preliminaries

2.1 Notations

If ν, ν1 are two measures on some measurable space pΩ,Fq, ν ! ν 1 means that ν is absolutely
continuous w.r.t. ν. The ν-completion of F is defined as the sigma-algebra consisting of the
sets S Ă Ω such that there exist A,B P F with A Ă S Ă B and νpBzAq “ 0. For these sets,
νpSq “ νpAq.

If E is a metric space, we denote by BpEq the Borel sigma field on E. Let d be an
integer. We denote by MpRdq the set of probability measures on BpRdq and by M1pRdq :“
tν P MpRdq :

ş

}x}νpdxq ă 8u. We denote as λd the Lebesgue measure on Rd. When the
dimension is clear from the context, we denote as λ this Lebesgue measure. For a subset
K Ă Rd, we denote by

MabspKq :“ tν PMpRdq : ν ! λ and supppνq Ă Ku ,

where supppνq represents the support of ν.
If P is a Markov kernel on Rd and g : Rd Ñ R is a measurable function, Pg represents the

function on Rd Ñ R given by Pgpxq “
ş

P px,dyqgpyq, whenever the integral is well-defined.
For every measure π PMpRdq, we denote by πP the measure given by πP “

ş

πpdxqP px, ¨q.
We use the notation πpgq “

ş

g dπ whenever the integral is well-defined.
For every x P Rd, r ą 0, Bpx, rq is the open Euclidean ball with center x and radius r.

The notation 1A stands for the indicator function of a set A, equal to one on that set and to
zero otherwise. The notation Ac represents the complementary set of a set A and clpAq its
closure.

2.2 Clarke Subdifferential and Conservative Fields

A set valued map H : Rd Ñ Rd is a map such that for each x P Rd, Hpxq is a subset of Rd.
We say that H is upper semi continuous, if its graph tpx, yq : y P Hpxqu is closed in Rdˆd.
For any function F : Rd Ñ R, we denote by DF the set of points x P Rd such that F is
differentiable at x. If F is locally Lipschitz continuous, it is by Rademacher’s theorem almost
everywhere differentiable. In this case, the Clarke’s subdifferential of F coincides with the
set-valued map BF : Rd Ñ Rd given for all x P Rd by

BF pxq “ co
!

y P Rd : DpxnqnPN P DN
F s.t. pxn,∇F pxnqq Ñ px, yq

)

,

where co stands for the convex hull [9].
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We now briefly review some recent results of [8]. A set-valued map D : Rd Ñ Rd is called
a conservative field, if for each x P Rd, Dpxq is a nonempty and compact subset of Rd, D has
a closed graph, and for each absolutely continuous a : r0, 1s Ñ Rd, with ap0q “ ap1q, it holds
that:

ż 1

0
min

vPDpaptqq
x 9aptq, vydt “

ż 1

0
max

vPDpaptqq
x 9aptq, vydt “ 0 .

We say that a function F : Rd Ñ R is a potential for the conservative field D if for every
x P Rd and every absolutely continuous a : r0, 1s Ñ Rd, with ap0q “ 0 and ap1q “ x,

F pxq “ F p0q `

ż 1

0
min

vPDpaptqq
x 9aptq, vydt . (9)

In this case, such a function F is locally Lipschitz continuous, and for every absolutely con-
tinuous curve a : r0, 1s Ñ Rd, the function t ÞÑ F paptqq satisfies for almost every t P r0, 1s,

d

dt
F paptqq “ xv, 9aptqy p@v P Dpaptqqq ,

that is to say, F admits a “chain rule” [8, Lemma 2]. Moreover, by [8, Theorem 1], it holds
that D “ t∇F u Lebesgue almost everywhere.

We say that a function F is path differentiable if there exists a conservative field D such
that F is a potential for D. If F is path differentiable, then the Clarke subdifferential BF
is a conservative field for the potential F [8, Corollary 2]. Another useful example of a
conservative field for composite functions is the automatic differentiation field [8, Section
5]. A broad class of functions used in optimization are path differentiable, e.g. any convex,
concave, regular or tame. A tame function is a function defined in some o-minimal structure
([22]), they enjoy some nice stability properties such as any elementary operation on them
remain tame (e.g. composition, sum, inverse). The domain f of a tame function admits a
so-called Whitney stratification, that is to say a collection of manifolds pSiq on each of which
f is smooth with the additional property that the various gradients fit well together (see [7]
for more details). The exponential and the logarithm are tame, as well as any semialgebraic
function, an interested reader can find more on tameness and its usefulness in optimization
in [14], and more details in [22], [7] and [10].

2.3 Differential Inclusions

We endow the set of continuous function from R` to Rd with the metric of uniform convergence
on compact intervals of R`:

dCpx, yq “
ÿ

nPN
2´n

˜

1^ sup
tPr0,ns

}xptq ´ yptq}

¸

(10)

Given a set valued map H : Rd Ñ Rd, we say that x : R` Ñ Rd is a solution of the differential
inclusion

9xptq P Hpxptqq (11)

with initial condition x0 P Rd, if x is absolutely continuous, xp0q “ x0 and (11) holds for
almost every t P R`. We denote by SH : E Ñ CpR`,Rdq the set-valued mapping such that
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for every a P Rd, SHpaq is set of solutions of (11) with x0 “ a. For every subset A Ă E, we
define SHpAq “

Ť

aPA SHpaq.
If a map H has nonempty values we will say that it is upper semicontinuous if the graph

of H, tpx, yq : y P Hpxqu, is closed. In the case where H is upper semicontinuous with compact
and convex values and satisfies the condition

DK ě 0, @x P Rd, supt}v} : v P Hpxqu ď Kp1` }x}q (12)

then SHpaq is non empty for each a P Rd, and moreover, SHpRdq is closed in the metric
space pCpR`,Rdq,dCq [2]. The Clarke subdifferential of a locally Lipschitz function is upper
semicontinuous set valued map with nonempty compact convex values [9, Chap. 3].

3 Almost-Everywhere Gradient Functions

3.1 Definition

Let pΞ,T , µq be a probability space, where the σ-field T is µ-complete. Let d ą 0 be an
integer. Consider a function f : Rd ˆ Ξ Ñ R. We denote by ∆f :“ tpx, sq P Rd ˆ Ξ : x P
Dfp¨,squ the set of points px, sq s.t. fp¨, sq is differentiable at x. We denote by ∇fpx, sq the
gradient of fp¨, sq at x, whenever it exists.

The following technical lemma, which proof is provided in Section 8.1, is essential.

Lemma 1. Assume that f is BpRdq bT -measurable and that fp¨, sq is continuous for every
s P Ξ. Then ∆f P BpRdq bT , and the function ϕ0 : Rd ˆ Ξ Ñ Rd defined as

ϕ0px, sq “

"

∇fpx, sq if px, sq P ∆f

0 otherwise,
(13)

is BpRdqbT -measurable. Moreover, if fp¨, sq is locally Lipschitz continuous for every s P Ξ,
then pλb µqp∆c

f q “ 0.

Thanks to this lemma, the following definition makes sense.

Definition 1. Assume that fp¨, sq is locally Lipschitz continuous for every s P Ξ. A function
ϕ : Rd ˆ Ξ Ñ Rd is called an almost everywhere (a.e.)-gradient of f if ϕ “ ∇f λb µ-almost
everywhere.

By Lemma 1, we observe that a.e.-gradients exist, since pλ b µqp∆c
f q “ 0. Note that in

Definition 1, we do not assume that ϕ is BpRdq bT {BpRdq-measurable. The reason is that
this property is not always easy to check on practical examples. However, if one denotes by
BpRdq bT the λ b µ completion of the σ-field BpRdq b T , an immediate consequence of

Lemma 1 is that any a.e.-gradient of f is a BpRdq bT {BpRdq-measurable function.

3.2 Examples

Lazy gradient function. The function ϕ0 given by Equation (13) is an a.e. gradient
function.
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Clarke gradient function. We shall refer to as a Clarke gradient function as any function
ϕpx, sq such that

#

ϕpx, sq “ ∇fpx, sq if px, sq P ∆f ,

ϕpx, sq P Bfpx, sq otherwise.
(14)

Note that the inclusion ϕpx, sq P Bfpx, sq obviously holds for all px, sq P Rd ˆ Ξ, because
∇fpx, sq is an element of Bfpx, sq when the former exists. However, conversely, a function
ψpx, sq P Bfpx, sq does not necessarily satisfy ψpx, sq “ ∇fpx, sq if px, sq P ∆f (see the
footnote1). By construction, a Clarke gradient function is an a.e. gradient function.

Selections of conservative fields.

Proposition 1. Assume that for every s P Ξ, fp¨, sq is locally Lipschitz, path differentiable,
and is a potential of some conservative field Ds : Rd Ñ Rd. Consider a function ϕ : RdˆΞ Ñ
Rd which is BpRdqbT {BpRdq measurable and satisfies ϕpx, sq P Dspxq for all px, sq P RdˆΞ.
Then, ϕ is an a.e. gradient function for f .

Proof. Define A :“ tpx, sq s.t. ϕpx, sq ‰ ∇fpx, squ. Applying Fubini’s theorem we have:

ż

1Apzqλb µpdzq “

ż ż

1Appx, sqqλpdxqµpdsq “ 0 ,

where the last equality comes from the fact that for every s, Ds “ t∇fp¨, squ λ-a.e. [8,
Theorem 1].

We provide below an application of Proposition 1.

Autograd function. Consider Equation (3), which represents a loss of a neural network.
Although f is just a composition of some simple functions, a direct calculation of the gradient
(if it exists) may be tedious. Automatic differentiation deals with such functions by recursively
applying the chain rule to the components of f . More formally consider a function f : Rd Ñ R
that can be written as a closed formula of simple functions, mathematically speaking this
means that we can represent f by a directed graph. This graph (with q ą d vertices) is defined
through a set-valued function parentspiq Ă t1, . . . , i´ 1u, a directed edge in this setting will
be j Ñ i with j P parentspiq. Associate to each vertex a simple function gi : R|parentspiq| Ñ
R, given an input x “ px1, . . . , xdq P Rd we recursively define xi “ gippxjqjPparentspiqq for
i ą d and finally fpxq “ xq. For instance, if f is a cross entropy loss of a neural network,
with activation functions being ReLu or sigmoid functions, then gi are some compositions of
simple functions log, exp, 1

1`x2 , norms and piecewise polynomial functions, all being path
differentiable [8, section 6], [10, Section 5.2]. Automatic differentiation libraries calculate the
gradient of f by successively applying the chain rule (in the sense pg1 ˝ g2q

1 “ pg11 ˝ g2qg
1
2) to

the simple functions gi. While the chain rule is no longer valid in a nonsmooth setting (see
e.g. [15]), it is shown in [8, Section 5] that when the simple functions are path-differentiable,
the output of automatic differentiation (e.g. autograd in PyTorch ([20])) is a selection of
some conservative field D for f . We refer to [8] for a more detailed account. We denote by
af pxq the output of automatic differentiation of a function f at some point x.

1If a locally Lipschitz function g is differentiable at a point x, we have t∇gpxqu Ă Bgpxq but the inclusion
could be strict (the two sets are equal if g is regular at x): for example, gpxq “ x2 sinp1{xq is s.t. ∇gp0q “ 0
and Bgp0q “ r´1, 1s. There even exist functions for which the set of x s.t. t∇gpxqu Ĺ Bgpxq is a set of full
measure (see [17, Proposition 1.9]).
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Assume that Ξ “ N and for each s P Ξ, fp¨, sq is defined through a recursive graph
of path differentiable functions (in the machine learning paradigm fp¨, sq will represent the
loss related to one data point, while F p¨q is the average loss). By Proposition 1, the map
px, sq ÞÑ afp¨,sqpxq is an a.e. gradient function for f .

4 SGD Sequences

4.1 Definition

Given a probability measure ν on BpRdq, define the probability space pΩ,F ,Pνq as Ω “

Rd ˆ ΞN, F “ BpRdq bT bN, and Pν “ ν b µbN. We denote by px0, pξnqnPN˚q the canonical
process on Ω Ñ Rd i.e., writing an elementary event in the space Ω as ω “ pωnqnPN, we
set x0pωq “ ω0 and ξnpωq “ ωn for each n ě 1. Under Pν , x0 is a Rd-valued random
variable with the probability distribution ν, and the process pξnqnPN˚ is an independent and
identically distributed (i.i.d.) process such that the distribution of ξ1 is µ, and x0 and pξnq
are independent. We denote by F the λb µbN-completion of F .

Let f : Rd ˆ Ξ Ñ R be a BpRdq bT {BpRq-measurable function.

Definition 2. Assume that fp¨, sq is locally Lipschitz continuous for every s P Ξ. A sequence
pxnqnPN˚ of functions on Ω Ñ Rd is called an SGD sequence for f with the step γ ą 0 if there
exists an a.e.-gradient ϕ of f such that

xn`1 “ xn ´ γϕpxn, ξn`1q p@n ě 0q .

4.2 All SGD Sequences Are Almost Surely Equal

Consider the SGD sequence
xn`1 “ xn ´ γϕ0pxn, ξn`1q, (15)

generated by the lazy a.e. gradient ϕ0. Denote by Pγ : RdˆBpRdq Ñ r0, 1s the kernel of the
homogeneous Markov process defined by this equation, which exists thanks to the BpRdqbT -
measurability of ϕ0. This kernel is defined by the fact that its action on a measurable function
g : Rd Ñ R`, denoted as Pγgp¨q, is

Pγgpxq “

ż

gpx´ γϕ0px, sqqµpdsq. (16)

Define Γ as the set of all steps γ ą 0 such that Pγ maps MabspRdq into itself:

Γ :“ tγ P p0,`8q : @ρ PMabspRdq, ρPγ ! λu .

Proposition 2. Consider γ P Γ and ν PMabspRdq. Then, each SGD sequence pxnq with the
step γ is F {BpRdqbN-measurable. Moreover, for any two SGD sequences pxnq and px1nq with
the step γ, it holds that Pν rpxnq ‰ px1nqs “ 0. Finally, the probability distribution of xn under
Pν is Lebesgue-absolutely continuous for each n P N.

Note that Pν ! λbµbN since ν ! λ. Thus, the probability Pν rpxnq ‰ px1nqs is well-defined
as an integral w.r.t. λb µbN.
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Proof. Let pxnq be the lazy SGD sequence given by (15). Given an a.e. gradient ϕ, define
the SGD sequence pznq as z0 “ x0, zn`1 “ zn ´ γϕpzn, ξn`1q for n ě 0. The sequence pxnq
is F {BpRdqbN-measurable thanks to Lemma 1. Moreover, applying recursively the property
that ρPγ ! λ when ρ ! λ, we obtain that the distribution of xn is absolutely continuous for
each n P N.

To establish the proposition, it suffices to show that zn is F {BpRdq-measurable for each
n P N, and that Pνrzn ‰ xns “ 0, which results in particular in the absolute continuity of
the distribution of zn. We shall prove these two properties by induction on n. They are
trivial for n “ 0. Assume they are true for n. Recall that zn`1 “ zn ´ γ∇fpzn, ξn`1q if

pzn, ξn`1q P A, where A P BpRdq bT is such that pλ b µqpAcq “ 0, and xn`1 “ xn ´
γ∇fpxn, ξn`1q1pxn,ξn`1qP∆f

. The set B “ tω P Ω : zn`1 ‰ xn`1u satisfies B Ă B1 Y B2,
where

B1 “ tω P Ω : zn ‰ xnu and B2 “ tω P Ω : pzn, ξn`1q R Au.

By induction, B1 P F and PνpB1q “ 0. By the aforementioned properties of A, the F -
measurability of zn, and the absolute continuity of its distribution, we also obtain that B2 P F
and PνpB2q “ 0. Thus, B P F and PνpBq “ 0, and since xn`1 is F -measurable, zn`1 is F -
measurable.

Proposition 2 means that the SGD sequence does not depend on the specific a.e. gradient
used by the practioner, provided that the law of x0 has a density and γ P Γ. Let us make
this last assumption clearer. Consider for instance d “ 1 and suppose that fpx, sq “ 0.5x2

for all s. If γ “ 1, the SGD sequence xn`1 “ xn ´ γxn satisfies x1 “ 0 for any initial point
and thus, does not admit a density, whereas for any other value of γ, xn has a density for all
n, provided that x0 has a density. Otherwise stated, Γ “ R`zt1u in this example.

It is desirable to ensure that Γ contains almost all the points of R`. The next proposition
shows that this will be the case under mild conditions. The proof is given in 8.2.

Proposition 3. Assume that for µ–almost every s P Ξ, the function fp¨, sq satisfies the
property that at λ–almost every point of Rd, there is a neighborhood of this point on which it
is C2. Then, Γc is Lebesgue negligible.

This assumption holds true as soon as for µ-almost all s, fp¨, sq is tame, since in this case
Rd can be partitioned in manifolds on each of which fp¨, sq is C2 ([7]), and therefore fp¨, sq is
C2 (in the classical sense) on the union of manifolds of full dimension, and therefore almost
everywhere.

4.3 SGD as a Robbins-Monro Algorithm

We make the following assumption on the function f : Rd ˆ Ξ Ñ R.

Assumption 1. i) There exists a measurable function κ : Rd ˆ Ξ Ñ R` s.t. for each
x P Rd,

ş

κpx, sqµpdsq ă 8 and there exists ε ą 0 for which

@y, z P Bpx, εq, @s P Ξ, |fpy, sq ´ fpz, sq| ď κpx, sq}y ´ z}.

ii) There exists x P Rd such that fpx, ¨q is µ-integrable.

10



By this assumption, fpx, ¨q is µ-integrable for each x P Rd, and the function

F : Rd Ñ R, x ÞÑ

ż

fpx, sqµpdsq (17)

is locally Lipschitz on Rd. We denote by Z the set of (Clarke) critical points of F , as defined
in Equation (4).

Let pFnqně0 be the filtration Fn “ σpx0, ξ1, . . . , ξnq. We denote by En “ Er¨|Fns the
conditional expectation w.r.t. Fn, where Fn, stands for the λb µN-completion of Fn.

Theorem 1. Let Assumption 1 holds true. Consider γ P Γ and ν P MabspRdq XM1pRdq.
Let pxnqnPN˚ be a SGD sequence for f with the step γ. Then, for every n P N, it holds Pν-a.e.
that

i) F , fp¨, ξn`1q and fp¨, sq (for µ-almost every s) are differentiable at xn.

ii) xn`1 “ xn ´ γ∇fpxn, ξn`1q.

iii) Enrxn`1s “ xn ´ γ∇F pxnq.

Theorem 1 is important because it shows that Pν-a.e., the SGD sequence pxnq verifies

xn`1 “ xn ´ γ∇F pxnq ` γηn`1

for some random sequence pηnq which is a martingale difference sequence adapted to pFnq.

5 Dynamical Behavior

5.1 Assumptions and Result

In this section we prove that the SGD sequence pxnqnPN˚ (which is by Theorem 1, under the
stated assumptions, unique) closely follows a trajectory of a solution to the DI (7) as the
step size γ tends to zero. To state the main result of this section, we need to strengthen
Assumption 1.

Assumption 2. The function κ of Assumption 1 satisfies:

i) There exists a constant K ě 0 s.t.
ş

κpx, sqµpdsq ď Kp1` }x}q for all x.

ii) For each compact set K Ă Rd, supxPK
ş

κpx, sq2µpdsq ă 8.

The first point guarantees the existence of global solutions to (7) starting from any initial
point (see Section 2.3).

Assumption 3. The closure of Γ contains 0.

By Proposition 3, Assumption 3 is mild. It holds for instance if every fp¨, sq is a tame
function.

We recall that S´BF pAq is the set of solutions to (7) that start from any point in the set
A Ă Rd.

11



Theorem 2. Let Assumptions 1–3 hold true. Let tpxγnqnPN˚ : γ P p0, γ0su be a collection of
SGD sequences of steps γ P p0, γ0s. Denote by xγ the piecewise affine interpolated process

xγptq “ xγn ` pt{γ ´ nqpx
γ
n`1 ´ x

γ
nq p@t P rnγ, pn` 1qγqq .

Then, for every compact set K Ă Rd,

@ε ą 0, lim
γÑ0
γPΓ

˜

sup
νPMabspKq

Pν pdCpxγ ,S´BF pKqq ą εq

¸

“ 0 ,

where the distance dC is defined in (10). Moreover, the family of distributions tPνpxγq´1 :
ν PMabspKq, 0 ă γ ă γ0, γ P Γu is tight.

The proof is given in Section 8.4.
Theorem 2 implies that the interpolated process xγ converges in probability as γ Ñ 0

to the set of solutions to (7). Moreover, the convergence is uniform w.r.t. to the choice of
the initial distribution ν in the set of absolutely continuous measures supported by a given
compact set.

5.2 Importance of the Randomization of x0

In this paragraph, we discuss the case where x0 is no longer random, but set to an arbitrary
point in Rd. In this case, there is no longer any guarantee that the iterates xn only hit the
points where a gradient exist. We focus on the case where pxnq is a Clarke-SGD sequence of
the form (14), where the function ϕ is assumed BpRdqbT {BpRdq measurable for simplicity.
By Assumption 1, it is not difficult to see that ϕpx, ¨q is µ-integrable for all x P Rd and,
denoting by Epϕpx, ¨qq the corresponding integral w.r.t. µ, we can rewrite the iterates under
the form:

xn`1 “ xn ´ γEϕpxn, ¨q ` γηn`1,

where ηn`1 “ Erϕpxn, ¨qs ´ ϕpxn, ξn`1q is a martingale difference sequence for the filtra-
tion pFnq. Obviously, Eϕpx, ¨q P EBfpx, ¨q. As said in the introduction, we need Eϕpx, ¨q
to belong to BF pxq in order to make sure that the algorithm trajectory shadows the DI
9xptq P ´BF pxptqq. Unfortunately, the inclusion BF pxq Ă EBfpx, ¨q can be strict, which can
result in the fact that the DI 9xptq P ´EBfpxptq, ¨q generates spurious trajectories that con-
verge to spurious zeroes. The following example, which can be easily adapted to an arbitrary
dimension, shows a case where this phenomenon happens.

Example 1. Take a finite probability space Ξ “ t1, 2u and µpt1uq “ µpt2uq “ 1{2. Let
fpx, 1q “ 2x1xď0 and fpx, 2q “ 2x1xě0. We have F pxq “ x, and therefore BF p0q “ t1u,
whereas Bfp0, 1q “ Bfp0, 2q “ r0, 2s and therefore

ş

Bfp0, sqµpdsq “ r0, 1s. We see that 0 P
EBfp0, ¨q while 0 R BF p0q. Furthermore, the trajectory defined on R` as

xptq “

"

1´ t for t P r0, 1s
0 for t ą 1

, xp0q “ 1,

is a solution to the DI 9xptq P ´EBfpxptq, ¨q, but not to the DI 9xptq P ´BF pxptqq.

Example 2. Consider the same setting as in the previous example. Consider a stochastic
gradient algorithm of the form (1), initialized at x0 “ 0 with ϕ such that ϕp0, 1q “ ϕp0, 2q “ 0.
Then, the iterates xγn are identically zero. This shows that the stochastic gradient descent may
converge to a non critical point of F . Theorem 2 may fail unless a random initial point is
chosen.
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6 Long Run Convergence

6.1 Assumptions and Result

As discussed in the introduction, the SGD sequence pxnq is not expected to converge in
probability to Z when the step is constant. Instead, we shall establish the convergence (5).
The “long run” convergence referred to here is understood in this sense.

In all this section, we shall focus on the lazy SGD sequences described by Equation (15).
This incurs no loss of generality, since any two SGD sequences are equal Pν-a.e. by Proposi-
tion 2 as long as ν ! λ. Our starting point is to see the process pxnq and as a Markov process
which kernel Pγ is defined by Equation (16). Our first task is to establish the ergodicity
of this Markov process under the convenient assumptions. Namely, we show that Pγ has a
unique invariant probability measure πγ , i.e., πγPγ “ πγ , and that }Pnγ px, ¨q ´ πγ}TV Ñ 0

as n Ñ 8 for each x P Rd, where } ¨ }TV is the total variation norm. Further, we need to
show that the family of invariant distributions tπγuγPp0,γ0s for a certain γ0 ą 0 is tight. The
long run behavior referred to above is then intimately connected with the properties of the
accumulation points of this family as γ Ñ 0. To study these properties, we get back to the DI
9x P ´BF pxq (we recall that a concise account of the notions relative to this dynamical system
and needed in this paper is provided in Section 2.3). The crucial point here is to show, with
the help of Theorem 2, that the accumulation points of tπγu as γ Ñ 0 are invariant measures
for the set-valued flow induced by the DI. In its original form, this idea dates back to the
work of Has’minskĭı [13]. We observe here that while the notion of invariant measure for
a single-valued semiflow induced by, say, an ordinary differential equation, is classical, it is
probably less known in the case of a set-valued differential inclusion. We borrow it from the
work of Roth and Sandholm [21].

Having shown that the accumulation points of tπγu are invariant for the DI 9x P ´BF pxq,
the final step of the proof is to make use of Poincaré’s recurrence theorem, that asserts
that the invariant measures of a semiflow are supported by the so-called Birkhoff center of
this semiflow (again, a set-valued version of Poincaré’s recurrence theorem is provided in
[3, 11]). To establish the convergence (5), it remains to show that the Birkhoff center of the
DI 9x P ´BF pxq coincides with zer BF . The natural assumption that ensures the identity of
these two sets will be that F admits a chain rule [9, 7, 10].

Our assumption regarding the behavior of the Markov kernel Pγ reads as follows.

Assumption 4. There exist measurable functions V : Rd Ñ r0,`8q, p : Rd Ñ r0,`8q,
α : p0,`8q Ñ p0,`8q and a constant C ě 0 s.t. the following holds for every γ P ΓXp0, γ0s.

i) There exists R ą 0 and a positive Borel measure ρ on Rd (R, ρ possibly depending on γ)
such that

@x P clpBp0, Rqq, @A P BpRdq, Pγpx,Aq ě ρpAq.

ii) supclpBp0,Rqq V ă 8 and infBp0,Rqc p ą 0. Moreover, for every x P Rd,

PγV pxq ď V pxq ´ αpγqppxq ` Cαpγq1}x}ďR. (18)

iii) The function ppxq converges to infinity as }x} Ñ 8.
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Assumptions of this type are frequently encountered in the field of Markov chains. As-
sumption 4–(i) states that clpBp0, Rqq is a so-called small set for the kernel Pγ , and Assump-
tion 4–(ii) is a standard drift assumption. Taken together, they ensure that the kernel Pγ is a
so-called Harris-recurrent kernel, that it admits a unique invariant probability distribution πγ ,
and finally, that this kernel is ergodic in the sense that }Pγpx, ¨q ´ πγ}TV Ñ 0 as nÑ8 (see
[19]). The introduction of the factors αpγq and Cαpγq in Equation (18) guarantees moreover
the tightness of the family tπγuγPp0,γ0s.

In Section 6.2, we provide sufficient and verifiable conditions ensuring the validity of
Assumption 4 for Pγ .

As announced above, we also need:

Assumption 5. The function F defined by (17) admits a chain rule, namely, for any ab-
solutely continuous curve z : R` Ñ Rd, for almost all t ą 0, @v P BF pzptqq, xv, 9zptqy “
pF ˝ zq1ptq .

Assumption 5 is satisfied as soon as F is path-differentiable, for instance when F is either
convex, regular, Whitney stratifiable or tame (see [8, Proposition 1]and [7, 10]).

Theorem 3. Let Assumptions 1-3 and 4-5 hold true. Let tpxγnqnPN˚ : γ P p0, γ0su be a
collection of SGD sequences of step-size γ. Then, the set Z “ tx : 0 P BF pxqu is nonempty
and for all ν PMabspRdq and all ε ą 0,

lim sup
nÑ8

Pν pdpxγn,Zq ą εq ÝÝÝÑ
γÑ0
γPΓ

0. (19)

6.2 The Validity of Assumption 4

In this paragraph, we provide sufficient conditions under which Assumption 4 hold true. A
simple way to ensure the truth of Assumption 4-(i) is to add a small random perturbation to
the function ϕ0px, sq. Formally, we modify algorithms described by Equation (15) and (21),
and write

xn`1 “ xn ´ γϕ0pxn, ξn`1q ` γεn`1

where pεnq is a sequence of centered i.i.d. random variables of law µd, independent from
tx0, pξnqu, and such that the distribution of ε1 „ µd has a continuous and positive density
on Rd. The Gaussian case ε1 „ N p0, aIdq where a ą 0 is some small variance is of course a
typical example of such a perturbation.

Consider now a fixed γ and denote by rP the Markov kernel induced by the modified
equation.

Proposition 4. Let Assumption 2 hold true. Then, for each R ą 0, there exists ε ą 0 such
that

@x P clpBp0, Rqq, @A P BpRdq, rP px,Aq ě ε λpAX clpBp0, 1qqq,

Thus, Assumption 4-(i) is satisfied for rP .

We now turn to the assumptions 4-(ii) and 4-(iii).

Proposition 5. Assume that there exists R ě 0, C ą 0, and a measurable function β : Ξ Ñ
R` such that the following conditions hold:
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i) For every s P Ξ, the function fp¨, sq is differentiable outside the ball clpBp0, Rqq. More-
over, for each x, x1 R clpBp0, Rqq, }∇fpx, sq ´∇fpx1, sq} ď βpsq}x´ x1} and

ş

β2dµ ă 8.

ii) For all x R clpBp0, Rqq,
ş

}∇fpx, sq}2µpdsq ď Cp1` }∇F pxq}2q.

iii) lim}x}Ñ8 }∇F pxq} “ `8.

iv) Function F is lower bounded i.e., inf F ą ´8.

Then, it holds that

PγF pxq ď F pxq ´ γp1´ γKq1}x}ą2R}∇F pxq}2 ` γ2K1}x}ą2R ` γK1}x}ď2R (20)

for some constant K ą 0. In particular, Assumptions 4-(ii) and 4-(iii) hold true.

We finally observe that this proposition can be easily adapted to the case where the kernel
Pγ is replaced with the kernel rP of Proposition 4.

7 The Projected Subgradient Algorithm

In many practical settings, the conditions of Proposition 5 that ensure the truth of Assump-
tions 4–(ii) and 4–(iii) are not satisfied. This is for instance the case when the function f is
described by Equation (3) with the mappings σ` at the right hand side of this equation being
all equal to the ReLU function. In such situations, it is often pertinent to replace the SGD
sequence with a projected version of the algorithm. Given an a.e.-gradient ϕ of the function f
and a non empty compact and convex set K Ă Rd, a projected SGD sequence pxγ,Kn q is given
by the recursion

xγ,K0 “ x0, xγ,Kn`1 “ ΠKpx
γ,K
n ´ γϕpxγ,Kn , ξn`1qq , (21)

where ΠK stands for a Euclidean projection onto K. Our purpose is to generalize Theorem 2 to
this situation. This generalization is not immediate for several reasons. First, the projection
step is likely to introduce spurious local minima. As far as the iterates (21) are concerned,
the role of differential inclusion (7) is now played by the differential inclusion:

9xptq P ´BF pxptqq ´NKpxptqq , (22)

where NKpxq stands the normal cone of K at point x. The set of equilibria of the above
differential inclusion coincides with the set

ZK :“ tx P Rd : 0 P ´BF pxq ´NKpxqu ,

which we shall refer to as the set of Karush-Kuhn-Tucker points. A second theoretical diffi-
culty is related to the fact that Proposition 2 does no longer hold. Indeed, it can happen x0

has a density, but the next iterates xγ,Kn don’t. The reason is that xγ,Kn generally has a non
zero probability to be in the (Lebesgue negligible) border of K, that is, clpKqz intpKq, where
clpKq and intpKq respectively stand for the closure and the interior of K.

We shall focus here on the case where K “ clpBp0, rqq with r ą 0. We shall use Πr, x
γ,r
n ,

Nr as shorthand notations for ΠK, xγ,Kn , and NK respectively. In this case Nrpxq “ t0u if
‖x‖ ă r, Nrpxq “ tλx : λ ě 0u if ‖x‖ “ r and Nrpxq “ H otherwise.

We make the following assumption.
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Assumption 6. For every x P Rd, the law of ϕ0px, ξq, where ξ „ µ, is absolutely continuous
relatively to Lebesgue.

Assumption 6 is much stronger than Assumption 3. Indeed, it implies that the distribution
of xγ,rn ´ γϕpxγ,rn , ξn`1q is always Lebesgue-absolutely continuous. It is useful to note though
that Assumption 6 holds upon adding at each step a small random perturbation to ϕ0 as in
Section 6.2 above.

In order to state our first result in this framework, we need to introduce some new nota-
tions. We let Sprq :“ tx : ‖x‖ “ r, x P Rdu be the sphere of radius r. By [12, Theorem 2.49],
there is a unique measure2 %1 on Sp1q such that for any positive function f : Rd Ñ R, we
have:

ż

fpxqλdpdxq “

ż 8

0

ż

Sp1q
fprθqrd´1%1pdθqλ

1pdrq . (23)

We define the measure %r on Sprq as %rpAq “ %1pA{rq for each Borel set A Ă Sprq. We denote
as Mr the set of measures ν “ ν1 ` ν2, where ν1 PMabs and ν2 ! %r. For a set C Ă Rd we
define MrpCq as the measures in Mr that are supported on C. Notice that MabspCq ĂMrpCq.

The next proposition, which is proven in the same way as Proposition 2, shows that for
almost every r ą 0, all projected SGD sequences are almost surely equal.

Proposition 6. Let Assumption 6 hold true. Then, for almost every r ą 0, @ν PMr, each
projected SGD sequence pxγ,rn q is F {BpRdqbN-measurable. Moreover, for any two projected
SGD sequences pxγ,rn q and pyγ,rn q, it holds that Pν rpxγ,rn q ‰ pyγ,rn qs “ 0. Finally, under Pν , for
every n P N, the probability distribution of xγ,rn is in Mr.

By Proposition 6 we can focus on the lazy projected SGD sequence:

xγ,rn`1 “ Πrpx
γ,r
n ´ γϕ0px

γ,r
n , ξn`1qq . (24)

We define its associated kernel

P rγ gpxq “

ż

gpΠrpx´ γϕ0px, sqqqµpdsq . (25)

The next two theorems are analogous to Theorems 1 and 2.

Theorem 4. Let Assumptions 1 and 6 hold. Then for almost every r ą 0 , @ν P Mr, for
every n P N it holds Pν-a.e.

i) F , fp¨, ξn`1q and fp¨, sq (for µ-a.e. s) are differentiable at xγ,rn .

ii) xγ,rn`1 P x
γ,r
n ´ γ∇fpxγ,rn , ξn`1q ´ γNrpΠrpx

γ,r
n ´ γ∇fpxγ,rn , ξn`1qqq.

Theorem 5. Let Assumptions 1–2 and 6 hold true. Denote xγ,r the piecewise affine interpo-
lated process:

xγ,rptq “ xγ,rn ` pt{γ ´ nqpxγ,rn`1 ´ x
γ,r
n q p@t P rnγ, pn` 1qγqq .

2As it is clear from Equation (23) we can see pλ1, %1q as a polar coordinates representation of the Lebesgue
measure λd.
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Then, for almost every r ą 0, for every compact set K Ă clpBp0, rqq,

@ε ą 0, lim
γÑ0

˜

sup
νPMrpKq

Pν pdCpxγ,r,S´BF´NrpKqq ą εq

¸

“ 0 .

Moreover, for any γ0 ą 0, the family of distributions tPνpxγ,rq´1 : ν PMrpKq, 0 ă γ ă γ0u is
tight.

We compare Theorems 1 and 2. First, because of the projection step (and with the help
of Assumption 6), the law of the n-th iterate is no longer in Mabs, but in Mr. Second, the
continuous counterpart of Equation (21) is now the differential inclusion (22) Note that, if the
solutions of the DI (7) that start from K all lie in clpBp0, rqq, then the set of these solutions
coincides with the set of solutions of the DI (22) that start from K.

The analysis of the convergence of the iterates in the ”long run” is greatly simplified by
the introduction of the projection step. Compared to Assumption 4, we only assume the
existence of a small set for P rγ , the drift condition of the form 4-(ii)–(iii) is then automatically
satisfied, thanks to the projection step (see Section 8.5).

Assumption 7. There is R ą 0 and γ0 ą 0 such that for every γ P p0, γ0s there is ργ such
that Assumption 4-(i) hold for pR, ργq (note that R is independent of γ here).

As shown in Section 6.2, Assumption 7 holds upon adding to ϕ0 a small random pertur-
bation.

Theorem 6. Let Assumptions 1-2 and 5–7 hold. Let tpxγ,rn qnPN˚ : γ P p0, γ0su be a collection
of projected SGD sequences of step-size γ. Then, for almost every 0 ă r ď R, the set
Zr “ tx : 0 P BF pxq `Nrpxqu is nonempty and for all ν PMr and all ε ą 0,

lim sup
nÑ8

Pν pdpxγ,rn ,Zrq ą εq ÝÝÝÑ
γÑ0

0. (26)

Theorem 6 is analogous to Theorem 3. Notice that, since Mabs Ă Mr, x0 can still be
initialized under a Lebesgue-absolutely continuous measure. On the other hand, as explained
in the beginning of this section, due to the projection step, the iterates, instead of converging
to Z, are now converging to the set of Karush-Kuhn-Tucker points related to the DI (22).

8 Proofs

8.1 Proof of Lemma 1

By definition, px, sq P ∆f means that there exists dx P Rd (the gradient) s.t. fpx ` h, sq “
fpx, sq ` xdx, hy ` op‖h‖q. That is to say px, sq belongs to the set:

č

εPQ

ď

δPQ

č

0ă‖h‖ďδ

"

py, sq :

ˇ

ˇ

ˇ

ˇ

fpy ` h, sq ´ fpy, sq ´ xdx, hy

‖h‖

ˇ

ˇ

ˇ

ˇ

ă ε

*

. (27)

In addition, using that fp¨, sq is continuous, the above set is unchanged if the inner intersection
over 0 ă ‖h‖ ď δ is replaced by an intersection over the h s.t. 0 ă ‖h‖ ď δ and having rational
coordinates i.e., h P Qd. Define:

∆1
f :“

č

ε1PQ

ď

dPQd

č

εPQ

ď

δPQ

č

0ă‖h‖ďδ
hPQd

"

px, sq :

ˇ

ˇ

ˇ

ˇ

fpx` h, sq ´ fpx, sq ´ xd, hy

‖h‖

ˇ

ˇ

ˇ

ˇ

ă ε` ε1
*

(28)
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By construction, ∆1
f is a measurable set. We prove that ∆1

f “ ∆f . Consider px, sq P ∆f and
let dx be the gradient of fp¨, sq at x. By (27) for all ε P Q, there is a δ P Q such that:

px, sq P
č

hďδ,hPQd

"ˇ

ˇ

ˇ

ˇ

fpx` h, sq ´ fpx, sq ´ xdx, hy

h

ˇ

ˇ

ˇ

ˇ

ă ε

*

For any ε1 ą 0, choose d1 P Qd such that ‖d1 ´ dx‖ ď ε1. Using the previous inclusion, for all
ε, there exists therefore δ P Q s.t.

px, sq P
č

hďδ,hPQd

"
ˇ

ˇ

ˇ

ˇ

fpx` h, sq ´ fpx, sq ´ xdq, hy

h

ˇ

ˇ

ˇ

ˇ

ă ε` ε1
*

which means ∆f Ă ∆1
f . To show the converse, consider px, sq P ∆1

f . Let pε1kq be a positive

sequence of rationals converging to zero. By definition, for every k, there exists dk P Qd s.t.
for all ε, there exists δkpεq, s.t. for all (rational) h ď δkpεq,

ˇ

ˇ

ˇ

ˇ

fpx` h, sq ´ fpx, sq ´ xdk, hy

h

ˇ

ˇ

ˇ

ˇ

ă ε` ε1k . (29)

Moreover, one may choose δkpεq ď δ0pεq. Inspecting first the inequality (29) for k “ 0, we

easily obtain that the quantity fpx`h,sq´fpx,sq
h is bounded uniformly in h s.t. 0 ă }h} ď δ0pεq.

Using this observation and again Equation (29), this in turn implies that pdkq is a bounded
sequence. There exists d P Rd and s.t. dk Ñ d along some extracted subsequence. Now
consider ε ą 0 and choose k such that ‖dk ´ d‖ ă ε

2 and ε1k ă
ε
2 . For all h ď δkpε{2q,

ˇ

ˇ

ˇ

ˇ

fpx` h, sq ´ fpx, sq ´ xd, hy

h

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

fpx` h, sq ´ fpx, sq ´ xdk, hy

h

ˇ

ˇ

ˇ

ˇ

` ‖d´ dk‖ ă ε

This means that d is the gradient of fp¨, sq at x, hence ∆1
f Ă ∆f . Hence, the first point of

the Lemma 1 is proved.
Denoting as ei the ith canonical vector of Rd, the ith-component rϕ0si in Rd of the function

ϕ0 is given as

rϕ0px, sqsi “ lim
tÑ0

fpx` tei, sq ´ fpx, sq

t
1∆f

px, sq,

and the measurability of ϕ0 follows from the measurability of f and the measurability of 1∆f
.

Finally, assume that fp¨, sq is locally Lipschitz continuous for every s P Ξ. From Rademacher’s
theorem [9, Ch. 3], fp¨, sq is almost everywhere differentiable, which reads

ş

p1´1∆f
px, sqqλpdxq “

0. Using Fubini’s theorem,
ş

RdˆΞp1´1∆f
px, sqq λpdxqbµpdsq “ 0, and the last point is proved.

8.2 Proof of Proposition 3

The idea of the proof is to show that for almost every γ and s we have that gs,γpxq :“
px´ γ∇fpx, sqq1∆f

px, sq is almost everywhere a local diffeomorphism.

In order to prove that we define for each px, sq P RdˆΞ the pseudo-hessian Hpx, sq P Rdˆd
as

Hpx, sqi,j “ lim sup
tÑ0

x∇fpx` tej , sq1∆f
px` tej , sq ´∇fpx, sq, eiy

t
1∆f

px, sq .

Since it is a limit of measurable functions, H is BpRdq b T measurable, and if fp¨, sq
is two times differentiable at x then Hpx, sq is just the ordinary hessian. Now we define
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lpx, s, γq “ detpγHpx, sq ´ Idq if every entry in Hpx, sq is finite, and lpx, s, γq “ 1 otherwise,
it is a BpRdq bT b BpR`q measurable function (as a sum of two measurable functions). By
the inverse function theorem we have that if fp¨, sq is C2 at x and if detpγHpx, sq ´ Idq ‰ 0,
then gs,γp¨q is a local diffeomorphism at x. Therefore lpx, s, γq ‰ 0 implies either the latter or
fp¨, sq is not C2 at x (or both).
Let λd, λ1 denote Lebesgue measures respectively on Rd and R`, we have by Fubini’s theorem:

ż

1lpx,s,γq“0λ
dpdxq b µpdsq b λ1pdγq “

ż

λd b µptpx, sq : lpx, s, γq “ 0uqλ1pdγq

“

ż ż ż

1lpx,s,γq“0λ
1pdγqλdpdxqµpdsq

“ 0 ,

where the last equality comes from the fact that for px, sq fixed lpx, s, γq “ 0 only if 1{γ is in the
spectrum of Hpx, sq which is finite. Therefore we have a Γ a set of full measure in R` such that
for γ P Γ we have λd b µptpx, sq : lpx, s, γq “ 0uq “ 0. Once again applying Fubini’s theorem
we get that for almost every s P Ξ we have tx : gs,γp¨q is a local diffeomorphism at xuq is of
λd-full measure (since for each s, fp¨, xq is almost everywhere C2). Finally, for A Ă Rd, γ P Γ
and ν PMabspRdq, we have

νPγpAq “ ν b µptpx, sq : gs,γpxq P Auq ď λd b µptpx, sq : gs,γpxq P Auq ,

and by Fubini’s theorem,

λd b µptpx, sq : gs,γpxq P Auq “

ż

λdptx : gs,γpxq P Auqµpdsq

“

ż

λdptx : gs,γpxq P A and fp¨, sq is C2 at xuqµpdsq

“

ż

λdptx : gs,γpxq P A and gs,γp¨q is a local diffeomorphism at xuqµpdsq .

Now by separability of Rd there is a countable family of open neighborhoods pViqiPN such that
for any open set O we have O “

Ť

jPJ Vj . The set of x where gp¨, s, γq is a local diffeomorphism
is an open set, hence

tx : gs,γpxq P A and gs,γp¨q is a local diffeomorphism at xu “
ď

iPI

Vi X tx : gs,γpxq P Au .

Since an image of a null set by a diffeomorphism is a null set we have

λdptx : gs,γpxq P Au X Viq “ 0 .

Hence, νPγpAq “ 0, which proves our claim.

8.3 Proof of Theorem 1

Take ν ! λ and a SGD sequence pxnqnPN, let S1 Ă Rd be the set of x for which ∇fpx, sq
exists for µ- almost every s, i.e.,

S1 :“

"

x P Rd :

ż

Ξ
p1´ 1∆f

px, sqq µpdsq “ 0

*

.
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When Assumption 1 holds, Rademacher’s theorem, lemma 1 and Fubini’s theorem imply
that S1 P BpRdq and λpRdzS1q “ 0. Hence, for µ-a.e. s we have fp¨, sq differentiable at x0,
and since ξ1 „ µ, fp¨, ξ1q is differentiable at x0. Now by Rademacher’s theorem again, the
set S2 Ă Rd where F is differentiable satisfies λpRdzS2q “ 0, therefore F is differentiable at
x0. Moreover, with probability one x0 is in S1 X S2. Define Apxq :“ ts P Ξ : px, sq R ∆fu. By
Assumption 1, }∇fpx, ¨q} is µ-integrable. Moreover, for all x P S1 X S2 and all v P Rd

x

ż

∇fpx, sq1∆f
px, sqµpdsq, vy “

ż

ΞzApxq
x∇fpx, sq, vyµpdsq

“

ż

ΞzApxq
lim

tPR˚Ñ0

fpx` tv, sq ´ fpx, sq

t
µpdsq

“ lim
tPR˚Ñ0

ż

Ξ

fpx` tv, sq ´ fpx, sq

t
µpdsq

“ lim
tPR˚Ñ0

F px` tvq ´ F pxq

t
“ x∇F pxq, vy

where the interchange between the limit and the integral follows from Assumption 1 and
the dominated convergence theorem. Hence, ∇F pxq “

ş

∇fpx, sq1∆f
px, sqµpdsq for all x P

S1 X S2. Now denote by νn the law of xn. Since we assumed that ν0 ! λ, it holds that
Pνpx0 P S1 X S2q “ 1. Therefore, with probability one,

x1 “ x11S1XS2px0q “ px0 ´ γ∇fpx0, ξ1qq1S1XS2px0q “ x0 ´ γ∇fpx0, ξ1q .

Thus, x1 is integrable whenever x0 is integrable, and E0px1q “ x0 ´ γ∇F px0q. Since by
Assumption ν1 ! λ we can iterate our argument for x2 and then for all xn and the conclusions
of Theorem 1 follow.

8.4 Proof of Theorem 2

We want to apply [6, Theorem 5.1.], and therefore verify its assumptions [6, Assumption RM].
In order to fall in its setting we first need to rewrite our kernel in a more appropriate way. As
BF takes nonempty compact values, it admits a measurable selection ϕpxq P BF pxq [1, Lemma
18.2 and Corollary 18.15]. Take γ P Γ, a SGD sequence pxγnq and notice that by Theorem 1
it is Pν almost surely always in DF X S1, where S1 is the set of x where ∇fpx, sq exists for
µ-a.e. s. Therefore its Markov kernel can be equivalently defined as:

P 1γpx, gq :“ 1DFXS1pxqPγpx, gq ` 1pDFXS1qcpxqgpx´ γϕpxqq .

Now we can apply [6, Theorem 5.1.] with hγps, xq “ ´p1DFXS1pxq∇F pxq`1pDFXS1qcpxqϕpxqq
(note that it is independent of s) and we have hpx, sq P Hpx, sq “ Hpxq :“ ´BF pxq. As we
show next, [6, Assumption RM] now easily follows.
First, it is immediate from the general properties of the Clarke subdifferential that the set-
valued map ´BF is proper and uppersemicontinuous with convex and compact values, hence
the assumption (iii) of [6, Assumption RM]. Assumption (ii) is immediate by the uppersemi-
continuity of ´BF . Moreover, we obtain from Assumption 2 that there exists a constant
K ě 0 such that

}BF pxq} ď Kp1` }x}q.
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Thus, S´BF is defined on the whole Rd, and S´BF is closed in pCpR`,Rdq,dq (see [2]), hence
assumption (v). Finally, assumption (vi) comes from Assumption 2.

We remark that although, [6, Theorem 5.1] deals with a family of measures pPaqaPK, the
proofs remain unchanged when we consider pPνqνPMabspKq.

8.5 Proof of Theorems 3 and 6

Both theorems are proved in the same way. In the following Qγ will denote either Pγ and in
this case H will denote ´BF , or Qγ “ P rγ and H “ ´BF ´Nr. The proof will be done in three
steps:

• Lemma 2: Qγ has a unique invariant probability distribution πγ , with πγ P Mabs if
Qγ “ Pγ and πγ P Mr otherwise, moreover Qγ is ergodic in the sense of the Total
Variation norm.

• Lemma 3: The family tπγuγPp0,γ0s is tight.

• Proposition 8: The accumulation points of tπγuγPp0,γ0s as γ Ñ 0 are invariant for the
DI 9x P Hpxq.

Before stating Lemma 2, we recall a general result on Markov processes. LetQ : RdˆBpRdq Ñ
r0, 1s be a Markov kernel on Rd. A set B Ă Rd is said to be a small-set for the kernel Q if
there exists a positive measure ρ on Rd such that Qpx,Aq ě ρpAq for each A P BpRdq, x P B.

Proposition 7. Assume that B is a small set for Q. Furthermore, assume that there exists
a measurable function W : Rd Ñ r0,8q that is defined on Rd and bounded on B, and a real
number b ě 0, such that

QW ďW ´ 1` b1B. (30)

Then, Q admits a unique invariant probability distribution π, and moreover, the ergodicity
result

@x P Rd, }Qnpx, ¨q ´ π}TV ÝÝÝÑ
nÑ8

0 (31)

holds true.

Indeed, by [19, Theorem 11.3.4], the kernel Q is a so-called positive Harris recurrent,
meaning among others that it has a unique invariant probability distribution. Moreover, Q
is aperiodic, hence the convergence (31), as shown by, e.g., [19, Theorem 13.0.1].

Lemma 2. Assume that either Assumptions 4-(i) 4-(ii) hold if Qγ “ Pγ or Assumption 7
holds and r ď R if Qγ “ P rγ , then for every γ P p0, γ0s, the kernel Qγ admits a unique
invariant measure πγ. Moreover,

@x P Rd,
›

›Qnγ px, ¨q ´ πγ
›

›

TV
ÝÝÝÑ
nÑ8

0. (32)

Finally, if Qγ “ Pγ, assumptions of Theorem 1 hold true and γ P Γ then πγ is absolutely
continuous w.r.t. the Lebesgue measure. If Qγ “ P rγ and assumptions of Theorem 4 hold
true, then πγ PMr.
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Proof. By the inequality (18), the kernel Pγ satisfies an inequality of the type (30), namely,
PγV ď V ´ αpγqθ ` Cαpγq1}x}ďR, for some θ, C ą 0. Similarly, under Assumption 7 and
r ď R, we have that for every x P clpBp0, rqq:

P rγ px,Aq “ Pγpx,Π
´1
r pAqq ě ργpΠ

´1
r pAqq ,

that is to say clpBp0, rqq is a small set for P rγ . Inequality of the type Assumption 4-(ii)–(iii)
then hold for e.g. C “ r, αpγq “ 1, V “ ‖x‖` r1‖x‖ąr and p “ ‖x‖.

Consider the case where Qγ “ Pγ , to prove that πγ is absolutely continuous w.r.t. the
Lebesgue measure, consider a λ-null set A. By the convergence (32), we obtain that for any
x P Rd, Pnγ px,Aq Ñ πγpAq. Now take ν ! λ. By Proposition 2, we have that νPnγ ! λ.
Hence, by the dominated convergence theorem,

0 “ νPnγ pAq “

ż

Pnγ px,Aqνpdxq Ñ

ż

πγpAqνpdxq “ πγpAq .

If Qγ “ P rγ we obtain the same result with the help of Proposition 6.

Lemma 3. Let either Assumptions 4-(i) – 4-(iii) hold if Qγ “ Pγ or Assumption 7 hold
and r ď R if Qγ “ P rγ . Let πγ be the invariant distribution of Qγ. Then, the family
tπγ : γ P p0, γ0su is tight.

Proof. If Qγ “ P rγ then the family πγ is supported by clpBp0, rqq and is, therefore, tight.
Otherwise we iterate (18), to obtain:

n
ÿ

k“0

Qk`1
γ V ď

n
ÿ

k“0

QkγV ´ αpγq
n
ÿ

k“0

Qkγp` Cpn` 1qαpγq .

Therefore, since 0 ď QkγV ă `8 we have:

αpγq
n
ÿ

k“0

Qkγp ď V ` Cpn` 1qαpγq .

For a fixed M ą 0 we will bound now πγpp ^Mq. Since πγ is an invariant distribution for
Qγ , we have πγP

k
γ “ πγ . Hence, we have:

πγpp^Mq “
1

n` 1

n
ÿ

k“0

πγQ
k
γpp^Mq ď

1

n` 1

n
ÿ

k“0

πγpQ
k
γp^Mq

ď πγ

ˆ„

V

pn` 1qαpγq
` C



^M

˙

.

Letting nÑ `8, by the dominated convergence theorem we obtain πγpp^Mq ď πγpC^Mq.
And therefore by monotone convergence theorem πγppq ď C.
Fix now ε ą 0, there is a K ą 0 such that C

K ď ε, and by coercivity of p there is r ą 0 such
that:

πγp‖x‖ ą rq ď πγpp ą Kq ď
C

K

where the last bound comes from Markov’s inequality. This concludes the proof.
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The next proposition will show that any accumulation point of πγ is an invariant measure
for the set-valued flow induced by the DI 9xptq P Hpxptqq, first we introduce some definitions.
Define the shift operator Θt : CpR`,Rdq Ñ CpR`,Rdq by Θtpxq “ xpt`¨q, and the projection
operator p0 : CpR`,Rdq Ñ Rd by p0pxq “ xp0q. Then, we have the following definition (see
[21] for details):

Definition 3. We say that π P MpRdq is an invariant distribution for the flow induced by
the DI 9xptq P Hpxptqq, if there is ν PMpCpR`,Rdqq, such that:

i) supp ν P SHpRdq,

ii) νΘ´1
t “ ν,

iii) νp´1
0 “ π.

Proposition 8. Let Assumptions 1–3 and 4 hold true. Denote by πγ the unique invariant
distribution of Pγ. Let pγnq be a sequence on p0, γ0s X Γ s.t. γn Ñ 0 and πγn converges
narrowly to some probability measure π. Then, π is an invariant distribution for the flow
induced by 9xptq P ´BF pxptqq.

Similarly, under Assumptions 1–2 and 6–7, denoting πγ the unique invariant distribution
of P rγ , if πγn Ñ π, then π is an invariant distribution for the flow induced by 9xptq P ´BF pxptqq´
Nrpxptqq.

Proof. Consider the case where Qγ “ Pγ . The proof essentially follows [6, section 7.]. Fix an
ε ą 0 and write πn instead of πγn for simplicity. By Lemma 3 we have a compact K such that

πnpKq ą 1 ´ ε, we thus can define the conditional measures πKn pAq :“ πnpAXKq
πnpKq

. Moreover,

we have πKn PMabspKq, therefore we can apply Theorem 2 and get that there is a compact

set C of CpR`,Rdq such that PπKγn ,γnX´1
γn pCq ě 1´ ε. Now we have

Pπn,γnp¨q “
ż

Rd
Pa,γnp¨qπnpdaq ě

ż

K
Pa,γnp¨qπnpdaq ě πnpKqPπ

K
n ,γnp¨q ,

hence
Pπγn ,γnX´1

γn pCq ě πnpKqPπ
K
γn ,γnX´1

γn pCq ě p1´ εq
2 .

Since ε is arbitrary this proves the tightness of vn :“ Pπγn ,γnX´1
γn . Take πn Ñ π and vn Ñ v P

MpCpR`,Rdqq. We now prove that v is an invariant distribution for the flow induced by the
DI associated to ´BF (see Definition 3.)
We have πn “ vnp

´1
0 , by continuity of p0. Thus, π “ vp´1

0 . Therefore, we have (iii) of
Definition 3. Let η ą 0. By weak convergence of vn,

vptx P CpR`,Rdq : dpx,S´BF pRdqq ď ηuq ě lim sup
n

vnptx P CpR`,Rdq : dpx,S´BF pRdqq ď ηuq

and

vnptx P CpR`,Rdq : dpx,S´BF pRdqq ď ηuq ě vnptx P CpR`,Rdq : dpx,S´BF pKqq ă ηuq

ě πnpKqPπ
K
γn
,γnpdpXγn ,S´BF pKqq ă ηq

ě p1´ εqPπ
K
γn
,γnpdpXγn ,S´BF pKqq ă ηq .

The last term converges to 1 ´ ε, by Theorem 2, and by weak convergence we have vptx P
CpR`,Rdq : dpx,S´BF pRdqq ě ηuq ě p1 ´ εq, now letting η Ñ 0, by monotone convergence
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we have vpS´BF pRdqqq ě 1 ´ ε which proves (i) of Definition 3. Finally, the second point of
Definition 3 is shown just like in [6, section 7.].

The proof of the caseQγ “ P rγ is substantially the same under straightforward adaptations.

After some definitions we recall an important result about the support of a flow-invariant
measure. The limit set Lf of a function f P CpR`,Rdq is

Lf “
č

tě0

fprt,8qq,

and the limit set LSHpaq of a point a P Rd for SH is

LSHpaq “
ď

xPSHpaq

Lx.

A point a P Rd is said SH-recurrent if a P LSHpaq. The Birkhoff center BCSH
of SH is the

closure of the set of its recurrent points:

BCSH
“

!

a P Rd : a P LSHpaq

)

.

In [11] (see also [3]), a version of Poincaré’s recurrence theorem, well-suited for our set-valued
evolution systems, was provided:

Proposition 9. Each invariant measure for SH is supported by BCSH
.

With the help of Proposition 9 we can finally prove Theorem 3.

Proof. Take γ P Γ, ε ą 0 and pxγnq an associated SGD sequence. We have by (31):

lim sup
nÑ8

Pν rdistpxγn,Zq ą εs “ πγptx P Rd : dpx,Zq ą εuq .

Now take any sequence γi Ñ 0 with γi P Γ, and πγi the associated invariant distribution,
we know from Lemmas 3-8 that we can extract a subsequence such that πγi Ñ π, with π an
invariant measure for the evolution system S´BF . Therefore by weak convergence we have:

lim
iÑ`8

πγiptx P R
d : dpx,Zq ą 2εuq ď lim

iÑ`8
πγiptx P R

d : dpx,Zq ě εuq

ď πptx P Rd : dpx,Zq ě εuq,

where the last line comes from the Portmanteau theorem. We show that suppπ Ă S, and
therefore the last term is equal to zero, which concludes the proof. To that end, we make use
of Proposition 9, that shows that each invariant measure of S´BF is supported by BCS´BF .
Thus, it remains to show that BCS´BF “ Z (which at the same time will ensure us that Z is
nonempty). It is obvious that Z Ă BCS´BF . To show the reverse inclusion, take a P LS´BF paq.
Then, there exists a solution x to the differential inclusion such that xp0q “ a and a P Lx. But
under Assumption 5 it holds ([10, lemma 5.2]) that } 9xptq} “ }B0F pxptqq} almost everywhere,
and, moreover,

@t ě 0, F pxptqq ´ F pxp0qq “ ´

ż t

0
}B0F pxpuqq}

2du.
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Therefore xptq “ a for each t ě 0, thus, a P S. Observing that Z is a closed set (since BF is
graph-closed, see [9, Proposition 2.1.5]), we obtain that BCS´BF “ Z.

Similarly, take γi Ñ 0 and and pxγi,rn q the associated projected SGD sequences. After an
extraction we get that πγi Ñ π, with π an invariant measure for the flow S´BF´Nr and:

lim
γiÑ0

lim sup
nÑ8

Pν rdistpxγi,rn ,Zrq ą 2εs ď πptx P Rd : dpx,Zrq ą εuq .

Taking a P LS´BF´Nr paq
, and x a solution to the associated differential inclusion with

xp0q “ a, we get under Assumption 5 [10, Lemma 6.3.] that ‖ 9xptq‖ “ mint‖v‖ : v P BF pxptqq`
Nrpxptqqu, and moreover,

@t ě 0, F pxptqq ´ F pxp0qq “ ´

ż t

0
‖ 9xpuq‖2 du .

That is to say xptq “ a and a P Zr, which finishes the proof.

8.6 Proof of Proposition 4

Denote as ρ the probability distribution of the random variable γε1. By assumption, ρ has a
continuous density that is positive at each point of Rd. We denote as f this density. Let θx
be the probability distribution of the random variable Z “ x´ γϕ0px, ξ1q, which is the image
of µ by the function x´ γϕ0px, ¨q. Our purpose is to show that

Dε ą 0, @x P clpBp0, Rqq, @A P BpRdq, pθx b ρq rZ ` γη1 P As ě ε λpAX clpBp0, 1qqq.

Given L ą 0, we have by Assumption 2 and Markov’s inequality that there exists a constant
K ą 0 such that

θx rZ R clpBp0, Lqqs ď
K

L
p1` }x}q.

Thus, taking L large enough, we obtain that @x P clpBp0, Rqq, θx rZ R clpBp0, Lqqs ă 1{2.
Moreover, we can always choose ε ą 0 is such a way that fpuq ě 2ε for u P clpBp0, L ` 1qq,
by the continuity and the positivity of f on the compact clpBp0, L` 1qq. Thus,

pθx b ρq rZ ` γη1 P As “

ż

A
du

ż

Rd
θxpdvq fpu´ vq

ě

ż

AXclpBp0,1qq
du

ż

clpBp0,Lqq
θxpdvq fpu´ vq

ě 2ε

ż

AXclpBp0,1qq
du

ż

clpBp0,Lqq
θxpdvq

ě ε λpAX clpBp0, 1qqq.

8.7 Proof of Proposition 5

By Lebourg’s mean value theorem [9, Theorem 2.4], for each n P N, there exists αn P r0, 1s
and ζn P BF punq with un “ xn ´ αnγ∇fpxn, ξn`1q1∆f

pxn, ξn`1q, such that

F pxn`1q “ F pxnq ´ γxζn,∇fpxn, ξn`1qy1∆f
pxn, ξn`1q,

and the proof of this theorem (see [9, Theorem 2.4] again) shows that un can be chosen
measurably as a function of pxn, ξn`1q.
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In the following, for the ease of readability, we make use of shorthand (and abusive)
notations of the type 1}x}ą2Rx∇F pxq, ¨ ¨ ¨y to refer to x∇F pxq, ¨ ¨ ¨y if }x} ą 2R and to zero if
not. We also denote ∇fpxn, ξn`1q as ∇fn`1 to shorten the equations. We write

F pxn`1q “ F pxnq ´ γ1}xn}ď2Rxζn,∇fn`1y1∆f
pxn, ξn`1q

´ γ1}xn}ą2Rxζn ´∇F pxnq,∇fn`1y ´ γ1}xn}ą2Rx∇F pxnq,∇fn`1y.

We shall prove that

EnF pxn`1q ď F pxnq ´ γ1}xn}ą2R}∇F pxnq}2 ` γK1}xn}ď2R

` γ2K1}xn}ą2R

ˆ

p1` }∇F pxnq}q
´

ż

}∇fpxn, sq}2 µpdsq
¯1{2

`

ż

}∇fpxn, sq}2 µpdsq
˙

(33)

where the constant K ą 0 is an absolute finite constant that can change from line to line in
the derivations below. To that end, we write

F pxn`1q “ F pxnq ´ γ1}xn}ď2R1}un}ďRxζn,∇fn`1y1∆f
pxn, ξn`1q

´ γ1}xn}ď2R1}un}ąRxζn,∇fn`1y1∆f
pxn, ξn`1q

´ γ1}xn}ą2R1}un}ďRxζn ´∇F pxnq,∇fn`1y

´ γ1}xn}ą2R1}un}ąRx∇F punq ´∇F pxnq,∇fn`1y

´ γ1}xn}ą2Rx∇F pxnq,∇fn`1y (34)

We start with the second term at the right hand side of this inequality. Noting from Assump-
tion 2 that

1}un}ďR}ζn} ď sup
}x}ďR

}BF pxq} ď sup
}x}ďR

ż

}Bfpx, sq}µpdsq ď sup
}x}ďR

ż

κpx, sqµpdsq ď K,

we have
γ1}xn}ď2R1}un}ďR|xζn,∇fpxn, ξn`1qy| ď γK1}xn}ď2R}∇fn`1},

and by integrating with respect to ξn`1 and using Assumption 2 again, we get that

γ1}xn}ď2REnr1}un}ďR|xζn,∇fn`1y1∆f
pxn, ξn`1q|s ď γK1}xn}ď2R. (35)

Using Assumption 2, the next term at the right hand side of (34) can be bounded as

γ1}xn}ď2R1}un}ąR|xζn,∇fn`1y1∆f
pxn, ξn`1q|

ď γ1}xn}ď2R1}un}ąR}∇F punq} }∇fn`1}

ď γ1}xn}ď2RK p1` }xn} ` γ}∇fn`1}q }∇fn`1}

ď γK1}xn}ď2R

`

1` }∇fn`1} ` γ}∇fn`1}
2
˘

,

which leads to

γ1}xn}ď2REnr1}un}ąR|xζn,∇fn`1y1∆f
pxn, ξn`1q|s ď γK1}xn}ď2R (36)

by using Assumption 2.
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We tackle the next term at the right hand side of (34). Fix a x‹ R clpBp0, Rqq. By our
assumptions it holds that each x R clpBp0, Rqq,

}∇fpx, sq} ď }∇fpx‹, sq} ` βpsq}x´ x‹} ď β1psqp1` }x}q,

where β1p¨q is square integrable thanks to Assumption 2. Since
ż

β1psq2µpdsq “

ż 8

0
µrβ1p¨q ě

?
t s dt ă 8,

it holds that µrβ1p¨q ě 1{t s “ otÑ0pt
2q. Using triangle inequality, we get that

1}xn}ą2R1}un}ďR “ 1}xn}ą2R1}xn´αnγ∇fn`1}ďR ď 1}xn}ą2R1}∇fn`1}ěp}xn}´Rq{γ

ď 1}xn}ą2R1β1pξn`1qě
}xn}´R
γp1`}xn}q

ď 1}xn}ą2R1β1pξn`1qě
R

γp1`2Rq
.

Using this result, we write

γ1}xn}ą2R1}un}ďR|xζn,∇fn`1y| ď Kγ1}xn}ą2R1}un}ďR}∇fn`1}

ď Kγ1}xn}ą2R}∇fn`1}1β1pξn`1qě
R

γp1`2Rq

Consequently,

γ1}xn}ą2REnr1}un}ďR|xζn,∇fn`1y|s ď γK1}xn}ą2R

´

ż

}∇fpxn, sq}2 µpdsq
¯1{2

µrβ1p¨q ě K{γs1{2

ď γ2K1}xn}ą2R

´

ż

}∇fpxn, sq}2 µpdsq
¯1{2

. (37)

Similarly,

γ1}xn}ą2R1}un}ďR|x∇F pxnq,∇fn`1y| ď γK1}xn}ą2R}∇F pxnq} }∇fn`1}1β1pξn`1qě
R

γp1`2Rq
,

thus,

γ1}xn}ą2REn
“

1}un}ďR|x∇F pxnq,∇fn`1y|
‰

ď γ2K1}xn}ą2R}∇F pxnq}
´

ż

}∇fpxn, sq}2 µpdsq
¯1{2

.

(38)
We have that ∇F is Lipschitz outside clpBp0, Rqq. Thus, the next to last term at the right
hand side of (34) satisfies

γ1}xn}ą2R1}un}ąR|x∇F punq ´∇F pxnq,∇fn`1y| ď γ2K1}xn}ą2R}∇fn`1}
2,

and we get that

γ1}xn}ą2R1}un}ąREn r|x∇F punq ´∇F pxnq,∇fn`1y|s ď γ2K1}xn}ą2R

ż

}∇fpxn, sq}2µpdsq.
(39)

Finally, we have

´ γ1}xn}ą2REn rx∇F pxnq,∇fn`1ys “ ´γ1}xn}ą2R}∇F pxnq}2. (40)

Inequalities (35)–(40) lead to (33).
Using Assumption (iii) of Proposition 5, Inequality (33) leads to Inequality (20). The

validity of Assumptions 4-(ii) and 4-(iii) can then be checked easily.
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8.8 Proof of Proposition 6

The next Lemma is the key ingredient in the proofs of Section 7.

Lemma 4. Assume that fp¨, sq is locally Lipschitz continuous for every s P Ξ. Then for
λ1 b λd b µ-almost all pr, x, sq with r ą 0, it holds that pΠrpxq, sq P ∆f . For λ1 b λd-almost
all pr, xq with r ą 0, it holds that Πrpxq P DF .

Proof. Our first aim is to show that

ż

1∆c
f
pΠrpxq, sqλ

1pdrq b λdpdxq b µpdsq “ 0 . (41)

First, note by Fubini’s theorem that

0 “

ż

1∆c
f
px, sqλdpdxq b µpdsq “

ż

ΞˆR`

ż

Sp1q
1∆c

f
prθ, sqrd´1%1pdθq µb λ

1pdsˆ drq , (42)

that is to say, %ptθ : prθ, sq P ∆fuq “ 0 for µb λ1 almost every ps, rq with r ą 0. Decompose
Equation (41) as

ż

1∆c
f
pΠrpxq, sq λ

1pdrq b λdpdxq b µpdsq

“

ż

1‖x‖ěr1∆c
f
pΠrpxq, sq λ

1pdrqbλdpdxqbµpdsq`

ż

1‖x‖ăr1∆c
f
px, sq λ1pdrqbλdpdxqbµpdsq.

Since for each s, fp¨, sq is differentiable almost everywhere, we have by Fubini’s theorem:

ż

1‖x‖ăr1∆c
f
px, sq λ1pdrq b λdpdxq b µpdsq “ 0.

Similarly,

ż

1‖x‖ěr1∆c
f
pΠrpxq, sq λ

1pdrq b λdpdxq b µpdsq

“

ż

1‖x‖ěr1∆c
f

´ rx

‖x‖
, s
¯

λ1pdrq b λdpdxq b µpdsq

“

ż

R`

ż

ΞˆR`

ż

Sp1q
1r1ěr1∆c

f
pr1θ, sqpr1qd´1%pdθq µb λ1pdsˆ drq λ1pdr1q

“ 0 ,

with the last equality coming from Equation (42). Hence (41). The second statement can be
proven along similar lines.

Consider r ą 0 such that the conclusion of Lemma 4 hold. Then the almost sure equality
of all projected SGD sequence is proven in the same way as in Proposition 2. We can therefore
consider the lazy projected SGD sequence xγ,rn`1 “ Πrpx

γ,r
n ´γϕ0px

γ,r
n , ξn`1qq. By Assumption 6

the law of xγ,rn`1{2 :“ xγ,rn ´ γϕ0px
γ,r
n , ξn`1q is Lebesgue-absolutely continuous. Take A a borel

set of Rd such that λpAq “ %rpAq “ 0. Then
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Ppxγ,rn`1 P Aq ď Ppxγ,rn`1{2 P Aq ` P

¨

˝r
xγ,rn`1{2∥∥∥xγ,rn`1{2

∥∥∥ P A
˛

‚ .

The first term is equal to zero by Lebesgue-absolutely continuity of the law of xγ,rn`1{2. For

the second term we write:

P

¨

˝r
xγ,rn`1{2∥∥∥xγ,rn`1{2

∥∥∥ P A
˛

‚“

ż

pr1qd´1
1Aprθq%pdθqλ

1pdr1q “

ż

pr1qd´1%rpAqλ
1pdr1q “ 0 ,

which finishes the proof.

8.9 Proof of Theorems 4 and 5

Noting that the law of xγ,rn ´ γϕ0px
γ,r
n , ξn`1q is Lebesgue-absolutely continuous by Assump-

tion 6, the first point of Theorem 4 comes from Lemma 4. The second point comes upon
noticing that Πrpxq ´ x P ´NrpΠrpxqq.

Theorem 5 is proved in the same way as Theorem 2, by applying [6, Theorem 5.1.] with
hps, xq “ ´∇F pxq ´ 1{γpx´ γ∇fpx, sq ´Πrpx´ γ∇fpx, sqqq P ´∇F pxq ´Nrpx´ γ∇fpx, sqq
and Hpxq “ Hps, xq “ ´BF pxq ´Nrpxq.
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