N
N

N

HAL

open science

Convergence of constant step stochastic gradient descent
for non-smooth non-convex functions
Pascal Bianchi, Walid Hachem, Sholom Schechtman

» To cite this version:

Pascal Bianchi, Walid Hachem, Sholom Schechtman. Convergence of constant step stochastic gradient

descent for non-smooth non-convex functions. 2020. hal-02564349v1

HAL Id: hal-02564349
https://hal.science/hal-02564349v1

Preprint submitted on 15 May 2020 (v1), last revised 11 Apr 2022 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02564349v1
https://hal.archives-ouvertes.fr

Convergence of constant step stochastic gradient descent
for non-smooth non-convex functions

Pascal Bianchi', Walid Hachem?, and Sholom Schechtman?

L TCI, Telecom Paris, IP Paris, France.
2LIGM, CNRS, Univ Gustave Eiffel, ESIEE Paris, F-77454 Marne-la-Vallée, France.

May 2020

Abstract

This paper studies the asymptotic behavior of the constant step Stochastic Gradient
Descent for the minimization of an unknown function F', defined as the expectation of
a non convex, non smooth, locally Lipschitz random function. As the gradient may not
exist, it is replaced by a certain operator: a reasonable choice is to use an element of
the Clarke subdifferential of the random function; an other choice is the output of the
celebrated backpropagation algorithm, which is popular amongst practitioners, and whose
properties have recently been studied by Bolte and Pauwels [7]. Since the expectation of
the chosen operator is not in general an element of the Clarke subdifferential 0F of the
mean function, it has been assumed in the literature that an oracle of 0F is available.
As a first result, it is shown in this paper that such an oracle is not needed for almost
all initialization points of the algorithm. Next, in the small step size regime, it is shown
that the interpolated trajectory of the algorithm converges in probability (in the compact
convergence sense) towards the set of solutions of the differential inclusion & = —dF(x).
Finally, viewing the iterates as a Markov chain whose transition kernel is indexed by the
step size, it is shown that the invariant distribution of the kernel converge weakly to the
set of invariant distribution of this differential inclusion as the step size tends to zero.
These results show that when the step size is small, with large probability, the iterates
eventually lie in a neighborhood of the critical points of the mean function F'.

Keywords: Clarke subdifferential, Backpropagation algorithm, Differential inclusions,
Non convex and non smooth optimization, Stochastic approximation.

1 Introduction

In this work, we study the asymptotic behavior of the constant step Stochastic Gradient
Descent (SGD) when the objective function is neither differentiable nor convex. Given an
integer d > 1 and a probability space (Z,.7,pu), let f : R x £ — R, (z,s) — f(z,s) be a
function which is assumed to be locally Lipschitz, generally non-differentiable and non-convex
in the variable x, and p-integrable in the variable s. The goal is to find a local minimum, or
at least a critical point of the function F'(x) = § f(z, s) u(ds) = Ef (x,"), i.e., a point z, such
that 0 € 0F (z,), where 0F is the so-called Clarke subdifferential of F'. It is assumed that the
function f is available to the observer along with a sequence of independent =-valued random



variables ({x)ken on some probability space with the same probability law p. The function F
itself is assumed unknown due to, e.g., the difficulty of computing the integral Ef(x,-). Such
non-smooth and non-convex problems are frequently encountered in the field of statistical
learning. For instance this type of problem arises in the study of neural networks when the
activation function is non-smooth, which is the case of the commonly used ReLLU function.

We say that a sequence of random variables (2, )neny on R? is a SGD sequence with step
size v > 0 if, with probability one,

Tpl = Tp — VVf(xn7§n+1) (1)

for every n such that the function f(-,&,+1) is differentiable at point z,,, where V f(z,,&,41)
represents the gradient w.r.t. the variable z,. When f(-,&,+1) is non-differentiable at z,
the update equation x,, — 11 is left undefined. The practitioner is free to choose the value
of x,41 according to a predetermined selection policy. Typically, a reasonable choice is to
select 2,41 in the set x, — ¥ f (zpn,&nt1), where 0f (z, s) represents the Clarke subdifferential
of the function f(-,s) at the point z. When such a policy is used, the resulting sequence
will be referred to as a Clarke-SGD sequence. A second option used by practitioners is to
compute the derivative using the automatic differentiation provided in popular API’s such as
Tensorflow, PyTorch, etc. i.e., for all n,

Tn+l = Ty — 'Yaf(.,gn+l)(xn) (2)

where aj, stands for the output of the automatic differentiation applied to a function h. We
refer to such a sequence as an autograd sequence. This approach is useful when f(-,s) is a
composition of matrix multiplications and non-linear activation functions, of the form

flz,8) =lorWrpop—1(Wp—1---01(W1X5))), Ys),

where x = (Wh,--- ,Wp) are the weights of the network represented by a finite sequence
of L matrices, o1,--- ,0r are vector-valued functions, Xy is a feature vector, Yy is a label
and /(-,-) is some loss function. In such a case, the automatic differentiation is computed
using the chain rule of function differentiation, by means of the celebrated backpropagation
algorithm. When the mappings o1, -+ ,0r,4(-,Ys) are differentiable, the chain rule indeed
applies and the output coincides with the gradient. However, the chain rule fails in case of
non-differentiable functions. The properties of the map aj; are studied in the recent work
[7]. In general, a,(z) may not be an element of the Clarke-subdifferential dh(x). It can even
happen that aj(x) # Vh(z) at some points = where h is differentiable. However, the set of
such peculiar points is proved to be Lebesgue negligible. As a consequence, if the initial point
xg is chosen random according to some density w.r.t. the Lebesgue measure, an autograd
sequence can be shown to be a SGD sequence in the sense of Eq. (1) under some conditions.

The aim of this paper is to analyze the asymptotic behavior of SGD sequences in the case
where the step y is constant.

About the literature. In two recent papers [17] and [10], a closely related algorithm
is analyzed under the assumption that the step size is vanishing, i.e., v is replaced with a
sequence (7,) that tends to zero as n — 0. From a theoretical point of view, the vanishing
step size is convenient because, under various assumptions, it allows to demonstrate the almost
sure convergence of the iterates x, to the set

S:={zxeR?:0edF(x)} (3)



of critical points of F'. However, in practical applications such as neural nets, a vanishing step
size is rarely used because of slow convergence issues. In most computational frameworks, a
possibly small but nevertheless constant step size is used by default. The price to pay is that
the iterates are no longer expected to converge almost surely to the set S but to fluctuate in
the vicinity of .S as n is large. In this paper, we aim at establishing a result of the type

Ve >0, limsupP(d(z,,S)>c¢c) — 0, (4)
n—0o0 710
where d is the Euclidean distance between z,, and the set S. Although this result is weaker
than in the vanishing step case, constant step stochastic algorithms can reach a neighborhood
of S faster than their decreasing step analogues, which is an important advantage in the
applications where the accuracy of the estimates is not essential. Moreover, in practice they
are able to cope with non stationary or slowly changing environments which are frequently
encountered in signal processing, and possibly track a changing set of solutions [5, 15].
The second difference between the present paper and the papers [17] and [10] lies in the
algorithm under study. In [17, 10], the iterates are supposed to satisfy the inclusion

Tp+1 — T
I 00 A () + (5)
Tn+1
for all n, where (7,,) is a martingale increment noise w.r.t. the filtration (o (z,&1,...,&n))n>1-

Under the assumption that 7, — 0 as n — o0, the authors of [17, 10] prove that almost surely,
the continuous time linearly interpolated process constructed from a sequence (z,,) satisfying
(5) is a so-called asymptotic pseudotrajectory [4] of the Differential Inclusion (DI)

x(t) € —0F (x(t)), (6)

that will be defined on Ry = [0,00). Heuristically, this means that a sequence (z,) sat-
isfying (5) shadows a solution to (6) as n tends to infinity. This result is one of the key
ingredients to establish the almost sure convergence of z, to the set S. Unfortunately, a
SGD sequence does not satisfy the condition (5) in general (setting apart the fact that v is
constant). To be more precise, consider a Clarke-SGD sequence as defined above. For all n,
Tni1 = T — YOf (Tpn,Ent1), which in turn implies

@ifﬁﬁe%Mﬂ%p>+%H,

where (7,,) is a martingale increment noise sequence, and where EJf(x, .) represents the
set-valued expectation {0f(z,s)du(s). The above inclusion is analogous to (5) in the case
where 0F (z) = Edf(x,-) for all x i.e., if one can interchange the expectation E and the Clarke
subdifferential operator ¢. Although the interchange holds if e.g., the functions f(-,s) are
convex (in which case df(x, s) would coincide with the classical convex subdifferential), one
has in general JEf(z, ) < Edf(x,-) and the inclusion can be strict [9, Proposition 2.2.2]. As
a consequence, a Clarke-SGD sequence does not admit the oracle form (5) in general. For
such a sequence, the corresponding DI reads

x(t) e —Edf(x(t), .), (7)

but unfortunately, the flow of this DI may contain spurious equilibria (an example is provided
in the paper). In [17] the authors restrict their analysis to reqular functions [9, §2.4], for



which the interchange of the expectation and the subdifferentiation applies. However, this
assumption can be restrictive, since a function as simple as —|z| is not regular at the critical
point zero.

A second example where the oracle form Eq. (5) does not hold is given by autograd
sequences. Such an example is studied in [7], assuming that the step size is vanishing and
that £ takes its values over a finite set. It is proved that, the autograd sequence is an almost
sure asymptotic pseudotrajectory of the DI z(t) € —D(xz(t)), for some set-valued map D which
is shown to be a conservative field with F' as a potential. Properties of conservative fields
are studied in [7]. In particular, it is proved that D = {V f} Lebesgue almost everywhere.
Despite this property, the DI #(t) € —D(xz(t)) substantially differs from (6). In particular,
the set of equilibria may be strictly larger than the set S of critical points of F'.

Contributions

e We analyze the SGD algorithm (1) in the non-smooth, non-convex setting, under realis-
tic assumptions: the step size is assumed to be constant along the iterations, and we do
not assume the regularity of the functions involved or the knowledge of an oracle of 0F
as in (5). Our assumptions encompass Clarke SGD sequences and autograd sequences
as special cases.

e Under mild conditions, we prove that when the initialization z( is randomly chosen
with a density, all SGD sequences coincide almost surely, irrespective to the particular
selection policy used at the points of non-differentiability. In this case, z, almost never
hits a non-differentiable point of f(-,&,+1) and Eq. (1) actually holds for all n. Moreover,
we prove that

Tl 2T U F(Tn) + s
g
where (7,) is a martingale difference sequence, and VF(x,,) is the true gradient of F' at
Zy. This argument allows to bypass the oracle assumption of [17, 10].

e We establish that the continuous process obtained by piecewise affine interpolation of
(x,) is & weak asymptotic pseudotrajectory of the DI (6). In other words, the interpolated
process converges in probability to the set of solutions to the DI, as v — 0, for the metric
of uniform convergence on compact intervals.

e We establish the long run convergence of the iterates x,, to the set S of Clarke critical
points of F, in the sense of Eq. (4). This result holds under two main assumptions.
First, it assumed that F' admits a chain rule, which is satisfied for instance if F' is a
so-called tame function. Second, we assume a standard drift condition on the Markov
chain (1). Finally, we provide verifiable conditions of the functions f(-,s) under which
the drift condition holds.

Paper organization

Section 2 recalls some known facts about Clarke subdifferentials, conservative fields and dif-
ferential inclusions. In Section 3, we study the elementary properties of almost-everywhere
gradient functions, defined as the functions ¢(z,s) which coincide with V f(z, s) almost ev-
erywhere. Practical examples are provided. In Section 4, we study the elementary properties



of SGD sequences. Section 5 establishes the convergence in probability of the interpolated
process to the set of solutions to the DI. In Section 6, we establish the long run convergence
of the iterates to the set of Clarke critical points. Section 7 is devoted to the proofs.

2 Preliminaries

2.1 Notations

If v,/ are two measures on some measurable space (2, F), v € v/ means that v is absolutely
continuous w.r.t. v. The v-completion of .% is defined as the sigma-algebra consisting of the
sets S < Q such that there exist A, B € .% with A< S < B and v(B\A) = 0. For these sets,
v(S) =v(A).

If E is a metric space, we denote by Z(FE) the Borel sigma field on R?. Let d be an
integer. We denote by M(R?) the set of probability measures on Z(R%) and by M;(R%) :=
{ve M(RY) : {|z|v(dz)} < oo. For a subset K = RY, we denote by

Maps(K) := {v € M(R?Y) : v « X and supp(v) < K},

where supp(v) represents the support of v, and X is the Lebesgue measure on R%. If P is a
Markov kernel on R¢ and g R? — R is a measurable function, Pg represents the function
on R?Y — R given by Pg(z) = § P(z,dy)g(y), whenever the integral is well defined. For every
measure 7 € M(R?), we denote by mP the measure given by 7P = {n(dz)P(z,-). We use
the notation 7(g) = {gdr whenever the integral is well defined.

For every z € R%, r > 0, B(z,r) is the open Euclidean ball with center z and radius r.
The notation 1 4 stands for the indicator function of a set A, equal to one on that set and to
zero otherwise. The notation A° represents the complementary set of a set A.

2.2 Clarke Subdifferential and Conservative Fields

A set valued map H : R? = R? is a map such that for each x € RY, H(z) is a subset of
R?. For any function F' : R — R, we denote by D the set of points z € R? such that F is
differentiable at x. If F is locally Lipschitz continuous, it is by Rademacher’s theorem almost
everywhere differentiable. In this case, the Clarke’s subdifferential of F' coincides with the
set-valued map 0F : R? =3 R given for all z € R? by

0F (z) = co {y eR? : I(@p)neny € DY st (2, VF(z,)) — (:c,y)} ,

where co stands for the convex hull [9].

We now briefly review some recent results of [7]. A set-valued map D : R? 3 RY is called
a conservative field, if for each x € R%, D(z) is a nonempty and compact subset of R%, D has
a closed graph, and for each absolutely continuous a: [0,1] — R%, with a(0) = a(1), it holds
that:

1 1
min <{a(t),v)dt = max {a(t),vydt =0.
fo UED(a(t))< he) 0 veD(a ()< 00

We say that a function F' : R? — R is a potential for the conservative field D if for every
x € R? and every absolutely continuous a: [0,1] — R%, with a(0) = 0 and a(1) = =,

1

F(z) = F(0) +J min <{a(t),v)dt. (8)

0 veD(a(t))

5



In this case, such a function F' is locally Lipschitz continuous, and for every absolutely con-
tinuous curve a : [0,1] — R?, the function ¢ — F(a(t)) satisfies for almost every ¢ € [0,1],

SP(alt) = () (e D),
that is to say, F' admits a “chain rule” [7, Lemma 2|. Moreover, by [7, Theorem 1], it holds
that D = {VF'} Lebesgue almost everywhere.

We say that a function F' is path differentiable if there exists a conservative field D such
that F' is a potential for D. If F is path differentiable, then the Clarke subdifferential 0F
is a conservative field for the potential F' [7, Corollary 2]. Another useful example of a
conservative field for composite functions is the automatic differentiation field [7, Section
5]. A broad class of functions used in optimization are path differentiable, e.g. any convex,
concave, regular or tame. A tame function is a function defined in some o-minimal structure
([21]), they enjoy some nice stability properties such as any elementary operation on them
remain tame (e.g. composition, sum, inverse). The domain f of a tame function admits a
so-called Whitney stratification, that is to say a collection of manifolds (.S;) on each of which
f is smooth with the additional property that the various gradients fit well together (see [8]
for more details). The exponential and the logarithm are tame, as well as any semialgebraic
function, an interested reader can find more on tameness and its usefulness in optimization
in [13], and more details in [21], [8] and [10].

2.3 Differential Inclusions

We endow the set of continuous function from R to R? with the metric of uniform convergence
on compact intervals of R, :

do(x,y) = ) 27" (1 A sup x(t) = y(t) H) 9)

neN te [O,n]

Given a set valued map H : R? 3 R?, we say that z : R, =3 R% is a solution of the differential
inclusion

z(t) € H(z(t)) (10)

with initial condition xo € RY, if x is absolutely continuous, x(0) = z¢ and (10) holds for
almost every t € R,. We denote by ®y : £ = C(R,,R?) the set-valued mapping such that
for every a € R, ®y(a) is set of solutions of (10) with xg = a. We refer to ®y as the evolution
system induced by H. For every subset A c E, we define ®y(A) = (J,c4 PH(a).

If a map H has nonempty values we will say that it is upper semicontinuous if the graph
of H, {(z,y) : y € H(x)}, is closed. In the case where H is upper semicontinuous with compact
and convex values and satisfies the condition

1K >0, Vx € Rd, sup{|lv| :ve H(x)} < K(1+ |z|) (11)

then ®y(a) is non empty for each a € R? and moreover, ®y(R?) is closed in the metric
space (C(Ry,R%),d¢) [2]. The Clarke subdifferential of a locally Lipschitz function is upper
semicontinuous set valued map with nonempty compact convex values [9, Chap. 3].



3 Almost-Everywhere Gradient Functions

3.1 Definition

Let (£,.7,u) be a probability space, where the o-field .7 is p-complete. Let d > 0 be an
integer. Consider a function f : R? x Z — R. We denote by Ay = {(x,s) € RIxZ :ze
Dy(..s)} the set of points (z,s) s.t. f(-,s) is differentiable at z. We denote by Vf(z,s) the
gradient of f(-,s) at z, whenever it exists.

The following technical lemma, which proof is provided in Section 7.1, is essential.

Lemma 1. Assume that f is B(R%) ® .7 -measurable and that f(-,s) is continuous for every
seZ. Then Ay e BRY® T, and the function pg : R x E — R defined as

wo(x,s)z{ Vf(z,s) if (x,5)€ Ay (12)

0 otherwise,

is B(R?) ® T -measurable. Moreover, if f(-,s) is locally Lipschitz continuous for every s € =,
then (A @ p)(A%) = 0.

Thanks to this lemma, the following definition makes sense.

Definition 1. Assume that f(-,s) is locally Lipschitz continuous for every s € Z. A function
¢ : R x = — R is called an almost everywhere (a.e.)-gradient of f if ¢ = V.f A® u-almost
everywhere.

By Lemma 1, we observe that a.e.-gradients exist, since (A ® u)(A$) = 0. Note that in

Definition 1, we do not assume that ¢ is Z(R%) ® .7 /%(R?)-measurable. The reason is that
this property is not always easy to check on practical examples. However, if one denotes by
B(RY) ® T the A ® p completion of the o-field Z(R?) ® .7, an immediate consequence of
Lemma 1 is that any a.e.-gradient of f is a #(RY) ® .7 /% (R%)-measurable function.

3.2 Examples
Lazy gradient function. The function ¢( given by Eq. (12) is an a.e. gradient function.

Clarke gradient function. We shall refer to as a Clarke gradient function as any function
©(x, s) such that
{so(fr, s) = Vf(r.s)if (z,5) € Ay, 13

o(x,s) € df(x,s) otherwise.
Note that the inclusion ¢(x,s) € df(z,s) obviously holds for all (z,s) € R? x Z, because
Vf(x,s) is an element of df(x,s) when the former exists. However, conversely, a function
Y(x,s) € 0f(x,s) does not necessarily satisfy o (x,s) = Vf(z,s) if (z,5) € Af (see the
footnote!). By construction, a Clarke gradient function is an a.e. gradient function.

Selections of conservative fields.

If a locally Lipschitz function g is differentiable at a point z, we have {Vg(z)} < dg(z) but the inclusion
could be strict (the two sets are equal if g is regular at x): for example, g(z) = z?sin(1/z) is s.t. Vg(0) = 0
and dg(0) = [—1,1]. There even exist functions for which the set of = s.t. {Vg(z)} < dg(z) is a set of full
measure (see [16, Proposition 1.9]).



Proposition 1. Assume that for every s € E, f(-,s) is locally Lipschitz, path differentiable,
and is a potential of some conservative field Dy : RT =3 R, Consider a function ¢ : R x = —
R? which is B(RY)®.7 /2B(R?) measurable and satisfies p(x,s) € Dy(x) for all (x,s) e R x .

Then, ¢ is an a.e. gradient function for f.

Proof. Define A := {(z,s) s.t. p(z,s) # Vf(z,s)}. Applying Fubini’s theorem we have:

| L@z = | [ 1ae rdouts) o,

where the last equality comes from the fact that for every s, Dy = {Vf(-,s)} Aae. [7,
Theorem 1]. O

We provide below an application of Proposition 1.

Autograd function. Automatic differentiation deals with functions that can be expressed
as a closed formula of simple functions. Such a function f : R? — R can be represented by
a directed graph. More formally define a directed graph with ¢ vertices (¢ > d), through a
set-valued function parents(:) < {1,...,7 — 1}, a directed edge in this setting will be j — i
with j € parents(i). Associate to each vertex a simple function g;: Rlparents(i)| _, R and
given an input z = (21,...,24) € R? we recursively define z; = 9((7) jeparents(s)) for i > d
and f(x) = z4. A concrete example would be f a cross entropy loss of a neural network with
activation functions being ReLu or sigmoid functions, in which case g; would be compositions
of simple functions log, exp, ﬁ, norms and piecewise polynomial functions, all being path
differentiable [7, section 6], [10, Section 5.2]. Automatic differentiation librarires calculate the
gradient of f by successively applying the chain rule (in the sense (g1 0 g2)' = (¢} © g2)g5) to
the simple functions g;. While the chain rule is no longer valid in a nonsmooth setting (see
e.g. [14]), it is shown in [7, Section 5] that when the simple functions are path-differentiable,
the output of automatic differentiation (e.g. autograd in PyTorch ([19])) is a selection of
some conservative field D for f. We refer to [7] for a more detailed account. We denote by
a¢(x) the output of automatic differentiation of a function f at some point x.

Assume that = = N and for each s € E, f(:,s) is defined through a recursive graph
of path differentiable functions (in the machine learning paradigm f(-,s) will represent the
loss related to one data point, while F'(-) is the average loss). By Proposition 1, the map
(z,5) = as( s (x) is an a.e. gradient function for f.

4 SGD Sequences

4.1 Definition

Given a probability measure v on Z(R?), define the probability space (Q2,.7,P¥) as Q =
R x 2N 7 = B(RY) @ TN and P¥ = v @ u®N. We denote by (g, (£,)nen+) the canonical
process on ) — R? i.e., writing an elementary event in the space Q as w = (wp)nen, We
set 2o(w) = wp and &,(w) = w, for each n > 1. Under P¥, z; is a R%valued random
variable with the probability distribution v, and the process (&, )nen+ is an independent and
identically distributed (i.i.d.) process such that the distribution of &; is u, and x¢ and (&)
are independent. We denote by .% the A ® u®N-completion of .Z.
Let f:R? x Z — R be a B(RY) ® .7 /%(R)-measurable function.



Definition 2. Assume that f(-,s) is locally Lipschitz continuous for every s € Z. A sequence
() nens of functions on Q — R is called an SGD sequence for f with the step v > 0 if there
exists an a.e.-gradient @ of f such that

TIpn4+1 = Tn — 7%0(xna£n+1) (V’I’L = 0) .

4.2 All SGD Sequences Are Almost Surely Equal

Consider the SGD sequence
Tp4+1 = Tn — 7%00('Tn5 £n+1), (14)

generated by the lazy a.e. gradient . Denote by P, : R? x B(R?) — [0, 1] the kernel of the
homogeneous Markov process defined by this equation, which exists thanks to the % (Rd)®§ -
measurability of ¢g. This kernel is defined by the fact that its action on a measurable function
g:RY— R, denoted as Pyg(-), is

Pg(z) = f 9z — vpo(z, 5)) p(ds). (15)

Define I' as the set of all steps v > 0 such that P, maps Mg, (R?) into itself:
T:={ye (0,+0) : Vpe Maus(RY), pP, « A}.

Proposition 2. Consider yeI' and v e .Mabs(Rd). Then, each SGD sequence (x,,) with the
step 7y is F | B(RHN -measurable. Moreover, for any two SGD sequences (z,) and (z!)) with
the step v, it holds that P¥ [(z,,) # (x},)] = 0. Finally, the probability distribution of x,, under
P¥ is Lebesgue-absolutely continuous for each n € N.

Note that PV « A\@u® since v « A. Thus, the probability P [(x,) # (/)] is well-defined
as an integral w.r.t. A ® u®.

Proof. Let (x,) be the lazy SGD sequence given by (14). Given an a.e. gradient ¢, define
the SGD sequence (zy,) as zp = o, Zn+1 = 2n — Y9(2n,Ent1) for n = 0. The sequence (z,)
is 7 /A (Rd)®N—measurable thanks to Lemma 1. Moreover, applying recursively the property
that pP, « A when p « A, we obtain that the distribution of x,, is absolutely continuous for
each n e N.

To establish the proposition, it suffices to show that z, is . /%(R?)-measurable for each
n € N, and that P"[z, # z,] = 0, which results in particular in the absolute continuity of
the distribution of z,. We shall prove these two properties by induction on n. They are
trivial for n = 0. Assume they are true for n. Recall that z,11 = 2z, — YV f(zn,&ns1) if
(2n,&n+1) € A, where A € Z(RY)® T is such that (A ® p)(A°) = 0, and zp41 = T —
YV (@n, €n+1) Lz, gnin)ea,- The set B = {w € Q : 2,41 # xp11} satisfies B < By v By,
where

By ={weQ: z, #x,} and By ={weQ: (zp,{nt1) ¢ A}.

By induction, B; € .# and PY(B;) = 0. By the aforementioned properties of A, the .Z-
measurability of z,, and the absolute continuity of its distribution, we also obtain that By € .#
and P¥(By) = 0. Thus, B € .# and P¥(B) = 0, and since z,,,1 is .#-measurable, 2z, is Z-
measurable. O



Proposition 2 means that the SGD sequence does not depend on the specific a.e. gradient
used by the practitioner, provided that the law of x¢ has a density and ~ € I'. Note that the
conclusions of Proposition 2 cannot hold in general for all v > 0. Consider for instance d = 1
and suppose that f(z,s) = 0.522 for all s. If v = 1, the SGD sequence z,,1 = =, — Yop
satisfies 1 = 0 for any initial point and thus, does not admit a density, whereas for any other
value of v, z,, has a density for all n, provided that xg has a density. Otherwise stated, 1 ¢ "
in this example. Nevertheless, the next proposition shows that, under mild conditions, almost
all steps v belong to I'. The proof is given in 7.2.

Proposition 3. Assume that for p—almost every s € =, the function f(-,s) is locally Lipschitz
and C? at \-almost every point of RY. Then, T is Lebesque negligible.

This assumption holds true as soon as for p-almost all s, f(-, s) is tame, since in this case
R? can be partitioned in manifolds on each of which f(-,s) is C2 ([8]), and therefore f(-,s) is
C? (in the classical sense) on the union of manifolds of full dimension, and therefore almost
everywhere.

4.3 SGD as a Robbins-Monro Algorithm
We make the following assumption on the function f : R? x Z — R.

Assumption 1. i) There exists a measurable function k : R? x = — Ry s.t. for each
z e R, (k(z,s)pu(ds) < oo and there evists € > 0 for which

Vy,z € B(I’,E), Vs € E? |f(y78) - f(Z,S)| < H(.%',S)Hy - Z”

ii) There exists x € R? such that f(x,-) is p-integrable.

By this assumption, f(z,-) is p-integrable for each 2 € R%, and the function
PRI R, e [ flos) plds) (16)

is locally Lipschitz on R?. We denote by S the set of (Clarke) critical points of F, as defined
in Eq. (3). o
Let (#,)n>0 be the filtration %, = o(xg,&1,...,&,). We denote by E,, = E[-|.%,] the

conditional expectation w.r.t. .%,, where .%,, stands for the A ® puN-completion of .%,,.

Theorem 1. Let Assumption 1 holds true. Consider v € T and v € Mgps(RY) n My (R?).
Let (zy,)nen+ be a SGD sequence for f with the step . Then, for every n € N, it holds P”-a.e.
that

i) F, f(-,&n+1) and f(-,s) (for u-almost every s) are differentiable at x,,.
ii) Tpi1 = Tp — YV (2, &ngr)-
iii) Epltnt1] = xn — YV F(25).
Theorem 1 is important because it shows that P¥-a.e., the SGD sequence (z,,) verifies
Tn+1 = Tn — YV E(@n) + Y101

for some random sequence (7,,) which is a martingale difference sequence adapted to (% ,,).
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5 Dynamical Behavior

5.1 Assumptions and Result

In this section we prove that the SGD sequence (x;)nen+ (which is by Theorem 1, under the
stated assumptions, unique) closely follows a trajectory of a solution to the DI (6) as the
step size 7 tends to zero. To state the main result of this section, we need to strengthen
Assumption 1.

Assumption 2. The function k of Assumption 1 satisfies:
i) There exists a constant K >0 s.t. {k(x,s) u(ds) < K(1+ |z||) for all x.
ii) For each compact set K = RY, sup i § k(z, 8)2u(ds) < 0.

The first point guarantees the existence of global solutions to (6) starting from any initial
point (see Section 2.3).

Assumption 3. The closure of I' contains 0.

By Proposition 3, Assumption 3 is mild. It holds for instance if every f(:,s) is a tame
function.

We recall that ®_sp(A) is the set of solutions to (6) that start from any point in the set
Ac R,

Theorem 2. Let Assumptions 1-3 hold true. Let {(x})nen= : 7 € (0,7]} be a collection of
SGD sequences of steps v € (0,7]. Denote by X the piecewise affine interpolated process

<) = ap + @ty =n)(@p —23)  (VEe[ny, (n+1)y)).

Then, for every compact set K < R,

Ve >0, lim sup  PY(de(X",®P_sr(K)) >¢) | =0,
'Y_’O VEMabs(’C)

~yel
where the distance d¢ is defined in (9). Moreover, the family of distributions {P¥(xX?)~!:v e
Maps(K),0 < v < 9,7 €T} is tight.

The proof is given in Section 7.4.

Theorem 2 implies that the interpolated process x7 converges in probability as v — 0
to the set of solutions to (6). Moreover, the convergence is uniform w.r.t. to the choice of
the initial distribution v in the set of absolutely continuous measures supported by a given
compact set.

5.2 Importance of the Randomization of z

In this paragraph, we discuss the case where zg is no longer random, but set to an arbitrary
point in R%. In this case, there is no longer any guarantee that the iterates x, only hit the
points where a gradient exist. We focus on the case where (z,) is a Clarke-SGD sequence of
the form (13), where the function ¢ is assumed Z(R?) ® .7 /%(R%) measurable for simplicity.
By Assumption 1, it is not difficult to see that o(z,-) is p-integrable for all 2 € R? and,
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denoting by E(¢(z,-)) the corresponding integral w.r.t. u, we can rewrite the iterates under
the form:

Tpi1 = Tn — YEQ(Zp, ) + Vns1,

where n,41 = Elo(xn, )] — ¢(2n,&n+1) is a martingale difference sequence for the filtra-
tion (#,). Obviously, Ep(z,-) € Edf(z,-). As said in the introduction, we need Ep(z,-)
to belong to dF(z) in order to make sure that the algorithm trajectory shadows the DI
x(t) € —0F (x(t)). Unfortunately, the inclusion 0F (z) < Edf(z,-) can be strict, which can
result in the fact that the DI x(t) € —Edf(x(t),-) generates spurious trajectories that con-
verge to spurious zeroes. The following example, which can be easily adapted to an arbitrary
dimension, shows a case where this phenomenon happens.

Example 1. Take a finite probability space = = {1,2} and p({1}) = w({2}) = 1/2. Let
f(z,1) = 22l,<0 and f(x,2) = 2x1,59. We have F(x) = x, and therefore 0F(0) = {1},
whereas 0f(0,1) = 0f(0,2) = [0,2] and therefore 0f(0,s)u(ds) = [0,1]. We see that 0 €
EOf(0,-) while 0 ¢ 0F(0). Furthermore, the trajectory defined on R, as

= {37 o

is a solution to the DI x(t) € —Edf(x(t),-), but not to the DI x(t) € —0F (x(t)).

6 Long Run Convergence

6.1 Assumptions and Result

As discussed in the introduction, the SGD sequence (z,) is not expected to converge in
probability to S when the step is constant. Instead, we shall establish the convergence (4).
The “long run” convergence referred to here is understood in this sense.

In all this section, we shall focus on the lazy SGD sequences described by Eq. (14). This
incurs no loss of generality, since any two SGD sequences are equal P”-a.e. by Proposition 2
as long as v « A. Our starting point is to see the process (x,) as a Markov process which
kernel P, is defined by Eq. (15). Our first task is to establish the ergodicity of this Markov
process under the convenient assumptions. Namely, we show that P, has a unique invariant
probability measure 7., i.e., 7, P, = 7, and that |P}(x,-) — 7, |rv — 0 as n — o for each
z € R?, where || - |y is the total variation norm. Further, we need to show that the family
of invariant distributions {W’Y}’YE(ONO] for a certain 9 > 0 is tight. The long run behavior
referred to above is then intimately connected with the properties of the accumulation points
of this family as v — 0. To study these properties, we get back to the evolution system ®_sp
induced by the DI x € —dF(x) (we recall that a concise account of the notions relative to these
dynamical systems and needed in this paper is provided in Section 2.3). The crucial point
here is to show, with the help of Theorem 2, that the accumulation points of {m.,} as vy — 0 are
invariant measures for the evolution system ®_sp. In its original form, this idea dates back
to the work of Has'minskii [12]. We observe here that while the notion of invariant measure
for a single-valued semiflow induced by, say, an ordinary differential equation, is classical, it
is probably less known in the case of the set-valued evolution systems, such as ®_sp. We
borrow it from the work of Roth and Sandholm [20].

Having shown that the accumulation points of {7} are invariant for ®_sp, the final step
of the proof is to make use of Poincaré’s recurrence theorem, that asserts that the invariant
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measures of a semiflow are supported by the so-called Birkhoff center of this semiflow (again,
a set-valued version of Poincaré’s recurrence theorem is provided in [3, 11]). To establish
the convergence (4), it remains to show that the Birkhoff center of ®_sr coincides with
S = zer 0F. The natural assumption that ensures the identity of these two sets will be that
F admits a chain rule [9, 8, 10].

Our assumption regarding the behavior of the Markov kernels P, reads as follows.

Assumption 4. There exist measurable functions V : R — [0, +), p : R? — [0, +o0),
a:(0,400) — (0,400) and a constant C' = 0 s.t. the following holds for every v € I' n (0,7p].

i) There exists R > 0 and a positive Borel measure p on R? (R, p possibly depending on )
such that B
Va e B(0,R), YA€ B(RY), P,(z,A) = p(A).

i1) SUPEB(0,R) V < o and infp(g gy p > 0. Moreover, for every x € RY,

PV (z) < V(@) — a(1)p(x) + Ca()1jj<n. (17)

i11) The function p(x) converges to infinity as ||x|| — oo.

Assumptions of this type are frequently encountered in the field of Markov chains. As-
sumption 4-(i) states that B(0, R) is a so-called small set for the kernel P, and Assumption
4-(ii) is a standard drift assumption. Taken together, they ensure that the kernel P, is a
so-called Harris-recurrent kernel, that it admits a unique invariant probability distribution
7y, and finally, that this kernel is ergodic in the sense that ||Py(z, ) — 7|1y — 0 as n — o
(see [18]). The introduction of the factors a(y) and Ca(7) in Eq. (17) guarantees moreover
the tightness of the family {7 },e(0,]-

In Section 6.2, we provide sufficient and verifiable conditions ensuring the validity of
Assumption 4.

Assumption 5. The function F defined by (16) admits a chain rule, namely, for any ab-
solutely continuous curve z : Ry — R?, for almost all t > 0, Yv € dF(2(t)), (v,2(t)) =

(Fo2)(t).

Assumption 5 is satisfied as soon as F' is path-differentiable, for instance when F' is either
convex, regular, Whitney stratifiable or tame (see [7, Proposition 1]and [8, 10]).

Theorem 3. Let Assumptions 1-5 hold true. Let {(z})nen+ : v € (0,7%]} be a collection of
SGD sequences of step-size 7. Then, the set S = {x: 0 € 0F(x)} is nonempty and for all
v € Maps(R?) and all € > 0,

limsupP” (d(x},S) > ) — 0. (18)
n—00 "/W?FO

6.2 The Validity of Assumption 4

In this paragraph, we provide sufficient conditions under which Assumption 4 holds true. We
start with Assumption 4-(i).
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Proposition 4. Given R > 0, assume that for each x € B(0, R), the image of j by po(x,-)
has an absolutely continuous component with the density g, on R%. Assume furthermore that
there exists € > 0 such that

\Y
™

inf ~inf gz (v)
zeB(0,R) veB(0,(R+1)/v)

Then, Assumption 4-(i) is satisfied with the same R, and with p(A) = (¢/7) \(A n B(0,1)).

Another simple way to ensure the truth of Assumption 4-(i) is to add a small random per-
turbation to the function ¢g(z,s). Formally, we modify the algorithm described by Eq. (14),
and write

Tnt1 = T — YP0(Tn, Ent1) + Yent1,

where (€,) is a sequence of i.i.d. random variables, independent from {zg, (§,)}, and such
that the distribution of €; has a continuous and positive density on R%. The Gaussian case
€1 ~ N(0,aly) where a > 0 is some small variance is of course a typical example of such a
perturbation. Consider a fixed v and denote by P the Markov kernel induced by this equation.

Proposition 5. Let Assumption 2 hold true. Then, for each R > 0, there exists € > 0 such
that
Vz e B(0,R), VA€ B(RY), P(x,A) = e MAn B(0,1)).

Thus, Assumption 4-(i) is satisfied for the kernel p.
We now turn to the assumptions 4-(ii) and 4-(iii):

Proposition 6. Assume that there exists R = 0, C > 0, and a measurable function 8 : 2 —
R such that the following conditions hold:

i) For every s € E, the function f(-,s) is differentiable outside the ball B(0, R). Moreover,
Jor each .2’ ¢ B(0, R), |V (z,5) — V(&',5)] < As)x — o' and | Bdju < oo,

ii) For all x ¢ B(0,R), {|Vf(x,s)|>u(ds) < C(1+ |[VF(z)]?).
i) im0 [VF(z)] = +00.
i) Function F is lower bounded i.e., inf ' > —oo0.
Then, it holds that
PyF(z) < F(z) =v(1 = vK) L »or|VF (@) |* + ¥’ Kjgjsor + VK Ljgj<or  (19)
for some constant K > 0. In particular, Assumptions 4-(ii) and 4-(iii) hold true.

We finally observe that this proposition can be easily adapted to the case where the kernel
P, is replaced with the kernel P of Proposition 5.

14



7 Proofs

7.1 Proof of Lemma 1

By definition, (z,s) € Ay means that there exists d, € R? (the gradient) s.t. f(z + h,s) =
f(z,s) + {dy, h) + o(||h]|). That is to say (x,s) belongs to the set:

U N {(y,S):’f(y+h’s) _“J;L(‘T/’S)_<d”’h>’<e}. (20)

€Q 5€Q 0<||h||<é

In addition, using that f(-, s) is continuous, the above set is unchanged if the inner intersection
over 0 < ||h|| < § is replaced by an intersection over the h s.t. 0 < ||h|| < ¢ and having rational
coordinates i.e., h € Q%. Define:

~-NUNU N {(x7s):‘f(x+h,s)”£‘(|x,s)<d,h>‘<€+€,} 1)

e'eQ deQd e€Q 6eQ 0<||h||<5
heQd

By construction, A’ is a measurable set. We prove that A’ = Ay. Consider (z,s) € Ay and
let d, be the gradient of f(-,s) at x. By (20) for all € € Q, there is a § € Q such that:

N {[fesrasms-ab )

(x,8) € .
h<6,heQ?

For any ¢’ > 0, choose d’ € Q? such that ||d' — d,|| < ¢’. Using the previous inclusion, for all
g, there exists therefore § € Q s.t.

(z.5) € ﬂ {‘f(:c+h,s)f(x,s)<dq,h>’ <e+e’}

h
h<d,heQd

which means Ay = A’. To show the converse, consider (z,s) € A Let () be a positive

sequence of rationals converging to zero. By definition, for every k, there exists dj € Q% s.t.
for all €, there exists d(¢), s.t. for all (rational) h < d(e),

’f(w+h78) —f(w,S)—<dk,h>‘

; <e+ey. (22)

Moreover, one may choose 0x(¢) < dp(e). Inspecting first the inequality (22) for k& = 0, we
easily obtain that the quantity w is bounded uniformly in A s.t. 0 < |h| < Jp(e).
Using this observation and again Eq. (22), this in turn implies that (dy) is a bounded sequence.
There exists d € R? and s.t. d, — d along some extracted subsequence. Now consider £ > 0

and choose k such that ||dy — d| < § and €}, < 5. For all h < 03(¢/2),

f(.%'+h,$)—f(.%’,8)—<d,h>‘ < ’f(m+h,s)—f(x,s)—<dk,h>
h h h

+||d—di|| <€

This means that d is the gradient of f(-,s) at z, hence A’f < Ay. Hence, the first point of
the Lemma 1 is proved.
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Denoting as e; the i canonical vector of R?, the i**-component [¢g]; in R? of the function
o is given as

. T +te;, s) — fla,s

fpo(e ) = lim JETIORN 2T @)y )

and the measurability of ¢y follows from the measurability of f and the measurability of 1a,.
Finally, assume that f(-, s) is locally Lipschitz continuous for every s € Z. From Rademacher’s

theorem [9, Ch. 3], f(-, s) is almost everywhere differentiable, which reads §{(1-14,(z,s))A(dz) =

0. Using Fubini’s theorem, §p4, =(1—1a,(z, 5)) A(dz)®pu(ds) = 0, and the last point is proved.

7.2 Proof of Proposition 3

The idea of the proof is to show that for almost every v and s we have that gs,(x) :=
(x =V f(z,5))la,(z,s) is almost everywhere a local diffeomorphism.
In order to prove that we define for each (z,s) € R? x = the pseudo-hessian H(z, s) € R*¢
as
Vf(x+te,s)la,(x+tej,s) — Vf(x,s),e;
H(x,s),;j:limsup< f( J ) Af( t J ) f( ) Z>]l
t—0

Since it is a limit of measurable functions, H is B(R?) ® .7 measurable, and if f(,s)
is two times differentiable at = then H(z,s) is just the ordinary hessian. Now we define
l(x,s,7) = det(YH(z, s) — Id) if every entry in H(z,s) is finite, and I(z, s,y) = 1 otherwise,
it is a B(R?) ® 7 ® B(R, ) measurable function (as a sum of two measurable functions). By
the inverse function theorem we have that if f(-,s) is C? at x and if det(yH(z, s) — Id) # 0,
then g, ~(-) is a local diffeomorphism at . Therefore I(x,s,7) # 0 implies either the latter or
f(-,5) is not C? at x (or both).

Let Ay, A\; denote Lebesgue measures respectively on R? and R, we have by Fubini’s theorem:

Af(x,s).

f Li(z,s,7)=0ra(dz) ® pu(ds) @ Ar(dy) = fAd ® p({(z, ) - Uz, 5,7) = 0} A1(dv)

- f f f Ly(z,5.7)—0M () Ag(dz) p(ds)
=0

where the last equality comes from the fact that for (x, s) fixed I(z, s,7y) = 0 only if 1/ is in the
spectrum of H(z, s) which is finite. Therefore we have a I" a set of full measure in R such that
for v € I" we have Ay ® u({(z,s) : l(z,s,7) = 0}) = 0. Once again applying Fubini’s theorem
we get that for almost every s € = we have {z : g,,(-) is a local diffeomorphism at z}) is of
Mg-full measure (since for each s, f(-, ) is almost everywhere C2). Finally, for A c R, ye T
and v € Mgs(R?), we have

vPy(A) = v @ p({(2,5) : gs4(2) € A}) S Aa @ p({(2,5) : gs4(2) € A}),

and by Fubini’s theorem,
Aa® p({(z,5) : gsny(z) € A}) = JM({?E P95y () € A})pu(ds)
= J)\d({x : gs~(z) € A and f(-,8) is C? at z})p(ds)

= J)\d({x : gs~(2) € A and gs~(+) is a local diffeomorphism at x})u(ds).
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Now by separability of R? there is a countable family of open neighborhoods (V;);cy such that
for any open set O we have O = UjEJ V. The set of = where g(-, s,7) is a local diffeomorphism
is an open set, hence

{z:gs,(x) € Aand g,(-) is a local diffeomorphism at z} = U Vin{x :gsy(x) € A}.
iel
Since an image of a null set by a diffeomorphism is a null set we have

Ni({ : gn () € A} A Vi) = 0.

Hence, vP,(A) = 0, which proves our claim.

7.3 Proof of Theorem 1

Take v « A and a SGD sequence (z,)nen, let S; < R? be the set of  for which Vf(z,s)
exists for pu- almost every s, i.e.,

Sy = {m eR? : ﬁ(1 —1a,(x,5)) p(ds) = 0}.

When Assumption 1 holds, Rademacher’s theorem, lemma 1 and Fubini’s theorem imply
that S; € Z(R%) and A(R?\S;) = 0. Hence for pu-a.e. s we have f(-,s) differentiable at g,
and since & ~ pu, f(-,&) is differentiable at zp. Now by Rademacher’s theorem again, the
set Sy < R? where F is differentiable satisfies A(R%\Ss) = 0, therefore F is differentiable at
xo. Moreover with probability one g is in S1 N Sa. Define A(z) := {s€ Z: (x,s) ¢ As}. By
Assumption 1, [V f(x,-)| is p-integrable. Moreover, for all x € S; N Sy and all v € R?

S CRINERITR RS INRAZCRRONED

_ . f(.%'+t1),8)—f(.%',8)

B fE\A($) te]%%lﬂr‘rio t M(dS)
. f(.%'+t1),8)—f(.%',8)

- te]%%l}‘io fE t p(ds)

. Flat+ty)—F(z)

-, PR - wre

where the interchange between the limit and the integral follows from Assumption 1 and
the dominated convergence theorem. Hence, VF(x) = [V f(z,5)1a,(x,s) u(ds) for all x €
S1 N Se. Now denote by v, the law of x,. Since we assumed that vy « A, it holds that
P¥(xo € S1 n S2) = 1. Therefore, with probability one,

x1 = x11g, A5, (20) = (€0 — YV f(20,£1)) L5, A5, (20) = 20 — YV f (20, &1) -

Thus, z; is integrable whenever z( is integrable, and Eg(z1) = zg — 7V F(x¢). Since by
Assumption 1q; € A we can iterate our argument for x5 and then for all x,, and the conclusions
of Theorem 1 follow.
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7.4 Proof of Theorem 2

We want to apply [6, Theorem 5.1.], and therefore verify its assumptions [6, Assumption RM].
In order to fall in its setting we first need to rewrite our kernel in a more appropriate way. As
OF takes nonempty compact values, it admits a measurable selection ¢(x) € 0F(x) [1, Lemma
18.2 and Corollary 18.15]. Take v € ', a SGD sequence (z;,) and notice that by Theorem 1
it is PV almost surely always in Dr n Sy, where S; is the set of x where V f(z, s) exists for
p-a.e. s. Therefore its Markov kernel can be equivalently defined as:

P'/y(xhg) = ]lDFﬂsl (x)P’Y(xhg) + ]1(’DFF\S1)C( ) (.%' - 790( ))

Now we can apply [6, Theorem 5.1.] with h,(s,2) = —(Ippns, (2)VF(2) + 1 (p,nas,)e (@)p())
(notice that it is independent of s) and we have h(z,s) € H(x,s) = H(z) := —0F (z). As we
show next, [6, Assumption RM] now easily follows.

First, it is immediate from the general properties of the Clarke subdifferential that the set-
valued map —0F is proper and uppersemicontinuous with convex and compact values, hence
the assumption (iii) of [6, Assumption RM]. Assumption (ii) is immediate by the uppersemi-
continuity of —dF. Moreover, we obtain from Assumption 2 that there exists a constant
K = 0 such that

J0F(@)] < K(1+ [z]).

Thus, ®_,5 is defined on the whole R?, and ®_,F is closed in (C(Ry,R%),d) (see [2]), hence
assumption (v). Finally assumption (vi) comes from Assumption 2.

We remark that although, [6, Theorem 5.1] deals with a family of measures (P%)qeic, the
proofs remain unchanged when we consider (P"),e . (k)-

7.5 Proof of Theorem 3
This proof will be done in three steps:

e Lemma 2: P, has a unique invariant probability distribution 7, which is Lebesgue-
absolutely continuous, and P, is ergodic in the sense of the Total Variation norm.

e Lemma 3: The family {7} (0., is tight.

e Proposition 8: The accumulation points of {777}76(07%] as v — 0 are invariant for the
evolution system ®_gf.

Before stating Lemma 2, we recall a general result on Markov processes. Let @ : R x Z(R%) —
[0,1] be a Markov kernel on R%. A set B < R? is said a small-set for the kernel Q if there
exists a positive measure p on R? such that Q(z, A) > p(A) for each A e B(RY), z € B.

Proposition 7. Assume that B is a small set for Q). Furthermore, assume that there exists
a measurable function W : RY — [0,0) that is defined on R and bounded on B, and a real
number b = 0, such that

QW <W —1+blp. (23)

Then, @ admits a unique invariant probability distribution w, and moreover, the ergodicity
result
Vo e R, Q" (x,) — w7y —— 0 (24)

n—o0

holds true.
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Indeed, by [18, Th. 11.3.4], the kernel @ is a so-called positive Harris recurrent, meaning
among others that it has a unique invariant probability distribution. Moreover, () is aperiodic,
hence the convergence (24), as shown by, e.g., [18, Th. 13.0.1].

Lemma 2. Under Assumptions 4-(i) and 4-(ii), for every v € (0,7], the kernel P, admits a
unique tnvariant measure 7. Moreover,

VweRd

—> 0. (25)

TWH TV poowo

Finally, if let the Assumptions of Theorem 1 hold true and v € I' then m, is absolutely
continuous w.T.t. the Lebesque measure.

Proof. By the inequality (17), the kernel P, satisfies an inequality of the type (23), namely,
P,V <V —a(y)0 + Ca(y)1ly<g, for some ¢, C > 0, hence the first two statements.

To prove that 7, is absolutely continuous w.r.t. the Lebesgue measure, consider a A-null
set A. By the convergence (25), we obtain that for any = € R?, Pz, A) — my(A). Now
take v « A. By Theorem 1, we have that vP}' « A. Hence, by the dominated convergence
theorem,

0=vP}(A) = fP,?(x,A)u(dx) — JWV(A)V(dx) =7y(A).
U

Lemma 3. Let Assumptions 4-i — 4-(iii) hold true. Let 7y be the invariant distribution of
P,. Then, the family {my : v € (0,7]} is tight.

Proof. Tterating (17), we have:
n n n
Z PfHV < Z PffV —a(y) Z Pﬁp +C(n+1a(y).
k=0 k=0 k=0

Therefore, since 0 < PffV < +00 we have:

a(y) Zn: P,fp <V +Cn+1)a(y).
k=0

For a fixed M > 0 we will bound now 7y (p A M). Since 7, is an invariant distribution for

k _ .
Py, we have 7\ PJ = 7. Hence we have:

1 n
7r,y(p/\M): Zm,Pkp/\M Z Pkp/\M)

“([mw]w)'

Letting n — +00, by the dominated convergence theorem we obtain 7., (p A M) < 7y (C A M).
And therefore by monotone convergence theorem my(p) < C.

Fix now € > 0, there is a K > 0 such that < g, and by coercivity of p there is r > 0 such
that:
> > K
Ty (2] > 7) < ™y (p > K) < 75
where the last bound comes from Markov’s inequality. This concludes the proof. U
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The next proposition will show that any accumulation point of 7, is an invariant mea-
sure for the evolution system ®_sp, first we introduce some definitions. Define the shift
operator ©; : C(R;,R?) — C(Ry,R?%) by ©;(x) = x(t + -), and the projection operator
po : C(R,,R?) — R? by po(z) = 2(0). Then, we have the following definition (see [20] for
details):

Definition 3. We say that T € M(R?) is an invariant distribution for the flow ®y, if there
is ve M(C(Ry,RY)), such that:

i) suppv € ®y(R%),
i) vO; ! = v,
iii) vpy ' = .

Proposition 8. Let Assumptions 1-4 hold true. Denote by m, the unique invariant distri-
bution of Py. Let (y,) be a sequence on (0,7] N T' s.t. v, — 0 and 7y, converges narrowly
to some probability measure w. Then, w is an invariant distribution for the evolution system
D _,p.

Proof. The proof essentially follows [6, section 7.]. Fix an ¢ > 0 and write 7, instead of

7, for simplicity. By Lemma 3 we have a compact K such that m,(K) > 1 — ¢, we thus

K(A) — mn(AnK)

can define the conditional measures 7, (R Moreover, we have X € Mps(K),
n

therefore we can apply Theorem 2 and get that there is a compact set C of C'(R™,R?) such
that P™n MmXZHC) = 1 —e. Now we have

P = [ B (m(de) > [ B (), (da) 2 mu (KPR,
Rd K
hence X
P2 XC H(C) 2 mn ()P X HC) = (1 —¢)?.

Since ¢ is arbitrary this proves the tightness of v, := P™n "Y"X;nl. Take 7, > mand v, > v €
M(C(R,,R?)). We now prove that v is an invariant distribution for the evolution system
®_,r (see Definition 3.)

We have 7, = v,p, ! by continuity of py. Thus, 7 = Py 1. Therefore, we have (iii) of
Definition 3. Let n > 0. By weak convergence of v,

o(fe € CRRY s dla, ®_or(R) < n}) > limsupva (o € C(Ry R d(w, 0 op(BY) < 1)

and
on({z € C(RL,RY : d(z, &_op(RY) < 7}) > va({z € C(R., RY) : d(z, &_on(K)) < 1)
> 10, (K)P™n (X & _ap(K)) < 1)
> (1= )P™n 7 (d(X, _op(K)) < 7).
The last term converges to 1 — ¢, by Theorem 2, and by weak convergence we have v({z €
C(R,RY) : d(z,®_or(RY) = n}) = (1 — ¢), now letting n — 0, by monotone convergence

we have v(®_sr(R?))) = 1 — & which proves (i) of Definition 3. Finally the second point of
Definition 3 is shown just like in [6, section 7.] O
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After some definitions we recall an important result about the support of a flow-invariant
measure. The limit set L; of a function f € C(Ry,R?) is

Ly = () ([t 0)),

t=0

and the limit set Lg_,,.(q) of a point a € R? for ®_,p is

Lo_ypa) = U L.

XEq)_‘aF(a)

A point a € R? is said ®_zp-recurrent if a € L<I>_ap(a)' The Birkhoff center BCs_,,. of ®_5p
is the closure of the set of its recurrent points:

BC@—@F = {aeRd : a€L¢7aF(a)}.

In [11] (see also [3]), a version of Poincaré’s recurrence theorem, well-suited for our set-valued
evolution systems, was provided:

Proposition 9. FEach invariant measure for ®_sr is supported by BCs_,,..
With the help of Proposition 9 we can finally prove Theorem 3.

Proof. Take ye T, e > 0 and (z;,) an associated SGD sequence. We have by (24):

limsup P” [dist(z], S) > ] = 7, ({z e R? : d(z, S) > ¢}).
n—aoo
Now take any sequence ; — 0 with +; € I', and 7,, the associated invariant distribution,
we know from Lemmas 3-8 that we can extract a subsequence such that m,, — 7, with 7 an
invariant measure for the evolution system ®_,r. Therefore by weak convergence we have:

lim 7, ({zr e R : d(x,S) > 2}) < lim 7w, ({xr e R : d(x,S) > ¢c})
i—+00 t—>+00

<tz eRY:d(z,S) = ¢)),

where the last line comes from the Portmanteau theorem. We show that suppw < S, and
therefore the last term is equal to zero, which concludes the proof. To that end, we make use
of Proposition 9, that shows that each invariant measure of ®_;r is supported by BCs_ ..
Thus, it remains to show that BCs_,, = S (which at the same time will ensure us that S is
nonempty). It is obvious that S = BCs_,,.. To show the reverse inclusion, take a € Lg_, r(a)-
Then, there exists a solution x to the differential inclusion such that x(0) = a and a € Ly. But
under Assumption 5 it holds ([10, lemma 5.2]) that ||x(¢)| = |doF (x(¢))|| almost everywhere,
and, moreover,

=0, Fxo) - Fx) = - [ a0 (x(w)) 2

Therefore x(t) = a for each ¢ > 0, thus, a € S. Observing that S is a closed set (since 0F is
graph-closed, see [9, Prop. 2.1.5]), we obtain that BCg_,,. = S.

oF

O
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7.6 Proof of Proposition 4
For each z € B(0, R) and each A € Z(R?), we have

Py, A) = u[s : vo(w,s) €7~ (@ — A)]

7.7 Proof of Proposition 5

Denote as p the probability distribution of the random variable vyn;. By assumption, p has a
continuous density that is positive at each point of R%. We denote as f this density. Let 6,
be the probability distribution of the random variable Z = = — y¢o(z, 1), which is the image
of p by the function x — ypg(z, ). Our purpose is to show that

Je >0, Yz e B(0,R), YAe BRY), (0. ®p)[Z +ym € A] = XA~ B(0,1)).

Given L > 0, we have by Assumption 2 and Markov’s inequality that there exists a constant
K > 0 such that

0. [7 ¢ BO,L)] < (1 + ).

Thus, taking L large enough, we obtain that Vo € B(0, R), 0, [Z_¢ B(0, L)] < 1/2. Moreover,
we can always choose € > 0 is such a way that f(u) > 2e for u € B(0, L+ 1), by the continuity
and the positivity of f on the compact B(0, L + 1). Thus,

(6. @) [Z + vy € A] = L au [ 000) fu =)

> f duf 0. (dv) f(u—v)
AnB(0,1) B(0,L)

> 2€f  du f 0(dv)
AnB(0,1) B(0,L)

> e A(A n B(0,1)).

7.8 Proof of Proposition 6

By Lebourg’s mean value theorem [9, Th. 2.4], for each n € N, there exists a,, € [0, 1] and
Cn € OF (up) with up, = 2, — YV f (20, §n+1)]1Af (Zns&n+1), such that

F(zny1) = F(zn) — vns vf(mn7§n+1)>]lAf (Tn,Ent1),

and the proof of this theorem (see [9, Th. 2.4] again) shows that u, can be chosen measurably
as a function of (zy,&n41).

In the following, for the ease of readability, we make use of shorthand (and abusive)
notations of the type 1,>2r(VF (), ) to refer to (VF(z),---) if [z > 2R and to zero if
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not. We also denote V f(zy,,&,+1) as V fr41 to shorten the equations. We write
F(xpi1) = F(zn) = Y12, <2k Cns Vfnr1)1a; (T, §nr1)
— Yz 52r6n = VE(0), Vi) = Vg =2rV F(20), V fri1)-
We shall prove that
EnF (2n+1) < F(2n) = YLz, =28 VF (@) + 7K Ly, | <2r
2 2 1/2 2
+ 2K oo (U4 [VE @) ) ([ IV )P a(ds)) -+ | IV (s ) a(ds)
(26)

where the constant K > 0 is an absolute finite constant that can change from line to line in
the derivations below. To that end, we write

F(znt1) = F(zn) = Y1z, |<2R L jun|<BCns Vnt 1)1 (%0, §nt1)
~ Yz 1<2R Ljun > RGns Vinr 1)L (T, §nr1)
=YLz, |52 L jun |<BSCn — VE(2r), V frs1)
=YLz, 152 L jup |> RV E (Un) — VE(2), V fri1)
= Yz 52V F (2), V fr11) (27)

We start with the second term at the right hand side of this inequality. Noting from Assump-
tion 2 that

Ly, |<rlCall < sup [[0F(2)] < sup fllaf(fv,S) p(ds) < sup fﬁ(fﬂ,S)u(dS) < K,

lzl<r lzl<r [z|<R
we have
Yz j<2R L jun| <rICns VI (@0, Ent1))] < YK L, 1<2r |V frsal,
and by integrating with respect to &,41 and using Assumption 2 again, we get that
7]1HznHé?REn[]lHunHSRKCm vfn+1>]lAf (Tn, §n+1)‘] < VK]l\\zn|\S2R' (28)
Using Assumption 2, the next term at the right hand side of (27) can be bounded as

Y jgn)<2r Ljun > RIKCns V it 1)1a; (%05 Ent1)|

<YLy, <2R L jun > RIVE (un) [ |V frgal
Ve <2rE (L+ [zn] + Y[V fnia) IV frial

<
<YK, j<or (14 |V 1| + IV s )

which leads to

7]1H:vn HS2REH[]lHun H>R|<<na vfn+1>1Af (xna £n+1)|] < WK]lenHS2R (29)

by using Assumption 2. _
We tackle the next term at the right hand side of (27). Fix a z. ¢ B(0,R). By our
assumptions it holds that each x ¢ B(0, R),

V(@ 8) < IVf(s,8)] + B(s)|lz — 2] < B(s)(1 + [z]),
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where /() is square integrable thanks to Assumption 2. Since
ee}
| Bsputas) = | g =il di< e,
0

it holds that u[f'(:) = 1/t ] = 0;-0(t?). Using triangle inequality, we get that

Lz, )>2r L un )<k = Ljan|>2R jzn—anyV fusil<R S Lo >2R 1| s [=(J2n|—R)/~

<
<

S Ljgg>2rlg e, )5 tonl-r S gy s2rlge, >

R .
Y1 +lznl) v(1+2R)

Using this result, we write

Ky1g, 1528 jun |<r IV frsil

'7]1|\xn”>2R]l|\UnH<R|<Cna vfn-i—1>‘ <
< Kvljg, j=2r|V fast]Lg

R
£n+l)>m

Consequently,
2 12 1/2
VL jzn)>2REn [ Ljun <RI, V)] < WK]lmmzR(f IV £, )| lds)) " plB') = K /]
1/2
<KL, oo 197 (o) P tds)) (30)

Similarly,

V2R Ljun |<RKVE (@), Vg )] S YKL 52 [ VE (@) [V frsa [T, )

R,
Z 3 T+2R)

thus,

1/2
Vo >28En [1u, | <r |V (@n), Vs Dl] < VK o, 1228|VF (20)] (f IV f (s )| (ds) )
B (31)
We have that VF is Lipschitz outside B(0, R). Thus, the next to last term at the right hand
side of (27) satisfies

YLjgn 528 L jun|> RICVE (Un) = VE(2n), V for )l < VKL, =28V fas1 |,
and we get that
Vg i>28 jun)> REn [KVF(un) = VE(20), V fas )] < VK1, 1528 f IV f (20, 8)|I” u(ds).

(32)
Finally, we have

= Vg 1=28En [(VF (20), V frs1)] = =V, =28 VF (22)] . (33)

Inequalities (28)—(33) lead to (26).
Using Assumption (iii) of Proposition 6, Inequality (26) leads to Inequality (19). The
validity of Assumptions 4-(ii) and 4-(iii) can then be checked easily.
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