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An inverse approach for ultrasonic imaging from
full matrix capture data. Application to resolution

enhancement in NDT.
Nans Laroche, Sébastien Bourguignon, Ewen Carcreff, Member, IEEE, Jérôme Idier, Member, IEEE,

and Aroune Duclos

Abstract—In the context of nondestructive testing (NDT), this
paper proposes an inverse problem approach for the recon-
struction of high-resolution ultrasonic images from full matrix
capture (FMC) datasets. We build a linear model that links the
FMC data, i.e. the signals collected from all transmitter-receiver
pairs of an ultrasonic array, to the discretized reflectivity map
of the inspected object. In particular, this model includes the
ultrasonic waveform corresponding to the transducers response.
Despite the large amount of data, the inversion problem is ill-
posed. Therefore, a regularization strategy is proposed, where the
reconstructed image is defined as the minimizer of a penalized
least-squares cost function. A mixed penalization function is
considered, which simultaneously enhances the sparsity of the
image (in NDT, the reflectivity map is mostly zero except at the
flaw locations) and its spatial smoothness (flaws may have some
spatial extension). The proposed method is shown to outperform
two well-known imaging methods: the Total Focusing Method
(TFM) and Excitelet. Numerical simulations with two close
reflectors show that the proposed method improves the resolution
limit defined by the Rayleigh criterion by a factor of four. Such
high-resolution imaging capability is confirmed by experimental
results obtained with side drilled holes in an aluminum plate.

I. INTRODUCTION

ULTRASONIC imaging is widely used in non destructive
testing (NDT) [1], medical imaging [2] and structural

health monitoring (SHM) [3]. From decades, array probes
have been extensively used, due to their ability to form
images [4] and to characterize flaws [5]. The conventional way
to perform ultrasonic imaging with arrays is hardware (HW)
beamforming, which consists in applying specific time delays
to each element, in order to focus at particular locations of
the specimen under test [1]. Such HW methods have lower
performance in terms of resolution and signal-to-noise ratio
than software (SW) beamforming techniques, which perform
the beamforming in post processing by delaying and averaging
unfocused signals at each pixel of the image [6]. Due to the
increasing performance of ultrasonic hardware and Graphics
Processing Units (GPU), SW beamforming techniques have
become a standard for real-time imaging in industrial NDT [7]
and medical imaging [8].
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The Total Focusing Method (TFM) [6], [9] considers Full
Matrix Capture (FMC) data, which is the set of signals
collected by all transmitter-receiver pairs. It is a standard delay
and suam (DAS) reconstruction technique operating linearly
on time-domain signals. Several variants of DAS methods have
been proposed, which differ by their acquisition process, such
as the Synthetic Aperture Focusing Technique (SAFT) [10],
Plane Wave Imaging (PWI) [11] or Virtual Source Aperture
(VSA) [12], [13]. Frequency-domain variants of these methods
have been developed in seismology [14], and were applied to
medical imaging [15] and NDT [16], [17]. Although they rely
on different data acquisition schemes, their beamforming is
based on the same principle, which consists in summing the
collected signals at the proper times of flight.

Ultrasonic transducers pulse and receive ultrasonic signals
in a limited bandwidth. Thus, the time-domain response of a
scatterer has an oscillatory nature and is temporally spread.
Images produced by DAS methods, which simply sum the
delayed signals, therefore suffer from spatial spreading, and
their resolution is limited by the Rayleigh criterion, which
defines the acoustical and geometrical resolution limits of an
imaging system [18], [19]. Considering the shape of such
oscillating waveform in the reconstruction method may then
be an efficient lever to improve the quality of reconstructed
images. The Excitelet algorithm [20], for example, uses the
correlation between the measured signals and the impulse
response of the transducers, and can be interpreted as a
matched filtering procedure, which increases the contrast in the
image. However, the image produced by such a linear method
still contains oscillations, and therefore remains limited in
resolution.

In order to increase the resolution, non-linear methods
are required. In particular, regularization methods aim to
compensate the loss of high-frequency information caused by
the narrow bandwidth of the transducers, by incorporating
specific prior information. For example, sparsity has been
used in ultrasonic imaging in the context of SAFT recon-
struction [21], [22]. In medical imaging, inverse problems
have been formulated for standard beamforming [23] and
PWI [24]. Nevertheless, none of these methods integrates the
acoustic waveform in its model. This waveform, that will be
called the elementary signature in this paper, can be defined
as the response, in the time-domain signal, of a scatterer in
the material. An ultrasonic signal is then modeled as the
convolution of this elementary signature and the reflectivity
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function of the material under test [25], [26].
In this paper, this model is extended to each signal of FMC

data by building an appropriate waveform matrix that includes
the elementary signature. Thus, the FMC data is linked to
the spatial distribution of the acoustic reflectivity inside the
inspected medium. An inverse problem is then formulated,
and regularization is performed by imposing both the sparsity
and the spatial smoothness of the image. Similar methods
have been developed in the context of PWI data for medical
imaging applications [27], [28]. Here, the proposed inverse
method is applied to FMC data for the separation of close
scatterers in NDT. Despite their large size, FMC data are
more commonly used in the context of NDT applications.
Moreover, the resolution of TFM images is naturally better
than PWI images [29] and TFM is hence more adapted to the
difficult challenge of separating close flaws. The separation
of closely spaced flaws is a crucial issue for several NDT
applications, such as the separation of close porosities or the
detection of small cracks close to the surface of the piece under
inspection. Indeed, the lack of resolution of imaging methods
becomes critical when the data contain overlapping echoes
created by close scatterers. For a low level of uncorrelated
noise, a super resolution technique based on the Time Reversal
with Multiple Signal Classification (TR-MUSIC) was shown
to achieve better results than standard techniques in NDT [19],
[30]–[32] and in medical imaging [33]. Nevertheless, this
method is highly affected by uncorrelated noise [19] and is
restricted to the detection of a known number of point-like
scatterers.

This paper is organized as follows. Section II introduces
the TFM and Excitelet linear reconstruction methods, and dis-
cusses their limitations. The proposed data model is detailed in
Section III, and a dedicated inversion procedure is developed
in Section IV. In Section V, our approach is compared to stan-
dard linear methods on synthetic data composed of overlapping
echoes. Section VI evaluates the method on experimental FMC
data obtained from a material containing close flaws to be
detected. A discussion is finally given in Section VII.

II. LINEAR ULTRASONIC IMAGING METHODS

Full Matrix Capture (FMC) consists in recording the signals
from all emitter-receiver pairs of transducers in a phased array.
Therefore, for an array of Nel transducers, N2

el signals are
received. Let yi,j(t) denote the A-scan signal corresponding
to the i-th transmitter and the j-th receiver. Figure 1 shows the
path of the ultrasonic wave from transmitter i (with coordinates
(ui, 0)) to receiver j (with coordinates (vj , 0)), through a
potential scatterer located at coordinates (x, z).

The TFM is a standard method in NDT in order to process
FMC data. The focusing is performed at each point (x, z) of
the image by summing all signals at the corresponding times
of flight τ(i, j, x, z). The reconstructed image then reads:

OTFM(x, z) =

Nel∑
i=1

Nel∑
j=1

yi,j

(
τ(i, j, x, z)

)
. (1)

This operation is computationally expensive, but all pixel
intensities can be computed in parallel in order to achieve real-
time computation of the whole image with GPU [34]. Times

x

z

(x, z)b

ui vj

Fig. 1. FMC data acquisition. The signal is emitted by the element i in blue
to a potential scatterer located in (x, z), and the reflected signal is received
by all elements in red.

of flight are computed by satisfying Fermat’s principle [35],
and depend on the inspection geometry and on the properties
of the inspected material. When the probe is in contact with
a flat specimen, they can be obtained straightforwardly by:

τ(i, j, x, z) =

√
(x− ui)2 + z2 +

√
(x− vj)2 + z2

c
, (2)

where c is the sound velocity in the material (which is sup-
posed homogeneous). For a layered isotropic medium, times
of flight can be computed using an optimization algorithm [36]
or by analytical results for flat surfaces [37]. For anisotropic
materials, they can be computed using the Shortest Path Ray-
tracing method [38] or the Fast Marching Method [39], [40].

The Excitelet algorithm [20] is also a post-processing algo-
rithm that focuses at each point of the reconstruction grid.
It can be viewed as a matched filtering procedure, which
correlates the measured data with the elementary signature in
order to improve the detection and localization performance
of point scatterers in the data. The intensity at each pixel of
the image is computed by:

OEXC(x, z) =

Nel∑
i=1

Nel∑
j=1

(yi,j ∗ h)
(
τ(i, j, x, z)

)
, (3)

where ∗ denotes the convolution and h is the elementary
signature considered in the model. The Excitelet algorithm is
usually associated with a thresholding step in order to detect
flaws. Nevertheless, OEXC is a linear function of the data and
the thresholding step cannot resolve two flaws that appear as
a single spot in the Excitelet image. Therefore, its resolution
remains limited.

III. FORWARD MODEL

This section aims to describe the acquisition process in-
volved in ultrasonic FMC data [41]. In Subsection III-A, a
linear model on a single A-scan using the elementary signature
is described. Then, this model is inserted into the description
of FMC data by building the corresponding waveform matrix.
Then, Subsection III-B discusses the model that will be used
for the elementary signature in the waveform matrix.
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Fig. 2. Scheme of a block of the waveform matrix.

A. Data model and construction of the waveform matrix

In this section, we build a model that links the data to the
reflectivity map of the medium. The following notations refer
to discretized objects. The image is computed on a spatial grid
(ix, iz) containing Nx columns and Nz rows. An ultrasonic
signal is modeled as the convolution of the reflectivity of
the medium and the elementary signature hix,izi,j ∈ RNh

of a potential scatterer located at (ix, iz) [25], [26]. The
waveform hix,izi,j denotes the signature, in the A-scan yi,j , of
a potential scatterer located at (x, z). Then, the A-scan yi,j is
the summation of all shifted elementary signatures, weighted
by the pixel intensity of the corresponding reflectivity map:

yi,j =

Nx∑
ix=1

Nz∑
iz=1

h̃
ix,iz

i,j oix,iz , (4)

where h̃
ix,iz

i,j ∈ RNt is the elementary signature hix,izi,j padded
with zeros and properly time-shifted. More precisely, let the
column vector oix collect the reflectivity values for all pixels
in column ix. Equation (4) can be written:

yi,j =

Nx∑
ix=1

Hix
i,jo

ix , (5)

where Hix
i,j is the Nt × Nz matrix whose columns are com-

posed of the elementary signature, shifted by the correspond-
ing times of flight. Figure 2 shows the structure of matrix Hix

i,j .
The number of zeros Kix,izi,j before hix,izi,j in each column is
equal to:

Kix,izi,j =
(
τ(i, j, x, z)− th

2

)
Fs, (6)

where Fs is the sampling frequency and th is the duration of
the pulse, which is defined for t ∈ [− th2 ,

th
2 ].

Let us remark that the time of flight τ does not depend
linearly on the depth z of the pixel. Therefore, the index
shift between two neighboring columns Kix,iz+1

i,j −Kix,izi,j is
not constant. In addition, the elementary signature may vary

H �

Receiver
#1

$'''&
'''%

Receiver
#j

$''''&
''''%

Receiver
#Nel

$'''&
'''%

�
�������������������������������

H1
1,1 � � � Hix

1,1 � � � HNx
1,1

...
. . .

. . .
. . .

...

H1
Nel,1

� � � � � � � � � HNx

Nel,1

...
. . .

. . .
. . .

...

... � � � � � � � � �

...

H1
i,j

. . . Hix
i,j

. . . HNx
i,j

... � � � � � � � � �

...

...
. . .

. . .
. . .

...

H1
1,Nel

� � � � � � � � � HNx

1,Nel

...
. . .

. . .
. . .

...

H1
Nel,Nel

� � � Hix
Nel,Nel

� � � HNx

Nel,Nel

�
�������������������������������

)
Emitter

#1

)
Emitter

#Nel

)
Emitter

#i

)
Emitter

#1

)
Emitter

#Nel

2

Fig. 3. Scheme of the waveform matrix. Vertical plain lines separate abscissa
of the pixel of the reconstruction grid. Horizontal plain lines separate the
receiver multiple blocks that each contains Nel blocks of transmitter.

among the columns of Hix
i,j (due for example to attenuation

and transducers directivity). Consequently, Hix
i,j is not a con-

volution matrix. This is important from a numerical point of
view, since the non-convolutive structure disables the use of
fast algorithms using e.g. Fast Fourier Transforms (FFTs) in
the computations.

By collecting all data yi,j columnwise in a single N2
el-point

vector y, we can now build the model:

y = Ho + n, (7)

where o is the NxNz-point column vector containing the
discretized reflectivity map at each point of the reconstruction
grid, H is the N2

elNt×NxNz waveform matrix which is built
by blocks corresponding to each emitter/receiver pair, and n
is an uncertainty term representing model errors, measurement
noise, etc. The waveform matrix H links temporal information
in the data to spatial information in the unknown reflectivity
map. Its construction is detailed in Figure 3. In practice, the
waveform matrix H is too large to be stored in memory, for
most configurations of realistic problems.

Let us remark that the TFM algorithm defined in Equa-
tion (1) is equivalent, up to discretization errors, to the linear
relation:

oTFM = Bty, (8)

where B is a binary matrix with the same structure as the
waveform matrix H, where all waveforms are replaced by
Kronecker deltas. Similarly, the Excitelet algorithm defined in
Equation (3) can also be rewritten, after discretization, as the
matrix-vector product:

oEXC = Hty. (9)

B. Definition of the elementary signature

The elementary signature represents the response of a
potential scatterer located in the material in the received
time-domain signal. It is mostly due to the electro-acoustical
response of the transducers. In this paper, we make several
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simplifying assumptions that are discussed hereafter. First, the
medium is supposed homogeneous and non-dispersive, so that
the shape of the elementary signature is independent from the
propagation distance. In the case of attenuative and dispersive
media, the distortion of the elementary signature by frequency-
dependent attenuation could be considered [42]–[44]. Then,
we also assume that the directivity patterns of the transducers
do not depend on the frequency, and therefore only affect the
amplitude of the elementary waveform (and not its shape).
Apodization functions for far-field directivity [45], [46] are
often considered in current beamforming techniques to account
for these amplitude changes [4], [6]1. Here, we simply discard
the data corresponding to emitter-receiver pairs that are too
far from each other, and for which the directivity patterns
may distort the corresponding response. From these two as-
sumptions, the elementary signature can be supposed invariant
with respect to the spatial location, that is, hix,izi,j = hi,j with
the notations in Subsection III-A. Finally, we make the very
common assumption that the elementary signature is similar
for all elements. That is, hi,j = h,∀ i, j.

In the following, we consider a Gaussian wavelet model for
h, which has been extensively used in the literature in order
to model ultrasonic echoes [47], [48]. In particular, it assumes
that the envelope of the response is symmetric. Some hints
can be found in [49] to model echoes with more complex
shapes. Following [47], [48], the Gaussian wavelet model can
be written:

h(t,Θ) = e−αt
2

cos(2πfot+ φ), with Θ = [α, f0, φ], (10)

where f0 is the center frequency, φ is the phase shift and
α is linked to the pulse width of the Gaussian function.
Equivalently, the bandwidth ratio BWRp at p dB can be
defined as:

BWRp =
∆f(p)

f0
(11)

where ∆f(p) is the width of the frequency band for a loss of
p dB. Then, in the Gaussian case, α and BWRp are linked by
the following equation:

α = − (πBWRpfo)2

4 ln(10p/20)
. (12)

The center frequency and the bandwidth ratio can be approxi-
mately set knowing the transducer properties. Alternately, the
waveform parameters can be estimated on targeted echoes
in the data. Although the wavelet model (10) is not linear
in Θ, a nonlinear least-squares fitting procedure (e.g., based
on the Levenberg-Marquardt algorithm) can be accurately
initialized by the knowledge of the transducer properties (at
least for α and f0). Results obtained using generic parameters
of the wavelet model and optimized ones will be compared in
Subsection VI-D.

IV. INVERSION PROCEDURE

In this section, we build an image reconstruction method
from FMC data, based on the model in Equation (7).

1SB : je ne fais pas le lien

A. Naive inversion

The naive estimation procedure in a least-squares (LS) sense
computes the generalized inverse oLS [50]:

oLS = arg min
o
‖y −Ho‖2 = (HTH)−1HTy. (13)

Acoustical signals are emitted and received in a limited fre-
quency range close to the center frequency of the transducers.
This means that available data do not contain all the infor-
mation required for image reconstruction—in particular, high-
frequency information containing details is mostly filtered out.
Thus, the waveform matrix H is badly conditioned and the
least-squares solution oLS is not satisfactory [51]. An example
on experimental data will be shown in Subsection VI-B, where
the condition number of matrix HtH is estimated at 1016.

B. Inversion with a sparse-and-smooth prior

In order to reconstruct information that is outside the band-
width of the transducers, we adopt a regularization strategy
where the solution is defined as the minimizer of the penalized
least-squares criterion [51]:

ô = arg min
o
J(o), with J(o) = ‖y −Ho‖2 + φ(o). (14)

The regularization function φ(o) is then designed in order to
favor expected properties of the reconstructed image. For most
NDT problems, materials under inspection may be considered
homogeneous with only few scatterers [21], [22], that is, the
reflectivity map is sparse. However, the size of the flaws
may exceed the size of the pixels of the reconstruction grid,
that is, scatterers may have some spatial extension in the
reconstructed image. Therefore, we consider the two-term
penalization function:

φ(o) = µ1 ‖o‖1 + µ2 ‖Do‖2 , (15)

where D is a matrix computing differences between values
at neighbor pixels [52]. The `1-norm penalization term is
known to promote sparsity [53], whereas the second term
balances sparsity with spatial smoothness. The cost function
in (14) is convex, so that it can be minimized with local
optimization strategies. However, the `1-norm term is not
differentiable at any vector containing zeros. We perform
the optimization task by the FISTA algorithm (Fast Iterative
Shrinkage Thresholding Algorithm) [54], which was shown
to efficiently minimize such criteria. It relies on alternating
between a gradient descent step on the differentiable part of
the cost function and a thresholding step corresponding to
the `1-norm part. Its implementation then requires numerous
evaluations of matrix-vector products involving H and HT . As
explained in Subsection III-A, due to the inspection geometry,
no simple structure in matrix H can be exploited for fast
computations and, given the high dimensionality of the data,
matrix H cannot be stored in memory. Our implementation
relies on GPU in order to compute matrix-vector products.
The elementary signature is stored and computations are
parallelized on the fly for each pixel (ix, iz).

Let us remark that a similar penalization framework was
proposed in [55], where the waveform matrix H is replaced by
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the binary matrix B introduced at the end of Subsection III-A.
This simplified version is numerically more efficient and
achieves better resolution than the TFM thanks to the sparsity-
inducing penalization. However, by neglecting the elementary
signature, it is not appropriate for separating overlapping
echoes.

C. Tuning of the regularization parameters

Regularization parameters µ1 and µ2 balance between the
least-squares fit and the desired properties of the solution.
Their tuning can be done empirically or using calibration steps.
Note that the parameter µ1 admits an upper bound, denoted
µmax
1 , above which the reconstructed solution is identically

zero. For the standard `1-norm penalization case (that is,
µ2 = 0 in (15)), we have [56]:

µmax
1 = 2

∥∥Hty
∥∥
∞ , (16)

where ‖x‖∞ denotes the maximum absolute value in vector x.
This bound is tight, which means that for µ1 < µmax

1 , the
solution is not identically zero. We prove in Appendix A that
this bound is still valid for the two-term penalization (15),
whatever the value of µ2. As a consequence, the two pa-
rameters can be tuned separately. In the following, we set µ1

to some fraction of µmax
1 , which controls the sparsity of the

reconstructed image. Then, µ2 is set to a small positive value.
In all our experiments, satisfactory solutions were obtained for
a wide range of small positive values of parameter µ2.

V. RESULTS WITH SIMULATED DATA

A. Presentation of the synthetic model

The goal of this section is to evaluate the capability of the
proposed method to resolve close flaws. Synthetic data are
generated using the model (7). The simulated waveform is
the Gaussian wavelet defined in Equation (10), with center
frequency f0 = 5 MHz and BWR−6dB = 40%, corresponding
to α = 0.19 and the phase is set to φ = 0. The sound
velocity is 5 000 m/s, such that the wavelength in the material
is λ = 1 mm. The pixel size in the simulated reflectivity map
is 5µm × 5µm. Gaussian white noise with 10 dB SNR is
added. The simulated reflectivity map is composed of two
close point reflectors, whose spacing varies from λ/4 to λ.
The depth of the flaws is z = 20λ, and the flaws are located
below the center of the ultrasonic probe, which contains 64
elements, with an inter-element distance of λ/2.

Both the Excitelet algorithm and the inverse method are
implemented using the “true” waveform. The pixel size used
for image reconstruction is 20µm ×20µm, that is, four times
bigger than the pixel size used for data generation. Con-
sequently, the observation model (7) contains inaccuracies
due to discretization. For these simulations, the regularization
parameter µ2 is set to zero because the flaws have no spatial
extension in the synthetic specimen, and µ1 = 0.2µmax

1 .

B. Metrics

The difficulty to resolve two close flaws is evalu-
ated with the Rayleigh criterion [18], [19], defined by

15 16 17

x (mm)

-10

-5

0

In
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n
s
it
y
 (

d
B

)

γ

Fig. 4. Definition ot the peak to center intensity difference (PCID) criterion.

R = 0.61λ/ sin(θ), where tan(θ) = D/(2z), with D the
aperture of the probe and z the inspection depth. It defines the
resolution limit of an imaging system [31]. In [19], the peak
to center intensity difference (PCID) is introduced in order
to evaluate the separation between two flaws. This criterion,
denoted γ, is illustrated in Figure 4 and corresponds to the
minimum value of intensity in the pixels that separate the two
maxima corresponding to the flaws. In this paper, we consider
that two point scatterers are not resolved if the PCID is above
−6 dB. For the TFM and Excitelet images, which still contain
oscillations, a post-processing step extracting the envelope in
each image column is applied.

C. Separation of close flaws

Figure 5 shows the reconstructed images obtained by TFM,
Excitelet and the proposed inverse method, and Figure 6
represents the horizontal profile of images at the flaw depth.
The TFM and the Excitelet algorithm are able to resolve flaws
which are separated by more than λ, which is in agreement
with the Rayleigh criterion, equal to 0.97λ in this case.
The inverse method is able to resolve the two flaws in all
cases. In particular, flaws distant of λ/4 are well separated,
which represents a resolving power four times superior to the
Rayleigh limit.

Finally, simulations were performed by varying the distance
between the flaws and for different bandwidth ratios (BWRs)
of the waveform. Figure 7 compares the PCID for the different
methods as a function of the distance between the two scatter-
ers for different BWRs. For all methods, the resolving power
increases with the BWR, which was expected since the pulse
length decreases. The TFM and the Excitelet algorithm have
approximately the same resolving power. In particular, the two
scatterers appear as a single spot in the reconstructed image if
they are separated by less than 0.65λ. The PCID of these two
methods is lower than −6 dB if their separation is greater
than 0.9λ. On the contrary, the inverse method achieves a
perfect PCID (equal to −∞ dB because sparsity enforces pixel
intensities to zero between them) as soon as their distance is
greater than 0.2λ.

VI. RESULTS WITH EXPERIMENTAL DATA

A. Presentation of the experiments

In this section, our inversion method is tested on an
aluminum block specimen. Experimental data are acquired
using the 128-channel Pioneer platform from TPAC (West
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(a) Experiment #1 (b) Experiment #2 (c) Experiment #3

Fig. 8. Inspected piece and corresponding probe for the three experiments in Section VI. The red circle locates the two side drilled holes.

TABLE I
PARAMETERS OF THE THREE EXPERIMENTS

Nel
fo

(MHz)
λ

(mm)
pitch
(mm)

depth
(mm)

R
(mm)

Exp #1 96 3 2.10 0.8 40 1.86 (∼ 0.89λ)

Exp #2 32 1.5 4.20 2 40 4.18 (∼ 1.00λ)

Exp #3 128 3 2.10 0.8 260 6.68 (∼ 3.18λ)

TABLE II
PARAMETERS OF THE GAUSSIAN WAVELET USED IN THE EXPERIMENTS

fo
(MHz)

BWR−6

(%)
φ

(rad)
Exp #1 3 30 0

Exp #2 1.5 30 0
Exp #3

(non-estimated) 3 30 0

Exp #3
(estimated) 2.81 130 3.3

Chester, Ohio, USA), and two probes from Imasonic (Voray-
sur-l’Ognon, France). The flaws are two 1-mm-diameter side
drilled holes (SDH) with 1 mm edge-to-edge distance. Assum-
ing that the maxima in the reflectivity map are located at the
top of the SDH, the distance between the two corresponding
maxima in the ultrasonic image should be 2 mm. In all exper-
iments, the specimen is inspected in contact and is supposed
homogeneous, with the sound velocity equal to 6 300 m/s.

Three experiments are presented, whose configurations are
displayed in Figure 8. Their corresponding parameters are
listed in Table I. The parameters of the Gaussian wavelets that
used in the naive inversion, Excitelet and the inverse method
are listed in Table II.

The inversion method is first compared with the TFM
and the naive least-squares inversion. It aims to show the
ill-posed nature of the problem, even in the favorable case
where the two flaws are well separated in the TFM image.
In the second experiment, a lower frequency is chosen and

the inverse method is compared to the TFM and to the
Excitelet method, in order to evaluate its ability to separate
close flaws. The third experiment considers a mode difficult
inspection configuration, where the test piece is inspected from
the bottom side. The Rayleigh criterion is then the largest
among the three experiments. In this last experiment, we study
the influence of the waveform parameters that are used in the
inverse method.

B. Experiment #1: Example of naive inversion

In the first experiment, the piece is inspected using a
128-element probe pulsing at 3 MHz with an inter-element
distance (pitch) of 0.8 mm. A picture of the inspection is
shown in Figure 8 (a). Since the aperture of the probe is large
(around 100 mm), only the 96 central elements are used to
acquire the data in order to discard signals for which the
emitter-receiver distance is too large. The Rayleigh criterion
is approximately 1.86 mm ∼ 0.89λ, which is almost twice the
edge-to-edge distance between the two flaws. The elementary
signature is the Gaussian wavelet defined in Equation (10),
with f0 = 3 MHz, BWR−6 = 30% and φ = 0. Images
obtained by the TFM, least-squares inversion and the proposed
method are presented in Figure 9. The flaws are roughly
resolved in the TFM image, with a PCID approximately equal
to −8 dB. In the least-squares reconstruction, artifacts are too
strong to identify any object in the image. This example shows
that even for a low level of noise, the least-squares solution
cannot provide satisfactory results. The inverse method clearly
resolves the two flaws, as shown in Figure 9 (c). The distance
between the two detected flaws is 1.92 mm, which is a very
accurate estimate.

C. Experiment #2: Separation of close flaws with low-
frequency inspection

We now consider a lower frequency inspection of the
former aluminum block, in order to create a more difficult



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 8

(a)

30 32 34 36 38 40

x (mm)

36

38

40

42

44

z
 (

m
m

)
(b)

30 32 34 36 38 40

x (mm)

(c)

30 32 34 36 38 40

x (mm)

-20

-15

-10

-5

0

Fig. 9. Reconstructed images for experiment #1. (a): TFM image, (b): least-squares inversion, and (c): reconstruction by the inverse method (µ1 = 0.6µmax
1

and µ2 = 10−2). Pixel amplitudes are in logarithmic scale.

(a)

28 30 32 34

x (mm)

38

40

42

z
 (

m
m

)

(b)

28 30 32 34

x (mm)

(c)

28 30 32 34

x (mm)

-20

-10

0

Fig. 10. Reconstructed images for experiment #2. (a): TFM image, (b): Excitelet image, and (c): reconstruction by the inverse method (µ1 = 0.6µmax
1 and

µ2 = 5.10−3). Pixel amplitudes are in logarithmic scale.

scenario. The probe frequency is now 1.5 MHz and the pitch
is 2 mm. The wavelength is λ = 4.2 mm, so that the edge-
to-edge distance between the two flaws is approximately λ/4.
The configuration of the experiment is shown in Figure 8 (b).
As in the first experiment, the aperture of the probe is very
large (approximately 250 mm), therefore only the 32 central
elements of the probe are used to acquire the data. The res-
olution limit according to the Rayleigh criterion is 4.18 mm,
that is, of the order of λ. In this configuration, separating
the flaws distant of 1 mm represents a resolving power four
times superior to the Rayleigh criterion. The waveform used
for both the Excitelet and the inverse method is the Gaussian
wavelet in Equation (10) with f0 = 1.5 MHz, BWR−6 = 30%,
and φ = 0. Results obtained by the TFM, Excitelet and
the inverse method are shown in Figure 10. The two flaws
appear like a single unresolved spot in both the TFM and the
Excitelet images. On the contrary, the two spots are clearly
separated in the image reconstructed with the inverse method.
The maximum intensity values corresponding to these flaws
are distant of 1.50 mm, which is a bit less than the expected
2 mm. This difference may be due to the large pitch of
the probe used in this experiment, which impacts the lateral
resolution.

D. Experiment #3: Influence of the elementary waveform

Finally, we study the impact of the waveform parameters on
the image quality. We consider a more difficult problem, where
the two close flaws are located much farther from the probe.
In the previous experiments, the parameters of the Gaussian
echo model were set using generic values. In this experiment,
we compare the results obtained by using either generic values
or parameters that are estimated from the data.

The configuration of the experiment is shown in Figure 8 (c).
The distance between the probe and the flaws is now 260 mm.
The same probe is used as in Subsection VI-B, with 128
elements, 3-MHz center frequency and 0.8-mm pitch. The dis-
tance between the two flaws is only λ/2, and resolving the two
flaws is very difficult because of the large inspection depth,
which increases the Rayleigh criterion to 6.68 mm ∼ 3.18λ.

As shown in Figure 11 (a), the two flaws cannot be separated
in the TFM image. Our inversion procedure is first applied
using generic waveform parameters, as in the first experiment
(f0 = 3 MHz, BWR−6 = 30% and φ = 0). The reconstructed
image is shown in Figure 11 (b). It cannot clearly separate the
two flaws, and it contains many artifacts that compensate the
low adequacy between the data and the model. This image is
typical of an inversion result with an inaccurate elementary
waveform: side lobes are visible, whose intensity is similar
to that of the main lobe. Last, our inversion procedure is
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applied using waveform parameters that have been previously
estimated from the data. More precisely, we consider the
echoes reflected by the backside of the piece—located 40 mm
deeper than the two flaws—for close emitter-receiver pairs.
The Gaussian wavelet model (10) is then fitted to each time-
domain signal with the Levenberg-Marquardt nonlinear least
squares algorithm, and parameters are averaged among the
estimates for which the lowest residual error was obtained.
Estimated parameters are f0 = 2.81 MHz, BWR−6 = 130%,
and φ = 3.3 rad. Figure 11 (c) shows she image obtained
by our inversion procedure using these waveform parameters.
The two flaws are now clearly separated, and the maxima
of the two spots are distant of 1.97 mm, which is very
close to the 2-mm actual separation distance. This represents
a resolving power six times above the Rayleigh criterion.
Moreover, residual artifacts now have much lower intensity
compared to the image in Figure 11 (b).

VII. CONCLUSION AND PERSPECTIVES

In this paper, we have built a forward model which linearly
relates the FMC data to the reflectivity map. The proposed
imaging method consists in inverting this model to compute
high-quality images from noisy datasets, by incorporating prior
sparsity and spatial smoothness information on the recon-
structed image. The ability of the method to resolve close
scatterers has been demonstrated, with a resolution limit up
to five times the Rayleigh criterion on synthetic data (up
to six times on experimental data). On difficult problems
where the scatterers are far from the inspection probe, we also
showed that estimating specific parameters for the transducers
response could significantly improve the image quality. From
a methodological point of view, a joint approach aiming
at simultaneously estimating the reflectivity image and the
waveform parameters seems very attractive.

Our inversion methodology has been evaluated on an alu-
minum sample with a standard FMC acquisition procedure. A
similar model could also be built for different kinds of data
such as SAFT [10], PWI [11] or VSA [12]. Furthermore, the
inverse method is not limited to contact inspection and could

also be applied to more complex setups or specimens such
as weld inspection using wedges [57], adaptive imaging [36],
etc.

In the current implementation of the iterative optimization
algorithm, the computation time can reach several minutes, de-
pending on the complexity of the acquisition setup. However,
we noted that, in practice, rather satisfactory images compared
to TFM could be obtained after only a few iterations, that is, a
few seconds of computation time. Therefore, a faster approach
with a limited number of iterations could also be competitive.
In order to reduce the computation time, another inversion
approach would formulate an inverse problem starting from
the TFM image, by considering the TFM image as a back-
projection of the data in the spatial domain. A linear inverse
problem could then be formulated in the image domain with
a much smaller number of data points, at the expense of some
loss of information [58], [59].

Last, in this paper, the method has been tested on a simple
material, for which the elementary signature was considered
as shift invariant. For dispersive materials, attenuation and
dispersion could be integrated in the procedure, which would
modify the shape of the waveform as a function of the propaga-
tion distance [42]–[44]. By predicting the waveform distortion
with appropriate models, such a method may be a promising
solution in order to reconstruct high-quality ultrasonic images
of scattering materials.

APPENDIX A
UPPER BOUND ON PARAMETER µ1 IN THE PENALIZATION

FUNCTION (15)

We prove that the minimizer of the cost function J defined
by Equations (14)–(15) is identically zero if and only if
µ1 ≥ µmax

1 , with µmax
1 = 2 ‖ Hty ‖∞. This result is already

known in the standard `1-norm penalization case (µ2 = 0), see
for example [56]. In our case, we can rewrite the quadratic part
of J as:

‖y −Ho‖2 + µ2 ‖Do‖2 = ‖ye −Heo‖2 , (17)
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where He =

[
H√
µ
2
D

]
and ye =

[
y
0

]
, so that:

J(o) = ‖ye −Heo‖2 + µ1 ‖o‖1 . (18)

Now, applying the result in [56], we have that the minimizer
of (18) is identically zero if and only if µ1 ≥ µmax

1 , with:

µmax
1 = 2 ‖ Ht

eye ‖∞= 2 ‖ Hty ‖∞ . (19)
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