
HAL Id: hal-02563949
https://hal.science/hal-02563949v1

Preprint submitted on 5 May 2020 (v1), last revised 14 Jun 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Discrete-time mean field games with risk-averse agents
J Frédéric Bonnans, Pierre Lavigne, Laurent Pfeiffer

To cite this version:
J Frédéric Bonnans, Pierre Lavigne, Laurent Pfeiffer. Discrete-time mean field games with risk-averse
agents. 2020. �hal-02563949v1�

https://hal.science/hal-02563949v1
https://hal.archives-ouvertes.fr


Discrete-time mean field games with risk-averse agents∗

J. Frédéric Bonnans† Pierre Lavigne‡ Laurent Pfeiffer§

May 5, 2020

Abstract

We propose and investigate a discrete-time mean field game model involving risk-
averse agents. The model under study is a coupled system of dynamic programming
equations with a Kolmogorov equation. The agents’ risk aversion is modeled by com-
posite risk measures. The existence of a solution to the coupled system is obtained
with a fixed point approach. The corresponding feedback control allows to construct an
approximate Nash equilibrium for a related dynamic game with finitely many players.

Introduction

The class of mean field games problem was introduced by J-M. Lasry and P-L. Lions in
[17, 18, 19] and M. Huang, R. Malhamé, and P. Caines in [15], to study interactions among
a large population of players. Many developments and applications have been proposed
this last decade, in particular in economics modeling and finance; one can refer for example
to Y. Achdou and al. [1], O. Guéant, J-M. Lasry and P-L. Lions [13], and P. Cardaliaguet
and C.-H. Lehalle [7]. Economic models “à la Cournot”, considering interactions between
the agents via a price variable, have recently received particular attention, let us mention
the works of A. Bensoussan and P.J. Graber [11], J. F. Bonnans, S. Hadikanloo, and
L. Pfeiffer [6], Z. Kobeissi [16], and P. J. Graber, V. Ignazio, and A. Neufeld [12].

The specificity of the mean field game of this article is the risk aversion of the involved
agents. Here risk aversion is modeled with the help of composite risk measures (also called
dynamic risk measures). Mathematically, a risk measure ρ is a map that assigns to a
random variable U a real number, which is usually high when U is very volatile. In this
way ρ can be used to model the reluctance of a player to face highly uncertain expenses.
We refer to the seminal work by P. Artzner, F. Delbaen, J-M. Eber and D. Heath in [3].
We will make use of composite risk measures, the natural extension of risk measures to a
multistage framework, see for example the article of A. Shapiro and A. Ruszczyński [24];
for an application to multistage portofolio selection one can refer to A. Shapiro [26].

Let us describe more precisely our coupled system and the obtained results. The
coupled system describes a population of identical agents which all optimize a discrete-
time dynamical system (in a continuous state space). In the model, the associated cost
function depends on a variable called belief, which is related to the behavior of the whole
group, whence a coupling between a single agent and the population. Assuming that
the population is very large, one can consider that an isolated representative agent has
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no impact on the belief. Therefore his/her behavior can be conveniently described by
dynamic programming equations (in which the belief is a parameter). Mathematically,
the belief is the probability distribution of the states and controls of all agents at the
different time steps of the game; it is described via the Kolmogorov equation. Our first
result is an existence result, obtained with a standard fixed point approach. In our second
result, we show that an optimal feedback control for the mean field game yields an ε-Nash
equilibrium for an N -player dynamic game, where ε → 0 as N → ∞. The proof of this
result is based on an estimate of the expectation of the Wasserstein distance between the
empirical measure of i.i.d. variables and the law of these variables, obtained by N. Fournier
and A. Guillin [10, Theorem 1]. The approach that we follow was proposed by M. Huang,
P. Caines, and R. Malhamé in [14].

Discrete-time and continuous-space mean field game models have been studied in dif-
ferent works. The framework that we propose in this article is close to the one of N. Saldi,
T. Başar and M. Raginsky [25], in particular, we make use of similar weighted spaces.
A few works have already investigated the issue of risk aversion. Most of them model
risk sensitivity via exponential utility functions, see for example H. Tembine, Q. Zhu and
T. Başar [27]. The case of robust mean field games is investigated in problem (P2) in
the work of J. Moon and T. Başar [20]. In many economic situations, risk modeling is of
interest, in particular in the banking industry [21]. Our approach can also be relevant in
situations where mean field games are used to design telecommunication systems or smart
grids; see C. Bertucci et al. [5] and C. Alasseur, I. Ben Tahar and A. Matoussi [2]. For
example, in the latter reference, it could be interesting to take into account the risk of
individual no-energy situations or collective black-out situations via robust control.

The article is structured as follows. In Section 1 we introduce notations, assumptions,
and the system of coupled equations. In Section 2 we interpret this system as a mean field
game system with risk averse agents. In Section 3 we establish general technical results
that will be helpful in Section 4, where we prove the existence of a solution to the coupled
system. Finally in Section 5 we investigate the connection between the coupled system
and an N -player game.

1 Problem Formulation

1.1 Notations

We set T := {0, . . . , T − 1} and T̄ := {0, . . . , T} with T ∈ N?. For any t ∈ T̄ and any
vector (x0, . . . , xt) we denote

x[t] := (x0, . . . , xt).

Functions

Let C-Lip denote the set of Lipschitz functions of modulus C on Rd. We define the
p-polynomially weighted space

GCp :=
{
f : Rd → Rd

′
, |f(x)| ≤ C(|x|p + 1)

}
,

where the dimension d′ depends on the context, with associated norm

‖f‖G,p := sup
x∈Rd

|f(x)|
1 + |x|p

.

Let QCp ⊂ GCp denote the set of convex mappings f : Rd → R satisfying

− C ≤ f(x) ≤ C(1 + |x|p), ∀x ∈ Rd. (1.1)
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Probability measures

Let P(Rd) denote the set of probability measures on Rd. Given p ∈ [1,+∞), we define the
set of finite p-th order moment measures

Pp(Rd) :=

{
m ∈ P(Rd),

∫
Rd
|x|pdm(x) < +∞

}
,

that we endow with the Rubinstein-Kantorovitch distance, defined by

d1(µ, ν) := sup
φ∈1−Lip

∫
Rd
φ(x)d(µ− ν)(x),

for any µ and ν ∈ P1(Rd) (see [28, Particular case 5.15] for more details). We recall that
by the Hölder inequality, Pp(Rd) ⊆ P1(Rd) for any p > 1. Given C > 0, we define

PCp (Rd) :=

{
m ∈ Pp(Rd),

∫
Rd
|x|pdm(x) ≤ C

}
.

We also consider the following sets of beliefs

B2 := (P2(R2d))T × P2(Rd), BC2 := (PC2 (R2d))T × PC2 (Rd),

endowed with the Rubinstein-Kantorovitch distances for the product topology, also de-
noted d1.

For any m and ν ∈ P(Rd), we define the convolution product ν ∗m by∫
Rd
h(x)d(ν ∗m)(x) :=

∫
Rd

∫
Rd
h(y + z)dν(y)dm(z), (1.2)

for any bounded Borel map h ∈ Rd → R. For any m ∈ P(Rd) and for any Borel map
g : Rd → Rd′ , we define the image measure g]m ∈ P(Rd′) by∫

Rd
(h ◦ g)(x)dm(x) =

∫
Rd
h(y)dg]m(y), (1.3)

for any bounded Borel map h ∈ Rd → Rd′ .

1.2 Coupled system

Let us first introduce the data of the problem. We consider

• a congestion function F : T̄ × Rd × B2 → R

• a price function P : T × B2 → Rd

• an initial distribution m̄ ∈ P2(Rd)

• individual noise distributions (ν(t))t∈T ∈ (P2(Rd))T .

The running cost ` : T × Rd × Rd × B2 → R is defined by

`(t, x, a, b) =
1

2
|a|2 + 〈a, P (t, b)〉+ F (t, x, b).

For modeling risk aversion, we consider a family of subsets (Zt)t∈T such that

Zt ⊆
{
Z ∈ L∞(Rd),

∫
Rd
Z(y)dν(t, y) = 1, Z ≥ 0

}
, ∀t ∈ T .
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For any t ∈ T , we define

Mt :=
{
ξ ∈ P(Rd), dξ = Zdν(t), Z ∈ Zt

}
. (1.4)

For any t ∈ T , Zt is assumed to be nonempty and convex, thus Mt is a nonempty and
convex subset of P(Rd).

We propose to study a risk averse mean field game (MFG), taking the form of the
following coupled system:

(i)

u(t, x) = inf
a∈Rd

(
`(t, x, a, b) + sup

ξ∈Mt

∫
Rd
u(t+ 1, x+ a+ y)dξ(y)

)
,

u(T, x) = F (T, x, b),

(ii) αt(x) = arg min
a∈Rd

(
`(t, x, a, b) + sup

ξ∈Mt

∫
Rd
u(t+ 1, x+ a+ y)dξ(y)

)
,

(iii)

{
m(t+ 1) = ν(t) ∗ [(id+ αt)]m(t)],

m(0) = m̄,

(iv) µ(t) = (id, αt)]m(t),

(v) b := (µ(0), . . . , µ(T − 1),m(T )),

(MFG)

for any (t, x) ∈ T × Rd. The five unknowns in the above system are

• the value function u ∈ (G2)T+1

• the feedback control α ∈ (G1 ∩ 1-Lip)T

• the distribution of states m ∈ (P2)T+1

• the joint distribution of states and controls µ ∈ (P2(R2d))T

• the belief b ∈ B2.

Let us describe briefly the coupled system; we will justify it more in detail in Section
2. Equation (MFG,i) is a dynamic programming equation associated with a discrete-time
optimal control problem for a representative agent. The belief b appears as a parameter
of the equation, since a single agent has no impact on it. The corresponding optimal
feedback control α is then given by (MFG,ii). Now, assuming that all agents make use of
the feedback control α, the distribution of their state m is described by the Kolmogorov
equation (MFG,iii) with initial condition m̄.

Our approach for proving the existence of a solution consists in formulating the system
(MFG) as a fixed point equation. For this purpose, we consider two mappings. The first
one, that we call dynamic programming mapping, assigns to a belief b the solutions u?(b)
and α?(b) to equations (MFG,i) and (MFG,ii), respectively. The second one, the Kol-
mogorov mapping, assigns to a feedback control α the triplet (m?(α), µ?(α), b?(α)), where
m?(α), µ?(α), and b?(α) are the solutions to (MFG,iii), (MFG,iv), and (MFG,v), respec-
tively. These two mappings will be investigated in Section 4. They allow to reformulate
the system (MFG) as an equivalent fixed point equation

b = b? ◦ α?(b).
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1.3 Assumptions

We state now the assumptions on the data of the problem, in force all along the article.
Note that for the results of Section 5 (dealing with the N -player dynamic game), we will
need a slightly stronger assumption on the mapping F .

We make use of the same constant C to formulate the different assumptions. In the
sequel, the constant C denotes a generic constant depending only on those involved in the
assumptions and T ; its value can change from an inequality to the next one.

Assumption 1.1. There exists C > 0 such that m̄ ∈ PC2 (Rd) and such that for any t ∈ T ,
ν(t) ∈ PC2 (Rd).

Assumption 1.2. There exists C > 0 such that for any t ∈ T and for any Z ∈ Zt,

‖Z‖∞ ≤ C,

and there exists Z ′ ∈ Zt such that

Z ′ ≥ 1

C
a.e.

Remark 1.3. Assumption 1.2 implies the existence of C > 0 such that

Mt ⊆ PC2 (Rd), ∀t ∈ T . (1.5)

The results obtained in Section 4 only require (1.5) to hold. The full Assumption 1.2 will
be used in Section 5.

Assumption 1.4. There exists C > 0 such that for any t ∈ T and for any b1 and b2 ∈ B2,

(i) F (t, ·, b1) ∈ QC2 ,
(ii) ‖F (t, ·, b1)− F (t, ·, b2)‖G,2 ≤ Cd1(b1, b2),
(iii) |P (t, b1)− P (t, b2)| ≤ Cd1(b1, b2),
(iv) |P (t, b1)| ≤ C.

Remark 1.5. In economics or in finance, prices typically depend on the aggregated demand
or supply. One could consider for example

P (t, b) := ψ

(
t,

∫
R2d

αdµ(t, x, α)

)
,

where ψ : T × Rd → Rd. In this case, if ψ is a C-Lipschitz mapping then for any b1 and
b2 ∈ B2, one has that

|P (t, b1)− P (t, b2)| ≤ C
∣∣∣∣∫

R2d

αd(µ1 − µ2)(t, x, α)

∣∣∣∣ ≤ Cd1(µ1, µ2) ≤ Cd1(b1, b2),

which implies Assumption 1.4 (iii). Assumption 1.4 (iv) also holds if |ψ| ≤ C.

2 Interpretation of the coupled system

In Subsection 2.1 we describe the risk averse optimal control problem associated with
(MFG,i-ii). In Subsection 2.2 we justify the Kolmogorov equation (MFG,iii).
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2.1 Dynamic programming equation

Risk measures

Let X0 and (Yt)t∈T be (T + 1)-independent random variables defined on a probability
space (Ω,F ,P). Let L(X0) = m̄ and L(Yt) = ν(t). We define the filtration (Ft)t∈T , where
F0 := σ(X0) is the sigma-algebra generated by X0, and Ft+1 := σ(X0, Y[t]). We denote
for any t ∈ T̄ and any p ∈ [1,+∞)

Lpt (Ω,R
d′) := Lp(Ω,Ft,P,Rd

′
),

the space of Ft measurable random variables with finite p-th order moment and value in
Rd′ . When the dimension is d′ = 1, we simplify the notation: Lpt := Lpt (Ω,R).

Definition 2.1. Given t ∈ T , we say that a mapping ρt : L1
t+1 → L1

t is a conditional risk
mapping if it satisfies the following conditions:

• (M) Monotonicity: For any U and U ′ ∈ L1
t+1 such that U ≤ U ′, we have

ρt(U) ≤ ρt(U ′), a.s.

• (C) Convexity: For any U and U ′ ∈ L1
t+1, for any α ∈ [0, 1], we have

ρt(αU + (1− α)U ′) ≤ αρt(U) + (1− α)ρt(U
′), a.s.

• (TI) Translation Invariance: For any U ∈ L1
t+1 and for any V ∈ L1

t , we have

ρt(U + V ) = ρt(U) + V, a.s.

• (PH) Positive Homogeneity: For any α ≥ 0, for any U ∈ L1
t+1, we have

ρt(αU) = αρt(U), a.s.

Quoting [23], the condional risk mapping ρt(Ut+1) can be interpreted as a fair one-time
Ft-measurable charge we would be willing to incur at time t instead of the random futur
cost Ut+1.

We fix now a family of conditional risk mappings (ρt)t∈T , ρt : L1
t+1 → L1

t , defined by

ρt(Ut+1)(x0, y[t−1]) = sup
Z∈Zt

∫
Ω
Ut+1(x0, y[t−1], Yt(ω))Z(Yt(ω))dP(ω), (2.1)

where the random variables Ut+1 and ρt(Ut+1) are explicitly represented as measurable
functions of (x0, y[t]) ∈ R(t+2)d and (x0, y[t−1]) ∈ R(t+1)d, respectively. Recalling the defi-
nition of Mt (1.4), we have

ρt(Ut+1)(x0, y[t−1]) = sup
ξ∈Mt

∫
Rd
Ut+1(x0, y[t−1], yt)dξ(yt).

We set
Qt+1 := {Q = Z(Yt) a.s., Z ∈ Zt}

so that ρt can be expressed in the following form:

ρt(Ut+1) = sup
Qt+1∈Qt+1

E [Ut+1Qt+1|Ft] .
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Remark 2.2. We could allow Z in (2.1) to depend on (x0, y[t−1]). Then Mt would also
depend on (x0, y[t−1]). This approach would be close to the one developed in [24]. However,
in the dynamic programming principle, the state should include x0 and y[t−1] and therefore
its dimension might be too large for practical computations.

Finally we construct the associated composite risk measure ρ : L1
T → R,

ρ(U) := E [ρ0 ◦ · · · ◦ ρT−1(U)] ,

which also satisfies (M), (C), (TI), and (PH).

Remark 2.3. Given a probability space (Ω′,F ′,P′) and given α ∈ (0, 1], the conditional
value at risk (also called expected shortfall or average value at risk) of a random variable
U ∈ L1(Ω′,F ′,P′) is defined by

CV@Rα(U) := inf
W∈L1(Ω′,F ′,P′)

W + α−1E [(U −W )+] ,

where x+ = max{0, x} denotes the positive part of any x ∈ R. It has the following dual
representation (see [9, Lemma 4.51 and Theorem 4.52]):

CV@Rα(U) = sup
{
E [UZ]

∣∣∣Z ∈ L∞(Ω′,F′,P′), Z ∈ [0, α−1] a.s., E[Z] = 1
}
.

Therefore, a natural extension of the conditional value at risk to the framework of the
article is given by

ρt(Ut+1) = sup
Z∈Zt

E [Ut+1Z(Yt)|Ft] ,

where

Zt :=

{
Z ∈ L∞(Rd)

∣∣∣Z ∈ [0, α−1] a.e.,

∫
Rd
Z(y)dν(t, y) = 1

}
.

This particular definition of Zt satisfies Assumption 1.2. We refer to [9, Definition 11.8]
and [8, Subsection 2.3.1] for extensions of the conditional value at risk to general filtrations
in a discrete-time setting.

Control problem

We consider the following set of controls for any t ∈ T ,

At = L2
t (Ω,Rd), A := A0 × · · · × AT−1.

Given a control A ∈ A, the evolution of the state of the representative player is given by

Xt+1 = Xt +At + Yt, ∀t ∈ T . (C )

The initial condition is the random variable X0 fixed previously. In the notation, we do
not make explicit the dependence of (Xt)t∈T̄ with respect to A, which is always clear from
the context. Note that by induction, Xt ∈ L2

t (Ω,Rd) for any t ∈ T̄ .
For a given belief b ∈ B2, the risk averse multistage cost of the representative agent is

given by

J (A, b) := ρ

(
T−1∑
t=0

`(t,Xt, At, b) + F (T,XT , b)

)
. (2.2)

The corresponding problem is
inf
A∈A
J (A, b). (P)
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As a consequence of the translation invariance property (TI), the problem (P) can be
expressed in a nested form

E
[

inf
A0∈A0

`(0, X0, A0, b) + inf
A1∈A1

ρ0

(
`(1, X1, A1, b) + · · ·

+ inf
AT−1∈AT−1

ρT−2

(
`(T − 1, XT−1, AT−1, b) + ρT−1

(
F (T,XT , b)

))
· · ·
)]
. (2.3)

The solution of problem (P) can be characterized by a dynamic programming approach,
that we briefly describe. We refer to [23] for a rigorous presentation. The dynamic pro-
gramming approach consists, in short, in investigating a family of control problems of same
nature as (P). The problems are parameterized by their initial time t and initial condition
x; their value is denoted u(t, x). The function u is characterized by equation (MFG,i),
which itself derives from the nested form (2.3). Consider now the function α, solution to
(MFG,ii) (we will justify the existence and uniqueness of the “argmin” in this equation in
Lemma 4.1). Let (X̄t)t∈T̄ be the solution to the closed-loop system

X̄t+1 = X̄t + αt(X̄t) + Yt (2.4)

and let Ā be defined by
Āt = αt(X̄t). (2.5)

Let us briefly justify that Ā ∈ A. Since X̄t is adapted to Ft, we also have that Āt is Ft-
measurable. In addition we show in Lemma 4.2 that αt is 1-Lipschitz. Since the random
variables X0 and (Yt)t∈T have a bounded second-order moment, Āt also have a bounded
second-order moment and thus, Ā ∈ A.

The following proposition states the optimality of the control Ā.

Proposition 2.4. We have

inf
A∈A
J (A, b) = E [u(0, X0)] =

∫
Rd
u(0, x)dm(0, x), (2.6)

where u solves the dynamic programming equation (MFG,i). Moreover, the control Ā
(defined by (2.4)-(2.5)) is the unique solution to Problem (P).

2.2 Kolmogorov equation

Lemma 2.5. Let α : T × Rd → Rd be a continuous vector field. Suppose that the state
equation (C ) is of the feedback form

Xt+1 = Xt + αt(Xt) + Yt.

Then for any t ∈ T̄ , m(t) = L(Xt) ∈ P(Rd) is characterized by the Kolmogorov equation
(MFG,iv).

Proof. Let φ be a bounded Borel test function. For any t ∈ T , by independence of Xt and
Yt we have

E [φ (Xt+1)] = E [φ (Xt + αt(Xt) + Yt)]

=

∫
Rd

∫
Rd
φ(x+ αt(x) + y)dm(t, x)dν(t, y).

By definition of the push-forward (1.3) we obtain∫
Rd
φ(x+ αt(x) + y)dm(t, x) =

∫
Rd
φ(z + y)d(id+ αt)]m(t, z).
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By definition of convolution (1.2) we have∫
Rd

∫
Rd
φ(z + y)dν(t, y)d(id+ αt)]m(t, z) =

∫
Rd
φ(x)d (ν(t) ∗ [(id+ αt)]m(t)]) (x),

as was to be proved.

3 Technical lemmas

This section contains independent technical lemmas. The reader only interested in the
main results of the article can skip it.

Lemma 3.1. Let p ∈ [1,+∞) and let C > 0. For any m1 and m2 in PCp (Rd), the

probability measure m1 ∗ m2 lies in P2pC
p (Rd). In addition, given m0 ∈ PCp (Rd), the

mapping PCp (Rd) 3 m 7→ m0 ∗m is non-expansive for the distance d1.

Proof. Let m1 and m2 in PCp (Rd). We have∫
Rd
|x|pd(m1 ∗m2)(x) =

∫
Rd

∫
Rd
|y + z|pdm1(y)dm2(z)

≤
∫
Rd

∫
Rd

2p−1(|y|p + |z|p)dm1(y)dm2(z) ≤ 2pC.

Thus m1 ∗m2 ∈ P2pC
p (Rd). Moreover, given m0 ∈ PCp (Rd), we have

d1(m0 ∗m1,m0 ∗m2) = sup
φ∈1−Lip

∫
Rd
φ(x)d(m0 ∗m1 −m0 ∗m2)(x)

= sup
φ∈1−Lip

∫
Rd

(∫
Rd
φ(y + z)dm0(y)

)
d(m1 −m2)(z).

Since the mapping z 7→
∫
Rd φ(y + z)dν(y) is non-expansive, we further obtain that

d1(m0 ∗m1,m0 ∗m2) ≤ d1(m1,m2),

which concludes the proof.

Lemma 3.2. Let p ∈ [1,+∞) and let C > 0. For any m ∈ PCp (Rd) and for any Borel

map g ∈ GC1 , the probability measure g]m lies in Pqp(Rd), with q = 2p−1Cp(1 + C). In
addition, the inequality

d1(g1]m1, g2]m2) ≤ (1 + C)‖g1 − g2‖G,1 + Cd1(m1,m2) (3.1)

holds for any m1 and m2 in PCp (Rd) and for any Borel maps g1 and g2 in GC1 ∩ C−Lip.

Proof. Let m ∈ PCp (Rd) and let g ∈ GC1 be a Borel map. We have∫
Rd
|x|pdg]m(x) =

∫
Rd
|g(x)|pdm(x) ≤ ‖g‖pG,1

∫
Rd

(1 + |x|)pdm(x) ≤ q.

Consider (g1,m1) and (g2,m2) in GC1 × PCp (Rd). We have

d1(g1]m1, g2]m2) = sup
φ∈1−Lip

∫
Rd
φ(x)d(g1]m1 − g2]m2)(x)

= sup
φ∈1−Lip

∫
Rd

(φ ◦ g1(x)− φ ◦ g2(x))dm2(x) +

∫
Rd
φ ◦ g1(x)d(m1 −m2)(x)

≤ ‖g1 − g2‖G,1
∫
Rd

(1 + |x|)dm2(x) + sup
φ∈1−Lip

∫
Rd
φ ◦ g1(x)d(m1 −m2)(x)

≤ (1 + C)‖g1 − g2‖G,1 + C sup
φ∈1−Lip

∫
Rd
C−1φ ◦ g1(x)d(m1 −m2)(x).
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Observing that C−1φ ◦ g1 ∈ 1−Lip, we deduce inequality (3.1).

Given a convex function u : Rd → R, we define the Moreau envelope Vu and the proxi-
mal operator proxu of u as follows:

Vu(x) := min
y∈Rd

1

2
|x− y|2 + u(y), proxu(x) := arg min

y∈Rd

1

2
|x− y|2 + u(y). (3.2)

In the proofs, we will occasionally consider the map gu : Rd × Rd → R, defined by

gu(x, y) :=
1

2
|x− y|2 + u(y).

Proposition 3.3. Let u : Rd → R be a convex function. Then proxu and (id−proxu) are
non-expansive.

Proof. Direct consequence of [4, Proposition 12.27].

Lemma 3.4. Let R > 0 and let u ∈ QR2 (the set was defined in (1.1)). Then |proxu |2 ∈
GC1(R)

2 and |proxu | ∈ G
(C1(R))1/2

1 , where C1(R) := 8R+ 2.

Proof. Let u ∈ QR2 . By Proposition 3.3, the map proxu is non-expansive. Thus

|proxu(x)| ≤ |proxu(0)|+ |x|. (3.3)

In addition, from the definition of the proximal operator (3.2), we have

1

2
| proxu(0)|2 + u(proxu(0)) ≤ u(0).

Since u ∈ QR2 , we deduce that | proxu(0)|2 ≤ 4R. We further obtain with (3.3) that

|proxu(x)|2 ≤ 2(|x|2 + | proxu(0)|2) ≤ C1(R)(1 + |x|2), (3.4)

as was to be proved. Taking the square root of (3.4), we infer that | proxu | ∈ G
C1(R)1/2

1 .

Lemma 3.5. Let R > 0 and let u ∈ QR2 . Then Vu ∈ QC2(R)
2 , where

C2(R) := (R+ 1)(1 + C1(R)).

Proof. Let u ∈ QR2 . Clearly Vu is convex as the infimum with respect to y ∈ Rd of the
jointly convex map (x, y) 7→ gu(x, y). For any x ∈ Rd, we have

Vu(x) =
1

2
|x− proxu(x)|2 + u(proxu(x)),

by definition of Vu and proxu. Since u ∈ QR2 , we further obtain that

−R ≤ Vu(x) ≤ |x|2 + |proxu(x)|2 +R(1 + | proxu(x)|2).

Applying Lemma 3.4, we finally obtain that Vu ∈ QC2(R)
2 .

Lemma 3.6. Let R > 0. For any u and v in QR2 , the inequality

‖ proxu−proxv ‖G,1 ≤ C3(R)‖u− v‖1/2G,2 (3.5)

holds, where C3(R) :=
√

2(1 + C1(R)).
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Proof. Let u and v in QR2 . Observing that gu and gw are 1-strongly convex with respect
to their second argument, we have

1

2
| proxu(x)− proxv(x)|2 ≤ gu(x,proxv(x))− gu(x, proxu(x)),

1

2
| proxu(x)− proxv(x)|2 ≤ gv(x, proxu(x))− gv(x,proxv(x)).

Summing up the two inequalities, we obtain that

| proxu(x)− proxv(x)|2 ≤ v(proxu(x))− u(proxu(x)) + u(proxv(x))− v(proxv(x))

≤ (2 + | proxu(x)|2 + |proxv(x)|2)‖u− v‖G,2. (3.6)

By Lemma 3.4,

2 + | proxu(x)|2 + |proxv(x)|2 ≤ 2 + 2C1(R)(1 + |x|2) ≤ C3(R)2(1 + |x|2). (3.7)

Combining (3.6) and (3.7) and taking the square root, we obtain (3.5).

Lemma 3.7. Let R > 0. For any u and v in QR2 , we have

‖Vu − Vv‖G,2 ≤ C4(R)‖u− v‖G,2, (3.8)

where C4(R) := 1 + C1(R).

Proof. Let u and v in QR2 . Recalling the definitions of gu and gv, we have

Vu(x)− Vv(x) ≤ gu(x,proxv(x))− gv(x,proxv(x)) = u(proxv(x))− v(proxv(x)).

Lemma 3.4 yields

Vu(x)− Vv(x) ≤ (1 + ‖ proxv(x)‖2G,1)‖u− v‖G,2 ≤ (1 + C1(R)(1 + |x|2))‖u− v‖G,2.

Exchanging u and v, we deduce (3.8).

Lemma 3.8. Let R > 0. For any u ∈ QR2 and for any (x, y) ∈ Rd × Rd,

|Vu(x)− Vu(y)| ≤ C5(R)(1 + |x|+ |y|)|x− y|, (3.9)

where C5(R) := 1 +
√
C1(R).

Proof. Let u ∈ QR2 . We have

Vu(x)− Vu(y) ≤ gu(x,proxu(y))− gu(y,proxu(y))

=
1

2
|x− proxu(y)|2 − 1

2
|y − proxu(y)|2

≤ 1

2
|x+ y − 2 proxu(y)| · |x− y|.

We further obtain with Lemma 3.4 that

|x+ y − 2 proxu(y)| ≤ |x|+ |y|+ 2
√
C1(R)(1 + |y|) ≤ 2(1 +

√
C1(R))(1 + |x|+ |y|).

Combining the two obtained inequalities and exchanging x and y, we obtain (3.9).
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Lemma 3.9. Let R > 0 and let M be a subset of PR2 (Rd). Given u ∈ QR2 , consider the
mapping Υ[u](x) defined for any x ∈ Rd by

Υ[u](x) := sup
ξ∈M

∫
Rd
u(x+ y)dξ(y).

Then Υ[u] ∈ QC6(R)
2 , where C6(R) = 2R(1 + R). Moreover, the map QR2 3 u 7→ Υ[u] is

Lipschitz continuous with modulus 2(1 +R).

Proof. Let u ∈ QR2 . For any ξ ∈ M, the map Rd 3 x 7→
∫
Rd u(x + y)dξ(y) is convex, as

can be easily verified. Thus Υ[u](x) is convex with respect to x, as a supremum of convex
maps. Moreover, for any x ∈ Rd, we have

−R ≤ Υ[u](x) ≤ sup
ξ∈M

∫
Rd

2R(1 + |x|2 + |y|2)dξ(y) ≤ 2R(1 + |x|2 +R).

This proves that Υ[u] ∈ QC6(R)
2 . Consider now v ∈ QR2 . We have

|Υ[u](x)−Υ[v](x)| ≤ sup
ξ∈M

∣∣∣∣∫
Rd

(u(x+ y)− v(x+ y))dξ(y)

∣∣∣∣
≤ ‖u− v‖G,2

(
sup
ξ∈M

∫
Rd

(1 + |x+ y|2)dξ(y)

)
. (3.10)

For any ξ ∈M, we further have∫
Rd

(1 + |x+ y|2)dξ(y) ≤ 1 + 2|x|2 + 2R ≤ 2(1 +R)(1 + |x|2). (3.11)

Combining (3.10) and (3.11), we deduce that

‖Υ[u]−Υ[v]‖G,2 ≤ 2(1 +R)‖u− v‖G,2,

as was to be proved.

4 Existence result

In this section we prove the main existence result. We first investigate the continuity
of the dynamic programming mapping and the continuity of the Kolmogorov mapping
introduced in Subsection 1.2.

4.1 Dynamic Programming mapping

Given a belief b ∈ B2, let us recall that u?(·, ·, b) is the solution to (MFG,i) and α?· (·, b) the
solution to (MFG,ii). For conveniency, we introduce an intermediate mapping ū?(·, ·, b),
defined by

ū?(t+ 1, x, b) := sup
ξ∈Mt

∫
Rd
u?(t+ 1, x+ y, b)dξ(y),

for any t ∈ T . This allows to rewrite equations (MFG,i-ii) as follows:

u?(t, x, b) = inf
a∈Rd

1

2
|a|2 + 〈a, P (t, b)〉+ F (t, x, b) + ū?(t+ 1, x+ a, b), (4.1)

α?t (x, b) = argmin
a∈Rd

1

2
|a|2 + 〈a, P (t, b)〉+ F (t, x, b) + ū?(t+ 1, x+ a, b). (4.2)

The first step consists in rewriting these equations in a functional form, with the help of
the Moreau envelope and the proximal operator (introduced in (3.2)). In addition, we
justify the existence and uniqueness of the minimizer in the right-hand side of (4.2).
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Lemma 4.1. Let b ∈ B2. For any t ∈ T , the map u?(t, ·, b) is convex and for any x ∈ Rd,
the minimizer in (MFG,ii) is unique. Moreover,

u?(t, x, b) = Vū?(t+1,·,b)(x− P (t, b)) + F (t, x, b)− 1

2
|P (t, b)|2, (4.3)

α?t (x, b) = (proxū?(t+1,·,b)− id)(x− P (t, b))− P (t, b). (4.4)

Proof. We proceed by backward induction. The terminal condition u?(T, ·, b) = F (T, ·, b)
and Assumption 1.4 (i) yield the convexity of u?(T, ·, b). Let t ∈ T . Suppose that u?(t +
1, ·, b) is convex. Then by Lemma 3.9, ū?(t + 1, ·, b) is also convex. By the change of
variable

y = x+ a,

the dynamic programming equation (MFG,i) can be written as follows:

u?(t, x, b) = inf
y∈Rd

(1

2
|y − x|2 + 〈(y − x), P (t, b)〉+ F (t, x, b) + ū?(t+ 1, y, b)

)
= inf

y∈Rd

(
1

2
|y − (x− P (t, b))|2 + ū?(t+ 1, y, b)

)
+ F (t, x, b)− 1

2
|P (t, b)|2. (4.5)

This proves (4.3). Moreover, u?(t, ·, b) is convex, as a consequence of Assumption 1.4 (i)
and Lemma 3.5. Besides the unique minimizer in (4.5) is

y∗ := proxū∗(t+1,·,b)(x− P (t, b))

and therefore, the unique minimizer in (MFG,ii) is y∗−x, which proves (4.4). The lemma
is proved.

Lemma 4.2. Let b ∈ B2. For any t ∈ T̄ , we have

u?(t, ·, b) ∈ QCu2 , (4.6)

and for any t ∈ T , we have
α?t (·, b) ∈ G

Cα
1 ∩ 1−Lip, (4.7)

for some positive constants Cα and Cu independent of t and b.

Proof. In the proof, all constants C are independent of b. Let us prove (4.6) by backward
induction. The terminal condition u?(T, ·, b) = F (T, ·, b) and Assumption 1.4 (i) imply
that u?(T, ·, b) ∈ QC2 , for some constant C > 0 (independent of b). Let t ∈ T . Suppose
that u?(t + 1, ·, b) ∈ QC2 . Then by Lemma 3.9 and relation 1.5, we have ū?(t, ·, b) ∈ QC2 .
Recall that by Lemma 4.1, we have

u?(t, ·, b) = Vū?(t+1,·,b)(· − P (t, b)) + F (t, ·, b)− 1

2
|P (t, b)|2. (4.8)

By Assumptions 1.4 (i) and (iv), F (t, ·, b)− 1
2 |P (t, b)|2 ∈ QC2 . Using again Assumption 1.4

(iv) and Lemma 3.5, we obtain that Vū?(t+1,·,b)(·−P (t, b)) ∈ QC2 . Therefore, the right-hand

side of (4.8) lies in QC2 and finally, u?(t, ·, b) ∈ QC2 , where C is independent of b.
Let us prove (4.7). By Lemma 4.1, we have

α?t (·, b) = (proxū?(t+1,·,b)− id)(· − P (t, b))− P (t, b). (4.9)

We already know that ū?(t + 1, ·, b) ∈ QC2 . Moreover, by Assumption 1.4 (iv), P (t, b)
is bounded. Therefore, by Lemma 3.4, proxū?(t+1,·,b)(· − P (t, b)) ∈ GC1 . Then it is easy

to show that α?t (·, b) ∈ GC1 , where again, C does not depend on b. Finally, α?(t, ·, b) is
non-expansive as a consequence of (4.9) and Proposition 3.3. The lemma is proved.
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Lemma 4.3. There exists C > 0 such that for any (t, b1, b2) ∈ T × B2 × B2,

‖u?(t, ·, b1)− u?(t, ·, b2)‖G,2 ≤ Cd1(b1, b2), (4.10)

‖ū?(t, ·, b1)− ū?(t, ·, b2)‖G,2 ≤ Cd1(b1, b2). (4.11)

Proof. In the proof, all constants C are independent of b1 and b2. We proceed by backward
induction. By Assumption 1.4 (iii) and by the terminal condition u?(T, ·, b) = F (T, ·, b),
inequality (4.10) holds true for t = T . Let t ∈ T . Suppose that

‖u?(t+ 1, ·, b1)− u?(t+ 1, ·, b2)‖G,2 ≤ Cd1(b1, b2),

for some positive constant C > 0 independent of b1 and b2. By Assumption 1.3 and Lemma
3.9, we deduce that

‖ū?(t+ 1, ·, b1)− ū?(t+ 1, ·, b2)‖G,2 ≤ Cd1(b1, b2). (4.12)

By Lemma 4.1, we have

u?(t, x, b1)− u?(t, x, b2) = a1(t, x, b1, b2) + a2(t, x, b1, b2) + a3(t, x, b1, b2), (4.13)

where

a1(t, x, b1, b2) := Vū?(t+1,·,b1)(x− P (t, b1))− Vū?(t+1,·,b2)(x− P (t, b1)),

a2(t, x, b1, b2) := Vū?(t+1,·,b2)(x− P (t, b1))− Vū?(t+1,·,b2)(x− P (t, b2)),

a3(t, x, b1, b2) := F (t, x, b1)− F (t, x, b2) +
1

2
(|P (t, b2)|2 − |P (t, b1)|2).

It remains to bound a1(t, ·, b1, b2), a2(t, ·, b1, b2), and a3(t, ·, b1, b2) in GC2 . We deduce from
Lemma 3.7, Assumption 1.4 (iv), and estimate (4.12), that

|a1(t, x, b1, b2)| ≤ ‖Vū?(t+1,·,b1) − Vū?(t+1,·,b2)‖G,2(1 + |x− P (t, b1)|2)

≤ C‖ū?(t+ 1, ·, b1)− ū?(t+ 1, ·, b2)‖G,2(1 + |x|2)

≤ Cd1(b1, b2)(1 + |x|2).

Then by Lemma 3.8 and Assumption 1.4 (iv), we have

|a2(t, x, b1, b2)| ≤ C(1 + |x− P (t, b1)|+ |x− P (t, b2)|)|P (t, b2)− P (t, b1)|
≤ C(1 + |x|)d1(b1, b2)

≤ C(1 + |x|2)d1(b1, b2).

Finally by Assumption 1.4 (ii-iv), we have

|a3(t, x, b1, b2)| ≤ ‖F (t, ·, b1)− F (t, ·, b2)‖G,2(1 + |x|2) + C|P (t, b1)− P (t, b2)|
≤ C(1 + |x|2)d1(b1, b2).

Then combining (4.13) and the three estimates of a1, a2, and a3, we obtain that

‖u?(t, ·, b1)− u?(t, ·, b2)‖G,2 ≤ Cd1(b1, b2),

which concludes the proof.

Lemma 4.4. There exists C > 0 such that for any (t, b1, b2) ∈ T × B2 × B2,

‖α?t (·, b1)− α?t (·, b2)‖G,1 ≤ C
(
d1(b1, b2)1/2 + d1(b1, b2)

)
. (4.14)
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Proof. Let (t, b1, b2) ∈ T × B2 × B2. By Lemma 4.1, we have

α?t (x, b1)− α?t (x, b2) = a4(t, x, b1, b2) + a5(t, x, b1, b2), (4.15)

where

a4(t, x, b1, b2) = proxū?(t+1,·,b1)(x− P (t, b1))− proxū?(t+1,·,b2)(x− P (t, b1)),

a5(t, x, b1, b2) = proxū?(t+1,·,b2)(x− P (t, b1))− proxū?(t+1,·,b2)(x− P (t, b2)).

Using successively Lemma 3.6, Assumption 1.4 (iv), and estimate (4.11), we obtain

|a4(t, x, b1, b2)| ≤ ‖ proxū?(t+1,·,b1)−proxū?(t+1,·,b2) ‖G,1(1 + |x− P (t, b1|)

≤ C‖ū?(t+ 1, ·, b1)− ū?(t+ 1, ·, b2)‖1/2(1 + |x|)
≤ C‖d1(b1, b2)‖1/2(1 + |x|).

Moreover, since proxū?(t+1,·,b2) is non-expansive, we have with Assumption 1.4 (iii) that

|a5(t, x, b1, b2)| ≤ |(x− P (t, b1))− (x− P (t, b2))| ≤ d1(b1, b2).

Combining the two obtained estimates of a4 and a5 with (4.15), we obtain (4.14).

4.2 Kolmogorov mapping

We study now the Kolmogorov mapping

(GCα1 ∩ 1−Lip)T 3 α 7→ (m?, µ?, b?)(α),

where (m?, µ?, b?) is the solution to (MFG,iii-v).

Lemma 4.5. There exists Cb > 0 such that for any α ∈ (GCα1 ∩ 1−Lip)T ,

m?(α) ∈
(
PCb2 (Rd)

)T+1
, µ?(α) ∈

(
PCb2 (R2d)

)T
, and b?(α) ∈ BCb2 .

In addition the three mappings m?, µ? and b? are continuous.

Proof. Let α ∈ (GCα1 ∩ 1−Lip)T . All constants C in the proof are independent of α. Let
us first prove by induction that for any t ∈ T̄ , there exists a constant C > 0 independent
of α such that m?(t, ·, α) ∈ PC2 (Rd) and such that, m?(t, ·, α) is continuous with respect
to α. The claim is clear for t = 0, since m?(0, ·, α) = m̄ ∈ PC2 (Rd), by Assumption 1.1.
Now, let us assume that the claim holds true for some t ∈ T . We recall that

m?(t+ 1, ·, α) = ν(t) ∗ [(id+ αt)]m
?(t, ·, α)] .

Since ν(t) ∈ PC2 (Rd) (by Assumption 1.1) and since αt ∈ GCα1 ∩ 1−Lip, we obtain with
Lemma 3.1 and Lemma 3.2 that m?(t + 1, ·, α) ∈ PC2 (Rd) and that m?(t + 1, ·, α) is a
continuous function of α, by composition.

It remains to justify the boundedness of µ∗ and b∗. We recall that for any t ∈ T ,

µ?(t, ·, α) = (id, αt)]m
?(t, ·, α).

We deduce from Lemma 3.2 that µ?(t, ·, α) ∈ PC2 (R2d) and that µ?(t, ·, α) is a continuous
function of α, by composition. It immediately follows that b?(α) ∈ BC2 and that b is
continuous.
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4.3 Existence of equilibrium

We are ready to prove the existence of a solution of system (MFG). The proof relies on
the Schauder fixed point theorem, that we first recall.

Theorem 4.6. (Schauder) Let C be a convex and compact set in a Banach space X, and
let T : C → C be a continuous mapping. Then T has a fixed point, i.e. there exists x ∈ C
such that

T (x) = x.

Theorem 4.7. There exists (u, α,m, µ, b) ∈
(
GCu2

)T × (GCα1 ∩ 1−Lip
)T × (PCb2 (Rd)

)T+1×(
PCb2 (R2d)

)T × BCb2 solution to system (MFG), where Cu, Cα and Cb are the constants
obtained in Lemma 4.2 and Lemma 4.5.

Proof. By Lemma 4.4 and Lemma 4.5, the mapping

BCb2 3 b 7→ b? ◦ α?(b) ∈ BCb2

is continuous for the distance d1. Moreover, BCb2 is compact for d1, see [22, Lemma

25]. Therefore, by the Schauder fixed point theorem, there exists b̄ ∈ BCb2 such that
b̄ = b? ◦ α?(b̄). Let us set ū = u?(b̄), ᾱ = α?(b̄), m̄ = m?(ᾱ), and µ̄ = µ?(ᾱ). Then
(ū, ᾱ, m̄, µ̄, b̄) is solution to (MFG) and lies in the announced set.

5 Connection with a finite player game

In this section we establish a connection between the coupled system (MFG) and a dynamic
game with N players. More precisely, we fix a solution (ū, ᾱ, m̄, µ̄, b̄) of system (MFG)
and consider the situation where each of the N players adopts the feedback ᾱ. We show
that this situation is an ε-Nash equilibrium for the N -player game and we quantify the
rate of convergence of ε to 0 as N goes to infinity.

To show this, the following restriction on Assumption 1.4 (ii) will be required, in
particular to prove Lemma 5.12.

Assumption 5.1. There exists C > 0 such that for any t ∈ T and for any b1 and b2 in
B2,

(i) F (t, ·, b1) ∈ QC1 ,
(ii) ‖F (t, ·, b1)− F (t, ·, b2)‖G,1 ≤ Cd1(b1, b2).

We have already fixed a solution to system (MFG), now we also fix the number of
players N ; all constants C appearing in the sequel are independent of N .

5.1 Formulation of the game

Let N := {1, . . . , N} and let i ∈ N . For any vector (x1, . . . , xN ) we denote

x = (x1, . . . , xN ),

x−i = (x1, . . . , xi−1, xi+1, . . . , xN ).

Consider a probability space (Ω,F ,P). Let (Xi
0)i∈N be i.i.d. random variables with law

L(Xi
0) = m̄. Let (Y i

t )i∈N ,t∈T be independent random variables, independent of (Xi
0)i∈N ,

with law L(Y i
t ) = ν(t). We denote ν(t) :=

⊗N
i=1 ν(t). We define the filtration (F t)t∈T̄ as

follows: F0 := σ(X0) is the sigma-algebra generated by X0, F t+1 := σ(X0,Y[t]). In this
section we denote

Lpt (Ω,R
d′) := Lp(Ω,F t,P,Rd

′
),
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the space of F t measurable random variables with finite p-th order moment and value in
Rd′ . When the dimension is d′ = 1, we simplify the notation Lpt = Lpt (Ω,R). For any
t ∈ T , we consider the control set

At := L2
t (Ω,Rd), A := A0 × · · · ×AT−1, AN :=

N∏
i=1

A.

For any t ∈ T and for any constant C > 0 we denote AC
t the set of controls A ∈ At such

that ∫
Ω
|A(ω)|2dP(ω) ≤ C

and we set AC := AC
0 × · · · ×AC

T−1. The control of player i ∈ N is an adapted stochastic
process Ai ∈ A, whose associated trajectory (Xi

t [A
i])t∈T̄ is defined by the following state

equation
Xi
t+1 = Xi

t +Ait + Y i
t .

Remark 5.2. Let R > 0. There exists C > 0 (depending on R) such that for any i ∈ N
and for any Ai ∈ AR, E

[
|Xi

t [A
i]|2
]
≤ C for any t ∈ T̄ , since L(Xi

0) ∈ P2(Rd) and
L(Y i

t ) ∈ P2(Rd).

Given A ∈ AN , we define the random empirical measure of the positions and the
random empirical joint measure of the positions and actions of players by

mN
A(t) :=

1

N

∑
i∈N

δXi
t [A

i], µNA(t) :=
1

N

∑
i∈N

δ(Xi
t [A

i],Ait)
,

where δ denotes the Dirac measure. We set

bNA :=
(
µNA(0), . . . , µNA(T − 1),mN

A(T )
)
.

For any i ∈ N and for any t ∈ T , we define the individual conditional risk measure
ρit : L

1
t+1 → L1

t ,

ρit(Ut+1)(x0,y[t−1]) = sup
Z∈Zt

∫
Ω
Ut+1(x0,y[t−1],Yt(ω))Z(Y i

t (ω))dP(ω).

We define the set

Qi
t+1 :=

{
Q ∈ L∞t+1, Q = Z(Y i

t ) a.s., Z ∈ Zt
}
.

Then ρit can be expressed in the following form:

ρit(Ut+1) = sup
Qt+1∈Qi

t+1

E [Ut+1Qt+1|F t] . (5.1)

In addition we have that

ρit(Ut+1)(x0,y[t−1]) = sup
ξ∈Mt

∫
Rd

∫
RNd

Ut+1(x0,y[t])dν
−i(t,y−it )dξ(yit),

where ν−i(t) :=
⊗N

j∈N\{i} ν(t). Then (ρit)t∈T is a family of conditional risk mappings. We

define the associated individual composite risk measure ρi : L1
T → R,

ρi(U) := E
[
ρi0 ◦ · · · ◦ ρiT−1(U)

]
.

Here players are risk averse with respect to their individual noise only. For any A ∈ AN

the cost of the player i ∈ N is given by

J i,N (Ai,A−i) := ρi

(
T−1∑
t=0

`(t,Xi
t [A

i], Ait, b
N
A) + F (T,Xi

T [Ai], bNA)

)
.
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Definition 5.3. Let ε ≥ 0. We say that an N -uplet Â ∈ AN is an ε-Nash equilibrium
for the N -player game if for any i ∈ N ,

J i,N (Âi, Â−i) ≤ inf
Ai∈A

J i,N (Ai, Â−i) + ε. (5.2)

For ε = 0, we recover the usual definition of a Nash equilibrium.

5.2 An approximate Nash equilibrium

For any player i ∈ N , we denote by (X̄i
t)t∈T̄ the solution to the closed-loop system

Xi
t+1 = Xi

t + ᾱt(X
i
t) + Y i

t .

We define the control Āi ∈ A by
Āit = ᾱt(X̄

i
t). (5.3)

Since X̄i
t is adapted to F t, the control Āit is also F t-measurable. Moreover, ᾱt is 1-

Lipschitz and the random variables X0 and (Yt)t∈T have a bounded second-order moment,
thus Āi ∈ A. In addition, by Proposition 2.4, Āi minimizes the following cost J i:

J i(Ai, b̄) := ρi

(
T−1∑
t=0

`(t,Xi
t [A

i], Ait, b̄) + F (T,Xi
T [Ai], b̄)

)
. (5.4)

Finally we set Ā = (Ā1, . . . , ĀN ). The following result states that Ā is an ε-Nash equilib-
rium.

Theorem 5.4. Let ξ ∈ (0, 1/2). There exists a constant C > 0, independent of N , such
that the N -uplet Ā defined above is an ε-Nash equilibrium with

ε = CN−τ(d)/2, τ(d) =

{
1/2− ξ if d ∈ {1, 2},
1/d if d ≥ 3.

In addition we have that

|J i,N (Ā)− J i(Āi, b̄)| ≤ CN−τ(d)/2, (5.5)

for any i ∈ N .

The proof of the theorem can be found at the end of Subsection 5.3 (page 23), which
contains technical intermediate lemmas. They rely on the following result.

Theorem 5.5. (Fournier-Guillin) Let c > 0, let ξ ∈ (0, 1/2), and let µ ∈ Pc2(Rd). Con-
sider N i.i.d. random variables (Xi)i∈{1,...,N} in Rd with law µ and denote by µN their
empirical measure, defined by

µN =
1

N

N∑
i=1

δXi . (5.6)

There exists a constant C > 0 depending only on c, d, and ξ such that

E [d1(µ, µN ))] ≤ CN−τ(d).

Proof. The theorem is a direct application of [10, Theorem 1] with q = 2
1+2ξ if d ∈ {1, 2}

and q = 2 if d ≥ 3.

18



5.3 Proof of Theorem 5.4

We begin with four technical lemmas dealing with the regularity of the individual risk
measures ρi.

Lemma 5.6. For any player i ∈ N the risk measure ρi is subadditive, that is

ρi(U + V ) ≤ ρi(U) + ρi(V ),

for any U and V in L1
T .

Proof. Let us define πiT (U) = U and πit(U) = ρit ◦ ρit+1... ◦ ρiT−1(U), for any U ∈ L1
T . Note

that πit = ρit ◦ πit+1, for any t ∈ T . We prove by backward induction that πit is subadditive
for any t ∈ T̄ . The claim is trivial for t = T . Let t ∈ T . Assume that πit+1 is subadditive,
let us prove that πit is subadditive. First we observe that for any U and V in L1

T ,

ρit(U + V ) = sup
Q∈Qi

t+1

E [(U + V )Q|F t]

≤ sup
Q∈Qi

t+1

E [UQ|F t] + sup
Q∈Qi

t+1

E [V Q|F t] = ρit(U) + ρit(V ), a.s.

It follows with the monotonicity of ρit that

πit(U + V ) = ρit ◦ πit+1(U + V )

≤ ρit(π
i
t+1(U) + πit+1(V ))

≤ ρit ◦ πit+1(U) + ρit ◦ πit+1(V ) = πit(U) + πit(V ), a.s.

Recalling that ρi(U) = E
[
ρi0 ◦ · · · ◦ ρiT−1(U)

]
= E [π0(U)], we conclude that ρi is also

subadditive.

The following result is close to a triangle inequality for risk measures. The difference
with the triangle inequality is due to the positive homogeneity of risk measures, while
norms are absolutely homogeneous.

Lemma 5.7. For any i ∈ N and for any U and V in L1
T , we have∣∣ρi(U + V )− ρi(U)

∣∣ ≤ ρi(|V |). (5.7)

Proof. By the subadditivity and by the monotonicity of ρi, we have

ρi(U + V )− ρi(U) ≤ (ρi(U) + ρi(V ))− ρi(U) = ρi(V ) ≤ ρi(|V |).

Similarly, we have

ρi(U)− ρi(U + V ) = ρi(U + V − V )− ρi(U + V ) ≤ ρi(−V ) ≤ ρi(|V |).

Inequality (5.7) follows.

Lemma 5.8. There exists C > 0 such that for any (i, t) ∈ N × T and for any U ∈ L1
T ,

1

C
E [|U |] ≤ ρi(U) ≤ CE [|U |] . (5.8)
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Proof. All constants C in the proof are independent of U . Recall the definition of πit,
introduced in the proof of Lemma 5.6. We prove by backward induction that for any
t ∈ T̄ , there exists C > 0 such that for any U ∈ L1

T ,

1

C
E
[
|U |
∣∣F t

]
≤ πit(U) ≤ CE

[
|U |
∣∣F t

]
, a.s.

The claim is trivial for t = T . Let t ∈ T . Assume that the claim holds true for t+ 1. We
first observe that for any U ∈ L1

t+1,

1

C
E
[
|U |
∣∣F t

]
≤ ρit(U) ≤ CE

[
|U |
∣∣F t

]
, a.s., (5.9)

as a direct consequence of Assumption 1.2. It follows with the monotonicity of ρit that

πit(U) = ρit ◦ πit+1(U)

≤ ρit
(
CE

[
|U |
∣∣F t+1

])
≤ CE

[
CE

[
|U |
∣∣F t+1

] ∣∣F t

]
≤ CE

[
|U |
∣∣F t

]
, a.s.

Similarly we prove that πit(|U |) ≥ 1
CE
[
|U |
∣∣F t

]
a.s. Recalling that ρi(U) = E [π0(U)], we

finally obtain (5.8).

The following lemma is an estimate of the second-order moment of suboptimal controls
(for problem (5.2)).

Lemma 5.9. There exists C > 0 such that for any i ∈ N , if Âi satisfies

J i,N (Âi, Ā−i) ≤ inf
Ai∈A

J i,N (Ai, Ā−i) + 1, (5.10)

then Âi ∈ AC .

Proof. Let i ∈ N and let Âi satisfy (5.10). All constants C in the proof are independent
of Âi. We have

J i,N (Âi, Ā−i) ≤ J i,N (0, Ā−i) + 1 = ρi

(
T∑
t=0

F
(
t,Xi

t [0], bN(0,Ā−i)

))
+ 1.

By Assumption 1.4 (i), Lemma 5.8, and Remark 5.2,

ρi

(
T∑
t=0

F
(
t,Xi

t [0], bN(0,Ā−i)

))
≤ CE

[
T +

T∑
t=0

|Xi
t [0]|2

]
≤ C.

Therefore,
J i,N (Âi, Ā−i) ≤ C. (5.11)

We need now to bound J i,N (Âi, Ā−i) from below. We obtain by using successively Lem-
mma 5.8, Assumptions 1.4 (i) and (iv), and Young’s inequality that

J i,N (Âi, Ā−i) ≥ 1

C
E

[
T−1∑
t=0

(
1

2
|Âit|2 − C|Âit|

)]
− C ≥ 1

C
E

[
T−1∑
t=0

|Âit|2
]
− C. (5.12)

We deduce then from (5.11) and (5.12) that E
[∑T−1

t=0 |Âit|2
]
≤ C, which concludes the

proof.
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In the following we fix a constant c > 0 such that the result of Lemma 5.9 holds and
such that Āi ∈ Ac for any i ∈ N . Let b and b′ in B2, for any (t, t′, x) ∈ T × T̄ × Rd we
define

∆P (t, b, b′) := P (t, b)− P (t, b′), ∆F (t′, x, b, b′) := F (t′, x, b)− F (t′, x, b′).

For any (x,A) ∈ RTd ×A we define

∆`(x,A, b, b′) :=

T−1∑
t=0

〈At,∆P (t, b, b′)〉+

T∑
t=0

∆F (t, xt, b, b
′).

Remark 5.10. For any t ∈ T and for any b and b′ in B2, we have

‖∆F
(
t, ·, b, b′

)
‖G,1 ≤ 2Cd1(b, b′)1/2.

Indeed if d1(b, b′) ≥ 1, Assumption 5.1 (i) yields

‖∆F
(
t, ·, b, b′

)
‖G,1 ≤ 2 sup

b∈B2
‖F (t, ·, b) ‖G,1 ≤ 2C.

If d1(b, b′) ≤ 1, by Assumption 5.1 (ii) we have

‖∆F
(
t, ·, b, b′

)
‖G,1 ≤ Cd1(b, b′) ≤ Cd1(b, b′)1/2.

In the following lemma we study the convergence of the empirical belief to the reference
belief b̄ ∈ B2.

Lemma 5.11. There exists C > 0 such that for any i ∈ N and for any Ai ∈ Ac,

E
[
d1

(
bN(Ai,Ā−i), b̄

)]
≤ CN−τ(d). (5.13)

Proof. Let i ∈ N and let Ai ∈ Ac. For any t ∈ T , we have by the triangle inequality

d1

(
µN(Ai,Ā−i)(t), µ̄(t)

)
≤ d1

(
µN(Ai,Ā−i)(t), µ

N
Ā(t)

)
+ d1

(
µNĀ(t), µ̄(t)

)
. (5.14)

Let us consider the first term of the right-hand side. By definition of the distance d1,

d1

(
µN(Ai,Ā−i)(t), µ

N
Ā(t)

)
≤ 1

N

(
|Xi

t [A
i]− X̄i

t |+ |Ait − Āit|
)
, a.s. (5.15)

Since the controls Āi and Ai belong to Ac, the first-order moment of Xi
t [A

i] and X̄t are
finite as a consequence of Remark 5.2, thus

E
[
|Xi

t [A
i]− X̄i

t |+ |Ait − Āit|
]
≤ C. (5.16)

Therefore, by (5.15) and (5.16), we have

d1

(
µN(Ai,Ā−i)(t), µ

N
Ā(t)

)
≤ C

N
. (5.17)

Let us consider now the second-term of the right-hand side of (5.14). We recall that
µ̄(t) = (id, ᾱt)]m̄(t). Since Ājt = ᾱt(X̄

j
t ), we also have µN

Ā
(t) = (id, ᾱt)]m̄

N
Ā

(t). We deduce
from the Lipschitz continuity of (id, ᾱt) and from Lemma 3.2 that

d1

(
µNĀ(t), µ̄(t)

)
= d1

(
(id, ᾱt)]m̄

N
Ā(t), (id, ᾱt)]m̄(t)

)
≤ Cd1

(
m̄N

Ā(t), m̄(t)
)
. (5.18)
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The random variables X̄j
t are independent and L(X̄j

t ) ∼ m̄(t). Therefore, Theorem 5.5
applies and yields

E
[
d1

(
m̄N

Ā(t), m̄(t)
)]
≤ CN−τ(d). (5.19)

Combining (5.14), (5.17), (5.18), and (5.19), we obtain

E
[
d1

(
µN(Ai,Ā−i)(t), µ̄(t)

)]
≤ CN−τ(d).

It is then easy to verify that

E
[
d1

(
mN

(Ai,Ā−i)(T ), m̄(T )
)]
≤ CN−τ(d).

Estimate (5.13) follows immediately.

Lemma 5.12. There exists C > 0 such that for any i ∈ N , for any t ∈ T̄ , and for any
Ai ∈ Ac, we have

E
[ ∣∣∣∆F (t,Xi

t [A
i], bN(Ai,Ā−i), b̄

)∣∣∣ ] ≤ CN−τ(d)/2.

Proof. Let N ∈ N? and let t ∈ T̄ . By Remark 5.10, we have

E
[ ∣∣∣∆F (t,Xi

t [A
i], bN(Ai,Ā−i), b̄

)∣∣∣ ] ≤ CE [(1 + |Xi
t [A

i]|
)
d1

(
bN(Ai,Ā−i), b̄

)1/2
]
. (5.20)

Since Ai ∈ Ac, by Remark 5.2 we have that E
[
|Xi

t [A
i]|2
]
≤ C. We obtain with the

Cauchy-Schwarz inequality and Lemma 5.11 that

E
[
(1 + |Xi

t [A
i]|)d1

(
bN(Ai,Ā−i), b̄

)1/2
]
≤ E

[
(1 + |Xi

t [A
i]|)2

]1/2 E [d1

(
bN(Ai,Ā−i), b̄

)]1/2

≤ CN−τ(d)/2. (5.21)

Combining (5.20) and (5.21), we obtain the announced inequality.

Lemma 5.13. There exists C > 0 such that for any i ∈ N , for any t ∈ T and for any
Ai ∈ Ac, we have

E
[ ∣∣∣〈Ait,∆P (t, bN(Ai,Ā−i), b̄)〉∣∣∣ ] ≤ CN−τ(d)/2. (5.22)

Proof. Let i ∈ N , let t ∈ T , and let Ai ∈ Ac. By the Cauchy-Schwarz inequality, we have

E
[ ∣∣∣〈Ait,∆P (t, bN(Ai,Ā−i), b̄)〉∣∣∣ ] ≤ C (E [ ∣∣∣∆P (t, bN(Ai,Ā−i), b̄)∣∣∣2 ])1/2

. (5.23)

We obtain with Assumptions 1.4 (iii-iv) and Lemma 5.11 that

E
[ ∣∣∣∆P (t, bN(Ai,Ā−i), b̄)∣∣∣2 ] ≤ 2CE

[ ∣∣∣∆P (t, bN(Ai,Ā−i), b̄)∣∣∣ ]
≤ CE

[
d1

(
bN(Ai,Ā−i), b̄

)]
≤ CN−τ(d). (5.24)

Combining (5.23) and (5.24), we deduce (5.22).

We finally prove the main result of the section.
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Proof of Theorem 5.4. Let i ∈ N . We first show that for any Ai ∈ Ac, the inequality

|J i,N (Ai, Ā−i)− J i(Ai, b̄)| ≤ CN−τ(d)/2 (5.25)

holds for some constant C > 0 independent of Ai. This will imply (5.5). For any Ai ∈ Ac,
we can write J i,N (Ai, Ā−i) = ρi(U) and J i(Ai, b̄) = ρi(V ), where

U :=
T−1∑
t=0

`
(
t,Xi

t [A
i], Ait, b

N
(Ai,Ā−i)

)
+ F

(
T,Xi

T [Ai], bN(Ai,Ā−i)

)
,

V :=
T−1∑
t=0

`
(
t,Xi

t [A
i], Ait, b̄

)
+ F

(
T,Xi

T [Ai], b̄
)
.

Lemma 5.7 and Lemma 5.8 yield

|J i,N (Ai, Ā−i)− J i(Ai, b̄)| ≤ ρi(|U − V |)

≤ CE [ |U − V | ] = CE
[ ∣∣∣∆`(Xi[Ai], bN(Ai,Ā−i), b̄

)∣∣∣ ] .
We finally obtain (5.25) with Lemma 5.12 and Lemma 5.13.

Let us fix now Âi ∈ A such that

J i,N (Âi, Ā−i) ≤
(

inf
Ai∈A

J i,N (Ai, Ā−i)

)
+ min

{
1, N−τ(d)/2

}
. (5.26)

By Lemma 5.9, we have Âi ∈ Ac. Thus inequality (5.25) yields

J i(Âi, b̄) ≤ J i,N (Âi, Ā−i) + CN−τ(d)/2

≤
(

inf
Ai∈A

J i,N (Ai, Ā−i)

)
+ CN−τ(d)/2. (5.27)

We apply again inequality (5.25) to Ai = Āi. Using also the optimality of Āi (with respect
to J i), we obtain

J i,N (Ā)− CN−τ(d)/2 ≤ J i(Āi, b̄) ≤ J i(Âi, b̄). (5.28)

Finally, combining (5.27) and (5.28) we have

J i,N (Ā) ≤
(

inf
Ai∈A

J i,N (Ai, Ā−i)

)
+ CN−τ(d)/2,

which shows that Ā is an ε-Nash equilibrium with ε = CN−τ(d)/2.

6 Conclusion

This paper has studied a mean field game model with risk averse agents, and provided
a framework under which an equilibrium holds, for general composite risk measures and
congestion terms. The specific structure of the integral cost of the agents has been ex-
ploited in order to rewrite the dynamic programming equations in a functional form (using
the Moreau envelope and the proximal operator). In that way, the coupled system could
be formulated as an equivalent fixed point equation, yielding the existence of a solution.
Regularity properties have been obtained for risk averse agents. This has allowed to show
that an optimal feedback control (for the mean field game) results in an ε-Nash equilibrium
for a related dynamic game with N players. Future work could focus on the uniqueness
of the Nash equilibrium with contraction arguments and smallness assumptions on the
coupling terms. In this work, agents risk averse with respect to their own noise have been
considered; investigating a mean field game model with common noise and risk averse
agents would be of particular interest.
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