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Nanoscale Spatial Resolution in Far-Field Raman 
Imaging Using Hyperspectral Unmixing in Combination 
with Positivity Constrained Super-Resolution

Dominik J. Winterauer1,2,* , Daniel Funes-Hernando2 , Jean-Luc Duvail2, Saı̈d Moussaoui3, 
Tim Batten1, and Bernard Humbert2

Abstract
This work introduces hyper-resolution (HyRes), a numerical approach for spatial resolution enhancement 
that combines hyperspectral unmixing and super-resolution image restoration (SRIR). HyRes yields a 
substantial increase in spatial resolution of Raman spectroscopy while simultaneously preserving the 
undistorted spectral information. The resolving power of this technique is demonstrated on Raman 
spectroscopic data from a polymer nanowire sample. Here, we demonstrate an achieved resolution of 
better than 14 nm, a more than eightfold improvement on single-channel image-based SRIR and 
25� better than regular far-field Raman spectroscopy, and comparable to near-field probing techniques.
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Introduction

Raman spectroscopy is an important characterization tool

for nanomaterials and nanocomposites due to its sensitivity

to chemical, vibrational, and electronic properties.1 Far-field

Raman spectroscopy is an optical technique and its spatial
resolution is bounded by the Rayleigh criterion 0:61l=NA

(0:44l=NA) in wide field (confocal) illumination, limiting the

scope of its application.y Nanometric resolution in Raman

spectroscopy can be achieved by conducting more complex

near-field techniques and tip enhanced Raman spectros-

copy.2–6 The gain in resolution, however, comes at a large

experimental cost and has limited applicability to a small

range of samples. In addition, the spectral response of the
sample material may get distorted by the plasmonic inter-

action, often in an intricate and nonlinear fashion, which

makes chemical analysis of such data challenging.7,8

Purely numerical approaches to resolution enhancement

come without these drawbacks. Significant resolution

enhancement has been achieved using super-resolution

image restoration (SRIR) on single band/channel Raman

images,9–12 which have been improved using a multi-
band/-channel approach.5,13

In this work, we introduce the hyper-resolution (HyRes)

framework for spatial resolution enhancement in hyper-

spectral imaging. HyRes is a combination of hyperspectral

unmixing (HU) and SRIR and follows three steps:

1. Factorization of the raw data into spectral signatures and
concentration mapsz using HU,

2. Independent SRIR of the concentration maps obtained

through HU,

3. Remixing the high-resolution concentration maps with

the spectral signatures obtained through HU.
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The result is a hyperspectral data cube with enhanced

spatial resolution in all single channel images.

The first two steps of the HyRes concept are identical to

previous work;13 however, in this work, we present a fresh

methodology. A method named bounding hyperplanes (BH)

is introduced as an efficient HU tool that yields largely non-
negative concentration maps suitable for SRIR post-proces-

sing. BH is a hybrid method belonging to both the rotation

of principal components14,15 and the simplex volume16,17

family of HU methods.

The SRIR step is performed by interior point least squares

(IPLS) with a pixel-wise non-negativity constraint.18

The non-negativity constraint ensures that the resulting

high-resolution concentration maps can be interpreted as
physical/chemical concentrations and also allows for a solu-

tion of the ill-conditioned, and potentially ill-posed, image

restoration problem without an explicit regularization

term.12

The utilization of methods that enforce non-negativity in

both the HU and SRIR step of HyRes yields physically mean-

ingful single spectra and single-channel images in the high-

(spatial)-resolution hypercube resulting from HyRes’ final
remixing step. Analysis of the resulting single-channel

images provides a means to quantify the spatial resolution

gain brought by HyRes.

As HyRes is a combination of methods from different

fields, it can be approached from different perspectives: (i)

It generalizes the multi-band approach5 to cases where dis-

tinct objects on the sample consist of materials whose

spectral responses do not necessarily have mutually discri-
minating peaks but are distinguishable via HU. (ii) Faithful

HU with respect to the chemical components of the sample

allows for independent SRIR of all super-images containing

spatial information; joint SRIR,19,20 and the complexities

involved with it, can be avoided. (iii) Pansharpening21–23 is

not required as high-resolution images are extracted from

the hyperspectral data alone. (iv) HyRes appends SRIR to

HU.13 (v) HyRes is based on super-resolution optical fluc-
tuation imaging (SOFI)24 with temporal variations replaced

by spectral variations.

The power of the approach and methodology were

demonstrated on Raman spectroscopic data from a

bundle of nanowires made of poly-(3,4 ethylenedioxythio-

phene) (PEDOT).25 The HyRes methodology of this paper

resulted in an order of magnitude better spatial resolution

than past works on SRIR of Raman data9–13 and a 25�
enhanced spatial resolution when compared to the raw

far-field data.

Sample Data

Sample preparation, acquisition of sample data and the

Raman microscope’s response function, and single channel

super-resolution are described in detail in previous
work.12,25 The PEDOT nanowires have diameters of

ð100� 10Þ nm. The Raman microscope’s response function

is a 2D Gaussian with full width half-maximum (FWHM) of

FWHMx ¼ 476� 12ð Þ nm ð1aÞ

FWHMy ¼ 363� 16ð Þ nm ð1bÞ

in horizontal (FWHMx) and vertical (FWHMy) focal plane

direction, respectively. The Raman map pixel size was

20 nm�20 nm. The best minimum resolvable distance

achieved by single channel SRIR at 1437 cm�1 Raman shift

(Stokes) was 113:2 nm.12

The Hyperspectral Observation Model

Hyperspectral Mixing

The Beer–Lambert absorption law directly translates to the

linear mixing model (LMM) for hyperspectral data26

X ¼ SB ð2Þ

where the columns of S 2 RL�p are the spectral signatures

at L spectral channels of the p spectral components and the

rows of B 2 Rp�N are the corresponding concentration

maps. The resulting hyperspectral data X 2 RL�N can be

regarded as a collection of either N spectra (at L spectral

channels) or L (vectorized) single channel images (with N

pixels).

Imaging by a Detector

The hyperspectral data X of Eq. 2 is usually detected by an

imperfect device of finite resolution. Consequently, the

observed single channel images Y 2 RL�M result from the

underlying ground truth X (Eq. 2) via filtering by the detec-

tor’s response function H 2 RL�N�M, which is sufficiently

described by an affine transformation19,27

Yi, j ¼
XN

k¼1

Xi, kHi,k, j þ Ei, j ð3Þ

where the error term E 2 RL�M accounts for any non-

deterministic detector response occurring while measuring.

As the detector’s response function is allowed to vary
between different spectral channels, we resort to an

index notation for clarity.§

Plugging Eq. 2 into Eq. 3 then yields

Yi, j ¼
XN

k¼1

Xp

l¼1

Si, lBl, kHi, k, j þ Ei, j ð4Þ
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Hi, j, k � Hj,k 8 i ð5Þ

i.e. the spatial detector response is approximately
identical for all spectral channels (see Supplemental

Material for details). If the assumption Eq. 5 holds, Eq. 4

becomes

Yi, j ¼
Xp

l¼1

Si, l

XN

k¼1

Bl, kHk, j þ Ei, j ð6Þ

and the effects of hyperspectral mixing and imaging com-

mute. By setting

C ¼ BH ð7Þ

and dropping indices, Eq. 6 becomes

Y ¼ SCþ E ð8Þ

which is the standard form of the LMM found in analytical

chemistry, remote sensing, and many other fields con-

cerned with multivariate data processing.17,28

The observation model Eq. 6 allows for a straightfor-

ward application of the HyRes scheme. S and C of Eq. 8

can be estimated via blind linear hyperspectral unmixing

(BLHU). Estimates for B can be obtained via SRIR of the
estimates C and in combination with an estimate of S an

estimate of X can be found.

Hyperspectral Unmixing with Bounding

Hyperplanes

The Rotation Ambiguity

Given an observation model for a hyperspectral data set,

HU is concerned with estimating the free parameters of the

observation model. For the LMM of Eq. 8, the free par-

ameters are the characteristic spectral signatures S, the

concentration maps C, and potentially the number of

materials p. BLHU is HU of an LMM without knowledge

of both S and C.

An intriguing property of BLHU is that given a pair of
estimates bS and bC another pair of estimates bS0 and bC0 can

be found with the help of an arbitrary invertible p � p

matrix R

bS0 ¼bSR�1 ð9aÞ

bC0 ¼ RbC ð9bÞ

Multiplying the new estimates yields

bS0bC0 ¼bSR�1RbC ð10aÞ

¼bSbC ð10bÞ

so the pairsbS and bC, andbS0 and bC0 are equivalent descrip-
tors of the observation Y of Eq. 8. The rotation ambiguity

Eqs. 10a and 10b allow for uncountably infinite optimal

estimators for the LMM of Eq. 2 which is the reason

behind the vast number of methods, even of classes of

methods, for BLHU.29,30

While Eqs. 10a and 10b are prohibitive of a unique least

squares optimal solution, it is extremely useful from a prac-

tical point of view. Given any pair of estimates bS and bC, a
new pair of estimates bS0 and bC0 with the same predictive

power can be found. The new estimates bS0 and bC0 might

then show desirable properties such as non-negativity not

exhibited by the original estimates bS and bC.

Dimensional Reduction Using Principal Component

Analysis

The first step in the method of BH is to find an initial pair of

optimal estimators bS and bC. Principal component analysis

(PCA) yields a least squares optimal low-rank approxima-

tion to the observed hyperspectral data matrix Y.31–33 If

the elements of the error term E are zero-mean independ-

ently and identically distributed (i.i.d.) with finite variance,

then PCA also yields a least square optimal estimation of

the subspace spanned by SC in Eq. 2 for any given rank p.34

PCA for BH calculates the eigenvectors bsi
� �

and -values {�i}

of YYT . There is some debate whether to mean-center the

data Y or not. For details, we refer to the literature.33

The scores and loadings returned by PCA constitute the

initial estimatesbS and bC, respectively. Further, the variance

explained allows for an estimate of the rank p of the data

matrix Y, the number of components.

Figure 1 shows the linear and logarithmic variance
explained for each component in decreasing order. As the

variance explained by discriminatory components can be

orders of magnitude smaller than the variance explained

by common factors, a plot of the logarithmic eigenvalues

(Fig. 1b) is often more revealing than a plot of the bare

values (Fig. 1a). A simple heuristic to estimate the rank p

is then to observe which logarithmic eigenvalues are signifi-

cantly above a potentially linear baseline.35,36 For the pre-
sent data, there is a clearly visible cut-off at p¼ 2 (Fig. 1b).

The consequences of Eq. 4 are quite far-reaching. The 
spectral dependency of the spatial detector response intro-
duces an additional mixing between the spectral and spatial 
degrees of freedom beyond the LMM of Eq. 2. In its most 
general form, Eq. 4 is prohibitive of the HyRes approach 
introduced in the introduction as HU of such a model will 
become either too computationally costly or too 
inaccurate.

In the specific case of Raman spectroscopic data, how-
ever, one can assume that
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For more elaborate methods of rank estimation, we refer

to the literature.34

Rotation of Principal Components by BH

The loadings bS and scores bC estimated by PCA are uncorre-

lated, i.e. the columns of bS are mutually orthogonal and so

are the rows of bC. While uncorrelatedness may be desirable

from a statistical point of view, physical models of hyperspec-

tral data are normally only meaningful if bC � 0 is satisfied.
The biplot in Fig. 2a showing the first and second PCA

scores reveals that the first score values are largely non-

negative, while the second score values are distributed sym-

metrically around zero. Similarly, the first PCA loading can

be interpreted as a PEDOT Raman spectrum, while the

second PCA loading is hard to interpret on its own, Fig. 2b.

Simplex geometry considerations for hyperspectral

(un-)mixing state that linearly mixed hyperspectral data
with p linearly independent spectral components must be

confined to a p simplex, with one vertex being the dark-

point of the instrument and the other p vertices the spectral

signatures of the constituent components.16 The simplex

structure remains intact after transformation and dimen-

sional reduction, given that the resulting space is not orthog-

onal to any of the constituent spectral signatures.yy

The scores in the biplot Fig. 2a are indeed confined to a
two-simplex, i.e. a triangle, with the vertex at the origin

being the dark-point of the Raman microscope. The pos-

ition of the spectral signatures can be found by exploiting

the simplex structure of the scores. The spectral signatures

are along the sides of the enclosing triangle that pass

through the origin. Simplex volume techniques such as

n-FINDR,37 vertex component analysis,38 and simplex iden-

tification via split augmented Lagrangian39 recover the sim-
plex vertices directly, whereas simplex facet techniques

such as hyperplane-based Craig-simplex identification

(HyperCSI)40 and facet component analysis41 recover the
vertices via the facets of the simplex enclosing the data.

These techniques37–41 have been developed specifically

for sum-to-one constrained data, i.e.,

CT1p ¼ 1N ð11Þ

where 1k denotes the k-dimensional column vector with all

entries equal to 1. If a sum-to-one constraint does not hold,
it has to be enforced via projection, which either increases

the noise level in the data or decreases the number of data

points on the simplex surface.38,41

BH is specifically for data that are not sum-to-one con-

strained. It finds the p hyperplanes through the origin (dark-

point) bounding the data after dimensional reduction to p

dimensions. The net effect is that the coordinate system is

rotated such that the new coordinate axes are aligned with
the bounding hyperplanes (see Figs. 2a and 2c). This defines

R of Eq. 9b up to an arbitrary linear scaling which is chosen

such that bC0�1. With a proper choice of sign, the bulk of

the rotated scores will be transformed to the nonnegative

orthant (Fig. 2c).

Both the presence of noise and small deviations from

exact linear mixing (Eq. 2) push some scores outside of

the ideal bounding simplex.38 Consequently, one has to
allow for �e�bC0 for an e>0 and search for hyperplanes

that are not strictly bounding the data.39–41 BH uses a

noise-robust method for fluorescence background removal

for bounding hyperplanes identification.42 In turns, each of

the p reduced dimensions is assumed to be a quantity

dependent on the remaining p – 1 dimensions. Finding

upper and lower bounding linear backgrounds in the p – 1

independent dimensions then identifies the bounding hyper-
planes (Fig. 2a).
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Figure 1. Eigenvalue spectrum for YYT: The (a) bare and (b) logarithmic eigenvalues are plotted in decreasing order of magnitude.

If the data Y has rank p, the eigenvalue spectrum should be flat for indices 4 p. Because the variance explained of common and

discriminatory factors can vary by orders of magnitude, the true cut-off index is better visible on a logarithmic scale (b).
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The spectral signatures resulting from BH shown in

Fig. 2d are both non-negative and each can be interpreted
as a variant of PEDOT spectra,43 which is a strong indica-

tion that the spectral signatures were estimated faithfully.

BH Pre- and Post-Processing

For dimensional reduction, BH resembles methods from

the rotation of PCA family,14,44 but BH can also be used

in conjunction with other dimensional reduction techniques
such as maximum noise fraction45 or hyperspectral sub-

space identification by minimum error (HySime).46

For a strict enforcement of nonnegativity, the BLHU

results bS0 and bC0 from BH can be post-processed with

nonnegative matrix factorization (NMF) techniques (pos-

sibly at the expense of least-squares optimal data

fidelity).47–52

Super-Resolution

Since only estimates bC0 of C are available, the LMM of Eq. 7

has to be slightly modified to include an estimation error E0

in the SRIR forward model

bC0 ¼ BHþ E0 ð12Þ

Further, we require that obtained estimates bB for B

fulfill bB� 0. The sought-after estimate bB is then the solu-

tion of the following SRIR optimization problem

bB ¼ arg min
B

bC0
� BH

���
���

���
���
2

F
ð13aÞ

s:t: B� 0 ð13bÞ

Equation 13b can be solved for each of the p rows Bi, : of

B independently, i.e. in parallel, using IPLS. IPLS is an itera-

tive method that performs a full or partial Newton step in
the primal variable Bi, : and a dual variable l 2 RN towards

the perturbed Karush–Kuhn–Tucker optimality conditions

2H bC0
i, : � Bi, :H

� �T
þ l ¼ 0 ð14aÞ

j 	 Bi, : ¼ mk1 ð14bÞ

Bi, : � 0 ð14cÞ

l � 0 ð14dÞ

for a perturbation parameter mk 4 0 at iteration k.zz mk is

updated at each iteration in a non-increasing fashion such

that mk ! 0 as k ! 1. Details on how to determine the

detector response H and how to implement IPLS can be
found in previous work.12,18
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Figure 2. Hyperspectral data after PCA. (a) The second score plotted against the first score for each data point/spectrum. The plot

has been rescaled to unit variance along each axis for better visibility, the variance explained is given in parenthesis. The bounding

hyperplanes to the data cloud are indicated. (b) The first and second PCA loading (unit Euclidean norm). (c) Rotated PCA scores plotted

against each other after an oblique rotation. The bounding hyperplanes of Fig. 2a are the new coordinate axes. The rotated scores are

rescaled such that they are 
1. (d) Rotated PCA loadings.
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Results

SRIR of Concentration Maps

The concentration maps shown in Fig. 3 were super-

resolved via IPLS. SRIR was performed for upsampling fac-

tors of 1 � 1 and 2 � 2 resulting in pixel sizes of
20 nm�20 nm (‘20 nm’ for brevity) and 10 nm�10 nm

(’10 nm’ for brevity), respectively. Upsampling does not

necessarily enhance resolution, but it increases the sharp-

ness of the resulting image, as becomes apparent by com-

paring images from Fig. 4 with different pixel sizes.

The sharpness of a super-resolved image is only a lower

bound to, but no estimator for, the minimum resolvable

distance.12 It can become a source of high resolution
when multiple super-resolved images are combined into a

single high-resolution image.

The super-resolved images of the concentration maps
bC0

1,:
and bC0

2,:
in Fig. 4 show a nanowire-like structure

each which is very desirable for data from a nanowire

sample. An AFM image of the sample area, which is shown

in Fig. 4b of previous work,12 indicates that two PEDOT

nanowires cross the sample area. Therefore, unmixing two
chemical components whose high-resolution concentration

maps show nanowire-like structures is both satisfying and

reassuring.

The super-resolved concentration maps of the second

component bC0

2,:
, Figs. 4b and 4d, also show a little feature

set apart from the nanowire-like structure. Such a feature

can arise from a PEDOT nanoparticle, e.g. a nanowire

debris, or a local deformation of the nanowire that is inter-
preted as a separate feature by SRIR. Further, it may also

arise from interactions between the two nanowires,

although this would result in additional spectral compo-

nents rather than SRIR artifacts.

Remixing the High-Resolution Data

The high-resolution concentration maps in Fig. 4 represent
the estimatebB of the high-resolution concentration maps B

in the hyperspectral imaging model of Eq. 6. An estimate bX
of the high-(spatial)-resolution hyperspectral data cube X

can be recovered via Eq. 2

bX ¼ bBbS0 ð15Þ

Like the low-resolution hyperspectral data cube, the
high-resolution data cube can be sliced in the spectral

domain to obtain high-resolution single channel gray-scale

images. Choosing the channel of maximum

intensity at 1437 cm�1 (Fig. 2d) results in the images

shown in Fig. 5.

Estimation of Achieved Resolution

The resolution in Figs. 5a and 5b can be inferred by inspect-

ing the sections labeled S1 and S2 across both nanowire

components shown in Fig. 5. The minimum distance at

which the nanowires remain distinguishable is then identi-

fied as the minimum resolvable distance. Since the nano-

wires have finite width, we use their edge separation as a

distance measure for resolution purposes. Because their
edges are blurred, we define them to be at 1=e � 0:368

times the respective peak intensities.

Figure 3. Images of concentration maps: (a) Distribution of first (bC0
1,:) and (b) second (bC0

2,:) rotated PCA scores on sample area.

The two concentration maps were extracted from a single hyperspectral data set.
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Figure 4. Super-resolution of the Raman heat maps shown in Fig. 3 for resulting pixel sizes of (a,b) 20 nm and (c,d) 10 nm. While

the super-resolved images of bC0

1,: (a,c) show only a nanowire-like structure, the super-resolved images of bC0

2,: (b,d) show an additional

feature. The feature could either be local contamination with a PEDOT debris or an artifact of SRIR caused by a local deformation of

the respective PEDOT nanowire.

Figure 5. Recombined super-resolved images at 1437 cm�1 for (a) 20 nm and (b) 10 nm resulting pixel size. The recombined

images are obtained via a weighted sum of Figs. 4a and 4b, and Figs. 4c and 4d, respectively. The weights are given by the intensity

of the respective rotated loading (Fig. 2d) at the given wavenumber. Line profiles along the sections S1 and S2 for both figures are shown

in Fig. 6.
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The smallest resolvable distance can be found along sec-

tion S2. While the two nanowires are unresolvable in the

20 nm image, they are clearly resolvable in the 10 nm image,

with an edge separation of less than 14 nm, below the pixel

size of the raw data. If the component information was

retained during remixing, distinct objects could be resolved
even if they overlap, pushing the resolvable distance de

facto to 0 nm (see Fig. 6b).

HyRes Lack of Fit

Although there is no ground truth to compare against, at

least the lack of fit (LoF) within the model Eq. 6 and its sub-

steps Eq. 8, and Eqs. 7 and 12 can be computed. The LoF
resulting from HU is

LoFHU ¼ Y�bS0bC0
���

���
���

���
F

.
Yj jj jF ð16aÞ

� 6:1% ð16bÞ

where I�I is the Frobenius norm. The LoF from SRIR is

LoFSRIR ¼ bC0
�bBH

���
���

���
���
F

.
bC0
���

���
���

���
F

ð17Þ

and is found to be

LoFSRIR, 1 � 7:1% ð18aÞ

LoFSRIR, 2 � 7:2% ð18bÞ

for upsampling factors of 1 (LoFSRIR,1) and 2 (LoFSRIR,2),

respectively. The LoF for the total HyRes procedure is

then computed by

LoFtot ¼ Y�bS0bBH
���

���
���

���
F
= Yj jj jF ð19Þ

and is

LoFtot, 1 � 8:4% ð20aÞ

LoFtot, 2 � 8:5% ð20bÞ

for upsampling factors of 1 (LoFtot, 1) and 2 (LoFtot, 2),
respectively.

Discussion

Hyperspectral Unmixing: A Great Source of Resolving

Power

In microscopy, resolution is the minimum separation
between two distinct objects at which they are perceived

as separate. The resolving power of the microscope stems

from the proper alignment of light sources, mirrors, and

lenses, which then allows the observer to distinguish

objects that would not be distinguishable by the naked

eye. The equivalent source of resolving power in HyRes

is HU, as it distinguishes separate objects that may or

may not be distinguishable in any of the L single channel
images obtained from the sample. Two objects, or two
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Figure 6. Intensity line profiles along image sections of Fig. 5: The sections range across both nanowires whose edges are assumed at

1/e times the peak intensity and indicated by stars (20 nm step) and triangles (10 nm step). The line profiles were obtained through linear

interpolation of the respective images. (a) Intensity line profile along section S1: Two objects are resolved, each of them appearing as a

peak. The two peak maxima are separated by 70.7 nm (20 nm step) and 62.9 nm (10 nm step). The distance between the edges of the

two objects is 25.6 nm and 29:6 nm, respectively. (b) Intensity line profile along section S2: The two peak maxima are separated by

40.9 nm (20 nm step) and 50.3 nm (10 nm step). The two objects are resolved in the 10 nm pixel size image with an edge separation of

13.6 nm. In the 20 nm pixel size image, the two objects are unresolved unless the contributions from different components are tagged

(C1 and C2,:), in which case the objects remain distinguishable.
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Improved Spectral Resolution

As the roles of scores and loadings can be interchanged,48

HyRes can also be seen as a framework to improve spectral

resolution, and Eq. 5 implies that the spectral distortion is

(almost) identical for each pixel. If Eq. 5 holds in both the

spectral and the spatial domain, spectral and spatial reso-
lution enhancement can be performed simultaneously and

independently after the HU step. The resulting remixed

hyperspectral data cube has then enhanced spectral and

spatial resolution.

Measurement and Computation Time

Data acquisition of the far-field Raman data took �62 min.
The overhead emerging from HyRes included the acquisition

of the microscope’s PSF along two directions (1min each)

and the computation time required for HyRes, which was

about 1min for an upsampling factor of 1 and a little less than

3min for an upsampling factor of 2 using Matlab (The

Mathworks, Inc.) and its parallel processing toolbox on a

multi-core laptop. Thus, with a little less than 5min, total

overhead the resolution was enhanced more than 25-fold.
If the condition of the instrument remains stable within a

series of measurements, then the PSF measurement needs

to be carried out only once, further reducing the overhead

per measurement.

Nanometric Resolution and Accuracy of Results

The potential for nanometric resolution in far-field Raman
imaging derives directly from the resolving power of HU,

which is the equivalent of (higher-order) decorrelation in

SOFI.24 SRIR with IPLS allows for a very high-resolution

visualization of these results. Whether this visualization is

accurate depends to a large degree on the accuracy of the

forward operator H in Eqs. (6), (12), and (13b).

The largest scale (spatial) effect occurring on sampling

that is unaccounted for in the forward model Eq. 12
(including errors in the system response function estima-

tion) limits the accuracy of estimating each of the individual

concentration maps shown in Fig. 4. This highlights that

features with variations on smaller scales will not be accur-

ately resolved by IPLS on a single concentration map, and

likewise on a single channel image. This also impacts on the

remixed high-resolution single channel in Fig. 5, despite

their appealing appearance.
Resolving two objects from different spectral compo-

nents, however, is unaffected by this limitation of IPLS,

as they are already resolved during the HU stage.

The limited accuracy of IPLS thus only limits the visualiza-

tion of the HU resolution gain not the resolving power of

HU per se. We can thus safely claim to have resolved two

objects separated 14 nm, or even less (see Fig. 6b), but we

cannot claim to know their shapes with the same accuracy.

parts of the same object, whose spectral signatures differ 
sufficiently relative to the noise level in the data, can be 
identified via HU at arbitrary separation given that their 
projections on the focal plane are not congruent. The 
resolving power of HU is thus infinite in theory, although 
perhaps limited by the pixel size in practice. The resulting 
concentration maps in Fig. 3 are as blurry as the raw single 
channel image, but as far as resolution is concerned, all that 
matters is the distinction of (separate) objects (compo-

nents 1 and 2) which has clearly been achieved.

High-Resolution Images Using SRIR
Resolution enhancement by HU alone would call for a stat-
istical criterion of resolution or, rather, separability replacing 
the Rayleigh criterion. Moreover, the achieved resolution 
might be hard to visualize or quantify from the images in 
Fig. 3 alone. SRIR allows to merge the distinct low-resolution 
concentration maps into a high-resolution hyperspectral data 
cube for which Rayleigh’s and similar resolution criteria can 
be straightforwardly applied to each single channel image. A 
large degree of sharpness in the super-resolved concentra-
tion maps proves to be key to high-resolution single-channel 
images in the remixed high-resolution hyperspectral data 
cube. The achieved resolvable distance of less than 14 nm 
is more than a factor 8 better, i.e. smaller, than the less than 
114 nm achieved by single channel image-based SRIR on the 
same data and more than a factor 25 better than the intrinsic 
resolution of the confocal Raman microscope.

The resolution enhancement stems from the resolving 
power offered by HU and exclusively arises between 
objects that belong to different chemical compounds. The 
intra-component achievable resolution is unaffected by HU 
and thus remains limited by the single channel image SRIR 
bounds reported previously.9–12

The Role of Bounding Hyperplanes
While the resolving power of HU is fairly unconditional, gen-
erating high-resolution images from HU concentration maps 
is not. The ability to generate high-resolution images, Fig. 5, 
depends strongly on an adequate estimation of the non-nega-
tive concentration maps, Fig. 3. Any residual mixing can show 
up as artifacts (both spatial and spectral) in the super-resolved 
hyperspectral data cube which potentially prohibits a visual-
ization of the resolution gain provided by HU. Further, if mul-

tiple spectral components are required to reconstruct the 
proper concentrations in congruent areas, one has to 
resort to joint image restoration techniques that are usually 
computationally more expensive than independent restor-
ation. A well enough estimation of the non-negative concen-
tration maps C is not exclusive to BH. NMF techniques often 
yield comparable results. For very noisy data, however, strict 
non-negativity constraints introduce unnecessary artifacts 
and soft constraints as in BH become preferable.39,53
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Using an AFM image of the same sample, shown in

Fig. 4b of previous work,12 as a partial truth, suggests

there is very reasonable agreement when compared to

the images in Fig. 5.

Conclusion

A new BLHU technique, BH, has been introduced as a vari-

ant of rotation of principal components, or an extension of

geometric unmixing approaches to data that is not sum-to-

one constrained, depending on the point of view.

Combining BLHU with BH and SRIR using IPLS within

the HyRes framework has resulted in a minimum resolvable

distance of less than 14 nm on the processed Raman data.
This is more than a factor 8 better than the resolution of

113 nm achieved by single channel image-based SRIR with

IPLS on the same data, and about a factor 25 better than

the intrinsic resolution limit of the Raman microscope.12

At the heart of these results lies the resolving power of

HU provided by the validity of Eq. 5. A generalization of

HyRes to measurement techniques in which Eq. 5 is vio-

lated, such as infrared or fluorescence spectroscopy, will be
addressed in a future publication.
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Notes

y 0.61k/NA � 382 nm and 0.44k/NA � 275 nm for k¼ 532 nm and

NA¼ 0.85.

y Concentration maps are referred to as abundance maps in

remote sensing.

§ i, j, k are matrix/tensor indices.

yy Although the quality of the simplex might suffer from dimen-

sion reduction if the projection of one or more constituent

spectral signatures onto the reduced space is very low.

zz 	 denotes the Hadamard product.
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longueur donde et molécules/particules nano-structurées en champ

proche optique. [PhD Thesis]. Nantes, France: University of Nantes,

2015.

8. A. dOrlando, M. Bayle, G. Louarn, et al. ‘‘AFM-Nano Manipulation of

Plasmonic Molecules Used as Nano-Lens to Enhance Raman of

Individual Nano-Objects’’. Materials. 2019. 12(9): 1372.

9. L. Duponchel, P. Milanfar, C. Ruckebusch, et al. ‘‘Super-Resolution and

Raman Chemical Imaging: From Multiple Low Resolution Images to a

High Resolution Image’’. Anal. Chim. Acta. 2008. 607(2): 168–175.

10. M. Tomita, H. Hashiguchi, T. Yamaguchi, et al. ‘‘Super-Resolution

Raman Spectroscopy by Digital Image Processing’’. J. Spectrosc.

2013. 2013: 459032.

11. H. Cui, W. Zhao, Y. Wang, et al. ‘‘Improving Spatial Resolution of

Confocal Raman Microscopy by Super-Resolution Image

Restoration’’. Opt. Express. 2016. 24(10): 10767–10776.

12. D.J. Winterauer, D. Funes-Hernando, J.L. Duvail, et al. ‘‘Sub-Micron

Spatial Resolution in Far-Field Raman Imaging Using Positivity-

Constrained Super-Resolution’’. Appl. Spectrosc. 2019. 73(8):

902–909.

13. M. Offroy, M. Moreau, S. Sobanska, et al. ‘‘Pushing Back the Limits of

Raman Imaging by Coupling Super-Resolution and Chemometrics for

Aerosols Characterization’’. Sci. Rep. 2015. 5: 12303.

14. M.B. Richman. ‘‘Rotation of Principal Components’’. J. Climatol. 1986.

6(3): 293–335.

15. I.T. Jolliffe. Principal Component Analysis and Factor Analysis. New

York, NY: Springer New York, 2002. Chap. 11, Pp. 269–298.

16. M.D. Craig. ‘‘Minimum-Volume Transforms for Remotely Sensed

Data’’. IEEE Trans. Geosci. Remote Sens. 1994. 32(3): 542–552.

17. W.K. Ma, J.M. Bioucas-Dias, T.H. Chan, et al. ‘‘A Signal Processing

Perspective on Hyperspectral Unmixing: Insights from Remote

Sensing’’. IEEE Signal Process. Mag. 2014. 31(1): 67–81.

18. E. Chouzenoux, M. Legendre, S. Moussaoui, et al. ‘‘Fast Constrained

Least Squares Spectral Unmixing Using Primal-Dual Interior-Point

Optimization’’. IEEE J Sel. Top. Appl. Earth Obs. Remote Sens. 2014.

7(1): 59–69.

19. T. Akgun, Y. Altunbasak, R.M. Mersereau. ‘‘Super-Resolution

Reconstruction of Hyperspectral Images’’. IEEE Trans. Image

Process. 2005. 14(11): 1860–1875.

20. M.J. Ehrhardt, K. Thielemans, L. Pizarro, et al. ‘‘Joint Reconstruction of

PET-MRI by Exploiting Structural Similarity’’. Inverse Probl. 2014.

31(1): 015001.

21. L. Loncan, L.B. de Almeida, J.M. Bioucas-Dias, et al. ‘‘Hyperspectral

Pansharpening: A Review’’. IEEE Geosci. Remote Sens. Magazine.

2015. 3(3): 27–46.

22. C. Lanaras, E. Baltsavias, K. Schindler. ‘‘Hyperspectral Super-

Resolution by Coupled Spectral Unmixing’’. In: Proceedings of the

2015 IEEE International Conference on Computer Vision (ICCV).

December 2015. Santiago, Chile: 7–13 2015. Pp. 3586–3594.

10

https://orcid.org/0000-0002-0117-258X
https://orcid.org/0000-0002-0117-258X
https://orcid.org/0000-0002-9177-0160
https://orcid.org/0000-0002-9177-0160
https://orcid.org/0000-0001-6769-2329
https://orcid.org/0000-0001-6769-2329


23. L. Bungert, D.A. Coomes, M.J. Ehrhardt, et al. ‘‘Blind Image Fusion for

Hyperspectral Imaging with the Directional Total Variation’’. Inverse

Probl. 2018. 34(4): 044003.

24. T. Dertinger, R. Colyer, G. Iyer, et al. ‘‘Fast, Background-Free, 3d

Super-Resolution Optical Fluctuation Imaging (SOFI)’’. Proc. Natl.

Acad. Sci. U.S.A. 2009. 106(52): 22287–22292.

25. D. Funes-Hernando, M. Pelaez-Fernandez, D.J. Winterauer, et al.

‘‘Coaxial Nanowires as Plasmon-Mediated Remote Nanosensors’’.

Nanoscale. 2018. 10(14): 6437–6444.

26. A. de Juan, R. Tauler. ‘‘Chemometrics Applied to Unravel

Multicomponent Processes and Mixtures: Revisiting Latest Trends in

Multivariate Resolution’’. Anal. Chim. Acta. 2003. 500(1): 195–210.

27. S.C. Park, M.K. Park, M.G. Kang. ‘‘Super-Resolution Image

Reconstruction: A Technical Overview’’. Signal Process. Mag. IEEE.

2003. 20(3): 21–36.

28. A. de Juan, J. Jaumot, R. Tauler. ‘‘Multivariate Curve Resolution (MCR).

Solving the Mixture Analysis Problem’’. Anal. Methods. 2014. 6:

4964–4976.

29. N. Keshava. ‘‘A Survey of Spectral Unmixing Algorithms’’. Lincoln Lab.

J. 2003. 14(1): 55–78.

30. J.M. Bioucas-Dias, A. Plaza, N. Dobigeon, et al. ‘‘Hyperspectral

Unmixing Overview: Geometrical, Statistical, and Sparse Regression-

Based Approaches’’. IEEE J Sel Top. Appl. Earth Obs Remote Sens.

2012. 5(2): 354–379.

31. K. Pearson. ‘‘LIII. On Lines and Planes of Closest Fit to Systems of

Points in Space’’. London Edinburgh Dublin Philos. Mag. J. Sci. 1901.

2(11): 559–572.

32. C. Eckart, G. Young. ‘‘The Approximation of One Matrix by Another

of Lower Rank’’. Psychometrika. 1936. 1(3): 211–218.

33. I.T. Jolliffe, J. Cadima. ‘‘Principal Component Analysis: A Review and

Recent Developments’’. Philos. Trans. R. Soc., A. 2016. 374(2065):

20150202.

34. R. Bro, A.K. Smilde. ‘‘Principal Component Analysis’’. Anal. Methods.

2014. 6(9): 2812–2831.

35. J.M. Craddock, C.R. Flood. ‘‘Eigenvectors for Representing the 500 mb

Geopotential Surface Over the Northern Hemisphere’’. Q.J.R.

Meteorol. Soc. 1969. 95(405): 576–593.

36. S.A. Farmer. ‘‘An Investigation into the Results of Principal

Component Analysis of Data Derived from Random Numbers’’. J. R.

Stat. Soc. Ser. D (The Statistician). 1971. 20(4): 63–72.

37. M.E. Winter. ‘‘N-FINDR: An Algorithm for Fast Autonomous Spectral

End-Member Determination in Hyperspectral Data’’. In: M.R. Descour

and S.S. Shen (Eds.) Imaging Spectrometry V. USA: International

Society for Optics and Photonics, 1999, Vol. 3753. Pp. 266–276.

38. J.M. Nascimento, J.M. Dias. ‘‘Vertex Component Analysis: A Fast

Algorithm To Unmix Hyperspectral Data’’. IEEE Trans. Geosci.

Remote Sens. 2005. 43(4): 898–910.

39. J.M. Bioucas-Dias. ‘‘A Variable Splitting Augmented Lagrangian

Approach to Linear Spectral Unmixing’’. In: First Workshop on

Hyperspectral Image and Signal Processing: Evolution in Remote

Sensing, 2009. WHISPERS’09. IEEE, USA. Grenoble, France: 26–28

August 2009. Pp. 1–4.

40. C.H. Lin, C.Y. Chi, Y.H. Wang, et al. ‘‘A Fast Hyperplane-Based

Minimum-Volume Enclosing Simplex Algorithm for Blind

Hyperspectral Unmixing.’’. IEEE Trans. Signal Process. 2016. 64(8):

1946–1961.

41. P. Yin, Y. Sun, J. Xin. ‘‘A Geometric Blind Source Separation Method

Based on Facet Component Analysis’’. Signal Image Video Process.

2016. 10(1): 19–28.

42. J. Zhao, H. Lui, D.I. McLean, et al. ‘‘Automated Autofluorescence

Background Subtraction Algorithm for Biomedical Raman

Spectroscopy’’. Appl. Spectrosc. 2007. 61(11): 1225–1232.

43. J. Duvail, P. Retho, S. Garreau, et al. ‘‘Transport and Vibrational

Properties of Poly (3,4-ethylenedioxythiophene) Nanofibers’’. Synth.

Met. 2002. 131(1–3): 123–128.

44. L.L. Thurstone. ‘‘A New Rotational Method in Factor Analysis’’.

Psychometrika. 1938. 3(4): 199–218.

45. A.A. Green, M. Berman, P. Switzer, et al. ‘‘A Transformation for

Ordering Multispectral Data in Terms of Image Quality with

Implications for Noise Removal’’. IEEE Trans. Geosci. Remote Sens.

1988. 26(1): 65–74.

46. J.M. Bioucas-Dias, J.M.P. Nascimento. ‘‘Hyperspectral Subspace

Identification’’. IEEE Trans Geosci. Remote Sens. 2008. 46(8):

2435–2445.

47. R. Tauler, A. Izquierdo-Ridorsa, E. Casassas. ‘‘Simultaneous Analysis of

Several Spectroscopic Titrations with Self-Modelling Curve

Resolution’’. Chemom. Intell. Lab. Syst. 1993. 18(3): 293–300.

48. P. Paatero, U. Tapper. ‘‘Positive Matrix Factorization: A Non-Negative

Factor Model with Optimal Utilization of Error Estimates of Data

Values’’. Environmetrics. 1994. 5(2): 111–126.

49. R. Bro, S. De Jong. ‘‘A Fast Non-Negativity-Constrained Least Squares

Algorithm’’. J. Chemom. 1997. 11(5): 393–401.

50. D.D. Lee, H.S. Seung. ‘‘Learning the Parts of Objects by Non-Negative

Matrix Factorization’’. Nature. 1999. 401(6755): 788.

51. P.O. Hoyer. ‘‘Non-Negative Matrix Factorization with Sparseness

Constraints’’. J. Mach. Learn. Res. 2004. 5(Nov): 1457–1469.

52. S. Moussaoui, D. Brie, A. Mohammad-Djafari, et al. ‘‘Separation of

Non-Negative Mixture of Non-Negative Sources Using a Bayesian

Approach and MCMC Sampling’’. IEEE Trans Signal Process. 2006.

54(11): 4133–4145.

53. J. Li, J.M. Bioucas-Dias. ‘‘Minimum Volume Simplex Analysis: A Fast

Algorithm to Unmix Hyperspectral Data’’. In: IEEE International

Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008.

Vol. 3. IEEE, USA. Boston, MA, USA: 7–11 July 2008. Pp. III-250–III-

253.

11


