
HAL Id: hal-02563859
https://hal.science/hal-02563859v1

Preprint submitted on 5 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast computation of distances in a tree
Marc Pierrot Deseilligny

To cite this version:

Marc Pierrot Deseilligny. Fast computation of distances in a tree. 2020. �hal-02563859�

https://hal.science/hal-02563859v1
https://hal.archives-ouvertes.fr


Fast computation of distances in a tree

Marc Pierrot Deseilligny1

1Laboratoire LaSTIG, Université Gustave Eiffel

May 5, 2020

Abstract

Computation of distances between two submits of a tree is an operation that occurs in some
pattern recognition problem. When this operation has to be done thousands of times on millions
of trees, the linear standard algorithms in OpNq for each pair may be a bottleneck to the global
computation.

This note present recursive spliting method with a complexity of OplogpNqq on each pair in worst
case, and Op1q in average on all pair, once a pre-computation OpNlogpNqq has been done on the
whole tree. A commented C++ implementation is published as a companion to this note.

1 Motivation

Computation of distance between two submits of a graph is a basic well known problem of graph
theory for which there exist efficient methods. This is even easier in the case where the graph is known
to be tree or a forest (i.e. no cycle), in this case the time of basic algorithm are proportionnal to N where
N is the number of submits. However there are cases where this operation has to be done a huge number
of time and for which these linear performance may be limitative.

This problem can occur for example in photogrammetry in the computation of global orientation
from a set of relative orientations (see for example [Govindu, Venu 2006]) . We give a short description,
illustrated by figure 1 :

— we want to orientate a set of N images ;
— for certain pairs of images I, J we have computed the relative orientation ri,j of I relatively to J

using some photogtrammetric method after computing tie-points;
— now we want to compute a global solution correspond to equation 1.

Ri “ ri,jRJ (1)

Figure 1 – A graph with relative rotations; a random tree extracted from previous graph

1



E “
ÿ

pRi ´ ri,jRJq
2 (2)

As there is more constraints than unkown, the standard method is to minimize some criterion E like
equation 2. Before doing that, we need to get an initial solution and remove the outlier. A possible way
to do it this one :

— generate a ”huge” quantity of random tree;
— for each tree , set arbitrarily R1 “ Id and generate by propagation the unique solution satisfying 1;
— use equation 1 to compute by accumulation the reliable ri,j .
Suppose we generate M tree, and note Rk

i solution tree k, with k P r1,M s, a basic way to compute
the reliability/quality Qi,j of ri,j is :

Qi,j “

M
ř

k“1

|Rk
i ´ ri,jR

k
j |

M
(3)

However we see that formula 3 is not completely satisfying :
— when ri,j belongs to the tree , obviously residual of equation 1 is zero, but this has no signification;
— more generally, the highest is the distance between i and j in the tree, the longest is the chain of

propagation and the highest is naturally expected to be the residual of equation 1;
— for example in figure 1, the distance between R1 and R6 is 4, and this reflect that the chain that

goes from one to the other is r1,4 Ñ r4,3 Ñ r3,5 Ñ r5,6 ;
So the formula of equation should be replaced by another one taking into account the distance in the

tree; for example, something like equation 4 :

Qi,j “
ÿ |Rk

i ´ rki,jR
k
J |

b

Dk
i,j ´ 1

(4)

There is much more to say, and formula 4 should probably need more attention. However the fact is
that to test formula like 4 we need a way to compute for a given tree the distance Dk

i,j of many pair of
submits inside this tree.

In this paper we present an efficient method with the following performance :
— pre-computation in OpNlogpNqq ;
— for each pair S1, S2 , the cost of computation is OplogpNqq in the worst case ;
— the cost of computation on all pair is OpN2q, so in average the cost for one pair is in Op1q.
We give also an implementation in C++ of the algorithm in a single file that aims to be easily integrated

in user code.

2 Recursive split

Figure 2 illustrate the notion used for the computation :
— let A be a any submit (we will see in next section how chosing it);
— starting from A we can easily compute for each submit the distance to A and also propagate a

labeling of the connected components we would obtain if we would supress all edges connected to
A from the tree;

— left image of figure 2 present the tree and the name of submit we will use;
— middle image present the distance to submit A;
— right image present the labeling LA of connected components of the graph we would obtain if were

supressing all edges starting from A.
The presented method is based on the elementary remark that if two submit B and G do not belong

to the same component, then the shortest past from B to G cross A, and DpB,Gq “ DpB,Aq`DpA,Gq.
This is formalized by equation 5 :

LApBq ‰ LApGq ñ DpB,Gq “ DpB,Aq `DpA,Gq (5)

The following, recursive, split algorithm can then be formulated : we first make a recursrive pre-
computation for the whole graphe (using algorithm 1), we then use this precomputation to compute
distance between pairs using the algorithm 4 :

2



Figure 2 – Notation for a Tree; Distance to submit A; labeling of component after suppressing A

Algorithm 1 PreComputeDist (Graph G ,Level L)

if CardpGq “ 1 then
we are done

else
select a pivot submit A
@s P G compute DistpA, sq and LabApsq and save it at level L
for all CC connected component of G ´ tAu do
PreComputeDist (CC,L` 1)

end for
end if

Algorithm 2 ComputeDist (I,J)

if I=J then

return 0
else
for all L do
if LabLpIq ‰ LabLpJq then

return DistLpIq `DistLpJq
end if

end for
end if

3



Figure 3 – Two possible split of the same tree : arround A and arround C

3 Selecting the best split

3.1 Exposure of the problem

Untill now we have not discussed how we select the pivot submit. Obviously this may have a main
influence on the efficiency of algorithm 1. This is illustrated on figure 3. On this figure we see that the
choice of A as pivot does not decrease so much the size of the biggest remaining graph, while the choice of
C seems much more pertinent leading to sub-graph which maximal size is 3. In the extreme case where
the tree is a chain, we see that :

— if we make systematically the ”bad” choice and select an extremity to split the graphe, we will
have to compute N level;

— on the other hand, if we make systematically the ”good” choice and select the middle of the chain,
we will only have to compute logpNq level.

3.2 Criteria for spliting

To answer to the question of the pivot selection, we must must solve two issues :
— define a criteria on each submit that caracterize how good it would be to choose it as pivot ;
— ensure that this criteria can be computed fastly enough .
For the first issue we want, after split, to avoid having too big connected component. So we simply

take as criteria to select A as pivot, the maximum size of all connected components after supression of
A. Once computed on all G, we will select the submit minimizing this criteria.

Algorithm 3 NaivePivotQual (S)

Qual=0
for all CC connected component of G ´ tSu do

Qual = Max(Qual,CardCC)
end for

return Qual

If ”naive” definition of algorithm 4 is satifying, we cannot simply compute it for each submit, as the
cost would be N for each submit, which would result in N2 for all the graph. This is why in next section,
we describe a recursive modification approach leading to a global cost of N for the computation of pivot
quality on the whole graph.

3.3 Fast computation

Figure 4 illustrate the fast computation. In a first step, we select an arbitray submit, A here, and
consider the oriented tree with A as head, an compute the function HApSq which, for each submit, contain
the size of the subtree under S. This computation can easily be done in linear time.

4



Figure 4 – Using tree of figure 2, function HA (left) and HC (right) representing sizes of subtree fonction
with A and C as head

Now we have the two interesting property :

1. PivotQuality(A) can be easily computed from HA, as it simply the max of HApNq for all neighoor
of A;

2. for all neighboor N of A , HN can easily be computed from HA;

For second property, we see for example, that if we want to compute HC knowing HA, we have only
two operation to do :

1. HCpCq “ HApAq “ N , in fact this is always the same value (the number of submit of the graph);

2. HCpAq “ N ´HApCq because the subtree correponding to HCpAq and HApCq are the two com-
plementary subtree we obtain by supressing edge pA,Cq.

Algorithm 4 RecursPivotQual (S,F )

{Before, compute the quality whith HA of first submit}
QMax=0
for all n neighboor of S do

QMax = Max(QMax,H(n))
end for
Qual[S] = QMax
{Now recursive exlporation}
for all n neighboor of S, n ‰ F do
{hs,hn save values to restore them at end of recursive call}
hs = H[S]
hn = H[n]
H[S] = Nb-H(n)
H[n] = Nb
RecursPivotQual(n,S)
{restore values}
H[S] = hs
H[n] = hn

end for

5



Figure 5 – Notation for analyzing the cardinal when pivot change from p to m

4 The implementation

Attached to this note is an implementation in C++ of this algorithm. The ”librairy” is contained in a
single file TreeDist.h that can be include. The file TreeDist.cpp can generate an executable program
that run the test, using the following command (on Gnu/Linux) :

g++ TreeDist.cpp -std=c++11

The main interface for user is the class cFastTreeDist. The usage of the class consist of essentially
of 3 methods :

— cFastTreeDist(int NbSom) : the constructor, allocate the memory;
— void MakeDist(const std::vector<int> & aVS1,const std::vector<int> & aVS2); : make

all the pre-computation for a given graph ,see comment in the code for graph representation; 1
— int Dist(int aI1,int aI2) const; compute the distance bewteen two submit once the pre-

computation has been done (correspond to algorithm 4).

5 Theoreticall and empiricall analyse of complexity

To analyse the complexity, we must first compute the maximal level of recursion that can be reached.
By the definition we use of pivot quality, we are ensured that at each decomposition the connected

component have a size inferior to half of the graph. Let prove it, illustrated by figure 5 :
— let N be the number of submit of G , N “ G;
— let p be the pivot;
— let C` be the connected componet of G ´ tpu with maximal number of submit and m the submit

connecting C` to p;
— if we had “ C` ą N

2 , then if we were taking m as pivot , connected of G ´ tmu would be :

— one component Cp “ G ´ C` and Cp ď N
2 ;

— other components ci each being included in C` ´ tmu so ci ă C`
— so m would be a better pivot than p which is a contradiction.
As each component, in the recursive split, has a size inferior to the initial size, the maximal number

of level is log2pNq. At each level the computation is linear. So :
— the pre-computaion has a complexity of NlogpNq;
— the computation of each distance, in algorithm 4 is in worst case equal to the maximum level, so

logpNq is the cost for computation of distance in worst case;
The computation of distance in average case is more complex to analyse. We can make the following,

not 100% formal, reasoning in algoritm 4:
— the probabilty that Lab1pIq “ Lab1pJq is inferior to 1

2 because size of maximal component is
inferior to 1

2 ;
— the probabilty that Lab2pIq “ Lab2pJq is inferior to 1

4 because size of maximal component is
inferior to 1

4 ;
— . . .

— so the average cost is bounded by
8
ř

k“1

k 1
2

k
“ 2

6



NbSom 16 64 144 256 400 576 784

AvgT 1.34 1.46 1.49 1.53 1.50 1.50 1.53
AvgLowT 1.63 2.42 3.03 3.53 3.79 4.06 4.36
Low/Log 0.59 0.58 0.60 0.63 0.63 0.63 0.65

Figure 6 – Computation time of distance between pair as function of the number of submits : (1) AvgT=
average (2) AvgLowT=average for ”low” distance (ď 3), (3) Low/Log = average of ”low” /Log(NbSom)

Figure 6 present the experimental computation time we obtain using the command StatTimeBenchFastTreeDist,
that generate random trees and evaluate the average level reached in algorithm 4 , this level beign pro-
portionnal to the time. The line AvgT correspond to the average, on all pair of the graph, we see that
this time if almost constant .

By the way, in some situaion the average on all pair may be unrealistic and too optimistic. In all case,
the pair corresponding to low distances are generally splited at higher level and correspond to a longer
time of computation. For example in the case of photogrammetry exposed in [Govindu, Venu 2006], it
will be current that, due to spatial correlation, the majority of edges will correspond to low distances
and that the average time is more important that predicted when taking all the pair. This is the reason
of the two last lines :

— AvgLowT this line present an average on the pair corresponding to ”low” distances, here the
threshold is arbitrarily 3, we clearly see the time is growing with the number of submit;

— Low/Log is the previous line divided by logpNbSomq, we see that it is almost constant and
validate that the time for low distance a modelisation in logpNq, like worst case, is coherent.

References

[Govindu, Venu 2006] Govindu, Venu. ”Robustness in Motion Averaging.” Computer VisionACCV 2006
(2006): 457-466.

7


	Motivation
	Recursive split
	Selecting the best split
	Exposure of the problem
	Criteria for spliting
	Fast computation

	The implementation
	Theoreticall and empiricall analyse of complexity

