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Abstract

We assign generalised convolutions (resp. traces) to graphs whose edges are decorated by
smooth kernels (resp. smoothing operators) on a closed manifold. To do so, we introduce the
concept of TraPs (Traces and Permutations), which roughly correspond to ProPs (Products
and Permutations) without vertical concatenation and equipped with families of generalised
partial traces. They can be equipped with a ProP structure in deriving vertical concatenation
from the partial traces and we relate TraPs to wheeled ProPs first introduced by Merkulov.
We further build their free object and give precise proofs of universal properties of ProPs
and TraPs.
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Introduction

State of the art

ProPs (Products and Bermutations provide an algebraic structure that allows to deal with an
arbitrary number of inputs and outputs. As such they generalise many other algebraic structures
such as operads, which have one output and multiple inputs. ProPs appeared in [Lan65] and
later in the book [BV73] in the context of cartesian categories. Operads stemmed from this work
in [May72|, although their origin can also be traced back to the earlier work ﬂmﬁ

!The traditional notation for ProP is PROP or and more recently prop. We choose to use ProP as an acronym
with capital letters for the first letter of the words and use the same convention for the related concept of TraP.
2We thank B. Vallette for his enlightening comments on these historical aspects.



An important asset of ProPs over operads is that they encompass algebraic structures such
as bialgebras and Hopf algebras that lie outside the realm of operads or co-operads. We refer
the reader to [Pir01] for the study of bialgebras in the ProPs framework and [Mar08] for other
classical examples of ProPs.

Our two central examples of ProPs are the ProP Homy of homomorphisms of a finite di-
mensional vector space V' which we generalise to the ProP Homy, of continuous homomorphisms
of the nuclear Fréchet space V, and the ProP Gr® of graphsﬁ. In the context of deformation
quantisation, the complex of oriented graphs whether directed or wheeled, plays an important
role in the construction of a free ProP generated by a & x &°P-module (see e.g [Mer04l, Paragraph
2.1.3]). However, to our knowledge, the ProP of oriented graphs, briefly mentioned in [Ion07b],
has not yet found concrete applications in the perturbative approach to quantum field theory.
Filling this gap is a long term goal we have in mind.

ProPs and oriented graphs

In space-time variables, a Feynman rule is expected to assign to a graph G with k incoming and
[ outgoing edges, a correlation function (it is actually a distribution) K¢ in k + [ variables. Our
long term goal is to interpret the correlation function associated with the composition G o G’
of two graphs as a generalised convolution Kg * K¢ of the correlation functions Kq and K¢
associated with G and G’, aiming to derive the existence and the properties of the map G — K¢
from a universal property of the ProP structure on graphs.

ProPs entail two operations, called horizontal and vertical concatenations, which are the
natural operations implemented on oriented graphs. With the goal we have in mind, ProPs are
therefore natural structures to consider. We provide a precise formulation of the well-known fact
that oriented graphs can be equipped with a ProP structure as well as a complete proof (see
Theorem [L.33)) of this statement. We also give a similar statement for (resp. planar) vertex
decorated graphs in Theorem (resp. Theorem [£.2.3)). The horizontal concatenation of this
ProP is the natural concatenation of graphs and the vertical concatenation is the composition,
which to a graph G with k incoming and [ outgoing edges, and a graph G’ with [ incoming and
m outgoing edges, assigns a a graph G o G’ with k incoming and m outgoing edges. Roughly
speaking, G o G’ is obtained by gluing together the outgoing edges of G and the incoming edges
of G’ according to their indexation.

In Theorem 3211 we show that the ProP of oriented graphs is the free ProP generated
by what we call indecomposable graphs (see Definition B.I.I). We provide a planar version of
this result in Theorem [3.4.3l These universal properties are generalised to decorated graphs in
Theorem [£.1.4l Such universal properties were stated without detailed proofs in previous work,
see e.g. [Mar08, Proposition 57| and [Val03| [Val04].

We make use of the universal property of oriented graphs when decorating the corresponding
ProP Gr® with another ProP whose structure is compatible with that of the one on graphs (see
Subsection E3)). In particular, we show in Theorem E3.1] that T'T(X) is the free ProP generated
by the & x G°P-module X. The decorating set X will eventually be a ProP of smooth kernels.
Along the way, we use Theorem 31l in Corollaries 421 43] to build algebra over ProPs;
see Definition 4.1l The same constructions and universal properties hold for edge-decorated
oriented graphs, i.e. Feynman graphs (see Remark 3.3.T]).

We have chosen to work with the ProP Gr® which comprises loops, although the latter
play a passive role in the presentation of a ProP. Yet, they will be relevant in the presentation
of TraPs that come later in Section 0.3l Introducing them right at the beginning unifies the
presentation, since otherwise two similar constructions over two different sets of graphs would
have been necessary.

3We use Merkulov’s notations.



Correlation functions and generalised convolutions

By means of blow-up methods, generalised convolutions of Green functions were built on a
closed Riemannian manifold in [DZ17], with the goal of renormalising multiple loop amplitudes
for Euclidean QFT on Riemannian manifolds. We hope to be able to simplify the intricate
analytic aspects of the renormalisation procedure for multiple loop amplitudes, by adopting an
algebraic point of view on correlation functions using ProPs. There were earlier attempts to
describe QFT theories in terms of ProPs (see e.g. [Ion07al Ton07h]), yet to our knowledge, none
with the focus we are putting on generalised convolutions to describe correlation functions.
Our goal is to use the ProP (actually TraP) structure of graphs decorated by distribution
(e.g. Green) kernels to build the resulting convolutions as generalised convolutions of kernels
associated with the decorated graph. The expected singularities of the resulting correlation
functions are immediate obstacles in defining such generalised convolutions. In this paper, we
focus on the smooth setup, for which the correlation functions are smooth. Our goal in the
smooth case is to provide an adequate algebraic and analytic framework in which we carry out
this construction for correlation functions emanating from graphs decorated with smooth kernels.
A smooth kernel K on a closed manifold M gives rise to a smoothing operator

D(M) 54— <LK(u) L fM K(z,y) u(y) dy> e C(M),

which maps the space D'(M) of distributions on M to the space C*(M) of smooth functions
on M. So, in generalising the convolution of smooth kernels, we generalise the composition of
smoothing operators.

Graphs with oriented cycles and TraPs

One challenge present both in the smooth and non-smooth case is the treatment of oriented
cycles. A first step is the study of the sub-ProPs of (decorated and non decorated) graphs
without oriented cycles carried out in Subsection B3l These structures are then used in Section
[ Yet in order to tackle Feynman graphs, we need graphs that can contain oriented cycles.

TraPs (see Definition [B.1.]) provide a natural structure to take into account oriented cycles
in the graph. It indeed provides a framework to host (partial) traces on graphs that generalise
the ordinary trace Tr(Lg) = §,, K(x,2) dz. The TraP structure, which we relate in Section [Z1]
to Merkulov’s notion of wheeled ProPs (see Corollary [[.1.4]), encompasses families of generalised
traces. In Definition [[3.1], we introduce the set of Gr® of graphs which includes graphs with
oriented loops. Proposition [5.3.1] shows that Gr® can be equipped with a TraP structure and
Theorem [£.4.1] shows that this TraP is free. This result is then generalised by Theorem
which describes free TraP. An appendix is dedicated to the precise definition of the trace on
GrO. Paragraph 5.4 provides a description of a free TraP generated by a given set.

We have postponed the detailed proofs of two main results Theorem B.2.1] and Theorem [5.4.7]
to the appendix, so as not to burden the bulk of the paper with technicalities. A sketch of the
proof is given straight after the statement so that the reader can nevertheless have an idea of
the proof.

Alongside the ProP of graphs, another guiding example throughout the paper is the ProP
of homomorphisms, which we investigate in the infinite dimensional setup. In Theorem [2.2.5]
we introduce the ProP Homyj, of continuous morphisms for a topological Fréchet nuclear space
V', which generalises the well-known ProP Homy (see e.g. the classical monograph [Mar(8]) of
morphisms on a finite dimensional vector space (see Definition.2.1]).

In Proposition [Z2.T] we define the TraP (Homf,(k, 1)) ;>0 corresponding to the ProP Homyf,
of continuous morphisms on an infinite dimensional Fréchet nuclear space V. In the finite di-
mensional case it reduces to the TraP (Homy (k,1))x i>0-

4



Functorial properties: TraPs versus wheeled ProPs

Much in the same way as we build the functor (see Proposition E.2.5])
I'": Mods —> ProP

from the category Modg (Definition E.2.T]) of & x &°P-modules to the category ProP (Definition
[LT3) of ProPs, which to a & x &°’-module P assigns a graph-ProP T'T(P) whose vertices are
decorated by P, following Merkulov’s approach, we build a functor

I'©: Modg —> TraP

which takes & x &°-modules to TraPs (Proposition [.11]). Combining them with forgetful
functors from ProP or TraP to Modg, we can view I'" as an endofunctor of Modg or of
ProP, and I'© and an endofunctor of Modg or of TraP.

In Paragraph [6.2] we provide a detailed description of Merkulov’s construction of the monad
structure of I'© on the category Modg (Proposition [6.2.2), by means of which (wheeled) ProPs
are defined. Our Definition (.11l of TraPs corresponds to unital wheeled ProPs. Using the
construction of free TraPs of Section [5.4] in Corollary [[.T.4] we establish an isomorphism between
the categories of wheeled TraPs on the one hand and of TraPs on the other hand.

Our constructions have some similarity with those underlying traced monoidal categories
introduced in [JSV96], yet the framework and the axioms in the two approaches differ.

TraPs viewed as ProPs: the trace and the composition

It follows from the identification between TraPs and wheeled ProPs mentioned above, that a
TraP is a ProP. In Proposition [[.2.T] we provide a detailed description of the ProP structure on
TraPs as a result of the fact that both the trace and composition of morphisms (see Lemma [5.2.2])
can be expressed in terms of a dual pairing. Let us illustrate this fact in the finite dimensional
setup.

Given a finite dimensional vector space V over a commutative field K, both the composition
and the trace on the algebra of morphisms Hom(V) ~ V* ® V involve the dual pairing

V* x V3 (v*,w) — v*(w) €K,

between the algebraic dual V* and the space V.
Extending this to the infinite dimensional setup requires the use of a completed tensor product
® in order to have an isomorphism

HomS (k,1) ~ (V')®F @V

where Homf, (k, 1) stands for the algebra of continuous morphisms from VO o Ok (see Defini-
tion 2224 and V' for the topological dual of a topological space V. This holds in the framework
of Fréchet nuclear spaces which form a monoidal category under the completed tensor product
E®F (Lemma ZI4). On Fréchet nuclear spaces, the composition can indeed be described as
a dual pairing (see Lemma [5.2.2]) so it comes as no surprise that (see Proposition [7.2.2]) for a
Fréchet nuclear space V, the ProP built from the TraP (Homf,(k,[)) >0 is isomorphic, as a
ProP, to the ProP Homy{,. In the finite dimensional setting, this induces an isomorphism of
ProPs between TraP (Homy (k,1)) >0 and Homy, .

In practice, the partial trace maps ¢; ; arising in the definition of a TraP might not be defined
on every operator. To circumvent this difficulty, in Paragraph [.3] we introduce the notion of
quasi-TraP, which we embed in a complete TraP.



Openings

As announced in the abstract, by means of a (quasi-) TraP structure, we were able to build
generalised convolutions (resp. traces) associated with graphs decorated with smooth kernels
(see Remark [BT.T]). We expect this algebraic approach to enable us to tackle non smooth kernels
and thus to describe correlation functions as generalised convolutions of distribution kernels
associated with graphs. At this stage these are open questions we hope to address in future
work.
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Notation
1. Any vector space in this text is taken over K, chosen to be the field R or the field C.

2. For any k € Ny = Z>¢, we denote by [k] the set {1,...,k}. In particular, [0] = &F.

1 Two guiding examples of ProPs

We define ProPs, the first main protagonists of the paper, and two ProPs which we shall use as
a driving thread throughout the paper.

1.1 Definition

Following [Val03, [Mar08|, a ProP is a symmetric strict monoidal category, whose objects are
identified with (Ng)? and such that the tensor product of two objects is identified with the sum
of integers on each copy of Ny. Here is a more detailed description.

Definition 1.1.1. A ProP is a family P = (P(k,l))x,en, of vector spaces such that:

1. P is a & x &°P-module, that is to say, for any (k,1) € N3, P(k,l) is a &; x S -module.
In other words, there exist maps

{GZXP(k,l) s Pk, {P(k,l)x@k — Pk
(o,p) — o-p, (p,7) — p-T,

such that for any (k,1) € NZ, for any (0,0’,7,7') € &} x &3, for any p € P(k,1),

Iy -p=p-ldy =p,
o-(0"-p)=(00') p, o-(p-7)=(0-p)-T, (p-7)-7=p- (7).

2. For any (k,1,k',I') € N§, there exists a product = from P(k,1) @ P(k',l') to P(k+k',l+1')
such that:

(a) For any (kKU K", 1") € NS, for any (p,p/,p") € P(k,1) x P(K, ') x P(&",1"),

p* (p/ *p”) — (p *p/) *p/l.



(b) There exists Iy € P(0,0), such that for any (k,1) € N3, for any p € P(k,1),
pxlyg=1Iy+p=np.
This product = is called the horizontal concatenation.

3. For any (k,1,m) € N3, there exists a product o from P(l,m)® P(k,l) to P(k,m) such that:
(a) For any (k,l1,m,n) e N3, for any (p,q,7) € P(m,n) x P(l,m) x P(k,l),
po(gor)=(pog)or.

(b) There exists Iy € P(1,1), such that for any (k,1) € N3, for any p € P(k,1),

poly=1I0op=p,
where we put I, = IF" for any n € Ng, with the convention I7° = Iy.

This product o is called the vertical concatenation.

4. The vertical and horizontal concatenations are compatible: for any (k,k',1,1',m,m') € N§,
for any (p,p',q,q) € P(l,m) x P(I",m') x P(k,l) x P(k',l"),

(pxp)o(g+qd) = poq) * @)

5. The vertical concatenation and the action of & x &P are compatible: for any (k,I,m) € N3,
for any (p,q) € P(l,m) x P(k,l), for any (o,7,v) € &, X &) x &,

o-(poq)=(0-p)og, (poq)-v=po(q-v), (p-T)og=po(r-q).

6. The horizontal concatenation and the action of & x &°P are compatible:

(a) For any (k,K' 1,l') € Né, for any (p,p’') € P(k,1) x P(K',l'), for any (o,0',7,7") €
Gl X Gl’ X Gk; X Gk/,

(-p)* (0" p)=(0®d) (pxp), (p-7)=( 7)={@=p) &7,
where for any o € G,y, B € Sy, a® P € Spip is defined by:

a(i) if i <m,

B(i —m) +m if i > m.

a®p(i) = {

(b) (Commutativity of the horizontal concatenation). For any (k,k',1,1') € N§, for any
(p,p) € P(k,1) x P(K',l"),

cp - (pxp') = (' #p) - crp, (1)

where for any (m,n) € N3, cpn € Spmn is defined by:

. 1+ nif i < m,

Cmon(i) = { f . (2)
i—m if i >m.

Remark 1.1.1. 1. Note that cgo = Id[y) = co k-

2. In particular, (P(0,0),=) is a unitary associative and commutative algebra, whose unit is

Iy, which, consequently is unique.



3. Similarly, (P(1,1),0) is a unitary associative non commutative algebra, whose unit is I
which, consequently is unique.

4. For any o € Gy, as a consequence of the compatibility between the vertical concatenation
and the action of & x &% and the definition of I} € P(k, k):

Ik-O':(Ik-O')OIkIIkO(O"Ik)IO'-Ik.
Hence, It -0 = o - I.

5. By the commutativity axiom, if p € P(k,l) and pyg € P(0,0), by the first item of this
Remark, it follows from () that p = pg = po * p. So the elements of P(0,0) are central
for the horizontal concatenation. If ¢ € P(l,m), by the compatibility between the two
concatenations:

(p*po)oq=(p*po)o(q=*lo)
= (pogq) = (poolo)
= (poq) * po.

Similarly, po (g * pg) = (p o q) * po.
We adapt the definition of morphisms of ProPs of [Val03] in our non categorical language.
Definition 1.1.2. Let P = (P(k,1))k1>0 and Q@ = (Q(k,1))r =0 be two ProPs. A morphism of
ProPs is a family ¢ = (¢ 1)ki=0 of linear maps ¢y : P(k,1) — Q(k,1) which form a morphism

for the horizontal concatenation, the vertical concatenation and the actions of the symmetric
groups. More precisely, for any (k,l,m,n) € N3:

* V(p,q) € P(l,m) x P(k,1), ¢xm(poq) = brm(p) o dri(q),
o V(p,q) € P(k,1) x P(n,m), Grinism(p*q) = Gra(p) * dnm(q),
o V(o,p) € & x P(k,l), ¢pi(0.p) = 0.¢11(p),
o V(p,7) € P(k,l) x &, ¢p1(p.T) = ¢ri(p).T.
By abuse of notation, we shall write ¢(p) instead of ¢ii(p) for p e P(k,1).
In particular, ProPs form a category.

Definition 1.1.3. Let ProP be the category with objects given by P = (P(kal))(k,l)eNg and the
morphisms of which are morphisms ¢ : P — Q of ProPs given by families (¢k,l)(k,l)eNg- Here,
for any (k,1) € N, ¢p; : P(k,1) — Q(k,l) is a morphism of &, ® &P -modules, compatible
with the vertical and horizontal concatenations, which sends the units Iy and Iy of P to the
corresponding units of Q). More explicitly, we have that

e For any (k,1,K,I') € N§, for any (p,p') € P(k,1) x P(K,U), ¢prwasv(p =) = ¢pu(p) *
S ().

o For any (k,1,m) € Ny, for any (p,p') € P(l,m) x P(k,1), ¢km(p o) = $rm(p) © b1 (1)
e ¢00(lo) = Jo and ¢11(L1) = Ji, where Iy, Iy are the units of P and Jy, Jy are the units of
Q.

Let P = (P(k,0))ki=0 be a ProP and, for any k,I > 0, Q(k,l) be a subspace of P(k,I).
We shall say that Q = (Q(k,1))k,i>0 is a sub-ProP of P if it is stable under the horizontal and
vertical compositions, under the action of the symmetric groups and if it contains the units I
and I;. More precisely:



e For any (k,l1,m) e N3, Q(I,m) o Q(k,1) < Q(k,m).

o For any (k,I,K,I') € N& Q(k, 1) « QK1) < Q(k + k', 1+ II).

e For any (k,l) € N3, for any (0,7) € &; x &, 0.Q(k,1).7 < Q(k,1).
o IpeQ(0,0) and I; € Q(1,1).

Let P be a ProP.

e If @) is a sub-ProP of P, then @ is also a ProP, and the canonical injection from P to @ is
a ProP morphism.

o If (Q)ier is a family of sub-ProPs of P, then ﬂ Q; is also a sub-ProP of P.
el
This leads to the following

Definition-Proposition 1.1.4. Let P be a ProP. If for any k,l = 0, R(k,l) is a subspace of
P(k,1), then there exists a smallest sub-ProP of P containing R = (R(k,1))k,1>0

(R) := N Q.
Q sub-ProP
of P containing R

Remark 1.1.2. Since Q) contains Iy, by =-stability, Q) contains I; % ... I} = I and as a conse-
S

k times
quence of stability under the action of the symmetry groups, @ further contains o.[;.7.

1.2 The ProP of linear morphisms: Homy
We recall a classical example of ProP.

Definition-Proposition 1.2.1. Given a finite dimensional K-vector space V', the ProP Homy
is defined in the following way:

1. For any k,l € Ny,
Homy (k1) := Hom(V&* V&,
2. For any o € &, let O, be the endomorphism of V& defined by
60(’01 ® e ®’l}n) = 1)0.71(1) ® e ®/U0'71(n)'

This defines a left action of &, on V®™. For any (k,l) € N3, for any f € Homy (k,l), for
any (0,7) € &) x &, we set:

o-f:=00f, J-Ti=[fob,

3. The horizontal concatenation is the tensor product of maps and Iy : K — K is the identity
map Iy := Idk.

4. The vertical concatenation is the usual composition of maps and Iy : V — V is the identity
map I := Idy.

Remark 1.2.1. This ProP is mentioned in [Val03| and [Mar08|, but without an explicit proof of
its ProP structure. We add such a proof here for completeness and in preparation for the infinite
dimensional case, which will be similar in spirit.

Remark 1.2.2. Following our convention for a ProP P = (P(k,l))ken,, where an element in
P(k,l) has “k entries and [ exits”, for the ProP Homy, an element f € Homy (k,[) has “k
entries and [ exits”.



Proof. 1. The maps 6, turns Homy into a &; x &;’-module by associativity of the compo-
sition product.

2. The horizontal concatenation is associative as a result of the associativity of the tensor
product ®, and we trivially have that ® maps Homy (k, ) ® Homy (k',1') to Homy (k +
K',l +1'). Furthermore, if (k,1) € N2 and f € Homy (k,1), for any v € V¥ we have

(Lo ® f)(v) = (lo® f)(1.0) := Io(1) ® f(v) = 1k ® f(v) = f(v)

3. The vertical concatenation is associative as the consequence of the associativity of the
composition product. We furthermore have I, := Il®" = Id‘®/n = Idye» where the last
identity follows from the definition of the tensor product of maps.

4. For any f e Homy (I,m), f' € Homy (I',m'), g € Homy (k,1), ¢ € Homy (k' I'), v e VO
and v' € VO we have
(f®f)olg®@g) @) =(f&f)(9v) ®d (V)
= (fog)0)®(f o g) ()
=[(feg)®(fog)lv@r).
Thus, the horizontal and vertical concatenation are compatible.

5. The vertical concatenation and the action of & x G are compatible by associativity of
the composition product.

6. For any f € Homy (k,1), f' € Homy (kK,1'), 0 € &;, 0’ € Gy, v e VO o/ € VO we have
(@ /)@ f)v@V) = (050 f)® (0 0 f) (0@ V)

9(f()) (o’ f'(@)

(

0.)[f(v) ® f'(v")]
a@a) (fRfvev).

Similarly, we have (f.7)® (f'.7") = (f @ f/).(r @ 7') and ¢ pp - (f = f) = (f = f) - cupr,

= (05
= (

therefore the horizontal action of & x G° are compatible. O
Remark 1.2.3. Let V be an n-dimensional K-vector space equipped with a basis (e, - ,ep),
and let (e!,---,e") be the dual basis. We write vj = ZZ],:I ?j ek; the elements of V' and vl =

ZZ,:l a};ieki the elements of V*. Then an element f = v ® - ®v; @1 ®---®v, € Homy (k,1)
reads o
f= Z a§e" Xep,
I
where, for two finite sequences I = (iy,--- i), J = (j1,--- ,4ji) of k and [ elements of [n], we
have set

. . T i ’
epi=e; @ - ®ey; e =l Q- Qe

and the a{f € K are coefficients built from sums of products of the coefficients a}%i and bfj . In

particular, an element of this ProP is completely determined by this collection of numbers a?. We
can therefore view f as a map from pairs of subsets I, J of [n] with k£ and [ elements respectively
into K.

It follows that for any n-dimensional vector space V., Homy is isomorphic as a ProP to the
set of maps from pairs of finite sequences of elements of [n] to K:

Homy =~ ({a : Seqy([n]) x Seq;([n]) — K}) 1= -

10



1.3 The ProP of graphs: Gr®

Definition 1.3.1. A graph is a family G = (V(QG), E(G),1(G),0(G),IO(G), L(G), s,t,a, ),
where:

1. V(G) (set of vertices), E(G) (set of internal edges), I(G) (set of input edges), O(G) (set
of output edges), IO(Q) (set of input-output edges) and L(G) (set of loops, that is to say
edges with no endpoints) are finite (maybe empty) sets.

2. s: E(G)uO(G) — V(G) is a map (source map).
3. t: E(G)ulI(G) — V(G) is a map (target map).

4. a: I(G) uIO(G) — [i(Q)] is a bijection, with i(G) = |I(G)| + |[IO(G)| (indexation of
the input edges).

5. B:0(G) uIO(G) — [0o(G)] is a bijection, with o(G) = |O(G)| + |IO(G)| (indexation of
the output edges).

Example 1.3.1. Here is a graph G :
V(G) ={z,y}, E(G) ={a,b}, I(G) ={c,d}, O(G)={e [}, 10(G) ={g}, L(G)={h K},

and:
a — vy a — x
c — 1 e — 3
S b t:b'_)y a:{d»—> ﬁ:{f»—>1
e — y c — x o 3 9
fo= d — I ’ I
This is graphically represented as follows:
1 3 2

Note that this graph contains two loops, represented by @ and @ .

Remark 1.3.1. As explained in the introduction, although loops play a passive role in the pre-
sentation of a ProP, their role will be essential in the presentation of TraPs, see Section [G.3l

Definition 1.3.2. Let G and G’ be two graphs. An (resp. iso-)morphism of graphs from G
to G' is a family of (resp. bijections) maps f = (fv, [, [1, fo, f10, [1.) with:

fv:V(G) — V(G), fe: E(G) — E(G'), fr:1(G) — I(G),
fo:0(G) — O(@), fro : 10(G) — 10(G"), fr: L(G) — L(G"),
such that:
s' o fe = fvosipe), s' o fo = fvosio@),
t'o fe = fv otip@), t'o fr = fv ot
o' o fr = ajye), o' o fro = o0y,
B"o fo = Bow) 8" o fro = Broc)-

11



For any k,l € Ny, we denote by GrO(k,l) the space generated by the isoclasses of graphs G such
that i(G) = k and o(G) =1, i.e. GrPO(k,l) is the quotient space of graphs with k input edges and
I output edges by the equivalence relation given by isomorphism.

In what follows, we shall write graphs for isoclasses of graphs.

Ezample 1.3.2. The isomorphism class of the graph of Example [[L31]is represented by:

1 3 2

C C

1 2 3

We now want to equip the set Gr® of isoclasses of graphs with a ProP structure.

We first define the horizontal concatenation. If G and G’ are two disjoint graphs, we
define a graph G = G’ in the following way:

V(G+G) =V(G)uV(G), E(G+G)=EG) uEG), LG=*G)=LG) uLG),
I(G+G)=I1G)LIG), OG+G)=0(G) uo(@), TI0(GxG)=I10(G)uIOG).

The source and target maps are given by:

" " /
SlB(G)uoG) T % SlE@)uo@G) = 5
" —¢ " — ¢
|E(Gul(G) — |E(GuI(G) — "
The indexations of the input and output edges are given by:
" /" . /
Y r@uio@ = % Y r@yuro@y = i(G) + o,
/
Blo)uro@) = B Blocnuroy = 0o(G) + 8
with an obvious abuse of notation in the definition of the second column. Notice that this
product is not commutative in the usual sense for G * G’ and G’ * G might differ by the
indexation of their input and output edges. However, it is commutative in the sense of

Axiom 6.(b) of ProPs. Roughly speaking, G = G’ is the disjoint union of G and G, the
input and output edges of G’ being indexed after the input and output edges of G.

ERREIREREY
T T
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Example 1.3.3. Here is an example of horizontal concatenation :

1 3 2 1 2 1 3 2 4 )
X | k : % Y
1 2 1 1 2 3
This product of graphs induces a product * : GrO(k, 1)@ GrO(k',I') — GrO(k+ k', 1+1').
If G, G’ and G” are three graphs, clearly

G+ (G «G")=(GxG")=G".

Hence, the product # is associative. Its unit Iy is the unique graph such that V(Iy) =
E(Iy) = I(1y) = O(1y) = I0(1y) = .

e We now define the vertical concatenation. Let G and G’ be disjoint graphs such that
o(G@) = i(G"). We define a graph G” = G’ o G in the following way:

V(G) L V(G

(@) = V(

(G") = E(G) uw E(G") u{(f,e) € O(G) x I(G") : B(f) = o(e)},

(G") =1(G) L {(f.e) e IO(G) x I(G') : B(f) = ()},
O(G") = O(G) u{(f,e) € O(G) x IO(G") : B(f) = o/ (e)},

(G") :

(G")

Its source and target maps are given by:

STIE(G) = S|E(G)> S\I/E(G”) = S\IE(G”)7 3\”0(0') = S\IO(G”)a s"((f,e)) = s(f),

tiec) = tEG): tleG) = SlEG): tlic) = Si1G), s"((f,e)) =t'(e).

The indexations of its input and output edges are given by:

A1) = N1(6); a"((f,e)) = a(f),
Blon = Blor: B"((f,e)) = B'(e).

Roughly speaking, G’ o G is obtained by gluing together the outgoing edges of G and the
incoming edges of G’ according to their indexation.

13



f,f R
B O Bi : Bi

Example 1.3.4. Here is an example of vertical concatenation :

Theorem 1.3.3. The family Gr° = (GrO% )k ien,, equipped with this & x &°P-action and these
horizontal and vertical concatenations, is a ProP.

Proof. e We check the associativity of o. Let G, G’ and G” be three graphs with o(G) =
i(G") and o(G") = i(G"). The graphs (G" 0 G') o G and G” o (G’ o G) may be different, but
both are isomorphic to the graph H defined by:

V(H) =V(G)uV(G)uV(G"),
E(H) = E(G) u E(G') u E(G")
L {(f.e) € O(G) x I(G") : B(f) = o/ (e)} u{(f.e) € O(G") x I(G") : B'(f) = & (e)}
L {(f.f'e) € O(G) x IO(G') x I(G") : B(f) = o/ (), B'(") = & (&)},
I(H) = I(G) u{(f.e) € IO(G) x I(G') : B(f) = o/ (e)}
u{(f.f'e) € IO(G) x IO(G') x I(G") : B(f) = O/(f’),ﬁ’(f’) =a"(e)},
O(H) = O(G") u{(f,e) € O(G") x IO(G") : B'(f) = o (e)}
L {(f. ' e) € O(G) x IO(G') x IO(G") : B(f) = (), B'(f) = & ()},
IO(H) = {(f.f',€) € IO(G) x IO(G') x IO(G") : B(f) = &/ (f'), B'() = &"(e)},
L(H) = L(G) u L(G") u L(G"),

with immediate source, target and indexation maps. So o induces an associative product
o: GrO(l,m) ® GrO(k,l) — GrP(k,m).

e Let I; be the graph such that

V() = E(L) = I(I) = O(L) = L(L) = &, 10(y) = [1].

14



We show that I; is the unit for o: The indexation maps are both the identity of [1]. For
any integer n € Ny, I{" is isomorphic to the graph I,, such that

the indexation maps being both the identity of [n]. If G is a graph and k = i(G), then
H = G o I}, is the graph such that:

V(H) =V(G), I(H) = {(afe),e) : e € I(G)},
E(H) = E(GQ), IO(H) = {(a(e),e) : e€ IO(G)},

with immediate source, target and indexation maps. This graph H is isomorphic to G, via
the isomorphism given by:

fv =1dy(q), fr((afe),e)) = e,
fe =1dgq), fro((ale),e)) =e,
Jo =ldo@),
Jr=1dp)-

Similarly, I; o G and G are isomorphic. Hence, I; is the unit of o in GrO.

We check the compatibility of the horizontal and vertical concatenations. Let G, G', H
and H' be graphs such that o(G) = i(H) and o(G’) = i(H'). The graphs (H*H')o(G*G")
and (H o G) = (H' o G') are both equal to the graph K, such that:

V(E) =V(G)uV(G)uV(H)uV(H,
E(K)=E(G)u E(G)uEH)uE(H
L {(f,e) € O(G) x I(H) : B(f) = o/ ()}
L {(f,e) € O(G") x I(H"); B(f) = o/ ()},
I(K) = I(G) u I(G") u {(/, )EIO(G x I(H); B(f) = o'(e)}

O(K) = O(H) u O(H') 1 {(f,e) € O(G) (
L {(f.e) € O(G") x IO(H"); B(f) = o/ (e)
L{(f,e) € IO(G) x IO(H); B(f) = o(
{(f:e) EIO(G') x IO(H"); B(f) = o/ (e)},

L(G) u L(G') u L(H) u L(H"),

C

K) =

with obvious source, target and indexation maps. Hence, the vertical and the horizontal
concatenations are compatible.

We check the module structure of Gr® over the symmetric group. Let G be a graph,
0 €S, and 7 € 6. We set:

o-G=(V(G),E(G),I(G),0(G),I0(G),L(G),s,t,a,c 0 ),
G- 7= (V(G),EG),IG),0G),I0(G),L(G),s,t,7 L o, B). (3)

This induces a structure of & x &°P-module over GrO.

Let us prove the compatibility of this action with the vertical concatenation. Let G and
G’ be two graphs such that o(G) = i(G’), and let 0 € Gy, T € Gy, ¥ € G;((z). Clearly,
the graphs o - (G’ © G) and (0 - G') o G are equal; the graphs (G’ o G) - v and G’ o (G - v)

15



are equal. Let us compare the graphs H = (G’ - 7)o G and H' = G’ o (7 - G). Their set of
vertices coincide. Moreover:

E(H) = E(G) b B(G') u{(f.e) € O(G) x I(G") : B(f) = 77" 0/ (e)},
(H') = B(G) u E(G") u{(f,e) € O(G) x I(G') : o B(f) = o/ (¢)},
so E(H) = E(H'). Similarly, I(H) = I(H'), O(H) = O(H'), IO(H) = IO(H') and

L(H) = L(H"). Moreover, the source, target and indexation maps are the same for H and

H' so H=H'.

&

We finally prove the compatibility of the & x &°P-action with the horizontal composition.
Let G and G' be two graphs, 0 € G,y and 0’ € G,ry. We put H = (0-G) * (0’ - G') and
H' = (c®0’)-(G*G"). They have the same set of vertices, whether internal, input, output
and input-output edges, and the source, target and indexation of output edges maps for H
and H' coincide. Both indexations of the set of output edges are given by:

") = oo f(e)if ee O(G) uIO(G),
7= o(G)+ o' o f(e) if ee O(G") L IO(R).

So H=H'.
Let G and G’ be graphs. We set H = ¢,q)o(cr) - (G # G') and H' = (G' * G) - cja,iar)

where ¢y, , € &4y, was defined in (2)). They have the same sets of vertices, internal, input,
output and input-output edges, and the same source and target maps. The indexations
maps are given by:

(e) = ()—i—i(G’) if ee I(G) uI0(Q),
e = d(e) if ee I(G") u IO(G),
ﬁe)lfeeO G)uIOG),
B'(e) + o(G) if e € O(G") L IO(G"),
ale) +i(@) if ee I(G) L IO(G),

B'(e) + o(G) if e € O(G") L IO(G"),

{ d(e) if ee I(G") u IO(G'),
OCH/
Prrle { B(e) 1feeO (G)uI0(G),

so H=H' O

2 The ProP of continuous morphisms: Homy,

We now generalise the ProP Homy of Subsection to a ProP Homyf, (the superscript "c" for
continuous) for a topological vector space V.

We work in the context of nuclear Fréchet spaces. One could relax these conditions (for

example Fréchet could be replaced by barreled) yet the nuclear setup is comfortable to work in
and general enough for our purposes. We refer the reader to [Tre67| for the more general cases.

2.1 Fréchet nuclear spaces

Nuclear spaces were defined in the seminal work [Gro54]. Most of the results stated here can be
found in [Grob52l [Gro54]. We also refer to the more recent presentation [Tre67].
We recall that
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e A topological vector space is Fréchet if it is Hausdorff, has its topology induced by a
family of semi-norms and is complete with respect to this family of semi-norms.

e A topological vector space is called reflexive if E” = (E') = E, where E’ is the topological
dual of F.

In the following E and F are two topological vector spaces and Hom®(E, F') is the set of con-
tinuous linear maps from FE to F.

Remark 2.1.1. When E and F are finite dimensional, we have Hom®(E, F)=Hom(E, F).

In order to build the Hom ProP in the infinite dimensional case, we need Grothendieck’s
completion of the tensor product, a notion we recall here in the setup of locally convex topological
K-vector spaces.

Let E and F be two vector spaces. Recall that there exists a vector space EQF', and a bilinear
map ¢ : B x FF— E® F such that for any vector space V and bilinear map f: E x F'— V|,
there is a unique linear map f : E® F — V satisfying f = f o ¢. The space E® F is unique
modulo isomorphism and is called the tensor product of E and F'.

Given two topological vector spaces, 2 and F' one can a priori equip £ ® F with several
topologies, among which the e-topology and the projective topology whose construction are
recalled in Appendix [Al We denote by E®, F (resp. E®; F) the space E® F endowed with the
e-topology (resp. the projective topology) and by E®.F (resp. EQ.F) of E®. F (resp. E®, F)
their completion with respect to the e-topology (resp. projective topology). These two spaces
differ in general but coincide for nuclear spaces.

Definition 2.1.1. [Gro54] A locally convex topological vector space E is nuclear if, and only
if, for any locally convex topological vector space F,

E®.F = EQ,F =: EQF
holds, in which case EQF is called the completed tensor product of E and F.

There are other equivalent definitions of nuclearity, see for example [GV64, [HS0S].

Given a locally convex topological vector space F, its topological dual E’ can be endowed
with various topologies. An important one for our applications will be the strong topology,
generated by the family of semi-norms of E’ defined, on any f € E": ||f||p := sup,ep|f(2)]
for any bounded set B of E. The topological dual E’ endowed with this topology is called the
strong dual.

For Fréchet spaces, nuclearity is preserved under strong duality.

Proposition 2.1.2. o [Tre6”, Proposition 50.6] A Fréchet space is nuclear if and only if its
strong dual is nuclear.

e [Tre67, Proposition 36.5] A Fréchet nuclear space is reflezive.

Many spaces relevant to renormalisation issues are Fréchet and nuclear. We list here some
examples.

Example 2.1.1. Any finite dimensional vector space can be equipped with a norm and for any
of these norms, they are trivially Banach, hence Fréchet and nuclear. If £ and F are finite
dimensional vector spaces we have Hom®(E, F') = Hom(E, F) ~ E* ® F, where Hom(E, F)
stands for the space of F-valued linear maps on E and where the dual E* is the algebraic
dual.

Ezample 2.1.2. Let U be an open subset of R”. Take E = C®(U) =: £(U). The topological
dual is the space E' = £'(U) of distributions on U with compact support.

Then E is Fréchet ([Tre67], pp. 86-89), and E’ is nuclear ([Tre67], Corollary p. 530). By
Proposition 2.1.2] F is also nuclear.
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Remark 2.1.2. Note that the dual E’ of a Fréchet space E is never a Fréchet space (for any of
the natural topologies on E’), unless E is actually a Banach space (see for example [K&t69]). In
particular, &'(U) is generally not Fréchet.

We now sum up various results of [Tre67] of importance for later purposes.

Theorem 2.1.3. [Tre6’, Equations (50.17)-(50.19)] Let E and F be two Fréchet spaces, with
E nuclear. The following isomorphisms of topological vector spaces hold.

F'®F ~ Hom‘(E, F) (4)
EQF ~ Hom‘(E', F) (5)
E'QF' ~ (EQF) ~ B*(E x F,K). (6)

with B¢(E x F,K) the set of continuous bilinear maps K : E x F — K. Here the duals are
endowed with the strong dual topology, Hom(E, F') with the strong topology and B(E x F,K)
with the topology of uniform convergence on products of bounded sets.

We also need the stability of Fréchet nuclear spaces under completed tensor products, for
which we need the following lemma.

Lemma 2.1.4. The completed tensor product EQF of two Fréchet nuclear spaces is a Fréchet
nuclear space.

Proof. If F and F are two nuclear spaces then EQF is a nuclear space ([Tre67, Equation (50.9)]).
It is moreover complete since EQF is obtained by completion. [l

Proposition 2.1.5. Let V' be a Fréchet nuclear space. Then
~ / P
(V@k) ~ (Vl)®k (7)
holds for any k = 1, where the duals are endowed with their strong topologies.

Proof. Let V be a Fréchet nuclear space. The case k = 1 is trivial. Then Equation (7] with
k = 2 holds by Equation (@) with E = F = V. The cases k > 2 are proved by induction, using
E = V®~land F = V. The induction holds by Lemma 214l O

2.2 A ProP for Fréchet nuclear spaces

We start by recalling the definition of distributions over a finite dimensional smooth manifold
X. We quote [H689, Definition 6.3.3].

Definition 2.2.1. To every coordinate system k : U, € X — Vi, < R™ we associate a distribu-
tion uy € D' (Vi) such that
/—1)*

ukrz(/{o,% Uk

in k' (U 0 Up); with (ko &'~Y)*uy, the pullback of ug by ko k'~ whose existence and uniqueness
is given by [H689, Theorem 6.1.2]. Then the system wy of distributions is called a distribution
on X. The set of distributions on X is written D'(X). Similarly we define £'(X), the set of
distributions with compact support.

Proposition 2.2.2. £(X) is a Fréchet nuclear space.

It is a classical result of functional analysis that the space of functions over a smooth manifold
is Fréchet (see for example [vdBC13| Exercise 2.3.2]). The fact that the same space is nuclear
is a folklore result, often stated without proof nor references. A proof was recently given in
IBDLGRI17, p. 4].

It then follows from Proposition Z.I.2] that the space (X)) is also nuclear.
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Remark 2.2.1. (Compare with Remark 21.2]). Note that the space £'(X) is not Fréchet since
the dual of a Fréchet space F' is Fréchet if and only if F' is Banach (see for example [K&t69])
which is not the case of £(X).

One further useful result is

Proposition 2.2.3. Let X and Y be two finite dimensional smooth manifolds. Then
Hom (£'(X),E(Y)) =~ EX)RE(Y) =~ E(X xY)
holds.

The second isomorphism [Gro52, Chap. 5, p. 105] can be proved using a version of the
Schwartz kernel theorem for smoothing operators [vdBC13, Theorem 2.4.5] by means of the
identification Hom‘(&'(X),E(Y)) ~ E(X x Y). The result then follows from (B)) applied to
E(X) and £(Y) which are Fréchet nuclear spaces.

Definition 2.2.4. Let V' be a Fréchet nuclear space. For any k,l € Ny, we set
HomS, (k,1) = Hom (V& V&) ~ (1) OkQyeL

where, as before V' stands for the strong topological dual. Furthermore we set Homf, :=
(Hom, (. 1)) .1>0-
For any o € &, let 0, be the endomorphism of VO™ defined by

(90(1)1 X... ®1)n) = Us—1(1) X... ®Uo—1(n)-

It extends to a continuous linear map 0, on the closure Ver . For any f € Hom, (k,l), 0 € &y,
T e &, we set:

O"f:%Of, f‘T:foE.

In the above definition, the superscript “c” stands for continuous. The family Homj, carries
a ProP structure.

Theorem 2.2.5. Let V' be a Fréchet nuclear space. Homy,, with the action of & x &°P described
above, is a ProP. Its horizontal concatenation is the usual (topological) tensor product of maps
with Iy : K — K is the constant map Iyp(x) := 1g and its vertical concatenation is the usual
composition of maps and Iy : V — V is the identity map.

Proof. The proof is exactly the same as the proof of Definition-Proposition [[L2.11 O

Ezxample 2.2.1. For a finite dimensional vector space V the classical ProP Homy, of Proposition-
Definition [[L2.1] coincides with the the ProP Homy,.

Ezample 2.2.2. Let U be an open of R™. From Example 2.1.2] and Equation (7)) the family

(K (k,1)kis0, with Ky (k,1) = (€' (U)®* & (U)®' defines a ProP.
Ezample 2.2.3. Let X be a smooth finite dimensional manifold. From Proposition and
Equation (@) the family (Kx (k,1))k =0, with Kx (k,1) = (&'(X)®F ®E(X)® defines a ProP.

3 Freeness of the ProP Gr® of graphs

The goal of this section is to build free ProPs generated by indecomposable graphs (see Defi-
nition B.I.1] below). A free ProP was already described by Hackney and Robertson in [HR12].
Their construction is on the category of "megagraphs", which are special types of graphs with
decorations on their vertices and edges. Their work is categorical and not very adapted for the
applications we have in mind, which require a more explicit description of the structures at hand.
This is why we carry out the proof of the freeness of the ProP introduced in subsection [[L3l The
complete proof of the main theorem (Theorem B.2.1]) is postponed to Appendix
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3.1 Indecomposable graphs

Definition 3.1.1. We call a graph G indecomposable if the five following conditions hold:
1. V(G) # &.
2. I0(G) = &.
3. L(G) = & or G is reduced to a single loop.
4. If G" and G" are two graphs such that G = G' o G”, then V(G') = & or V(G") = &.
5

. If G’ and G" are two graphs and o, T are two permutations such that G = o - (G'«G") - 1,
then V(G') = & or V(G") = &.

For any k,1 € Ny, the subspace of GrO(k,1) generated by isoclasses of indecomposable graphs G
with i(G) = k and o(G) = 1 is denoted by Gr2,(k,1).

Remark 3.1.1. 1. The permutations in the fifth item of the definition of indecomposable
graphs play an important role: without them, one would allow for non connected graphs to
be indecomposable, which can well happen when the indexations of the inputs and outputs
of the various connected components do not match. For example, the graph

1 2 3 4
1 3 2
would be indecomposable. Permuting inputs we obtain
1 2 3 4
1 2 3
which is decomposable. The same requirement does not arise for the vertical concatenation

since one can write .(P o Q).7 = (0.P) o (Q.7) = P' o Q'.

2. There is one special indecomposable graph O, formed by a unique loop. The other inde-
composable graphs have no loop.

Proposition 3.1.2. Let G be a graph, 0 € G,y and T € &yy. Then G is indecomposable if,
and only if, o - G - T is indecomposable.

Proof. Let us assume that H = ¢ - G - 7 is indecomposable. Then V(G) = V(H) # & and
IO(G) = IO(H) = . Let us assume that G = G’ o G”. Then:

H=0-(GoG") 7=(c-G)o(G" 7).

As H is indecomposable, V(G') = V(o -G') = J or V(G") = V(G" - 7) = &. Let us assume
that G =o' - (G’ * G") - 7'. Then:

Heo (@@ G -r) 7 = ((00) - O (C - (7))
As H is indecomposable, V(G') =V ((c0') - G') = & or V(G") =V (G" - (7)) = &.

Conversely, if G is indecomposable, then G = o¢~! - H - 77! is indecomposable, so H is
indecomposable. 0
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Notations 3.1.1. Let G be a graph.

1. Let J € V(G). We define (non uniquely due to the non uniqueness of the maps o/ and ')
the graph G|; by:

V(G ) =,
E(Gy) ={e€ E(Q) : s(e) € J,t(e) € J},
I(Gy) ={e€ I(G) : t(e) e J} u{e e E(G) : s(e) ¢ J,t(e) € J},
O(G|y) ={e€ O(G) : s(e) e J} u{e e E(G) : s(e) € J,t(e) ¢ J},
10(Gy) = 10(G),
L(G);) = .
The source and target maps are defined by:
Vee E(G|y) u O(G)), sa,(e) = s(e),
Vee E(G|y) u I(G)y), tc,(e) = t(e),

The indexation of the input edges is any indexation map o’ such that:
Ve, €' € (I(G) L I0(G)) n (I(G;) b IO(G)y)), d'(e) <d'(€) <= ale) < al(€).
The indexation of the output edges is any indexation map 3’ such that:

Vf.f € (0(G) LIO(G)) n (O(G) uIO(Gyy),  B(f) < B'(f) = B(f) < B(f).

2. We denote by G the graph defined by:

V(G) = V(G), E(G) = E(G), L(G) = &,
I(G) = 1(G), 0(G) = 0(G), 10(G) = &,
§=s, t=t.

The indexation of the input edges is the unique indexation map & such that:
Ve,e' € I(G), ale) < a(e') = ale) < a(d).

The indexation of the output edges is the unique indexation map ﬁN such that:
vf. f" e 0(G), B(f) < B(f') <= B(f) < B(f).

Roughly speaking, G is obtained from G by deletion of all the input-output edges and all
the loops.

Definition 3.1.3. Let G be a graph.

1. A path in G is a sequence p = (ey, ..., ex) of internal edges of G such that for any i € [k—1],
t(e;) = s(ei+1). The source of p is s(e1) and its target is t(ex), and we shall say that p
is a path from s(ey) to t(eg) of length k. By convention, for any x € V(Q), there exists a
unique path from x to x of length 0.

2. We shall say that a path p is a cycle if its source and its target are equal and if its length
18 Nonzero.

Remark 3.1.2. A cycle of length one is to be distinguished from a loop.

We consider oriented-pathwise connected components of graphs.

21



Lemma 3.1.4. Let G be a graph such that V(G) # . We denote by O(G) the set of nonempty
subsets I of V(G) such that for any x € I, for any y € V(Q), if there exists a path in G from x
toy, then ye I. Then:

1. IfI,J € O(G), either InJ = or I nJe O(G).

2. For any x € V(G), there exists a unique element (x) € O(G) which contains x and is
minimal for the inclusion. Moreover:

(xy={y e V(G) : there exists a path in G from x to y}.

Notice that, if G, is the connected component of G that contains z, then {(z) € G,, but we
do not necessarily have an equality, as the edges are oriented.

Proof. 1. If I nJ # &, let x € I nJ and y € V(G) such that there exists a path in G from z to
y. As I[,J e OG),yeInJ,solInJeOG).

2. Note that V(G) € O(G). Let x € V(G); by the first item, the following element of O(G)
is the minimal (for the inclusion) element of O(G) that contains x:

@= (] I

IeO(G), zel

On the one hand, a set I in O(G) contains z if and only if any path emanating from z ends at
an element of I. So it contains all the ending vertices of such paths and hence the set

= {y e V(G) : there exists a path in G from x to y}.

Thus, I, € {(x). On the other hand, let y € I and z € V(G), such that there exists a path from
y to z in G. As there exists a path from = to y in G, there exists a path from x to z, so z € I.
Hence, I, lies in O(G) which in turn contains z, so (x) < I,. O

Proposition 3.1.5. Let G be a graph such that V(G) # . We denote by Jy, ..., J the minimal
elements (for the inclusion) of the set O(G) of nonempty subsets I of V(G) stable under paths
as in Lemma [3.1.4), and we set G; = G|J’L for any i € [k]. Then Gu,...,Gy are indecomposable
graphs with no loop and there exists a graph Go with no loop, integers p, £ and a permutation
such that:

G~ (y-(Gy#...% Gy x L) oGy) x O

where, as before O is the indecomposable graph formed by a unique loop. Such a decomposition
will be called minimal.

Proof. By definition, V(G;) = J; # & and IO(G;) = & for any i. Let us assume that G; =
G oG". If V(G') # &, then clearly V(G') € O(G;) and, as J; € O(G), we deduce that
V(G') € O(G). As J; is minimal in O(G), V(G') = J V(G;), so V(G") = . Similarly, if
Gi=o0-(G'+«G") -71,then V(G') = g or V(G") = we proved that G is indecomposable.

Let us assume that I = V(G;) n V(Gj) # . Then I € O(G) and, by minimality of J; and
Jj, Ji = J; = I, so the J; are disjoint.

Let us set K := V(G)\(J1 U ... U J;) and G’ := G|g. As Jy,...,J; lie in O(G), there is
no internal edge of G from a vertex of G; to a vertex of G’, and any outgoing edge of G’ is
either glued in G to an incoming edge of G; or is an outgoing edge of G. Hence, there exists
permutations -, o and 7, and three integers p := |[IO(G)|, ¢ := {e € I(G) : t(e) € Jy U ... U Ji}|
and ¢ := |L(G)| such that:

G=7-(Gy#...«GrxL)o(c-(I,+G")-1)%O*.

We conclude in taking Gop = o - (I; *G') - 7. O
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Note that this decomposition is not unique: it depends on the indexation of the minimal
elements of O(G) and of the choice of the indexation of their input and output edges. Importantly,
it depends only on that.

Proposition 3.1.6. Let G be a graph such that V(G) # & and IO(G) = . The graph G is
indecomposable if, and only if, L(G) = & and for any x,y € V(G), there exists a path from x to
yin G.

Proof. First notice that if |[V(G)| = 1 the result trivially holds. In the following, we therefore
assume that |V (G)| = 2.

Let G = (G #...% Gy I)) o Go * O* a minimal decomposition of G.

— Note that V(G1) # &. As G is indecomposable, necessarily ¢ = 0, V(Gy) = &, and
there exists a permutation 7 € &, such that Gy = I, - 7. Therefore, G = - (G1*...%*Gp* 1) T.
As G is indecomposable, k = 1 and V(G) = V(G1) = Ji1. Hence, V(G;) is both a minimal and
the maximal element of O(G), which is consequently reduced to the singleton {V(G)}. Therefore,
for any x € V(G), (x) = V(G), so for any y € V(G), there exists a path from z to y in G.

<= Firstly, note that L(G) = & = £ = 0. If k > 2, there is no path in G from any vertex of
G to any vertex of G, so k = 1. Thus, V(Gy) = J and there exists a permutation 7 such that
Go = I, - 7. We obtain that

G=v - (Gy1x1I)-.

As IO(G) = I, we obtain that p =0, so G = v -G - 7 is indecomposable. O

Remark 3.1.3. Another way to formulate the above Proposition is to say that a graph G is
indecomposable if, and only if, one (and only one) of the following conditions holds:

e G=0.

e (G has no loop, is connected and for any of its vertices x, a cycle of strictly positive length
goes through z.

3.2 Freeness of Gr°

We now state and give a sketch of the proof of one of the main results of this section, namely
the freeness of the ProP Gr®. To our knowledge, this result is new.

Theorem 3.2.1. Let P be a ProP and ¢ : Gri?ld —> P be a morphism of & x &°P-modules.
There exists a unique ProP morphism ® : Gr® — P such that @‘Grol = ¢. In other words,

. D ind
GrD is the free ProP generated by Gry .

Proof. We provide here a sketch of the proof, and refer the reader to Appendix [C1] for a full
proof. We define ®(G) for any graph G by induction on its number n of vertices. If n = 0, there
exists a permutation o € & such that G = o - I;;. We set

O(G)=0-I.
If n > 0 and G is indecomposable, we set ®(G) = ¢(G). Otherwise, let
G=~-(Gr#...% G I,) 0 Gy x O*
be a minimal decomposition of G. As V(G1) # I, |[V(Go)| < n, we set:
B(G) =7 ($(G1) ... * 6(Gy)  I)) 0 ®(Go) * (O)*".

One can prove that this does not depend on the choice of the minimal decomposition of G with
the help of the ProP axioms applied to P. Using minimal decompositions of vertical or horizontal
concatenations of graphs, one can show that ® is compatible with both concatenations. ]
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3.3 Cycleless graphs

Definition 3.3.1. For any k,l € Ny, we denote by Gr'(k,1) the subspace of GrO(k,1) generated
by the graphs which do not contain any cycle nor any loop. Note that Gr' is a & x G -sub-module
of Gr®.

As before, we write GriTnd for the set of indecomposable cycleless and loopless graphs in Gr!.

A simple yet important observation is the following.
Proposition 3.3.2. Gr' is a sub-ProP of GrO.

Proof. First, notice that Iy and I; are in Gr'. Let us check the stability of Gr! under the
horizontal and vertical concatenation.

Let G1, G4 be two graphs without cycle. By construction, there is no edge e of Gy * G such
that s(e) € V(G1) and t(e) € V(G2), or such that s(e) € V(G2) and t(e) € V(G1). So a cycle in
G1 # G4 is a cycle in G or Go. Thus Gr!' is stable by horizontal concatenation.

Similarly, let Gy, G2 be two graphs without cycle such that Gy o G5 is defined. Then using
the same argument, a cycle of G; o G must either be a cycle of G1, a cycle of Gy (both being
contradictions) or contain an edge e such that s(e) € V(G;) and t(e) € V(G2). This contradicts
the definition of o for graphs. O

In this particular example, we recover the description of a free ProP in terms of oriented
graphs [Val03] [Val09]:

Proposition 3.3.3. For any k,l € Ny, we denote by Gy the graph such that:

V(Gry) = {*}, I(Gr,) = [K], I0(Gyy) = &,
E(Gr) = I, O(Gry) = [1] L(Gyry) = &.

These graphs generate a trivial & x G°P-module GriTnd, and Gr' is the free ProP generated by
GriTnd.

Graphically, Gy is represented as follows:

1 2 -1 l (8)

1 2 k—1 k

Proof. For any permutations o € &;, 7 € &y, o - Gy, - T is isomorphic to G}, through the
isomorphism defined by:

fv =1dg,, fr=771 fo=o.

so indeed these graphs generate a trivial & x G°P-module.
Since sub-graphs of a graph without cycle, are without cycle, the following is an easy conse-
quence of Proposition B.1.5]
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Lemma 3.3.4. Let G be a graph without cycle and without loop, such that V(G) # &, then a
minimal decomposition

Grvy - (Gr*...%xGpx1,) oGy
yields a decomposition without cycles. Note that, as G has no loop, £ = 0.

Let G be an indecomposable graph without cycle nor loop and let us assume that V(G) >
2. Let z # y in V(G). As G is indecomposable, by Proposition B.1.6] there exists a path
(é1,...,ex) from z to y in G and a path (fy,..., f;) from y to = in G. Hence, there exists a cycle
(e1,... €k, f1,..., f1) in G: this is a contradiction. We obtain that V' (G) is reduced to a single
element. As IO(G) = L(G) = &, G = Gi(@),0o(c)- This gives:

Gr' n Grgd = GriTnd.

As GrU is the free ProP generated by Grgd, for any & x &%-sub-module P of Gr® , the

ind’
sub-ProP of Gr® generated by P is freely generated by P. This holds in particular for GriTn 4
It remains to prove that the sub-ProP <GriTnd> generated by GriTn q s Gr'.

Clearly, if G and G’ are graphs without cycles, then G * G’ and G o G’ are without cycles,
so Gr' is a sub-ProP of Gr®, which contains GriTnd. Consequently, <GriTnd> < Gr!. Conversely,
let G be a graph without cycle and let us prove that G € <Gr§nd> by induction on n = [V (G)|.
If n =0, then G = o - I} for a certain permutation o € &, so GG belongs to <Gr§nd>. Otherwise,
let us consider a minimal decomposition of G in Gr° (see Lemma B.3.4)):

G=7-(Gy*...%Gy*1Ip) o Gy.

Since G4y, ..., Gy are indecomposable, they lie in GriTnd. Since k > 1 and V(G;) # & we have
Go € <Gr§nd> by the induction hypothesis, so G € <Gr§nd>. O

Remark 3.3.1. One can also work with graphs with various types of edges: each edge e (internal,
input, output or input-output) of the graph under consideration has a type type(e), chosen in
a fixed set of types T. The horizontal composition of two graphs G' and G’ exists in any case,
whereas their vertical concatenation exists if, and only if, for any i € [o(G)], the type of the
output edge 871(i) of G and the type of the input edge a~!(i) of G’ are the same. One obtains
a T-coloured ProP, and one can prove similarly a freeness result. Restricting to typed graphs
without cycles, we obtain a free T-coloured ProP generated by graphs with only one vertex (and
no input-output edge).

3.4 Planar graphs and free ProPs

We recall from Definition [[31] that s : E(G) u O(G) — V(G) stands for the source map and
t: E(G) uI(G) — V(G) stands for the target map.

Definition 3.4.1. Let G be a graph and v € E(G) be a vertex of G. We put:
I(v) = {e€ I(G) u E(G), t(e) = v},
O(v) = {e€ O(GQ) u E(G), s(e) = v}.

We also set i(v) = |I(v)| and o(v) = |O(v)].

The number i(v) (resp. o(v)) counts the number of input (resp. output) edges and ingoing
(resp. outgoing) arrows at the vertex v.

Definition 3.4.2. A planar graph is a graph G such that, for any vertex v € V(G), I(v) and
O(v) are totally ordered. The set of planar graphs is denoted by PGr® and the set of planar
graphs with no cycle and no loop is denoted by PGr'. The set of planar graphs G (resp. of
planar graphs G with no cycle and no loop) with |I(G)|+ |IO(G)| = k and [O(G)|+ |IO(G)| =1
is denoted by PGrO(k,1) (resp. by PGr!(k,1)).
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Graphically, we shall represent the orders on the incoming and outgoing edges of a vertex
by drawing the vertices by boxes, the incoming and outgoing edges of any vertex being ordered
from left to right. For example, we distinguish the two following situations:

—

A

L

Remark 3.4.1. This notion of planarity is not the usual one used in graph theory, as we authorise
crossings of edges.

Since a planar graph is a graph, the horizontal and vertical concatenation of planar graphs
are defined by the concatenations of the underlying graphs, which preserve the orders around
each of the vertices. It is a simple exercise to check that PGr® is still a & x &°-module and
we left it to the reader. Hence, PGr® inherits a ProP structure from Gr®. As before, PGr' is
a sub-ProP of PGrO.

We shall say that a planar graph is indecomposable if the underlying graph is indecomposable.
The set PGrrg1 q of indecomposable planar graphs forms a & x G&°’-module. We then obtain a
minimal decomposition of planar graphs similar to the one of Proposition For any k,l e N,
we denote by PGy, the planar graph obtained from G} by ordering the sets [k] and [I] of
incoming and outgoing edges of the unique vertex * by their usual orders. We obtain the planar
counterpart of Theorem B.2.11

Theorem 3.4.3. 1. Let P be a ProP and ¢ : PGrri(r)lcl —> P be a morphism of & x G-
modules. There exists a unique ProP morphism ® : Gr©® — P such that (I)|PGrO = ¢.

ind
In other words, PGr® is the free ProP generated by PGrgd,

2. The planar graphs PGy, generate a free & x G°P-module PGriTnd, and PGr' is the free
ProP generated by PGriTnd.

4 Graphs decorated by ProPs and endofunctors of ProPs

This section is motivated by Feynman graphs, in which case the decorations are distribution
kernels. Since we expect to be able to equip the later with a ProP structure, we study here
graphs decorated by ProPs. The results of Section 8] then allow us to build a endofunctor I'" on
the category of ProPs.

4.1 The ProP Gr®(X) of decorated graphs as a free ProP
Throughout this paragraph, X = (X} )k, >0 is a family of sets.

Definition 4.1.1. A graph decorated by X (or X-decorated graph, or simply decorated graph)

is a couple (G,dg) with G a graph as in Definition [[.31] and dg : V(G) — |_| Xk, a map,
k,leNg

such that for any vertex v € V(G), dg(v) € X, o(v)- We denote by GrO(X) (resp. Gr!(X)) the

set of graphs (resp. the set of cycleless graphs) decorated by X. We define similarly X -decorated

planar graphs and we denote by PGrO(X) (resp. PGr'(X)) the set of planar graphs (resp. the

set of cycleless planar graphs) decorated by X .

Most of the results on graphs naturally generalise to X-decorated graphs. In particular, we
have the horizontal (resp. vertical) concatenation of graphs, denoted by # (resp. o):

(G7dG) * (G/7dG’) = (G * GladG*G”)a (G7dG) o (GladG’) = (G o GladGOG’)'
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The set of vertices of G * G’ and G’ o G’ both being the disjoint union V(G) u V(G’) of the
vertices of G and G’, we define dgscr = dgogr on the set V(G) u V(G') by daxcrlv(a) = da,
dasc'lv(cry = de-

Furthermore, the actions on the left and on the right of the permutation group on Gr®
extend to actions on GrP(X) since the aforementioned actions leave the set of vertices of a
graph invariant. Here are the decorated and cycleless versions of Theorem [[.3.3] which to our
knowledge is new:

Theorem 4.1.2. The families GrP(X) and PGrO(X), equipped the above & x G°P-action and
the above horizontal and vertical concatenations, are ProPs. The family GrT(X) s a sub-ProP
of GrO(X) and the family PGr'(X) is a sub-ProP of PGrO(X).

Proposition [3.1.5] generalises to the case of decorated graphs.

Proposition 4.1.3. Let (G,dqg) be an X-decorated graph such that V(G) # &. We denote by
J1,. .., Ji the minimal elements (for the inclusion) of O(G). As before, we set G; = CNJUZ. and
d; = dg|j, for any i€ [k]. Then there exists an X -decorated graph (Go,do) with no loop, integers
p, £ and a permutation v such that:

(G,de) ~ - ((G1,d1) % ... % (G, dg) = I,) o (Go, dg) * O**.
As in the non decorated case, we call such a decomposition minimal.

Proof. By Proposition B.1.5, G admits a minimal decomposition
G%fy-(Gl*...*Gk*Ip)oGO*O*Z.

We observe that we can identify the vertices of Gy with those of G\(G; u --- L Gi). We can
therefore set do := dglv(a) (v(G1)u-uv(Gy))- The result then follows from the definition of the

actions of the permutation group on GrP(X) using the horizontal and vertical concatenations.
O

As in the non decorated case, we denote by Grgd(X) (resp. GriTnd(X)) the indecomposable
graphs (resp. the cycleless indecomposable graphs) decorated by X. Notice that the graphs
(Gi,d;); for i € [k], are indecomposable. We define PGr,(X) and PGriTn 4(X) similarly.

The key result of this paragraph is the decorated version of the universal property (Theorem

B.2.1).

Theorem 4.1.4. 1. Let P be a ProP and ¢ : Gr2,(X) —> P be a morphism of & x &°P-
modules. There exists a unique ProP morphism ® : GrO(X) — P such that q)|GrO (x) =
ind

¢. In other words, GrO(X) is the free ProP generated by the & x G°P-module Gr>,(X).

Furthermore, Gr'(X) is the free ProP generated by the & x &°P-module GriTnd(X), which
15 isomorphic to the trivial & x &°P-module generated by X.

2. Let P be a ProP and ¢ : PGrgd(X) —> P be a morphism of © x G°P-modules. There
exists a unique ProP morphism ® : PGrO(X) — P such that (I)\PGrO (x) = ¢. In other
ind

words, PGrP(X) is the free ProP generated by the & x &°-module PGrgd(X).

Furthermore, PGr'(X) is the free ProP generated by the & x &°P-module PGriTnd(X)
generated by X, which is isomorphic to the free & x &°P-module generated by X.

Remark 4.1.1. 1. This result generalises Theorem [B:2.1] and Proposition B.3.3l However, it is
not a direct consequence of these previous results. Given G € Gr0, dg, d. 1 V(G) — X
two decoration maps of G, we a priori have ®(G, dg) # ®(G, dy;).
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2. The & x G&°-modules GriTnd(X ) and PGriTnd(X ) differ from one another in so far as for
any k,l € Ny, GriTnd(k:,l) is a trivial 6; ® &;"-module, whereas PGriTnd(k:,l) is a free
6, ® 6P-module. They are both generated by Xj ;.

Proof. The proofs of Theorem B.2.1] and Proposition B.3.3] can be reproduced in extenso in the
decorated setup, simply replacing graphs by decorated graphs and using the decorated version of
the minimal decomposition and will therefore not reproduce it here. Let us however notice that

e the transformation of type A arising in the proof of Theorem [3.2.T] only concerns indexation
of edges. As such, it easily generalises to decorated graphs.

e the transformation of type B arising in the proof of Theorem [B.2.T] exchanges two sub-
graphs of G. It therefore extends to the decorated case as a transformation exchanging
two decorated graphs. The rest of the proof of Theorem [B.2.T] remains unchanged.

e the cycleless indecomposable graphs are still in the decorated case the graphs with exactly
one vertex, since the decorations play no role in the definition of indecomposable.

e the rest of the proof of B33 also generalises in a straightforward manner to the decorated
case. [l

4.2 An endofunctor of the category of & x G°’-modules

We now assume that the family X = (Xg)ken, is & & x &%-module. We define another
G x G&°-module TO(X) on graphs, taking into account this module structure.

Let G € PGr®. As G is a planar graph, the sets I(v) and O(v) are canonically identified
with [i(v)] and [o(v)] thanks to their total orders.

For any vertex v € V(G), there is a natural action of So(v) X 6%} ) obtained by acting on the
total orders of O(v) and I(v). The graph obtained from G by the action of (o, 7) on the vertex
v is denoted by

0 Gy T.
For example:
[A = Al [A = Al
(12)-, = w(12) =
v | [v ]

Let G € PGrO(k,l) and X a & x &°P-module. We define
GX) = & X(i(v),0(v)).

veX (G)

The elements of G(P) will be written as linear spans of tensors

® .
veV(G)
In other words, we decorate any vertex of G by an element of X, with respect to the number of
incoming and outgoing edges of v, and we take these decorations to be linear in each vertex.
Let
PGr°(X)(k,1):= P CCRG(X),
GePGrO(k,l)

whose elements are linear spans of tensors



Remark 4.2.1. Graphically, this element of PGrO(X)(k, () is represented by the planar graph G
where each vertex v € V(G) is decorated by x,.

PGrP(X)(k,1) is a &; x &;"-module, by the action on the indexation of the incoming and
outgoing edges of the graphs.
Let I(k,l) be the &; x &;P-submodule of PGr®(X)(k,[) generated by elements of the form

U'UQG"UQT®< ® $v>_G®<< ® .TJU>®O"I'UO'T>, (9)
veV(G) veV (G)\{vo}

where G € PGrP(k,l), voe V(G), o € So(vy) and 7 € Gj(yy). We further define

PGrO(X)(k, 1)
MOk D) = =7

Here is the type of relations we obtain graphically:

it 1ttt

<

[ [(12)

i

where x € X372 and Yy € X272.

——p]

Example 4.2.1. Let us assume that X is a trivial & x &°P-module: for any k,l € Ny, for any
x € Xy, for any (0,7) € §; x &, 0 -2 -7 = x. The relations defining I'9(X) which boil down to

U'UOG-UOT@)(@ $U>—G®<® xv>7 (10)
)

veV (G veV (G)
amount to the identification of two planar X-decorated graphs with the same underlying X-
decorated graph. In this case we recover the & x & -module GrO(X).

More generally, according to the relations defining I'O(X), if for any graph G, we choose a
planar graph G, the underlying graph of which is some G' € GrO(X)(k, 1), then the set of graphs
G(X)(k,1) is a basis of TO(X)(k,I). As there is no canonical way to choose the graphs G, we
prefer to consider I'O(X) as a quotient of PGrP(X).

Alongside the category ProP introduced in Definition [LI.3] we now introduce a second
category.

Definition 4.2.1. Let Modg denote the category of & x G°P-modules: its objects are families
P = (P(k,1)) g penz, where for any (k1) € N3, P(k,l) is a &; ® &;F-module; a morphism
¢ P — Q is a family (¢r1)enz, where for any (k,l) € N3, ¢ps 2 P(k,1) — Q(k,1) is a
morphism of &; ® &;F-modules.

To a & x G°P-module X in Modg we have assigned another & x §°P-module I'O(P) in Modg.
One easily checks that a morphism ¢ : P — @ of & x G°-modules induces a morphism of
G x G%-modules

IO(p) : TO(P) — TO(Q)

defined by pull-back on the decorations of the vertices of the graphs:
IO(p)(G,dg) = (G, ¢ o dg). (11)

In summary, we have proven the following

29



Proposition 4.2.2. The map I'° : Modg — Modg defines an endofunctor of the category
MOdG,

Moreover, for any & x &°-module, T'O(X) is a ProP:

Theorem 4.2.3. Let X be a & x &°P-module. The vertical and horizontal concatenations of the
ProP PGrO(X) induce a ProP structure on TO(X).

Proof. We have to prove that if P e I and H € PGrO(X), then P+ H, H+ P, Ho P and Po H
(if these vertical concatenations are possible) belong to I. We can restrict ourselves to the case
P =G — @, where G is a X-decorated planar graph and G’ is obtained from G by the action of
two permutations on a vertex v of G. It is then immediate that G’ = H is obtained from G * H
by the action of two permutations on a vertex v of G * H, so that G* H —G'« H = P+ H € I.
Similarly, H « P € I, and H o P and P o H belong to I if these vertical concatenations are
possible. So I'© inherits a structure of ProP from the structure of PGr®. O

Definition 4.2.4. For any & x & -module X, the ProP I''(X) is defined by

PGr'(X
rix) = LG )
I nPGr'(X)
As PGr'(X) is a sub-ProP of PGrO(X), TT(X) is a sub-ProP of IO(X).
Example 4.2.2. As in Example L2T] if X is a trivial & x &°? module, we recover the ProP
Gr'(X).
We have seen (Theorem F2.3)) that for any & x &°-module, I'O(X) has a ProP structure,

and that the same holds for I'"(X). We can then lift TO(X) and I''(X) to functors between
these categories:

Proposition 4.2.5. The maps I'° : Modg — ProP and I'' : Modg — ProP define
functors from the category Modg to the category ProP of ProPs.

Proof. Let X and Y be two & x &°P-modules and ¢ : X — Y a morphism of & x &°P-modules
and let PGrP(p) : PGrP(P) — PGr®(Q) be its pullback defined by

PGrO(4)(G, dg) = (G, o dg) (12)

for any G € PGrP(P). As the structure of ProP of I'©(X) is combinatorially given by disjoint
union and grafting of graphs, PGrO(y) clearly defines a morphism of ProPs from PGr®(X) to
PGrP(Y). As ¢ is a morphism of & x G°-modules, it follows that PGrO(y) sends the ideal
defining TO(X) to the ideal defining I'°(Y’), hence it induces a morphism I'©(p) : TO(X) —
I'O(Y) of ProPs. A similar proof holds for I'T. O

4.3 The ProP I''(P) of graphs decorated by another ProP

The ProPs I'(X) satisfy a universal property:

Theorem 4.3.1. Let X be a & x &P-module, P a ProP and ¢ : X — P a morphism of
G x G°P-modules. There exists a unique morphism of ProPs ® : I'1(X) — P, eatending ¢ so
that the following diagramme commutes:

X *_.p
L

A

r'(X)
where v : X <> T'N(X) is the map that sends an element x of X to the X-decorated graph

G(x) = (Gy,d) with d sending the unique vertex of Gy to x.
In other words, T'1(X) is the free ProP generated by the & x &°P-module X.
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Proof. Uniqueness. As a quotient of PGriTnd(X ), the ProP T'1(X) is generated by graphs with
only one vertex v, decorated by an element of X respecting i(v) and o(v). Hence, such a morphism
® is unique.

Existence. As PGriTnd(X ) is the free ProP generated by the space X, for any linear map

¢ : X —> P, there exists a unique morphism of TraPs & : PGriTnd(X) —> P, extending . If ¢
is a morphism of & x G°P-modules, that any element of the form (@) belongs to the kernel of ®,
thanks to the compatibility of the concatenation products of P and the action of the symmetric
groups. so ® induces a morphism ® : I'N(X) — P. O

Corollary 4.3.2. Given a ProP P, there is a canonical morphism of ProPs
ap :TN(P)— P
induced by the decoration.

Proof. This is a straightfoward consequence of Theorem .31l with ¢ = Idp. O

Ezample 4.3.1. Let p € P(3,2) and g € P(2,2). The four following graphs (which are equal in
I'(P))

—
no
=
no
—
no
—
[\

oL

\/
/\

»
»

p (12) - p
123 123 123 123
are respectively sent to
qop, (¢-(12)) o ((12) - p), (¢-(12)) o ((12) - p), (¢-(12)) o ((12) - p),

which are equal in P. The two following graphs (which are equal in T'T(P))
12
q
A A
p-(12)
123

1 2
q

A A
p

213

are respectively sent to
qo(p-(12)), (qop)-(12),
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coincide in P. The two following graphs (which are equal in T'T(P))

2 1
q

A A A A
p

213

are respectively sent to

((12) - q) o p, (12) - (g o p),

which are equal in P.

Recall from Definition [LT.Tlthat a ProP is a & x &°P-module. Composing with the forgetful
functor F' : ProP — Modg endofunctors I'C o F' and T'! o F of the category ProP, which we
denote also by I'© and I'! with a slight abuse of notations.

Proposition 4.3.3. The maps ap defined in Corollary[{.53.9 give a natural transformation from
the identity endofunctor of ProP to the endofunctor TV, that is to say, for any morphism ¢ :
P — Q of ProPs, the following diagram commutes:

'
pT(p) M)FT Q)
aPl @Q
P
©

Proof. Since I'' (), ap, ag and ¢ are morphisms of ProPs, agoI'T(¢) and goap are morphisms
of ProPs. As I'T(P) is generated by classes of graphs with only one vertex, it is enough to prove
that ag oI'(¢) and poap coincide on such graphs. Let us consider the planar graph G, = PGy,
with its unique vertex decorated by p € P(k,l). Then, if G}, is the class of G, in T'T(X):

ag o T () (Gp) = ag(Gyp)) = ¢(p) = ¢ o ap(Gy).
So ag o T (p) = poap. O

4.4 The case of Homyj,

Specialising the results of the previous Subsection to ) := Homyj, for some Fréchet nuclear
topological vector space V' leads us to algebras over ProPs, see e.g. [Mar(8|.

Definition 4.4.1. A Fréchet nuclear topological vector space V' is an algebra over a ProP P or
a P-algebra if there is a representation

¢ : P — Homy,,
of the ProP P on the vector space V i.e. if @ is a morphism of ProPs.

Remark 4.4.1. In the literature of ProPs, the Homy ProP consists of the algebraic counterpart
of our Homy, “.
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Remark 4.4.2. Algebras over ProPs arise in Segal’s axiomatic approach to conformal field theory
(CFT) JABM™01], by which a CFT is viewed as an algebra over the Segal ProP. A CFT is viewed
as as an algebra over the Segal ProP in [[on07al, where the author claims that Feynman rules
of a given QFT, may be presented functorially as an algebra over the corresponding Feynman
ProP.

Applying Corollary B.3.21to P = Homyj, and ¢ = Id|goms, yields:

Corollary 4.4.2. A topological vector space V' has a canonical algebra structure over I’T(Hom%)
given by the canonical morphism of ProP

ay : TT(Hom¢,) — Hom(,.
Proposition 4.3.3] applied to @ = Homy; yields the following statement.

Corollary 4.4.3. Let P be a ProP and V an algebra over P given by a ProP-morphism
¢ : P — Homyj,. Then V also canonically has the structure of an algebra over I'(P) given by
the map ay o T (p) = poap.

5 Traces and Permutations (TraPs)

This section is dedicated to TraPs, the other main protagonist of the paper. As for ProP, the
main objects of interests in the category of TraP will be the TraP of graphs Gr® together with
its variants and the TraP Homy, of continuous morphisms on a Fréchet nuclear space V.

5.1 The category of TraPs

Definition 5.1.1. A TraP is a family (P(k,1))k =0 of vector spaces, equipped with the following
structures:

1. For any k,l € Ny, P(k,l) is a 6; ® & -module.
2. For any k,1,K',I' € Ny, there is a map

*-{P(k7l)®P(/€’7l’) — Pk+K,1+1)
' p®p — pxp,

called the horizontal concatenation, such that:

(a) (Associativity). For any (k,1,K',I',k",1") e NS, for any (p,p',p") € P(k,1) x P(K',l') x
P(k”, l”),
(pxp)=p" =p=(p/ =)

(b) (Unity). There exists Iy € P(0,0) such that for any (k,1) € N3, for any p € P(k,1),
Iyxp=p=xIy=np.

(c) (Compatibility with the symmetric actions). For any (k,1,k',1') € N3, for any (p,p) €
P(k,1) x P(K',l'), for any (o,7,0",7') € &) x &) x &y x Sy,

(o-p-m)s(oh-p-7)=(c@®d) (prp)- (r®T).
(d) (Commutativity). For any (k,,k',I') € N3, For any p € P(k,1), p' € P(K',l),
ar - (pxp) =@ *p) crw,

where ¢y and ¢y are defined by ([2).
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3. For any k,l = 1, for any i € [k], j € [l], there is a map

t{ P(k,l) — P(k—1,1-1)
w p — ti;(p),

called the partial trace map, such that:

(a)

(b)

(c)

(d)

(Commutativity). For any k,l =2, for any i€ [k], je[l], i e[k—1], j e[l —1],

tim1j-1 0ty ifi’ <i, j' <j,
tij—1otiyry ifi' =4, j' <,
tic1g oty if i’ <i, j' =4,
tijotyrr g ifi' =4, j' = .

tlljl Ot

(Compatibility with the symmetric actions). For any k,l = 1, for any i € [k], j € [I],

o€, 7Sy, for any p € P(k,l),

tijo-p-71) =05 (trG)o-14)DP) - Tis

with the following notation: if « € &,, and p € [n], then o, € &y, is defined by

(k) if k < a=Y(p) and a(k) < p,

ak) =1 ifk <aY(p) and a(k) > p,
alk+1) if k= a Y(p) and a(k) < p,
alk+1)—1ifk=aY(p) and a(k) > p.

(67

ay(k) = 14

o= 00 (149)
+
In other words, if we represent o by a word v .. .oy, then «, is represented by the

word obtained by suppression of the letter p in aq ... oy, and subtraction of 1 to all the
letters > p.

(Compatibility with the horizontal concatenatwn) For any k,1,K',I' > 1, for any
ielk+1], je [k +1], for any pe P(k,l), p' € P(K',l'):

tij(p)=p ifi <k, j<l,
p*tiogj—1(p) zfz >k, j>1.

tijlpxp) = {

(Unit). There exists I € P(1,1) such that for any k,l = 1, for any i € [k + 1],

je[l+1], for any pe P(k,l):

t1;(Lxp)=(1,2,...,5—1)- pifj 2,

tir(I*p)=p- (, .,z—l) ifi =2,
therj(pxD) = (G j+1,.... 0 pifj<l,
tigpi(pxI) =p- (H+1 k) ifi < k.

Remark 5.1.1. 1. We do not require that ¢; ;(I) = Iy, hence the terminology partial trace

map.

2. By commutativity of x, for any p € P(0,0), for any (k,1) € N3, for any p’ € P(k,):

/ /
b*p =p *p,

since ¢k = Idg).
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Remark 5.1.2. Our notion of TraP is an axiomatised version of Merkulov’s notion of wheeled
ProPs introduced in [Mer06]. The link between TraPs and wheeled ProPs will be made in
Section [T.1], Corollary [[.T.3]

Our approach mainly differs from Merkulov’s categorical approach in that it comprises units.
Units of wheeled ProPs are mentioned in [MerlOb, Remark 2.3.1] but their axioms are not
explicitly written down in the literature. Our axiomatic approach is tailored to address analytic
issues regarding products of singularities. This axiomatic approach allows us to give a simple
definition of quasi-TraPs in Section [Z.3] a notion that seem absent in previous works on wheeled
ProPs. However, the categorical approach seems better suited for classification problems, e.g.
regarding the solutions of the master equation in the BV formalism [MMS09, [Mer10b].

Lemma 5.1.2. Let P = (P(k,1))ken, be a S®EP-module, equipped with a horizontal concate-
nation * satisfying axioms 2. (a)-(d), and with maps t; j satisfying axioms 3. (a)-(b).

1. We assume that for any k,l,k',I' > 1, for any p € P(k,l), p' € P(K',l"),
tii(p*p') = tia(p) *p'.
Then axiom 3.(c) is satisfied.
2. We assume for for any k,l = 1, for any p € P(k,l),
t12( * D) = p.
Then aziom 3.(d) is satisfied.

Proof. 1. Let p € P(k,l) and p’ € P(K',l'). Let us take i € [k +1], j € [k’ + '], consider the
transpositions o = (1, ) and 7 = (1,4), with the convention (1,1) = Id Ifz k and j <, then:

tij(pxp) =tij(a® - (p=p')-77)
=oj-tii(o-(pxp) 1) 7
=0 (tip((o-p-1)*p )
=o0j-(t11(o-p-7)* P)'Tz‘
= (05 (tia(o-p-7)-7) % pf
=t j(p) *p'.

If i > k and j > [, using c;&n = Cnm:

)

tij(pxp) =tij(cra- (' *p) - crp)
= (er2)j + timk,j—1(p' * p) - (Chor)i
=cp_1y (bickj—1(D") * D) - k-1
=p*tig;1(0).

2. Let us take j = 2

t1; (L p) = t1;((2,5)° - (I *p))
:(7"'73_1) t172( )(I*p))

=(2,...,5—1) ti2({ (1,7 —1)-p))

=(2,..., 3—1) (1,j—=1)-p)

=(2,....7—-1D(1,7-1)-p
=(,....5—1)-p
The three other relations are proved in the same way. U
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Definition 5.1.3. Let P = (P(k,1))k =0 and Q = (Q(k,1))ki>0 be two TraPs with partial trace
maps (tfj)m?o and (tgj)i,];o respectively. A morphism of TraPs is a family ¢ = (¢1)ki>0
of linear maps ¢y : P(k,1) — Q(k,l) which are morphism for the horizontal concatenation, the
actions of the symmetric groups and the partial trace maps. More precisely, for any (k,l,m,n) €

Ni:
V(p,q) € P(k,1) x P(n,m), psnism(p*q) = ¢1(p) * Pnm(q),
e V(o,p) € & x P(k,1), ¢ii(0o.p) = 0.01,(p),

V(p,7) € P(k,1) x &k, ¢p1(p-7) = ¢r1(p)-7

o V(p.i,j) € P(k,1) x [K] x [1], $x1,-1(¢;(p)) = 1 (dra(p)).

With a slight abuse of notations, we write ¢(p) instead of ¢ri(p) for p € P(k,l). In particular,
TraPs form a category, which we denote by TraP.

Remark 5.1.3. The abuse of notation ¢; ; is legitimate since a full notation such as tfj is not
necessary in practice. Indeed the indices k and [ in ¢; j(p) are entirely determined by p to which
t;,; is applied.

More so, t; ; does not strongly depend on k and [: indeed, let f: P(k,l) — P(k + 1,1+ 1)
be the map that sends p to p = I (for the TraP of linear morphisms, this is the tensorisation by
Id), then for i € [k] and j € [I], we have

tijo f(p) = fotij(p),
which is the axiom 3.(c).
Lemma 5.1.4. Let P and Q be two TraPs and ¢ : P — @Q be a map. We assume that:
1. For any (k,1) € N3, for any (0,7) € & x &, for any x € P(k,1),
dlo-x-17)=0-¢(x)- T.
2. For any k,l = 1, for any x € P(k,l),
tipo¢(x) =¢otii(x).
Then for any k,l =1, for any (i,7) € [k] x [{], for any = € P(k,l),
tijod(z) = pot; ().
Proof. If i € [k], j € [l], and x € P(k,l):

¢otij(x) =¢oti;((1,5) = (1,9)?)
=o((1,7) - t11((1, 5) - - (1,4)) - (1,4))
=(1,5) - ¢otia((1,5) -z - ( '
= (1,5) - tiaoo((1,5) -z - (1,
=t;;((1,5) - ¢((1,5) - - (1,9)) - (1,4))
=tij 0 ¢(z),

with the convention (1,k) = Id if k = 1. O

In particular, to show that a collection of linear maps between two TraPs preserving the
horizontal concatenation and the actions of the symmetry group is a morphism of TraP, it is
enough to check the properties of Lemma B.1.41
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5.2 The TraP Homyj,
We start with the TraP version of the ProP of linear morphisms of section

Proposition 5.2.1. Let V be a finite dimensional vector space and V* its algebraic dual. Then
for any (k,1) € N&:
Homy (k,l) = Hom(V® V&) ~ 1*®F g /&,

S;®6,” acts on the ProP Homy as readily described in Proposition-Definition [L2Z1. We shall
make some abuse of notation setting f1--- fr := 1@ - Q@ fr € V*® andvy - v := 11Q®---Qu; €
Vi We equip V*®F @ VO with a horizontal concatenation:

(fl---fk@vl---vl) * (f{f,'g,®vivl',) = fl...fkf{...f];/®U1...Uﬂ)i...vl//,

and partial trace maps:

tig(fi- fr®uvi...v) = filvj)fi... ficifivr- - fo®@ui...vj_1vj41... 1
(with obvious abuses of notations). These make Homy a TraP.
Proof. Properties 2.(a)-(d) are trivially satisfied, with Iy = 1 € K = V& @ V*&V. Property 3.(a)
is direct. Let us prove Property 3. (b).
tiglo-fi. . fr®@ui...v - 7) =tij(fr) -+ frk) @ Vo-1(1) - - Vom1(1))
= fT(i (U(rl(j )fT fT (i—1 fT(erl fT
@ Vg=1(1) - - - Vo1 (j—1)Vo=1(j+1) - - - Vo1 (1)
=0 tri)yo1G)(f1 fe®ur. .. l)‘Tz‘-

Property 3.(c) is straightforward. Let us prove property 3.(d) with the help of Lemma (.12l Let
us fix (e;)ier a basis of V, then (ef);er is a basis of V* and the identity map I = )., e ®e;,
acts as follows, I(v) = > .., ef(v)e; = v for all ve V. Then:

tl,Q(I*fl---fk®U1---vl) :Ztl,g(e;‘fl...fk@eivl...vl)

el
=Zﬁ---fk@ezef(vl)vz---vz
iel
=fi... [L®I(v1)ve... v
=fi... fi®ui...y
So Homy, is a TraP. O

Remark 5.2.1. In this example of TraP, t; 1(I) = dim(V') = dim(V")I,.
In order to generalise this construction to nuclear Fréchet spaces, we need to characterise the

composition of linear morphisms of such spaces.

Lemma 5.2.2. Let Eq, Ey be two Fréchet nuclear spaces and Es3 a Fréchet space. Then the
composition of continuous morphisms L1 : By —> FEo, Ly : Es — FE3 amounts to a dual
PaiTing.

Proof. Let E1, Eo, E3 be three topological spaces as in the statement. Then by () the identifi-

cations Hom®(FE1, Ey) ~ E1®F> and Hom®(FEs, F3) ~ E,®F3 hold. For L; = i ul* ®u €
Hom"(Ey, Ez), L2 = 3, up* ® uf € Hom(FEs, E3) and u € Ey, we have
Lo Liu (2 o) = D b
kil i)
so that
Hom"(Ey, F3) 3 Lyo Ly = > [ Y ui*(u}) | ui* ®uf € Ef®Fs. O
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Recall that, for a Fréchet nuclear space V, the ProP (Homy{,(k,1))x >0 introduced in Sub-
section [Z.2, Theorem [Z.2.5] reads:

Hom, (k1) ~ (V') V&

Proposition 5.2.3. Let V be a Fréchet nuclear space. The family (Homf,(k, 1))k >0 equipped
with the partial trace maps in the sense of (I3) defined by

A Homj, (k,l) — Hom{ (k—1,1—-1)
(I (UT®"'®U;:)®(7U1®”'®WI) — tl"z‘,j((UT®"'®U7;)®(w1®"'®wl))

with tr; j (Vf @ - @ v}) @ (w1 @ - - @w;) defined as
UE"(wg‘)(vT@---@Zi;@---@vZ‘) ® (w1®...®@ ®"'®wl)

for any k,l =1, for any i € [k], j € [l], where v} (wj) is the dual pairing, defines a TraP, with
the topological tensor product as horizontal concatenation.

Proof. Commutativity follows from the commutativity of the field K, compatibility with the
symmetric actions and compatibility with the horizontal concatenation are shown as for the
ProP Homy,. The unit is the identity map I € V*@)V. O

Example 5.2.1. With the notations of Remark[[.2.3] tr; ; (ija§ef® ef> is of the form Zf 7, bﬂi ejj®
s isJdg j

—

ef, where I = (i1, oy ig), Jj = (J1,- - ,Jye-+ 1) and b% corresponds to the trace of the

n X n matrix in the (i, j) entries of a{f with the other indices frozen.

Ezample 5.2.2. Let U be an open of R". Example and Equation (7)) imply that the family
(K (k, 1) ka0, with Ky (k, 1) = (E/(U)PF @ E(U)® defines a TraP.

Ezrample 5.2.3. Let X be a finite dimensional smooth manifold. Proposition and Equation
(@) imply that the family (Kx (k,1))k =0, with Kx (k,1) = (E'(X)®F & E(X)® defines a TraP.

5.3 The TraP Gr® of graphs

We now equip graphs and planar graphs with a TraP structure. We have already equipped Gr®
and PGr® with a structure of & x &°P-modules and a horizontal concatenation, which we leave
untouched. Let us now define partial trace maps. Let G € GrO(k,l), 1 <i<kand 1 <j <.
We set e; = ag' (i), f; = B5"(j) and define ¢; j(G) as the graph obtained by identifying the input
of e; with the output j of f;. If e; € I(G) and f; € O(G), this creates an edge in F(G). This
case is illustrated in the figure below. Otherwise, we create an edge in I(G), or O(G) or IO(G)
or in L(G). In all these cases, we then reindex increasingly the inputs and the outputs of the
obtained graph.

Graphically:
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S.H‘ Q : 1
~ P > —

A more rigorous definition is given in the appendix. A similar definition can be given for planar
graphs, by preserving the orders on incoming and outgoing edges of any vertex.

Example 5.3.1. Let G be the following graph:

2 1
1 2 3
Then:
1 1
t172(G) = Q t171(G) = t272(G) = t3,2(G) =
1 2 1 2
1
t271(G) = t371(G) = C?
1 2

Note that ¢ 2 creates a loop when applied on G.

Remark 5.3.1. In particular, t; 1(I) is the graph O, which is essential for TraPs.

Proposition 5.3.1. Gr® and PGr®, with the usual horizontal concatenation and this partial
trace map, are TraPs.

Proof. Properties 2.(a)-(d) are trivial. Let us give a graphical indication of the proof of Property
3.(a), when i’ < i and j' < j.
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For Property 3.(b), let us consider p = G a graph. As the input edge indexed by i in o - G - 7 is
the input edge of G indexed by 7(i) and the output edge indexed by j in o - G - T is the output
edge of G indexed by o71(j), G1 = t; j(0 - G - 7) is the graph obtained by gluing together the
input indexed by 7(j) and the output indexed by o~1(j), reindexing the input according to o;
and the output edges by 75, so G1 = 0; - t.(;) o—1(;)(G) - 7.

Let us prove Property 3.(c). By Lemma [5.1.2] it is enough to prove it for (p,p’) = (G,G’) a
pair of graphs and (7,7) = (1,1). In this case, e; and f; are both edges of G, so t11(G * G') =
t11(G) =G

For Property 3.(d), let us consider the graph I such that

and TO(I) being reduced to a single element. Then for any graph G with |O(G)| > 1,
ti2(I*G) =G.
By Lemma [5.1.2) Property 3.(d) is satisfied, so Gr® is a TraP. O
5.4 Free TraPs
Theorem 5.4.1. Let P be a TraP and, for any k,l € Ny, let x,; € P(k,l) such that:
Yo e G, V1 e G, O Ty T = Tp.
There ezists a unique TraP morphism ® from Gr® to P sending Gy, to xy; for any k,1 > 0.

Proof. We provide here a sketch of the proof, and refer the reader to the appendix for a full
proof. We define ®(G) for any graph G' € GrO(k, ) by induction on the number N of internal
edges of G.

If N =0, then G can be written as

G=0"%x0 - (I""« Gy %...xGp.1.) T,
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(recall that O is the graph with no vertex, and only one edge belonging to L(G)) where p,q,r €
No, (ki, k;) € N for any i, and 0 € Sk, 4. +k» T € Sqiy+..+1,- We then put:

O(G)=t1 1 ([)*P o (I wxp gy *... 5Tk, 1) T

We can prove that this does not depend on the choice of the decomposition of G, with the help
of the TraP axioms applied to P and the invariance of the xj;. Let us assume now that ®(G’)
is defined for any graph with N — 1 internal edges, for a given N > 1. Let G be a graph with N
internal edges and let e be one of these edges. Let G. be a graph obtained by cutting this edge
in two, such that G = ¢1,1(G.). We then set:

‘I)(G) = tl,l o ‘I)(Ge)

One can prove that this does not depend on the choice of e. It can then be shown that ® defined
as above is compatible with the partial trace maps. O

The following TraP counterpart of Theorem .31l can be proved in a similar way as Theorem

b.4T

Theorem 5.4.2. Let X be a & x &P-module, P a TraP and ¢ : X — P be a morphism of
& x &P-modules. There exists a unique morphism of TraPs ® : PGrO(X) — P, which extends
© so that the following diagramme commutes:

| &

PGrO(X)

where ¢ : X < PGrP(X) is the map that sends an element x of X to the planar X -decorated
graph G(z) = (PGy,d) with d sending the unique vertex of PGy to .
In other words, PGrO(X) is the free TroP generated by the & x G°P-module X.

Remark 5.4.1. The invariance condition of xj; in Theorem [5.4.1lis replaced here with the planar
condition on graphs. They play the same role, namely to allow us to show that the map ®,
defined inductively, is indeed well-defined.

6 The functor I'© applied on TraPs

6.1 The functor I'° as an endofunctor of TraP

Proposition 6.1.1. Let X be a & x &P-module. Then TO(X) is a TraP.

Proof. Similarly to the proof of Proposition [5.3.1] concerning Gr®, we can prove that PGrP(X)
is a TraP.

If G and G’ are two X-decorated planar graphs such that G’ is obtained from G by the
action of permutations on the incoming and outgoing edges of a vertex of GG, then clearly, for
any relevant ¢ and j, t; ;(G’) is obtained from G by the same operation. So t; (G —G') € I, and
the partial trace maps of PGr®(X) induce partial trace maps on I'O(X). O

Hence, T'O is a functor from the category Modg to the category TraP. Combining with the
forgetful functor F' : TraP — Modg, we obtain an endofunctor I'© o F : TraP — TraP,
which we denote by I'C, with a slight abuse of notations. As for ProPs (Corollary and
Proposition [4.3.3]), we have the following statement.
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Proposition 6.1.2. Given a TraP P, there is a canonical morphism of TraPs
ap:TO(P) — P

induced by the decoration. These maps define a natural transformation from the endofunctor I'©
to the identity endofunctor of TraP, that is to say: for any morphism of TraP ¢ : P — Q, the
following diagram commutes:

apl ag

)

Proof. Similar arguments as in the proofs of Corollary [£3.2] and Proposition 3.3 O

6.2 The endofunctor I'° as a monad

Let us now equip the endofunctor I'° with a monad structure, a terminology we borrow from
IMMS09, Definition 2.13].

Definition 6.2.1. A monad I (also called a triple) on a category C is an associative and unital
monoid (T, p,v) in the the unital monoidl End(C) of endofunctors of C. This means that the
multiplication p : ' o' — T' and the unit morphism v : Ide —> T should satisfy the axioms
given by commutativity of the diagrams below for any object P of the category C.

T oToT(P) Y25 T oT(P) r(P) 2 o T(P) 22 1(P) (15)
;U'F(P)l l,up Tde ,upl Tde
Io[(P) ——T(E) I(P)

We want to define a transformation v : Idnods — I'© ie. maps vp: P — I'O(P) for any
S x G°P-module P. The morphism vp sends an element p € P(k,l) to the class of the graph
PG}, i(p) with one vertex v decorated by p, and k incoming edges indexed from left to right by
1,...,k, [ outgoing edges indexed from left to right by 1,...,[.

The morphism v is a unit in End(Modg) in the following sense: for any morphism ¢ : P — @,
the following diagram commutes:

P—2T10(P)

¢>L lfo(qﬁ)

Q—=T2Q)

The multiplication is given by morphisms pp : IO o I'O(P) — I'O(P) attached to & x &°P-
modules P. Elements of IO o TO(P) are graphs G whose vertices v are decorated by graphs G,

“The terminology monoid is used in this definition with the obvious abuse of vocabulary since I' and End(C)
are not necessarily sets.
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consistently with the number of incoming and outgoing edges. We denote by up(G) the graph
H such that
V(H)= || V(Gy),
)

veV (G

whose edges are obtained by identifying, for any vertex v, the i-th incoming edges of v with the
i-th incoming edge of G, and the j-th outgoing edge of v with the j-th outgoing edge of G,.

To illustrate this graphically, here is an example in which pp sends the graph on the left to
the graph on the right:

2 3

RN

1
123
r
A 2
1 2

A A

o —p]
——

where p € P(2,3), g€ P(2,2) and r € P(2,3).
It is clear from the combinatorics that the relations corresponding to the diagrams (I5) are
satisfied. Hence:

Proposition 6.2.2. The triple I = (I'O, u,v) is a monad in the category Modg .

7 'TraPs versus ProPs

We have built the free TraPs by means of graphs discussed in Subsection B3l This, together
with the functor I'© of Sections @ and [ will allow us to show the equivalence of the categories
of TraPs and wheeled ProPs.

7.1 TraPs are wheeled ProPs

The free TraP we previously built from a given TraP enables us to relate TraPs and Merkulov’s
notion of wheeled ProPs [MMS09]. We now build algebras on the monad I'C. Let us first recall
the notion of I'-algebra (see e.g. [MMS09, Definition 2.1.4]).

Definition 7.1.1. Let C be a category. An algebra over a monad I' € End(C) or a I'-algebra
is an object P of C together with a structure morphism « : T'(P) — P such that the following
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diagrams commute:

roT(P) 2 1(P) P2 1(P) (16)
upl la 14 /

P P

I'(P)

a

Proposition 7.1.2. Any I'C-algebra (P, ) defines a TraP defined as follows:
e For any (p,p') € P(k,l) x P(K',l'), p=p' is obtained by applying « to the following graph:

I+1...01+0

1...1
P
[P [P
11 |
1...k k+1...k+Ek

o For any p € P(k,l), for any (i,7) € [k] x [l], t; j(p) is obtained by the application of a to
the following graph:

Proof. Let us prove some of the axioms of TraPs for P. The others can be proved in the same
way and are left to the reader.

2. (a). let (p,p,p") € P(k,1) x P(K',l') x P(k",1"). Then (p = p’) = p” is obtained by the
application of ap to the graph:

(For the sake of simplicity, we delete the indices of the input and output edges of this graph:
they are always indexed from left to right). Hence, (p * p’) = p” is obtained by application of
aoT9(a) to the graph:

f
Tl lT }Q?le
tt1

Note that for the second connected component of this graph, this comes from:

!
tt ot
£ 1 F.
f

aoTP>a) oTP(wp)(p") = a o TC(aovp)(p”) = a o IO(Idp)(p") = alp”).
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As aoTO(a) = aopup, (p*p') *p” is obtained by application of « to the graph:

153 s
EArTTT

The same computation can be done for p = (p’ * p”), which gives the associativity of =.
2 (b). The unit is Iy = a(F), where J is the graph with no vertex and no edge.
(d). The unit I is a(Iy), where I; is the graph with only one input-output edge. Let
pE P(kz,l) and 2 < j < 1+ 1. Then #; ;(I = p) is obtained by application of a0 I'®(a) to the
graph:

.

where the curved edge relate the first edge at the bottom to the j-th edge on the top. As
aol'O(a) = aoup, t1 j(I * p) is obtained by application of a to the graph:

where the curved edge relate the first edge on the bottom to the j-th edge on the top (note that
this edge is also the (j — 1)-th outgoing the vertex decorated by p). As ais a & x &° morphism,
we obtain that this is (1,...,7 — 1) - @ ovp(p), that is to say (1,...,5 —1) - p. O

Proposition 7.1.3. Any TraP is a TC-algebra.

Proof. Let P be a TraP. From Proposition 6.1.2] we obtain a unique TraP morphism ap :
I'O(P) — P, such that for any (k,l) € N3, for any p € P(k,[), ap sends the graph vp(P) to P.
The map apol'©(a) : TPoI'O(P) — P is a TraP morphism, sending, for any graph G € TO(P),
vrop)(G) to a(G). It is not difficult to see that up : I'OoI'O(P) — I'O(P) is a TraP morphism.
Hence, ap o up : I'© o TO(P) — P is a TraP morphism, sending, for any graph G € TO(P),
vrop)(G) to ap(G). As P oTO(P) is generated by the elements .p(G), both these morphisms
coincide:
apoTO(a) = aopup.

For any p € P, by construction of ap, ap o vp(p) = p, so:
ap OVp = Idp
Therefore, P is a I'©-algebra. U

Corollary 7.1.4. The categories TraP of TraPs and TC — Alg of I'C-algebras are isomorphic.
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Proof. We defined in Propositions [.T.2] and [Z.1.3] two functors
F : TraP — I'© — Alg, G:T° — Alg —> TraP.

Let P be a TraP and P’ the TraP G o F(P), with concatenation ' and trace operators té, i We
set F(P) := (P,ap): in other words, ap is the TraP morphism of Proposition .12l For any
p,q € P:

p+ q=ap(vp(p) *vr(q)) =p=p',
where in the middle term # is the concatenation in the TraP I'°(P). Therefore, * = #'. If

p € P(k,l), (i,5) € [k] x [I], then t;}j is obtained by the application of ap to the graph:
j—1 T jol—1

1]

T

17—

%
I.

which is ¢; j(vp(p)), where here ¢; ; is the trace operator of IO(P). As ap is a TraP morphism:

t; i(p) = apotyjovp(p) =tijoapovp(p) = ti;(p),

so P’ = P and G o F is the identity functor of TraP.
Let now (P, a) be a I'©-algebra and let us consider (P’,a’) be the ['C-algebra FoG(P). Both
« and o are TraP morphisms from I'O(P) to G(P); for any p € P,

aovp(p) =d ovp(p) =p.

As TO(P) is generated, as a TraP, by the elements vp(p), a = o/, so F 0@ is the identity functor
of IO — Alg. ad

Remark 7.1.1. T®-algebras appear in the literature [Mer06, MMS09, Mer10bl, Mer10a] under the
name of unitary wheeled props; see [MMS09] for the description of the monad of graphs used for
wheeled props, and [Mer10bl Mer10al for applications of wheeled props.

We defined the structure of TraPs having their application to Feynman graphs in QFT in
mind. Since our focus in this paper is on traces for which we need an explicit realisation of the
structures under consideration, we choose to keep here the terminology TraP.

7.2 TraPs are ProPs

TraPs can be equipped with a ProP structure as a result of the fact that both the trace and
composition of morphisms can be expressed in terms of a dual pairing. Corollary [.T.4] yields
an isomorphism between the categories of TraPs and wheeled ProPs. It is known that wheeled
ProPs are ProPs, and we give here a detailed construction of the ProP structure on our TraPs,
showing how the partial trace maps (referred to as contractions by Merkulov) of wheeled ProPs

give rise to a vertical composition, and therefore to a ProP structure, a fact readily observed in
IMMS09, Remarks 2.1.1].

Proposition 7.2.1. Let P be a TraP. We define a vertical composition in the following way:

Vpe P(k,l), Yge P(l,m), qop =1tr41,10-..0tppi—1,1-1 0 tegr1(p * q)-

Then P is a ProP.
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Example 7.2.1. In the TraP of graphs Gr®:

f
.l T
] ° Bi : : Bi

Proof. Tt is enough to prove it for a free TraP PGrO(X), as any TraP is the quotient of such
an object. If G € PGrPO(X)(k,l) and H € PGrP(X)(l,m) are two X-decorated planar graphs,
then by definition of the partial trace maps, G = H is the X-decorated planar graph obtained
by grafting together the output edge ¢ of G with the input edge j of H for any i € [k]; this is
precisely the vertical concatenation of graphs, adapted to X-decorated planar graphs. So it is
indeed a ProP. O

Ezxample 7.2.2. 1. For graphs, we recover the composition defined in Section [[L.3] extended to
graphs.

2. For the Homy TraP, for any F = fi... fr @uvi...v € V®F @ V& » Hom(V®k,V®l)
andG=g,...0 Quwy ... w, €€ V¥ QVO" x Hom(V& V&™)
FoG=gi(v1)...q1(u)f1-- [k @wy...wp,.

This is the composition of Homy, .

Applied to the TraP Homy{, of Proposition [5.2.3] this method allows to recover the ProP
Homf, of Theorem 2.2.3]

Proposition 7.2.2. Let V' be a Fréchet nuclear space. The ProP built from the TraP (Hom$, (k, 1))k >0
as in Proposition [T.21 is isomorphic, as a ProP, to the ProP Homy, of Theorem [2.Z3

Proof. 1t is enough to check that the composition of two homomorphisms will give the right
object. Let f = Hom({, (k,l) and ¢ = Hom({, (I, m). By Equation () we can write

f=2(09) @ 0e)IRwi e oul), g=)(w)e -owu))e(ie -orf).
o B

Then the definition of the composition product of Proposition [.2.1] implies
!
fog=Y [H@?)*(r?)] (Wy e ew))ewe: oup).
a B Li=1

Using Equation ([7), we can apply Lemma [5.2.2] to the case E; = V®m, By, = V®l, Es = vk,
The result then follows from this lemma and the observation that

~

[T e =@ @) @i e o))

i=1

for the duality pairing in Fs. O
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We end this Subsection with a Corollary to Proposition [.2.1]

Corollary 7.2.3. Let P be a TraP. For any p € P(k,k), we set:

Tr(p) = t171 ©...0 tk,k(P)-

1. For any (k,1) € N3, for any (p,q) € P(k,l) x P(l,k),
Tr(pogq) = Tr(gop).
2. For any (k,1) € N2, for any (p,q) € P(k, k) x P(1,1),

Tr(p = ¢) = Tr(p)Tr(q).

Ezample 7.2.3. 1. In Gr©, for any graph G € GrO(k, k), Tr(G) is obtained by gluing together
the i-th output edge with the i-th output edge of G. In particular, O = Tr(I). Graphically:

Tr

2. Let V be a finite dimensional vector space of dimension n. In the TraP Homy  introduced
in Proposition [£.2.1] we obtain a trace for morphisms F : V& — V®*  Specialising to the
case k = 1, we recover the usual trace of linear endomorphisms: choose (e1,--- ,e,) a basis

n !

of V. Any morphism f : V — V can be represented in this basis by ZZ j=10;;6; ®ej for

some complex numbers alfj. Then Tr(f) = 23, azfje;"(ej) =3 azfi. Tr(f) lies in K, is
viewed here as an element of Homy (0,0) via the identification of a constant A in K to a

linear map z —— Az on K.

The vertical composition f o g = ty1(f * g) of two morphisms f and g, defined according
to Proposition [[.2.1]is indeed represented by the usual matrix product:

n n n n

f g % * o f g % '

Z Z g A5 €4 ®ep(e) ®ej = Z Z ay al; | e ®ej,
i,j=1k,l=1

i,j=1 \k=1

where (alfj)i,j, (afj)m are the matrix representations of f and g respectively.

Proof. Again, it is enough to prove the result for a free TraP PGrO(X).
Let G € PGrP(X)(k,l) and H € PGr®(X)(l, k) be two graphs. Then Tr(HoG) is graphically
represented by each of the graphs:
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»

<
<
<
<

which are the same. So Tr(H o G) = Tr(G o H). Moreover, the graph Tr(G = H) is represented
by the graph

which is also a graphical representation of Tr(G) * Tr(H). So Tr(G « H) = Tr(G) « Tr(H). O

7.3 Quasi-TraPs

The partial trace maps ¢; ; arising in the definition of a TraP might not be defined on every
operator. To circumvent this difficulty, we work with a & x &°-module (P(k,[)); ;>0 with a
horizontal concatenation *, satisfying all the required axioms, and for any &, > 1, for any i € [k],
j€[l], amap T;,; : P'(k,1) — P(k — 1,1 — 1) defined on a submodule of P(k,l); we assume
that it satisfies all the required axioms as soon as all the maps they imply are defined.

We can then embed such a quasi-TraP in a "complete" TraP: consider the TraP TO(P), and
quotient it by the TraP ideal generated by the elements:

L. vp(p) #vp(q) — vp(p* q), where p,q € P.
2. t; jovp(p) —vp o T j(p), where p € P such that T; j(p) is defined.

We obtain in this way a TraP P, with partial trace maps t;,j induced on the quotient by the
partial trace maps of I'O(P). It contains a & x G-module isomorphic to P and formed by graphs
with only one vertex, which we identify with P itself. Then, if T; ;(p) is defined, T} ;(p) = t; ;j(p)-

Ezxample 7.3.1. Let V = K[X], (X™)n>0 its canonical basis and (d,)n>0 the dual basis. Let us
denote by E* the subspace of Hom(V') generated by the endomorphisms of the form

) KX — K[X]
EAR NS GRS 3

where 4,5 > 0 (ie. f;j(X*) = X7 if k = i, and f; ;(X*) = 0 otherwise). This is the subspace
of endomorphisms of V with a finite support when applied on monomials. Note that Et does
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not contains Idy: we put £ = ET @ Kldy. For any k,l > 0, let P(k,l) be the submodule
of Hom(V®* V®) generated by E®* if k = I, and {0} otherwise. This is stable under the
horizontal concatenation of Homy, .

The elements of P(k, k) are linear spans of terms:

o (i®...® fr)-T

where 0,7 € &, and for any p, f, is one of the f; ; or is Idy,. We define a partial trace map
on P by putting 77 1(fi ;) = ;5 but T11(Idy) is not defined. This is extended to P using the
axioms of a TraP. For example:

Ti1(fi; ® frr) = 6ijfri, Ti1(fi; ®Idy) = 0; ;1dy,
To2(fi; ® fr1) = Orifij T 2(fi; ®Idy) is not defined,
T12(fij ® fug) = Siifry T o(fi; ®lLdy) = fij,
To1(fij ® fr) = 65k fit, Tra(fiy ®1dy) = fi .

Denoting by O the graph with only one loop, we obtain that for any k£ > 0
Pk, k) = K[O] ® P(k, k),
and t11(Idy) = O. Any p € P(k, k) is identified with 1® p € P(k, k). For example, in P:

t11(fij ® fra) = i fr, t11(fi; ®Idy) = 5@]1dv,
t22(fij ® fr1) = Ok 1 fiy ta2(fiy ®1dy) = fi;
t12(fij @ frt) = 6iifrjs t12(fi; ®1dy) = f,]7
t2,1(fij ® fra) = 0 fits to1(fij ®Idy) = fi ;.

Choosing for any k > 1 an element f; € P(k,1), any graph G such that L(G) = (J is sent to an
element of P by ®

8 The TraP Ei‘; of smoothing pseudo-differential operators

We apply our results on TraPs to tensor products of a class of of Fréchet nuclear spaces introduced
in Section 2] namely Fréchet spaces £(X) of smooth sections of X. Recall from Proposition 223l
that such spaces are stable under tensor products and morphisms in Hom(&'(X),E(Y)) are
determined by smoothing kernels in £(X x Y).

8.1 Trace of smoothing pseudo-differential operators

Let X be a smooth finite dimensional closed manifold. Let us set E = £(X), and F = &'(X),
which is not Fréchet, in which case Lemma [5.2.2] does not apply.
Instead, we restrict ourselves to smooth kernels which stabilise £(X). We set, for (k1) #

(1, 1): .
KR (k1) = E(XF x X1) = £(X)PF @ E(X)®!
k

where the identification holds by Proposition 223l For (k,1) = (1, 1) we set
KR(1,1) == £(X x X) | J{5} = X) | J{o}

with 0 the (singular) kernel of the identity operator on £(X). With the notations of Definition
B.I1 we will have I = 4.
For a closed Riemannian manifold X equipped with a volume measure p, the canonical

embedding £(X) — &'(X), f+— (¢ §y f(z) ¢(z) du(z)) induces an embedding

KL (k1) — Kx (k1) ~ &'(X)PF @ £(X)®!
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Proposition 8.1.1. The family of topological vector spaces (K% (k,1));, =, equipped with the
partial traces

t: .- K?(k’l) - K?(kjilalil)
Y K1 @Ky — (K ® K))

with, for K1 ® Ko # 9, t; ;(K1 ® K») defined by
tii (K1 ® Ka)(1, -+, Xp—1,Y1, , Yi-1) 1=
fx Ki(zy, - wic1, 2,0 s wp—1) Ka(yn, - y5-1, 2,95+ yk) du(?)
(with an obvious abuse of notation in the cases where i (or j) is equal to 1 or k (or to 1 orl))

defines a TraP, written K%.

Remark 8.1.1. Technically, K% is a quasi-TraP in the sense of Subsection[Z3]since t1 1 (I) = t1,1(9)
is not defined. Following Subsection [[.3] this quasi-TraP can be completed to a full TraP K;ﬁ.

Proof. The unit Iy € K¥(0,0) ~ C® C of the vertical concatenation * = ® is the constant map
defined by f(z) = 1. It is the unit of ® by bilinearity of the tensor product.

The unit I € £F(0,0) is § by definition of the action of Dirac’s distribution on smooth kernels.

It suffices to show that ¢; ;(K1 ® Ka)(x1, -, Zp—1,y1, - ,Yyi—1) lies in KL(k —1,0—1). The
axioms of the TraP will then hold since they are in Kx (k,!) (Example 5.2.3]).

The existence of the integral comes from the smoothness of K7 and K5 and the closedness of
X. It is enough to show that the function ¢; ;(K; ® K») : Xk-1 x Xi=1 — C is smooth. Since
K; and K5 are smooth, the map

('Ila"' y Lhk—1,Y1, " ,yk‘) = Kl(xla"' P I P Y 7xk:—1)K2(yla"' ?yjflyz?yj“' ayk;)

is infinitely differentiable for any z € X. Since X is compact, the partial derivatives

53‘;551(1@1,“' S Tie1, 2T Te—1) Koy, yi-1, 295 5 Yk)

are bounded uniformly in z. We can therefore use the dominated convergence theorem to get
that

f 53‘;551(1(331,“' VL1, 2, T Th—1) Ko (Y1, Y-, 2,450 yk) dpl(z2)

X

=5§5§f Ki(zy, - wio1, 2,0 wp-1) Ka(yn, - y5-1, 2,95+ yk) dp(2)
X

:5%755’5@3‘(}(1 ® Ka) (@1, s Tk—1,Y1, " 5 Yi-1)-
Therefore the map ¢; ;(K1 ® Ka)(x1,- -, Tx—1,Y1," - ,Yi—1) is smooth. O

In view of the fact that the trace of a smoothing pseudodifferential operator P with kernel
K is
Tr(P) = f K(z,z)du(x)
X
Corollary yields a generalised trace

Tr: | | KR(k k) —C
keNg

on smoothing pseudo-differential operators on a closed smooth finite dimensional manifold. This
trace is indeed cyclic for the horizontal and vertical composition products of IC? in the sense of

Corollary [7.2.3
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8.2 Generalised convolution of smoothing operators

Let X be a smooth finite dimensional closed Riemannian manifold. Set Xj; := K% (k,1). Recall
from Proposition B.1.2 that there exists a TraP map ® : TO(P) — X, as X is a TraP.

Definition 8.2.1. Let G be a graph decorated by X = (K% (k,1))kien,- The generalised con-
volution associated to G is the smoothing operator ®(G) € K? given by the image of G under

.
The name generalised convolution is justified by the following remark.
Remark 8.2.1. Let G be a ladder graph decorated by X = (KE(k,1))ken, i-€., a graph such that
I(G) =0(G) =[1], IOG) = L(G) = &, V(G) = {v1, - ,un}, E(G) = {e1,- -+ ,en—1} and the
source and target maps defined by
5G(1) = vn, ta(l) = v,
Vie[n—1], salei) = v, te(€i) = vig1.

Here is a graphical representation of this graph:

(o) .. (o)1
Let O; be the smoothing pseudo-differential operator defined by the kernel K; that decorates
the vertex v;: K; := dec(v;) for any v; € [n]. Then the generalised convolution associated to

the graph G is the convolution of the kernels Kj, -+ , K, which is the kernel of the smoothing
pseudo-differential operator Oj o --- 0 O,,.

The previous remark leads to the following statement.

Corollary 8.2.2. The convolution of smoothing pseudo-differential operators is well-defined and
assoctative.

Proof. Well-definedness follows from the definition. The associativity follows from the fact that
the vertical composition build from the TraP structure of graphs is associative, together with
the fact that ¢1q is a morphism of TraP. O

A Appendix: topologies on tensor products

Tensor products ot topological spaces can be equipped with various topologies. A first possibility
is the so-called e-topology; [Tre67, Definition 43.1|. For two topological vector spaces E and F,
one can show ([Tre67, Proposition 42.4]) the isomorphism of vector spaces EQF ~ B¢(E! x F..,K)
where B¢(E/ x F! K) denotes the space of continuous bilinear maps from E/ x F! to K and E/,
(resp. F!) the topological dual of F (resp. F) for o, the weak topology.

Recall that a bilinear map f : E x FF — K is called separately continuous if, for any pair
(x,y) € E x F, the maps z — f(z,z) and z — f(z,y) are continuous. We then clearly have
that continuous bilinear maps build a linear subspace of the space B*(E x F,K) of separately
continuous bilinear maps.

The space B*“(E x F,K) can be equipped with the topology of uniform convergence on
products of equicontinuous subsets of E/ with equicontinuous subsets of F. Recall that, for a
topological space X and a topological vector space G, a set .S of maps from X to G is said to be
equicontinuous at xg € X if, for any V' < G neighbourhood of zero, there is some neighbourhood
V(zp) € X of xg, such that

VfeS, xeV(xg) = f(z)— f(zg) € V.

In our case, G is K and X is E, (resp. F,). This topology induces a topology on the subspace
Be(E! x F.,K) and thus on E® F. We denote by E ®, F' the topological vector space obtained
by endowing F ® F' with this topology.
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There is another topology on F ® F' called the projective topology; [Tre67, Definition
43.2|. The projective topology is defined as the strongest locally convex topology on F® F' such
that the canonical map ¢ : F x FF — E ® F' is continuous. We write F ®, F' the topological
vector space obtained by endowing £ ® F' with this topology.

The neighbourhoods of zero of the projective topology can be simply described in terms
of neighbourhoods of zero in £ and V. A convex subset S of EF ® F' containing zero is a
neighbourhood of zero if it exist a neighbourhood U (resp. V) of zero in E (resp. F') such that
UV ={u®uluelU nveV}cS.

B Appendix: definition of the partial trace maps on Gr®

We give a rigorous definition of the partial trace maps on the space of graphs Gr®, which were
only loosely defined in the bulk of the article.

Let G € GrO(k,1) with k,1 > 1, i € [k] and j € [I]. We put ¢; = a5' (i) and f; = B5'(j). We
define the graph G’ = t; j(G) in the following way:

1. If e; € I(G) and f; € O(G), then:

V(G') =V(G), E(G') = E(G) u{(ei i)},
I(G') = I(G)\{ei}, O(G") = O(G)\{f},
I0(G") = I0(G), L(G") = L(G),
_Jsalfy) ife= (e, fj), _Jtaled) if e = (e, f5),
sor(e) = {8@(6; otherwise, J e () = {tg(e) otherwise, J
aer(e) = {ozg(e) if ag(e) <, for(e) = {Bg(e) if Ba(e) <,
ag(e) — 1if ag(e) =4, Ba(e) = 1if Ba(e) =5
2. If ; € IO(G) and f; € O(G), then:
V(&) = V(G), (&) = E(G),
I(G") = 1(G), O(G") = O(G)\{f5} w {(eis 5,0}
I0(G') = 10(G)\{es}, L(G") = L(G),

sg(e) otherwise,

scr(e) = {SG(fj) if e = (s, f;),

Bal(ei) if e = (e;, f;) and Ba(ei) < j,
o (e) = {ag(e) if ag(e) <, Bor(e) = Bal(e) —1if e = (e;, f;) and Bg(e;) = j,
ag(e) —1if ag(e) =1, Bal(e) if e # (e;, f;) and Pa(e) < 4,
Ba(e) —1if e # (e, fj) and Bg(e) = j.
3. If e; € I(G) and f; € IO(G), then:
V(G = V(G), E(G") = E(G),
I(G") = I(G)\{ei} v {(ei, f7)} 0(G") = 0(G),
I0(G") = IO(G)\{f;}, L(G") = L(G),
— anle (o) = ta(e) if e = (e, ff)
sq(€) = s¢le), ter(e) tc(e) otherwise,

ag(fi) if e = (e, fj) and ag(f;) <1,

aG(fl) -1 lf €= (elvf]) and aG<fJ) ﬂ /(6) _
ag(e) if e # (e;, f;) and ag(e) <1, “
ag(e) — 1if e # (e, fj) and ag(e) =

Ba(e) if Bale) < 7,
Bale) —1if Ba(e) =5

acr(e) =
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4. If e; € IO(G), fj € IO(G) and e; # f;, then:

V(G) =V(G), E(G") = E(G),
I(G") = I(G), O(G") = 0(G),
10(G") = {(es, fj)} v IO(G)\{eis [}, L(G") = L(G),
sar(€) = sale), ter(e) = tale),
ozg(fl) if e = (e, fj) and ag(f;) <1,
o (e) = | ag(fi) —1if e = (e, fj) and ag(f;) =
ag(e) if e # (e;, f;) and ag(e) <1,
| Ba(e) —Life # (e, f;) and ag(e) =
Ba(e;) if e = (e;, f;) and Ba(e;) < 7,
Bor(e) = + Ba(ei) —1if e = (e, f;) and Ba(e;) = J,
Ba(e) if e # (ei, fj) and Ba(e) < 4,
Bale) —1if e # (e, fj) and Bg(e) = j.

5. If ;€ IO(G), fj € IO(G) and e; = fj, then:

V(@) =V(G), E(G') = E(G),
I(G") = I(G), O(G") = 0(G),
10(G") = I0(G)\{ei, f;}, L(G') = L(G) u {(ei, fj)},
sar(e) = sqle), tar(e) = ta(e),
_ Jagl(e) if ag(e) <, (o) — Ba(e) if Ba(e) < j,
ac(e) = {ag(e) —1if ag(e) =1, o (€) {ﬁc(e) —Lif fe(e) = J

C Appendix: full proofs
C.1 Proof of Theorem [3.2.7]

Proof. Let us define ®(G) for any graph G by induction on n = |V(G)|, such that for any
permutation o € S, T € Syq),

S(oc-G-1)=0-9(G)-T.
If n = 0, there exists a unique permutation v € & such that G =~ - I,. We put

where we used the same notation I for the units of Gr and P.
If o,7 € &:

O(o-G-7)=P((0) Ix-T)
= ®((oy7) - k)
= (oy7) - Ik
oy L) T
=0-9(G) T

Let us assume that ®(G’) is defined for any graph G’ such that |V(G’)| < n. Let

G=7-(Gy*...% Gy * ) o Gy » O*
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be a minimal decomposition of G. If G is indecomposable, we set ®(G) = ¢(G). Otherwise, as
V(Gy) # &, |[V(Gp)| < n. We put:

Q(G) =7 (¢(G1) * ... % ¢(Gy) = Ip)) 0 B(Gy) * (b((’))*g.

Let us first prove that this does not depend on the choice of the minimal decomposition of G.
Starting from a minimal decomposition of G, one obtains all possible minimal decompositions of
G by a finite sequence of operations of type A and B:

e Type A: changing the indexations of the input and output edges of the graphs G;. We
obtain a minimal decomposition G = 7' - (G} * ... x G} * I,)) o G * O*, such that there
exists permutations «;, (3;, with:

Gi = ;- G- B,
0= ®...®8, " ®Id,) - Go,
o = a(af1®...®a;1®1dp).

e Type B: permuting G; and Gy for [ € [k — 1]. We obtain another minimal decomposition
G=9"(Gy*...x Gl = 1,) o Gy » O* with:

Gl+1 le = l,
G,=LGpif j =1+1,
G; otherwise;
Go = (diGy)+...+i(Gr_1) ® Ci(Gr11),iG1) ®1i(Gyyn)+..+i(Gr)+p) © Gos

v = v(Idoy) 4. 40(Gr1) B Co(c),o(Gi+1) @ Ido(Gy )+ to(Gr)4p)-

Let G =~ (G} #...+ G} * I,) o Gi » O be another minimal decomposition of G. Then £ = ¢’
is the number of loops of G. It is enough to prove that

v (p(Gr) # ... x §(Gy) = L) 0 ®(Go) =+ - (¢(G)) * ... = (G},) = I,) o B(Gy).

We can assume that G’ is obtained from G by a single operation of type A or of type B. If it is
of type A:

Y (D(GY) .. % O(GY) * I) o ®(Gy)

=7 (0]'®..®a, ' ®1dy) - (d(a1 - G1 - B1)® ... @ d(auy, - G, - Br) * I)
(871 ®...® B, ®1d,) - Go)
=7-(af1®...®a;1®1dp)-(a1-qS(Gl)-Bl®...®ak'¢(Gk)-Bk*Ip)

o (B! ®...® ;' ®1dy) - ®(Go))
=Y(0]'®..®0 ®Idp) (1 ®...® o ®1dy) - (B(G1) @ ... ® G(Gy) * 1)
0(f1®...0 BRI (BT ®...Q B, ®@1d,) - ®(Go)

=7 (¢(G1) ®...®¢(G) * 1) o ®(Gy).
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If it is of type B:

T(B(GY) * . x P(GY) ® 1) 0 @(GY)
V(Id (G1) 4 to(Gri1) ® Co(@)o(Gryr) ®Ido(Gyy )+ to(Gr)+p)
(@(G1) # ... d(Gry1) * G(G) * ... O(Gy) * 1)
0 ®((Idj(Gy) 4. 4i(Gr1) B Ci(Gri)i(cr) RIdiGy o)+ +i(Gr)+p) - Go)
T(B(GY) * . x B(GY) % 1) 0 @(G)
V(Id (G1) 4 t0(Gr_r) B Co(@)0(Crsr) B Ido(Gry)+..to(Gr)+p)
(A(G1) * ... d(Gry1) * B(Gy) * ... % B(Gy) * 1)
( Idj(ay) . ti(G1) B Ci(Gry)ia) @ 1diay, o)+ +icr)+p) - P(Go)
Y (D(G1) * - o) o(Gryn) - (D(Gra1) * D(GL)) - CiGrriay) * - - - * B(Gr) * 1) o @(Go)
v (P(Gr) * ... % ¢(Gp) * ¢(Gi41)) * ... % ¢(Gy) * Ipy) o B(Gp)
v (0(G1) ® ... ® @(Gy) * I)) o D(Gy).

So ®(G) is well-defined. Let 0 € G,y and 7 € &y We put H = o -G - 7. A minimal
decomposition of H is given by:

H():G()-T, HZZGZIf’LE[k‘], ’)//20"}/.
Hence:
Q(H) =07 (¢(G1) *...% ¢(Gy) * Ip) o ®(Gp - 7) * (b((’))*z
=0y (¢(G1) ... x (Gi) * 1) 0 ®(Go) - 7 % ¢(O)*

(7 (0(Gr) % ... % ¢(Gy) * Ip) 0o ®(Go)) - T * ¢((’))*Z

Consequently, we have defined a map ® : Gr® — P, extending the morphism ¢ of & x G-
modules. Let us prove that it is compatible with both concatenations.

Let G and G’ be two graphs, both with no loop. Let us prove that ®(G *G') = ®(G) = (G’
by induction on n' = |V(G’)|. If ' = 0, there exists 7" € &, and ¢’ € Ny, such that G' = o’ - I,.
We proceed by induction on n = |V(G)|. If n = 0, there exists 7 € &, such that G = o - I,.
Then G « G’ = (0 ® ') - I 14, and:

oG+ = (0®
=(0®

= (0" Ip) (U 'Iq)
O(G) * (G").

Otherwise, let G = v - (G * ... * Gi#p) © Go be a minimal decomposition of G. A minimal
decomposition of G * G is:

GG =(a®0d) (Gy#...x Gy L, 4) o (Go = 1),
so, using the induction hypothesis on Gg:

(G +G) = (@) (d(G1) * ... * §(Gk) * Lp1q) 0 B(Go * 1y)
= (y®d') - (G1) * *¢(Gk) x Iy x Ig) o (D(Go) * Ig)
= (7 (¢(G1) * ... % ¢(Gy) * I)) 0 D(Go)) * (0" - I,)

= ®(G) * (G’ )
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So the result holds at rank n/ = 0.
Let us assume the results hold at any rank < n’/. Let us consider minimal decompositions of
G and G':

G =7 (G1*...« Gy =1, oGy, G' =+ (G *...«Gy = I,) 0 Gy,
with the convention k = 0 if V(G) = . We obtain a minimal decomposition of G = G':

GG = (Y®Y) o) 1. 40(1) ® Cpo(@))+...+0(c)) @ 1dg)
(Grx...x GGl x...x Gy xIh,)
o (Idi(Gy)4-..+i(er) ® i@y +...tritcpp ®1dg)) - (Go * Gy)).

We apply the induction assumption ®(G * G') = ®(G) = (G’) for |V(G')| < n’ to G, whose
number of vertices is smaller than that of G’ and hence smaller than n’.

(G + Q") = (Y®Y)(Ido(@)+..40(G1) @ Cpo(@)+...+0(c1) @ 1dg)

(A(Gr) * .. ¢(Gr) * H(GY) * ... % (G * p+q)
0 ©((Idi(ay)+... i) ® Ci@y)+..+i(a.p @ 1dg)) - (Go = Gy))
= (Y®7)(Ido(c1)+...10(Gr) ® Cpro(@))+..o(cy) @ Idg)
(B(G1) # .. x B(Gr) * (GY) * ... % P(G]) * Ipiq)
o (Idi(G)+...ti(cr) ® Cian)+..vi(a) p @ 1dg)) - ®(Go * Gp)
= (Y®7)Ado(G1)+...10(Gr) B Cpro()+...ro(cr) @ 1dg)
(O(G1) * .. % O(Gy) * (GY) % ... % O(GY) * Iy + I)
o (Idi(ay) 4. +i(Gr) ® Ciy)+...tricp.p ®1dg)) - (B(Go) * ®(Gp))
= (Y®7) - (¢(G1) * ... % ¢(Gy) * Iy * 9(GY) * ... ¢(G]) * Ig) o (B(Go) * P(Gp))
= (7 (¢(G1) * ... % ¢(Gy) * ) 0 ®(Gp)) * (7 - (¢(GY) % ... * (G)) * Iy) o ((Gy))
_ B(G) ().

So if G and G’ are both graphs with no loop, ®(G * G') = ®(G) = ®(G’).

Let G, G’ be two graphs, both with no loop. Let us prove that ®(G’' o G) = ®(G’) o ®(G).
We proceed by induction on n = |V(G)| + |[V(G')|. If V(G') = ¢, there exists a permutation
o € 6, such that G’ = o - I}. Then:

P(G'0G)=®(0c-QG) =0 -P(G)=0-(I,0®(Q)) = (c-1)) 0o ®(G) = ®(G") o ®(G).

Similarly, if V(G) = &, ®(G' 0 G) = ®(G’) o ®(G). Thus we have proved the cases n = 0 and 1.

Let us assume it holds up to rank N and take G and G’ such that n = N +1. By the previous
argument, ®(G o G") = ®(G) o (G") if V(G) = & or V(G') = &. We now assume that V(G)
and V(G’) are nonempty. Let us consider minimal decompositions of G and G:

G=7(G1*...xGp=1,) oGy G =+ (G *...xG = 1) 0 G.

In G’ o G, the output edges of G are glued with an input or an input-output edge of G’. In
particular, for any 4, output edges of G; are glued with input edges or input-output edges of G.
Up to a change of indexation we assume that there is some r such that:

e For all i < r, at least one output edge of G; is glued with an input edge of G’.

e If i > r, all output edges of G; are glued with input-output edges of G'.
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A particular sub-case. We assume that the input-output edges of G’ glued with an output of one
of the G are the input edges of G’ with the greatest indices. Then Gy = G{ * Ig i o(G,11)+..+0(Gy)
for a certain s. Moreover, v can be written as v = 71 ® 72, such that a minimal decomposition
of H=G'o @G is given by:

Ho = (1di(@})+...4i(G}) ® Ci(Grin)+-+iGr)+ps) - G

©) (’)/1 . (G1 *oLLLk Gr * Ii(GT+1)+...+i(Gk)+p) . Go,
(Hy,...,Hp) = (G,...,G},Gri1,...,Gy),
V" = (o) 1. r0(@) ® Cs0(Gran) +ooto(Gr) +0) Ldo(@ ) 1. koGl +5 @ 12)-

Applying the induction hypothesis on Gy and G{:

O(H) = (Ido(ct )+..40(G1) ® Cs.0(Grar) +.t0(Gr)+p) 1do(@ ) 4. +0(Gl)+s B V2)
((B(GY) # .. % O(GY) % G(Gry1 % ... % 4(G)))

‘I>((Idz(c'l)+...+i(c' ® Ci(Gyy 1)+ ti(Gr)4p,5) * GO

(71 (A(G1) * ... % O(Gr) * LiG,i )+ 4i(Gr)+p) ~ Go)

= 7 (Ido(@) 4. +0() ® Cs.0(Grir)+.to(Gr) )

(D(GY) # .. % O(GY) % (Gry1 % ... % 4(G)))

o (i) 4..ri(@)) ® Ci(Grsr) t.tiCr)+pis) * P(Go)

o (- (A(G1) % ... % (Gy) * L,y )4 +i(Gr)+p) - P(Go))

(7 (@(G1) ... % 6(Gg) = Ip) 0 ®(Go)) o (Y - (6(GY) * ... % 6(G}) * 1) 0 ®(Gy))

_ B(G) 0 0(C).

O
O

Id o(GY)+...+0(G))+s ®72)

General case. There exists a permutation o, such that if H' = G’ -6~ and H = ¢ - G, then
the condition of the particular sub-case holds for (H, H"). Then:

O(G'oG)=d(G -070)0q)
=2((G"- 07 Yo (0-G))
= ®(G' -0 ) od(0-G) since the subcase holds
— (&(G) oY) o (0 B(G))
= (®(G") - 07)o) - &(G)
= (G - (G).

Finally, if G and G’ are both graphs with no loop, ®(G o G') = ®(G) o ®(G").

Let us finish this proof by considering loops. First, if H is a graph, there exist a (unique)
graph with no loop and a (unique) integer ¢, such that H = G x O*¢. Let

G=7 - (Gi*...xGpx1I,) oGy
be a minimal decomposition of G. Then a minimal decomposition of H is:
H=7v-(Gy#...% Gy 1I) oGy O

, SO

O(H) =7 (¢(G1) * ... ¢(Gy) = I) 0 B(Gp) * p(0)" = ®(G) * ¢(O)".
Hence, if H and H' are two graphs, let us consider graphs G and G’ with no loop and integers £
and ¢, such that

H =G0, H =G 0%,
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Then H * H = G % G+ O*+) and G * G’ is a graph with no loop. Hence, by commutativity
of the horizontal concatenation of the product of P:

So @ is compatible with the horizontal concatenation.
If moreover, H € GrO(l,m) and H' € GrO(k,1), then Ho H' = (GoG')* O**+) 'and Go G’
is a graph with no loop. By the compatibility of the two concatenations of P:

®(H o H') = ®(G o G') » p(0)*+)
= (cI)( ) (G )) ( )*Z *¢(O)*z'
= (2(G) * $(0)*) o (2(G") x $(0)*")
— ®(H) o ®(H').

So @ is compatible with the vertical concatenation. ]

C.2 Proof of Theorem [5.4.1]

Proof. We first define ®(G) for any graph such that, if G € GrO(k, 1), for any (0,7) € &; x Gy,
®(o-G-7)=0-P(G) 7. We proceed by induction on the number N of internal edges of G. If
N =0, then G can be written (non uniquely) as

G=0%%0-(I"q%Gp, g, %...%«Gr 1) T

where p,q,r € Ny are unique, (k;,k;) € N% for any ¢, unique up to a permutation, and o €
Sgtkit.tker TE Sgiiy+...41,.- We then put:

O(G)=ti ()P o (I wxp gy %...5Tk, ) T

Let us prove that this does not depend of the choice of the writing of G. As this is up to a
permutation of the vertices and of the choice of ¢ and 7, we can go from one decomposition of
G to any other one in a finite steps among the following two cases:

1. We consider two writing of G of the form

* *
G=0 p*O"(I q*le,ll **Gk i Gk+171+1 *...*kalr)ﬂ'
* / * !
G=0 p*O‘ '(I q*le,ll *"'*le+171+1 *Gkhli *...*Gkth)'T,
with
/
o = O-(qu+ll+---+li—1 & Cli i ®Idli+2+---+lr)?
/
T = (IdQ+k1+---+ki—1 ® Chiy1,k; ®Idki+2+---+k5r)7—'

Then, by commutativity of =:

/ ES /
o (I gy g % kX)) T

=g ([* . . .
=0 (I" = Lhyly * -« ¥ Clylip (xki+17li+1 * xk‘mli) Chijpi,ki * -0 % xk'rylr) T

*
=0 (I™ % @py 1y # o % Ty 1y % Ty 1y % oo % Ty l,) T
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2. We consider two writings of G of the form

G=0"%%0-(I""«Gp,p,%...xGp.1.) T,
G=0"x0¢" - (I"«Gpypy#...xGp,p,) 7,

with
0'/20'(0'0®0'1®...®0'r), T/:(Ual®71®---®7—r)7—/a

with 09 € &y, 0; € 6, and 7; € &, if i« > 1. Using the commutativity of * and the
invariance of the xy,;:

/ * /
g (I q*xkhll*...*xkhlr)-T

* —1
=0 (001" -0y %01 - Tpypy " TL*...%0p Tl g, - Tp) - T

*
IO'-(I q*xkl,ll*...*xkhlr)-r

Hence, ®(G) is well-defined. Moreover, of 7/ € &, o’ € &, choosing a writing of G of the form

Gzo*p*J'(I*q*Gkhll*...*Gki,li*Gk *...*kalr)ﬂ',

i+1li1
a writing of G =o' -G - 7' is
O so'o - (I"% Gy gy %...% Gy, ) - TT,

and, by definition of ®(G’):

(I)(G,) = t171(1)*p xo'o- (I*q * Thy,ly *0..% xkr,lr) 7!
=0 - (tia(I)*pro- (I™ wap g *...5xp 1) T)*T
=0 - 9(G) 7.

/

Let us assume now that ®(G’) is defined for any graph with N — 1 internal edges, for a given
N > 1. Let G be a graph with N internal edges and let e be one of these edges. Let G, be a
graph obtained by cutting this edge in two:

1. V(Ge) = V(G).

2. E((g)e) = E(G)\{e}, 1(Ge) = 1(G) u{e}, O(Ge) = O(G) u{e}, IO(Ge) = 1O(G), L(Ge) =
L(G).

3. sg, = sg and tg, = tg.

4. For any € € I(Ge) u IO(G.), for any f' € O(Ge) u IO(G.):

no_ 1ife’:e, n 1iff/:e’
rele) - {Oéc(e/) +1if e #e, Ja. 1) = {ﬁa(f’) +Lif f' # e

Then G = t11(G.) and G¢ has N — 1 internal edges. We then put:
‘P(G) = t171 o ‘P(Ge).

Let us prove that this does not depend of the choice of e. If ¢’ is another internal edge of G,
then:

(Ge)er = (12) - (Ger)e - (12),
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which implies, by definition of ®(G.) and ®(G.):

t110®(Ge) =ti10t110P(Ge)er)
=t 0t110((12) - ©((Ge)e) - (12))
=t110t220P((Ger)e)
=t110t1,10P((Ger)e)
=111 0 ?(Ge).

e

So ®(G) is well-defined. Let 0 € &) and 7 € &;. Then:
(0-G-7)e=((1)®0) - (Ge) - () ®7),
s0:

P(oc-G-7)=t110P((0-G-T)e)
=t11(1H)®0) - (Ge) - (1) ®T)
= () ®0)1-t110®2(Ge) - (1) @7
=0 -9(G)- T

where, for 0 € G, we use o; for the permutation in &;_; defined by
. o(y) ifj<i—1,
0i(j) = . e e
o(j—1) ifj=i.

where ((1) ® 7); is defined by (I4).
We have therefore defined a map ® : GGr — P, compatible with the action of the symmetric
groups. Let us prove that for any graphs G, G’,

D(G+G') =d(Q) = d(F).

We proceed by induction on the number N of internal edges of G « G'. If N = 0, we put:

G=0"x0-(I""« Gy, p,%...xGp.1,) - T,

G =0 wg" - (I« Gy .ox G )T
We obtain:

GG =0« (0@0") « (Idg @ chy v vk @4 yar,)
(I Gy, % G, ) - (Idg ® Cqr vt @Idy s yr),
which gives, by commutativity of =:
B(G #G') = 11 (D)* PP x (0@ 0") * (1dg ® ety spty 0 @iy 4y,

+ !
ST sy gy ek, ) - (g ® Cq ik gk, @ Tdg 4 )

=t ()P o (I s wpy %% ap,0,) T
* tLl(I)*p’ x o - (I*q' % xk,hl,l % ... % xk’,,l’,) !
— 3(Q) = (G,

If N > 1, let us take an internal edge e of G * G'. If e is an internal edge of G, then (G * G'), =
G * G, and:

P(GxG") = t110P((GxG').) = t110D(GexG") = t11(P(Ge)*G') = 1110P(G.)*P(G') = (G)=P(G").
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If e is an internal edge of G’, we obtain similarly that ®(G’ * G) = ®(G’) = ®(G). The result
then follows from the commutativity of = (axiom 2.(d) of Definition E.I.T]). So ® is compatible
with .

It remains to prove the compatibility of ® with the partial trace maps. By Lemma 5141 it
is enough to prove that ® is compatible with t1 1. Let G € GrP(k,l) be a graph, e; = a~1(1),
fi=p711). We put G = t11(G) and e = {eq, f1} be the edge of G’ created in the process.
There are five different cases:

1. If e € I(GQ) and f1 € O(G), then e € E(G’) and G, = G. By construction of ®(G’):

d o tl,l(G) = ‘I)(G/) = 75171 o (I)(G/e) = tl,l o ‘I)(G)

2. If e; € IO(G) and f1 € O(G), let us put j = B(e1). Then there exists a graph H such that
(1,j) -G =1+ H. Then:

t11(G) =t11((1,7) - (I« H)) = (1,...,5) - (I = H)) = (1,....,5) - H,

SO:

3. If e; € I(G) and f; € IO(G): similar computation.
4. If eq, f1 € IO(G), with ey # fi: similar computation.

5. If ey = f1in IO(G), then G = I = H for a certain graph G and t1 1(G) = O * H. Then:

Dot 1(G)=Q(0)«P(H) =t110P() * P(H) =t11(P(I) * P(H) = t11 0 P(G).

So @ is compatible with the partial trace maps. [l
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