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We assign generalised convolutions (resp. traces) to graphs whose edges are decorated by smooth kernels (resp. smoothing operators) on a closed manifold. To do so, we introduce the concept of TraPs (Traces and Permutations), which roughly correspond to ProPs (Products and Permutations) without vertical concatenation and equipped with families of generalised partial traces. They can be equipped with a ProP structure in deriving vertical concatenation from the partial traces and we relate TraPs to wheeled ProPs first introduced by Merkulov. We further build their free object and give precise proofs of universal properties of ProPs and TraPs.

Introduction

State of the art

ProPs (Products and Permutations)1 provide an algebraic structure that allows to deal with an arbitrary number of inputs and outputs. As such they generalise many other algebraic structures such as operads, which have one output and multiple inputs. ProPs appeared in [START_REF] Lane | Categorical algebra[END_REF] and later in the book [START_REF] Boardman | Homotopy Invariant Algebraic Structures on Topological Spaces[END_REF] in the context of cartesian categories. Operads stemmed from this work in [START_REF] May | The Geometry of Iterated Loop Spaces[END_REF], although their origin can also be traced back to the earlier work [START_REF] Boardman | Homotopy-everything h-spaces[END_REF] 2 .

An important asset of ProPs over operads is that they encompass algebraic structures such as bialgebras and Hopf algebras that lie outside the realm of operads or co-operads. We refer the reader to [START_REF] Pirashvili | On the PROP corresponding to bialgebras[END_REF] for the study of bialgebras in the ProPs framework and [START_REF] Markl | Operads and PROPs[END_REF] for other classical examples of ProPs.

Our two central examples of ProPs are the ProP Hom V of homomorphisms of a finite dimensional vector space V which we generalise to the ProP Hom c V of continuous homomorphisms of the nuclear Fréchet space V , and the ProP Gr oe of graphs3 . In the context of deformation quantisation, the complex of oriented graphs whether directed or wheeled, plays an important role in the construction of a free ProP generated by a SˆS op -module (see e.g [Mer04, Paragraph 2.1.3]). However, to our knowledge, the ProP of oriented graphs, briefly mentioned in [START_REF] Ionescu | From operads and PROPs to feynman processes[END_REF],

has not yet found concrete applications in the perturbative approach to quantum field theory. Filling this gap is a long term goal we have in mind.

ProPs and oriented graphs

In space-time variables, a Feynman rule is expected to assign to a graph G with k incoming and l outgoing edges, a correlation function (it is actually a distribution) K G in k `l variables. Our long term goal is to interpret the correlation function associated with the composition G ˝G1 of two graphs as a generalised convolution K G ‹ K G 1 of the correlation functions K G and K G 1 associated with G and G 1 , aiming to derive the existence and the properties of the map G Þ Ñ K G from a universal property of the ProP structure on graphs.

ProPs entail two operations, called horizontal and vertical concatenations, which are the natural operations implemented on oriented graphs. With the goal we have in mind, ProPs are therefore natural structures to consider. We provide a precise formulation of the well-known fact that oriented graphs can be equipped with a ProP structure as well as a complete proof (see Theorem 1.3.3) of this statement. We also give a similar statement for (resp. planar) vertex decorated graphs in Theorem 4.1.2 (resp. Theorem 4.2.3). The horizontal concatenation of this ProP is the natural concatenation of graphs and the vertical concatenation is the composition, which to a graph G with k incoming and l outgoing edges, and a graph G 1 with l incoming and m outgoing edges, assigns a a graph G ˝G1 with k incoming and m outgoing edges. Roughly speaking, G ˝G1 is obtained by gluing together the outgoing edges of G and the incoming edges of G 1 according to their indexation.

In Theorem 3.2.1, we show that the ProP of oriented graphs is the free ProP generated by what we call indecomposable graphs (see Definition 3.1.1). We provide a planar version of this result in Theorem 3.4.3. These universal properties are generalised to decorated graphs in Theorem 4.1.4. Such universal properties were stated without detailed proofs in previous work, see e.g. [START_REF] Markl | Operads and PROPs[END_REF]Proposition 57] and [START_REF] Vallette | Dualité de Koszul des PROPs[END_REF][START_REF] Vallette | Koszul duality for PROPs[END_REF].

We make use of the universal property of oriented graphs when decorating the corresponding ProP Gr oe with another ProP whose structure is compatible with that of the one on graphs (see Subsection 4.3). In particular, we show in Theorem 4.3.1 that Γ Ò pXq is the free ProP generated by the S ˆSop -module X. The decorating set X will eventually be a ProP of smooth kernels. Along the way, we use Theorem 4.3.1 in Corollaries 4.4.2, 4.4.3 to build algebra over ProPs; see Definition 4.4.1. The same constructions and universal properties hold for edge-decorated oriented graphs, i.e. Feynman graphs (see Remark 3.3.1).

We have chosen to work with the ProP Gr oe which comprises loops, although the latter play a passive role in the presentation of a ProP. Yet, they will be relevant in the presentation of TraPs that come later in Section 5.3. Introducing them right at the beginning unifies the presentation, since otherwise two similar constructions over two different sets of graphs would have been necessary.

Correlation functions and generalised convolutions

By means of blow-up methods, generalised convolutions of Green functions were built on a closed Riemannian manifold in [START_REF] Dang | Renormalization of Feynman amplitudes on manifolds by spectral zeta regularization and blow-ups[END_REF], with the goal of renormalising multiple loop amplitudes for Euclidean QFT on Riemannian manifolds. We hope to be able to simplify the intricate analytic aspects of the renormalisation procedure for multiple loop amplitudes, by adopting an algebraic point of view on correlation functions using ProPs. There were earlier attempts to describe QFT theories in terms of ProPs (see e.g. [START_REF] Ionescu | The Feynman Legacy[END_REF][START_REF] Ionescu | From operads and PROPs to feynman processes[END_REF]), yet to our knowledge, none with the focus we are putting on generalised convolutions to describe correlation functions.

Our goal is to use the ProP (actually TraP) structure of graphs decorated by distribution (e.g. Green) kernels to build the resulting convolutions as generalised convolutions of kernels associated with the decorated graph. The expected singularities of the resulting correlation functions are immediate obstacles in defining such generalised convolutions. In this paper, we focus on the smooth setup, for which the correlation functions are smooth. Our goal in the smooth case is to provide an adequate algebraic and analytic framework in which we carry out this construction for correlation functions emanating from graphs decorated with smooth kernels.

A smooth kernel K on a closed manifold M gives rise to a smoothing operator

D 1 pM q Q u Þ ÝÑ ˆLK puq : x Þ Ñ ż M
Kpx, yq upyq dy ˙P C 8 pM q, which maps the space D 1 pM q of distributions on M to the space C 8 pM q of smooth functions on M . So, in generalising the convolution of smooth kernels, we generalise the composition of smoothing operators.

Graphs with oriented cycles and TraPs

One challenge present both in the smooth and non-smooth case is the treatment of oriented cycles. A first step is the study of the sub-ProPs of (decorated and non decorated) graphs without oriented cycles carried out in Subsection 3.3. These structures are then used in Section 4. Yet in order to tackle Feynman graphs, we need graphs that can contain oriented cycles. TraPs (see Definition 5.1.1) provide a natural structure to take into account oriented cycles in the graph. It indeed provides a framework to host (partial) traces on graphs that generalise the ordinary trace TrpL K q " ş M Kpx, xq dx. The TraP structure, which we relate in Section 7.1 to Merkulov's notion of wheeled ProPs (see Corollary 7.1.4), encompasses families of generalised traces. In Definition 1.3.1, we introduce the set of Gr oe of graphs which includes graphs with oriented loops. Proposition 5.3.1 shows that Gr oe can be equipped with a TraP structure and Theorem 5.4.1 shows that this TraP is free. This result is then generalised by Theorem 5.4.2 which describes free TraP. An appendix is dedicated to the precise definition of the trace on Gr oe . Paragraph 5.4 provides a description of a free TraP generated by a given set.

We have postponed the detailed proofs of two main results Theorem 3.2.1 and Theorem 5.4.1 to the appendix, so as not to burden the bulk of the paper with technicalities. A sketch of the proof is given straight after the statement so that the reader can nevertheless have an idea of the proof.

Alongside the ProP of graphs, another guiding example throughout the paper is the ProP of homomorphisms, which we investigate in the infinite dimensional setup. In Theorem 2.2.5, we introduce the ProP Hom c V of continuous morphisms for a topological Fréchet nuclear space V , which generalises the well-known ProP Hom V (see e.g. the classical monograph [START_REF] Markl | Operads and PROPs[END_REF]) of morphisms on a finite dimensional vector space (see Definition1.2.1).

In Proposition 7.2.1 we define the TraP pHom c V pk, lqq k,lě0 corresponding to the ProP Hom c V of continuous morphisms on an infinite dimensional Fréchet nuclear space V . In the finite dimensional case it reduces to the TraP pHom V pk, lqq k,lě0 .

Functorial properties: TraPs versus wheeled ProPs

Much in the same way as we build the functor (see Proposition 4.2.5) Γ Ò : Mod S ÝÑ ProP from the category Mod S (Definition 4.2.1) of SˆS op -modules to the category ProP (Definition 1.1.3) of ProPs, which to a S ˆSop -module P assigns a graph-ProP Γ Ò pP q whose vertices are decorated by P , following Merkulov's approach, we build a functor Γ oe : Mod S ÝÑ TraP which takes S ˆSop -modules to TraPs (Proposition 6.1.1). Combining them with forgetful functors from ProP or TraP to Mod S , we can view Γ Ò as an endofunctor of Mod S or of ProP, and Γ oe and an endofunctor of Mod S or of TraP.

In Paragraph 6.2, we provide a detailed description of Merkulov's construction of the monad structure of Γ oe on the category Mod S (Proposition 6.2.2), by means of which (wheeled) ProPs are defined. Our Definition 5.1.1 of TraPs corresponds to unital wheeled ProPs. Using the construction of free TraPs of Section 5.4, in Corollary 7.1.4 we establish an isomorphism between the categories of wheeled TraPs on the one hand and of TraPs on the other hand.

Our constructions have some similarity with those underlying traced monoidal categories introduced in [JSV96], yet the framework and the axioms in the two approaches differ.

TraPs viewed as ProPs: the trace and the composition

It follows from the identification between TraPs and wheeled ProPs mentioned above, that a TraP is a ProP. In Proposition 7.2.1, we provide a detailed description of the ProP structure on TraPs as a result of the fact that both the trace and composition of morphisms (see Lemma 5.2.2) can be expressed in terms of a dual pairing. Let us illustrate this fact in the finite dimensional setup.

Given a finite dimensional vector space V over a commutative field K, both the composition and the trace on the algebra of morphisms HompV q » V ˚b V involve the dual pairing

V ˚ˆV Q pv ˚, wq Þ Ñ v ˚pwq P K,
between the algebraic dual V ˚and the space V .

Extending this to the infinite dimensional setup requires the use of a completed tensor product p b in order to have an isomorphism

Hom c V pk, lq » `V 1 ˘p bk p bV p bl ,
where Hom c V pk, lq stands for the algebra of continuous morphisms from V p bl to V p bk (see Definition 2.2.4) and V 1 for the topological dual of a topological space V . This holds in the framework of Fréchet nuclear spaces which form a monoidal category under the completed tensor product E p bF (Lemma 2.1.4). On Fréchet nuclear spaces, the composition can indeed be described as a dual pairing (see Lemma 5.2.2) so it comes as no surprise that (see Proposition 7.2.2) for a Fréchet nuclear space V , the ProP built from the TraP pHom c V pk, lqq k,lě0 is isomorphic, as a ProP, to the ProP Hom c V . In the finite dimensional setting, this induces an isomorphism of ProPs between TraP pHom V pk, lqq k,lě0 and Hom V .

In practice, the partial trace maps t i,j arising in the definition of a TraP might not be defined on every operator. To circumvent this difficulty, in Paragraph 7.3, we introduce the notion of quasi-TraP, which we embed in a complete TraP.

Openings

As announced in the abstract, by means of a (quasi-) TraP structure, we were able to build generalised convolutions (resp. traces) associated with graphs decorated with smooth kernels (see Remark 8.1.1). We expect this algebraic approach to enable us to tackle non smooth kernels and thus to describe correlation functions as generalised convolutions of distribution kernels associated with graphs. At this stage these are open questions we hope to address in future work.

Notation

1. Any vector space in this text is taken over K, chosen to be the field R or the field C.

2. For any k P N 0 " Z ě0 , we denote by rks the set t1, . . . , ku. In particular, r0s " H.

Two guiding examples of ProPs

We define ProPs, the first main protagonists of the paper, and two ProPs which we shall use as a driving thread throughout the paper.

Definition

Following [START_REF] Vallette | Dualité de Koszul des PROPs[END_REF][START_REF] Markl | Operads and PROPs[END_REF], a ProP is a symmetric strict monoidal category, whose objects are identified with pN 0 q 2 and such that the tensor product of two objects is identified with the sum of integers on each copy of N 0 . Here is a more detailed description.

Definition 1.1.1. A ProP is a family P " pP pk, lqq k,lPN 0 of vector spaces such that:

1. P is a S ˆSop -module, that is to say, for any pk, lq P N 2 0 , P pk, lq is a S l ˆSop k -module. In other words, there exist maps " S l ˆP pk, lq ÝÑ P pk, lq pσ, pq ÝÑ σ ¨p, " P pk, lq ˆSk ÝÑ P pk, lq pp, τ q ÝÑ p ¨τ, such that for any pk, lq P N 2 0 , for any pσ, σ 1 , τ, τ 1 q P S 2 l ˆS2 k , for any p P P pk, lq, Id rls ¨p " p ¨Id rks " p, σ ¨pσ 1 ¨pq " pσσ 1 q ¨p, σ ¨pp ¨τ q " pσ ¨pq ¨τ, pp ¨τ q ¨τ 1 " p ¨pτ τ 1 q.

2. For any pk, l, k 1 , l 1 q P N 4 0 , there exists a product ˚from P pk, lq b P pk 1 , l 1 q to P pk `k1 , l `l1 q such that:

(a) For any pk, l, k 1 , l 1 , k 2 , l 2 q P N 6 0 , for any pp, p 1 , p 2 q P P pk, lq ˆP pk 1 , l 1 q ˆP pk 2 , l 2 q, p ˚pp 1 ˚p2 q " pp ˚p1 q ˚p2 .

(b) There exists I 0 P P p0, 0q, such that for any pk, lq P N 2 0 , for any p P P pk, lq, p ˚I0 " I 0 ˚p " p.

This product ˚is called the horizontal concatenation.

3. For any pk, l, mq P N 3 0 , there exists a product ˝from P pl, mq b P pk, lq to P pk, mq such that:

(a) For any pk, l, m, nq P N 4 0 , for any pp, q, rq P P pm, nq ˆP pl, mq ˆP pk, lq, p ˝pq ˝rq " pp ˝qq ˝r.

(b) There exists I 1 P P p1, 1q, such that for any pk, lq P N 2 0 , for any p P P pk, lq, p ˝Ik " I l ˝p " p, where we put I n " I ˚n 1 for any n P N 0 , with the convention

I ˚0 1 " I 0 .
This product ˝is called the vertical concatenation.

4. The vertical and horizontal concatenations are compatible: for any pk, k 1 , l, l 1 , m, m 1 q P N 6 0 , for any pp, p 1 , q, q 1 q P P pl, mq ˆP pl 1 , m 1 q ˆP pk, lq ˆP pk 1 , l 1 q, pp ˚p1 q ˝pq ˚q1 q " pp ˝qq ˚pp 1 ˝q1 q.

5. The vertical concatenation and the action of SˆS op are compatible: for any pk, l, mq P N 3 0 , for any pp, qq P P pl, mq ˆP pk, lq, for any pσ, τ, νq P S m ˆSl ˆSk , σ ¨pp ˝qq " pσ ¨pq ˝q, pp ˝qq ¨ν " p ˝pq ¨νq, pp ¨τ q ˝q " p ˝pτ ¨qq.

6. The horizontal concatenation and the action of S ˆSop are compatible:

(a) For any pk, k 1 , l, l 1 q P N 4 0 , for any pp, p 1 q P P pk, lq ˆP pk 1 , l 1 q, for any pσ, σ 1 , τ, τ 1 q P S l ˆSl 1 ˆSk ˆSk 1 , pσ ¨pq ˚pσ 1 ¨p1 q " pσ b σ 1 q ¨pp ˚p1 q, pp ¨τ q ˚pp 1 ¨τ 1 q " pp ˚p1 q ¨pτ b τ 1 q, where for any α P S m , β P S n , α b β P S m`n is defined by:

α b βpiq " # αpiq if i ď m, βpi ´mq `m if i ą m.
(b) (Commutativity of the horizontal concatenation). For any pk, k 1 , l, l 1 q P N 4 0 , for any pp, p 1 q P P pk, lq ˆP pk 1 , l 1 q, c l,l 1 ¨pp ˚p1 q " pp 1 ˚pq ¨ck,k 1 ,

where for any pm, nq P N 2 0 , c m,n P S m`n is defined by:

c m,n piq " # i `n if i ď m, i ´m if i ą m. (2) 
Remark 1.1.1. 1. Note that c k,0 " Id rks " c 0,k .

2. In particular, pP p0, 0q, ˚q is a unitary associative and commutative algebra, whose unit is I 0 , which, consequently is unique.

3. Similarly, pP p1, 1q, ˝q is a unitary associative non commutative algebra, whose unit is I 1 which, consequently is unique.

4. For any σ P S k , as a consequence of the compatibility between the vertical concatenation and the action of S ˆSop and the definition of I k P P pk, kq: I k ¨σ " pI k ¨σq ˝Ik " I k ˝pσ ¨Ik q " σ ¨Ik .

Hence, I k ¨σ " σ ¨Ik .

5

. By the commutativity axiom, if p P P pk, lq and p 0 P P p0, 0q, by the first item of this Remark, it follows from (1) that p ˚p0 " p 0 ˚p. So the elements of P p0, 0q are central for the horizontal concatenation. If q P P pl, mq, by the compatibility between the two concatenations:

pp ˚p0 q ˝q " pp ˚p0 q ˝pq ˚I0 q " pp ˝qq ˚pp 0 ˝I0 q " pp ˝qq ˚p0 .

Similarly, p ˝pq ˚p0 q " pp ˝qq ˚p0 .

We adapt the definition of morphisms of ProPs of [START_REF] Vallette | Dualité de Koszul des PROPs[END_REF] in our non categorical language.

Definition 1.1.2. Let P " pP pk, lqq k,lě0 and Q " pQpk, lqq k,lě0 be two ProPs. A morphism of ProPs is a family φ " pφ k,l q k,lě0 of linear maps φ k,l : P pk, lq Þ Ñ Qpk, lq which form a morphism for the horizontal concatenation, the vertical concatenation and the actions of the symmetric groups. More precisely, for any pk, l, m, nq P N 4 0 :

• @pp, qq P P pl, mq ˆP pk, lq, φ k,m pp ˝qq " φ l,m ppq ˝φk,l pqq,

• @pp, qq P P pk, lq ˆP pn, mq, φ k`n,l`m pp ˚qq " φ k,l ppq ˚φn,m pqq,

• @pσ, pq P S l ˆP pk, lq, φ k,l pσ.pq " σ.φ k,l ppq,

• @pp, τ q P P pk, lq ˆSk , φ k,l pp.τ q " φ k,l ppq.τ .

By abuse of notation, we shall write φppq instead of φ k,l ppq for p P P pk, lq.

In particular, ProPs form a category.

Definition 1.1.3. Let ProP be the category with objects given by P " pP pk, lqq pk,lqPN 2 0 and the morphisms of which are morphisms φ : P ÝÑ Q of ProPs given by families pφ k,l q pk,lqPN 2 0 . Here, for any pk, lq P N 2 0 , φ k,l : P pk, lq ÝÑ Qpk, lq is a morphism of S l b S op k -modules, compatible with the vertical and horizontal concatenations, which sends the units I 0 and I 1 of P to the corresponding units of Q. More explicitly, we have that • For any pk, l, k 1 , l 1 q P N 4 0 , for any pp, p 1 q P P pk, lq ˆP pk 1 , l 1 q, φ k`k 1 ,l`l 1 pp ˚p1 q " φ k,l ppq φk 1 ,l 1 pp 1 q.

• For any pk, l, mq P N 3 0 , for any pp, p 1 q P P pl, mq ˆP pk, lq, φ k,m pp ˝p1 q " φ l,m ppq ˝φk,l pp 1 q.

• φ 0,0 pI 0 q " J 0 and φ 1,1 pI 1 q " J 1 , where I 0 , I 1 are the units of P and J 0 , J 1 are the units of Q.

Let P " pP pk, lqq k,lě0 be a ProP and, for any k, l ě 0, Qpk, lq be a subspace of P pk, lq. We shall say that Q " pQpk, lqq k,lě0 is a sub-ProP of P if it is stable under the horizontal and vertical compositions, under the action of the symmetric groups and if it contains the units I 0 and I 1 . More precisely:

• For any pk, l, mq P N 3 0 , Qpl, mq ˝Qpk, lq Ď Qpk, mq.

• For any pk, l, k 1 , l 1 q P N 4 0 , Qpk, lq ˚Qpk 1 , l 1 q Ď Qpk `k1 , l `l1 q.

• For any pk, lq P N 2 0 , for any pσ, τ q P S l ˆSk , σ.Qpk, lq.τ Ď Qpk, lq.

• I 0 P Qp0, 0q and I 1 P Qp1, 1q.

Let P be a ProP.

• If Q is a sub-ProP of P , then Q is also a ProP, and the canonical injection from P to Q is a ProP morphism.

• If pQ i q iPI is a family of sub-ProPs of P , then č iPI Q i is also a sub-ProP of P .

This leads to the following Definition-Proposition 1.1.4. Let P be a ProP. If for any k, l ě 0, Rpk, lq is a subspace of P pk, lq, then there exists a smallest sub-ProP of P containing R " pRpk, lqq k,lě0

xRy :" č

Q sub-ProP of P containing R Q. Remark 1.1.2. Since Q contains I 1 , by ˚-stability, Q contains I 1 ˚. . . ˚I1 looooomooooon k times
" I k and as a consequence of stability under the action of the symmetry groups, Q further contains σ.I k .τ .

1.2 The ProP of linear morphisms: Hom V We recall a classical example of ProP.

Definition-Proposition 1.2.1. Given a finite dimensional K-vector space V , the ProP Hom V is defined in the following way:

1. For any k, l P N 0 , Hom V pk, lq :" HompV bk , V bl q.

2. For any σ P S n , let θ σ be the endomorphism of V bn defined by

θ σ pv 1 b . . . b v n q :" v σ ´1p1q b . . . b v σ ´1pnq .
This defines a left action of S n on V bn . For any pk, lq P N 2 0 , for any f P Hom V pk, lq, for any pσ, τ q P S l ˆSk , we set:

σ ¨f :" θ σ ˝f, f ¨τ :" f ˝θτ .
3. The horizontal concatenation is the tensor product of maps and I 0 : K ÝÑ K is the identity map I 0 :" Id K .

4. The vertical concatenation is the usual composition of maps and I 1 : V ÝÑ V is the identity map I 1 :" Id V .

Remark 1.2.1. This ProP is mentioned in [START_REF] Vallette | Dualité de Koszul des PROPs[END_REF] and [START_REF] Markl | Operads and PROPs[END_REF], but without an explicit proof of its ProP structure. We add such a proof here for completeness and in preparation for the infinite dimensional case, which will be similar in spirit.

Remark 1.2.2. Following our convention for a ProP P " pP pk, lqq k,lPN 0 , where an element in P pk, lq has "k entries and l exits", for the ProP Hom V , an element f P Hom V pk, lq has "k entries and l exits".

Proof.

1. The maps θ σ turns Hom V into a S l ˆSop k -module by associativity of the composition product.

2. The horizontal concatenation is associative as a result of the associativity of the tensor product b, and we trivially have that b maps Hom V pk, lq b Hom V pk 1 , l 1 q to Hom V pk k1 , l `l1 q. Furthermore, if pk, lq P N 2 0 and f P Hom V pk, lq, for any v P V bk , we have pI 0 b f qpvq " pI 0 b f qp1.vq :" I 0 p1q b f pvq " 1 K b f pvq " f pvq 3. The vertical concatenation is associative as the consequence of the associativity of the composition product. We furthermore have I n :" I bn 1 " Id bn V " Id V bn where the last identity follows from the definition of the tensor product of maps. 4. For any f P Hom V pl, mq, f 1 P Hom V pl 1 , m 1 q, g P Hom V pk, lq, g 1 P Hom V pk 1 , l 1 q, v P V bk and v 1 P V bk 1 we have

pf b f 1 q ˝pg b g 1 qpv b v 1 q " pf b f 1 qpgpvq b g 1 pv 1 qq " pf ˝gqpvq b pf 1 ˝g1 qpv 1 q " rpf ˝gq b pf 1 ˝g1 qspv b v 1 q.
Thus, the horizontal and vertical concatenation are compatible.

5. The vertical concatenation and the action of S ˆSop are compatible by associativity of the composition product.

6. For any f P Hom V pk, lq, f 1 P Hom V pk 1 , l 1 q, σ P S l ,

σ 1 P S l 1 , v P V bk , v 1 P V bk 1 we have pσ.f q b pσ 1 .f 1 qpv b v 1 q " pθ σ ˝f q b pθ σ 1 ˝f 1 qpv b v 1 q " θ σ pf pvqq b pθ σ 1 f 1 pv 1 q " pθ σ b θ σ 1 qrf pvq b f 1 pv 1 qs " pσ b σ 1 q.pf b f 1 qpv b v 1 q.
Similarly, we have pf.τ q b pf 1 .τ 1 q " pf b f 1 q.pτ b τ 1 q and c l,l 1 ¨pf ˚f 1 q " pf 1 ˚f q ¨ck,k 1 , therefore the horizontal action of S ˆSop are compatible.

Remark 1.2.3. Let V be an n-dimensional K-vector space equipped with a basis pe 1 , ¨¨¨, e n q, and let pe 1 , ¨¨¨, e n q be the dual basis. We write v j " ř n k j "1 b k j j e k j the elements of V and v i "

ř n k i "1 a i k i e k i the elements of V ˚. Then an element f " v 1 b ¨¨¨b v k b v 1 b ¨¨¨b v l P Hom V pk, lq reads f " ÿ I, J a I J e J b e I ,
where, for two finite sequences I " pi 1 , ¨¨¨, i k q, J " pj 1 , ¨¨¨, j l q of k and l elements of rns, we have set e I :" e i 1 b ¨¨¨b e i k ; e J :" e j 1 b ¨¨¨b e j l and the a I J P K are coefficients built from sums of products of the coefficients a i k i and b k j j . In particular, an element of this ProP is completely determined by this collection of numbers a I J . We can therefore view f as a map from pairs of subsets I, J of rns with k and l elements respectively into K.

It follows that for any n-dimensional vector space V , Hom V is isomorphic as a ProP to the set of maps from pairs of finite sequences of elements of rns to K:

Hom V » pta : Seq k prnsq ˆSeq l prnsq ÝÑ Kuq k,lě0 .
1.3 The ProP of graphs: Gr oe Definition 1.3.1. A graph is a family G " pV pGq, EpGq, IpGq, OpGq, IOpGq, LpGq, s, t, α, βq, where:

1. V pGq (set of vertices), EpGq (set of internal edges), IpGq (set of input edges), OpGq (set of output edges), IOpGq (set of input-output edges) and LpGq (set of loops, that is to say edges with no endpoints) are finite (maybe empty) sets.

2. s : EpGq \ OpGq ÝÑ V pGq is a map (source map).

3. t : EpGq \ IpGq ÝÑ V pGq is a map (target map).

4. α : IpGq \ IOpGq ÝÑ ripGqs is a bijection, with ipGq " |IpGq| `|IOpGq| (indexation of the input edges).

5. β : OpGq \ IOpGq ÝÑ ropGqs is a bijection, with opGq " |OpGq| `|IOpGq| (indexation of the output edges).

Example 1.3.1. Here is a graph G :

V pGq " tx, yu, EpGq " ta, bu, IpGq " tc, du, OpGq " te, f u, IOpGq " tgu, LpGq " th, ku, and:

s : $ ' ' & ' ' % a Þ Ñ y b Þ Ñ x e Þ Ñ y f Þ Ñ y, t : $ ' ' & ' ' % a Þ Ñ x b Þ Ñ y c Þ Ñ x d Þ Ñ x, α : $ & % c Þ Ñ 1 d Þ Ñ 2 g Þ Ñ 3, β : $ & % e Þ Ñ 3 f Þ Ñ 1 g Þ Ñ 2.
This is graphically represented as follows:

1 3 2 ?>=< 89:; y e ? ? f _ _ ❃ ❃ ❃ ❃ ❃ ❃ ❃ ❃ a h < < k < < ?>=< 89:; x b Z Z 1 c ? ? ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ 2 d _ _ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ 3 g O O
Note that this graph contains two loops, represented by h < < and k < < . Remark 1.3.1. As explained in the introduction, although loops play a passive role in the presentation of a ProP, their role will be essential in the presentation of TraPs, see Section 5.3. Definition 1.3.2. Let G and G 1 be two graphs. An (resp. iso-)morphism of graphs from G to G 1 is a family of (resp. bijections) maps

f " pf V , f E , f I , f O , f IO , f L q with: f V : V pGq ÝÑ V pG 1 q, f E : EpGq ÝÑ EpG 1 q, f I : IpGq ÝÑ IpG 1 q, f O : OpGq ÝÑ OpG 1 q, f IO : IOpGq ÝÑ IOpG 1 q, f L : LpGq ÝÑ LpG 1 q,
such that:

s 1 ˝fE " f V ˝s|EpGq , s 1 ˝fO " f V ˝s|OpGq , t 1 ˝fE " f V ˝t|EpGq , t 1 ˝fI " f V ˝t|IpGq , α 1 ˝fI " α |IpGq , α 1 ˝fIO " α |IOpGq , β 1 ˝fO " β |OpGq , β 1 ˝fIO " β |IOpGq .
For any k, l P N 0 , we denote by Gr oe pk, lq the space generated by the isoclasses of graphs G such that ipGq " k and opGq " l, i.e. Gr oe pk, lq is the quotient space of graphs with k input edges and l output edges by the equivalence relation given by isomorphism.

In what follows, we shall write graphs for isoclasses of graphs.

Example 1.3.2. The isomorphism class of the graph of Example 1.3.1 is represented by:

1 3 2 /.-, ()*+ ? ? _ _ ❃ ❃ ❃ ❃ ❃ ❃ ❃ ❃ < < < < /.-, ()*+ 1 ? ? 2 _ _ ❃ ❃ ❃ ❃ ❃ ❃ ❃ ❃ 3 O O
We now want to equip the set Gr oe of isoclasses of graphs with a ProP structure.

• We first define the horizontal concatenation. If G and G 1 are two disjoint graphs, we define a graph G ˚G1 in the following way:

V pG ˚G1 q " V pGq \ V pG 1 q, EpG ˚G1 q " EpGq \ EpG 1 q, LpG ˚G1 q " LpGq \ LpG 1 q, IpG ˚G1 q " IpGq \ IpG 1 q, OpG ˚G1 q " OpGq \ OpG 1 q, IOpG ˚G1 q " IOpGq \ IOpG 1 q.

The source and target maps are given by:

s 2 |EpGq\OpGq " s, s 2 |EpG 1 q\OpG 1 q " s 1 , t 2 |EpGq\IpGq " t, t 2 |EpG 1 q\IpG 1 q " t 1 .
The indexations of the input and output edges are given by:

α 2 |IpGq\IOpGq " α, α 2 |IpG 1 q\IOpG 1 q " ipGq `α1 , β 2 |OpGq\IOpGq " β, β 2 |OpG 1 q\IOpG 1 q " opGq `β1
with an obvious abuse of notation in the definition of the second column. Notice that this product is not commutative in the usual sense for G ˚G1 and G 1 ˚G might differ by the indexation of their input and output edges. However, it is commutative in the sense of Axiom 6.(b) of ProPs. Roughly speaking, G ˚G1 is the disjoint union of G and G 1 , the input and output edges of G 1 being indexed after the input and output edges of G.

G

1 k . . . 1 l . . . ˚G1 1 k 1 . . . 1 l 1 . . . " G 1 k . . . 1 l . . . G 1 k `1 k `k1 . . . l `1 l `l1 . . . Example 1.3.3.
Here is an example of horizontal concatenation :

1 3 2 /.-, ()*+ _ _ ❃ ❃ ❃ ❃ ❃ ❃ ❃ ❃ O O /.-, ()*+ G G ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ 1 ? ? 2 _ _ ❃ ❃ ❃ ❃ ❃ ❃ ❃ ❃ ˚1 2 /.-, ()*+ ? ? _ _ ❃ ❃ ❃ ❃ ❃ ❃ ❃ ❃ 1 O O " 1 3 2 4 5 /.-, ()*+ _ _ ❃ ❃ ❃ ❃ ❃ ❃ ❃ ❃ O O /.-, ()*+ ? ? _ _ ❃ ❃ ❃ ❃ ❃ ❃ ❃ ❃ /.-, ()*+ G G ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ 1 ? ? 2 _ _ ❃ ❃ ❃ ❃ ❃ ❃ ❃ ❃ 3 O O
This product of graphs induces a product ˚: Gr oe pk, lq b Gr oe pk 1 , l 1 q ÝÑ Gr oe pk `k1 , l `l1 q. If G, G 1 and G 2 are three graphs, clearly

G ˚pG 1 ˚G2 q " pG ˚G1 q ˚G2 .
Hence, the product ˚is associative. Its unit I 0 is the unique graph such that V pI 0 q " EpI 0 q " IpI 0 q " OpI 0 q " IOpI 0 q " H.

• We now define the vertical concatenation. Let G and G 1 be disjoint graphs such that opGq " ipG 1 q. We define a graph G 2 " G 1 ˝G in the following way:

V pG 2 q " V pGq \ V pG 1 q,
EpG 2 q " EpGq \ EpG 1 q \ tpf, eq P OpGq ˆIpG 1 q : βpf q " α 1 pequ, IpG 2 q " IpGq \ tpf, eq P IOpGq ˆIpG 1 q : βpf q " α 1 pequ, OpG 2 q " OpGq \ tpf, eq P OpGq ˆIOpG 1 q : βpf q " α 1 pequ, IOpG 2 q " tpf, eq P IOpGq ˆIOpG 1 q : βpf q " α 1 pequ,

LpG 2 q " LpGq \ LpG 1 q.
Its source and target maps are given by:

s 2 |EpGq " s |EpGq , s 2 |EpG 1 q " s 1 |EpG 1 q , s 2 |OpG 1 q " s 1 |OpG 1 q , s 2 ppf, eqq " spf q, t 2 |EpGq " t |EpGq , t 2 |EpG 1 q " s 1 |EpG 1 q , t 2 |IpGq " s |IpGq , s 2 ppf, eqq " t 1 peq.
The indexations of its input and output edges are given by:

α 2 |IpGq " α |IpGq , α 2 ppf, eqq " αpf q, β 2 |OpG 1 q " β 1 |OpG 1 q , β 2 ppf, eqq " β 1 peq.
Roughly speaking, G 1 ˝G is obtained by gluing together the outgoing edges of G and the incoming edges of G 1 according to their indexation.

G 1 1 l . . . 1 m . . . ˝G 1 k . . . 1 l . . . " G 1 k . . . G 1 1 m . . . Example 1.3.4.
Here is an example of vertical concatenation :

2 1 /.-, ()*+ O O /.-, ()*+ o o O O l < < 1 ? ? 2 O O 3 O O ˝2 1 3 /.-, ()*+ O O > > /.-, ()*+ O O ? ? 1 ? ? 2 O O 3 O O 4 _ _ ❃ ❃ ❃ ❃ ❃ ❃ ❃ ❃ " 2 1 /.-, ()*+ O O /.-, ()*+ O O o o l < < /.-, ()*+ O O > > /.-, ()*+ g g O O 1 ? ? 2 O O 3 O O 4 _ _ ❃ ❃ ❃ ❃ ❃ ❃ ❃ ❃
Theorem 1.3.3. The family Gr oe " pGr oe k,l q k,lPN 0 , equipped with this S ˆSop -action and these horizontal and vertical concatenations, is a ProP.

Proof.

• We check the associativity of ˝. Let G, G 1 and G 2 be three graphs with opGq " ipG 1 q and opG 1 q " ipG 2 q. The graphs pG 2 ˝G1 q ˝G and G 2 ˝pG 1 ˝Gq may be different, but both are isomorphic to the graph H defined by:

V pHq " V pGq \ V pG 1 q \ V pG 2 q,
EpHq " EpGq \ EpG 1 q \ EpG 2 q \ tpf, eq P OpGq ˆIpG 1 q : βpf q " α 1 pequ \ tpf, eq P OpG 1 q ˆIpG 2 q : β 1 pf q " α 2 pequ \ tpf, f 1 , eq P OpGq ˆIOpG 1 q ˆIpG 2 q : βpf q " α 1 pf 1 q, β 1 pf 1 q " α 2 pequ,

IpHq " IpGq \ tpf, eq P IOpGq ˆIpG 1 q : βpf q " α 1 pequ \ tpf, f 1 , eq P IOpGq ˆIOpG 1 q ˆIpG 2 q : βpf q " α 1 pf 1 q, β 1 pf 1 q " α 2 pequ,

OpHq " OpG 2 q \ tpf, eq P OpG 1 q ˆIOpG 2 q : β 1 pf q " α 2 pequ \ tpf, f 1 , eq P OpGq ˆIOpG 1 q ˆIOpG 2 q : βpf q " α 1 pf 1 q, β 1 pf 1 q " α 2 pequ,

IOpHq " tpf, f 1 , eq P IOpGq ˆIOpG 1 q ˆIOpG 2 q : βpf q " α 1 pf 1 q, β 1 pf 1 q " α 2 pequ,

LpHq " LpGq \ LpG 1 q \ LpG 2 q,
with immediate source, target and indexation maps. So ˝induces an associative product ˝: Gr oe pl, mq b Gr oe pk, lq ÝÑ Gr oe pk, mq.

• Let I 1 be the graph such that

V pI 1 q " EpI 1 q " IpI 1 q " OpI 1 q " LpI 1 q " H, IOpI 1 q " r1s.

We show that I 1 is the unit for ˝: The indexation maps are both the identity of r1s. For any integer n P N 0 , I ˚n 1 is isomorphic to the graph I n such that V pI n q " EpI n q " IpI n q " OpI n q " LpI n q " H, IOpI n q " rns, the indexation maps being both the identity of rns. If G is a graph and k " ipGq, then H " G ˝Ik is the graph such that:

V pHq " V pGq, IpHq " tpαpeq, eq : e P IpGqu, EpHq " EpGq, IOpHq " tpαpeq, eq : e P IOpGqu, OpHq " OpGq, LpHq " LpGq, with immediate source, target and indexation maps. This graph H is isomorphic to G, via the isomorphism given by:

f V " Id V pGq , f I ppαpeq, eqq " e, f E " Id EpGq , f IO ppαpeq, eqq " e, f O " Id OpGq , f L " Id LpGq .
Similarly, I l ˝G and G are isomorphic. Hence, I 1 is the unit of ˝in Gr oe .

• We check the compatibility of the horizontal and vertical concatenations. Let G, G 1 , H and H 1 be graphs such that opGq " ipHq and opG 1 q " ipH 1 q. The graphs pH ˚H1 q ˝pG ˚G1 q and pH ˝Gq ˚pH 1 ˝G1 q are both equal to the graph K, such that:

V pKq " V pGq \ V pG 1 q \ V pHq \ V pH 1 q,
EpKq " EpGq \ EpG 1 q \ EpHq \ EpH 1 q \ tpf, eq P OpGq ˆIpHq : βpf q " α 1 pequ \ tpf, eq P OpG 1 q ˆIpH 1 q; βpf q " α 1 pequ,

IpKq " IpGq \ IpG 1 q \ tpf, eq P IOpGq ˆIpHq; βpf q " α 1 pequ \ tpf, eq P IOpG 1 q ˆIpH 1 q; βpf q " α 1 pequ,

OpKq " OpHq \ OpH 1 q \ tpf, eq P OpGq ˆIOpHq; βpf q " α 1 pequ \ tpf, eq P OpG 1 q ˆIOpH 1 q; βpf q " α 1 pequ, IOpKq " \tpf, eq P IOpGq ˆIOpHq; βpf q " α 1 pequ \ tpf, eq P IOpG 1 q ˆIOpH 1 q; βpf q " α 1 pequ,

LpKq " LpGq \ LpG 1 q \ LpHq \ LpH 1 q,
with obvious source, target and indexation maps. Hence, the vertical and the horizontal concatenations are compatible.

• We check the module structure of Gr oe over the symmetric group. Let G be a graph, σ P S opGq and τ P S ipGq . We set:

σ ¨G " pV pGq, EpGq, IpGq, OpGq, IOpGq, LpGq, s, t, α, σ ˝βq, G ¨τ " pV pGq, EpGq, IpGq, OpGq, IOpGq, LpGq, s, t, τ ´1 ˝α, βq.

This induces a structure of S ˆSop -module over Gr oe .

Let us prove the compatibility of this action with the vertical concatenation. Let G and G 1 be two graphs such that opGq " ipG 1 q, and let σ P S opG 1 q , τ P S opGq , ν P S ipGq . Clearly, the graphs σ ¨pG 1 ˝Gq and pσ ¨G1 q ˝G are equal; the graphs pG 1 ˝Gq ¨ν and G 1 ˝pG ¨νq are equal. Let us compare the graphs H " pG 1 ¨τ q ˝G and H 1 " G 1 ˝pτ ¨Gq. Their set of vertices coincide. Moreover:

EpHq " EpGq \ EpG 1 q \ tpf, eq P OpGq ˆIpG 1 q : βpf q " τ ´1 ˝α1 pequ, EpH 1 q " EpGq \ EpG 1 q \ tpf, eq P OpGq ˆIpG 1 q : τ ˝βpf q " α 1 pequ, so EpHq " EpH 1 q. Similarly, IpHq " IpH 1 q, OpHq " OpH 1 q, IOpHq " IOpH 1 q and LpHq " LpH 1 q. Moreover, the source, target and indexation maps are the same for H and H 1 , so H " H 1 .

• We finally prove the compatibility of the SˆS op -action with the horizontal composition.

Let G and G 1 be two graphs, σ P S opGq and σ 1 P S opG 1 q . We put H " pσ ¨Gq ˚pσ 1 ¨G1 q and H 1 " pσ b σ 1 q ¨pG ˚G1 q. They have the same set of vertices, whether internal, input, output and input-output edges, and the source, target and indexation of output edges maps for H and H 1 coincide. Both indexations of the set of output edges are given by:

σ 2 peq " # σ ˝βpeq if e P OpGq \ IOpGq, opGq `σ1 ˝β1 peq if e P OpG 1 q \ IOpG 1 q. So H " H 1 .
Let G and G 1 be graphs. We set H " c opGq,opG 1 q ¨pG ˚G1 q and H 1 " pG 1 ˚Gq ¨cipGq,ipG 1 q , where c m,n P S m`n was defined in (2). They have the same sets of vertices, internal, input, output and input-output edges, and the same source and target maps. The indexations maps are given by:

α H peq " # αpeq `ipG 1 q if e P IpGq \ IOpGq, α 1 peq if e P IpG 1 q \ IOpG 1 q, β H peq " # βpeq if e P OpGq \ IOpGq, β 1 peq `opGq if e P OpG 1 q \ IOpG 1 q, α H 1 peq " # α 1 peq if e P IpG 1 q \ IOpG 1 q, αpeq `ipG 1 q if e P IpGq \ IOpGq, β H 1 peq " # β 1 peq `opGq if e P OpG 1 q \ IOpG 1 q, βpeq if e P OpGq \ IOpGq, so H " H 1 .
2 The ProP of continuous morphisms: Hom c V We now generalise the ProP Hom V of Subsection 1.2 to a ProP Hom c V (the superscript "c" for continuous) for a topological vector space V .

We work in the context of nuclear Fréchet spaces. One could relax these conditions (for example Fréchet could be replaced by barreled) yet the nuclear setup is comfortable to work in and general enough for our purposes. We refer the reader to [START_REF] Treves | Topological Vector Spaces, Distributions and Kernels[END_REF] for the more general cases.

Fréchet nuclear spaces

Nuclear spaces were defined in the seminal work [START_REF] Grothendieck | Produits tensoriels topologiques et espaces nucléaires[END_REF]. Most of the results stated here can be found in [START_REF] Grothendieck | Résumé des résultats essentiels dans la théorie des produits tensoriels topologiques et des espaces nucléaires[END_REF][START_REF] Grothendieck | Produits tensoriels topologiques et espaces nucléaires[END_REF]. We also refer to the more recent presentation [START_REF] Treves | Topological Vector Spaces, Distributions and Kernels[END_REF].

We recall that

• A topological vector space is Fréchet if it is Hausdorff, has its topology induced by a family of semi-norms and is complete with respect to this family of semi-norms.

• A topological vector space is called reflexive if E 2 " pE 1 q 1 " E, where E 1 is the topological dual of E.

In the following E and F are two topological vector spaces and Hom c pE, F q is the set of continuous linear maps from E to F .

Remark 2.1.1. When E and F are finite dimensional, we have Hom c pE, F q=HompE, F q.

In order to build the Hom ProP in the infinite dimensional case, we need Grothendieck's completion of the tensor product, a notion we recall here in the setup of locally convex topological K-vector spaces.

Let E and F be two vector spaces. Recall that there exists a vector space EbF , and a bilinear map φ : E ˆF ÝÑ E b F such that for any vector space V and bilinear map f : E ˆF ÝÑ V , there is a unique linear map f :

E b F Ñ V satisfying f " f ˝φ.
The space E b F is unique modulo isomorphism and is called the tensor product of E and F .

Given two topological vector spaces, E and F one can a priori equip E b F with several topologies, among which the ǫ-topology and the projective topology whose construction are recalled in Appendix A. We denote by E b ǫ F (resp. E b π F ) the space E b F endowed with the ǫ-topology (resp. the projective topology) and by

E p b ǫ F (resp. E p b ǫ F ) of E b ǫ F (resp. E b ǫ F
) their completion with respect to the ǫ-topology (resp. projective topology). These two spaces differ in general but coincide for nuclear spaces.

Definition 2.1.1. [Gro54] A locally convex topological vector space E is nuclear if, and only if, for any locally convex topological vector space F ,

E p b ǫ F " E p b π F ": E p bF
holds, in which case E p bF is called the completed tensor product of E and F .

There are other equivalent definitions of nuclearity, see for example [START_REF] Gelfand | Applications of Harmonic Analysis[END_REF][START_REF] Hida | Lectures on White Noise Functionals[END_REF]. Given a locally convex topological vector space E, its topological dual E 1 can be endowed with various topologies. An important one for our applications will be the strong topology, generated by the family of semi-norms of E 1 defined, on any f P E 1 : ||f || B :" sup xPB |f pxq| for any bounded set B of E. The topological dual E 1 endowed with this topology is called the strong dual.

For Fréchet spaces, nuclearity is preserved under strong duality.

Proposition 2.1.2.

• [Tre67, Proposition 50.6] A Fréchet space is nuclear if and only if its strong dual is nuclear.

• [Tre67, Proposition 36.5] A Fréchet nuclear space is reflexive.

Many spaces relevant to renormalisation issues are Fréchet and nuclear. We list here some examples.

Example 2.1.1. Any finite dimensional vector space can be equipped with a norm and for any of these norms, they are trivially Banach, hence Fréchet and nuclear. If E and F are finite dimensional vector spaces we have Hom c pE, F q " HompE, F q » E ˚b F , where HompE, F q stands for the space of F -valued linear maps on E and where the dual E ˚is the algebraic dual.

Example 2.1.2. Let U be an open subset of R n . Take E " C 8 pU q ": EpU q. The topological dual is the space E 1 " E 1 pU q of distributions on U with compact support.

Then E is Fréchet ( [START_REF] Treves | Topological Vector Spaces, Distributions and Kernels[END_REF], pp. 86-89), and E 1 is nuclear ( [START_REF] Treves | Topological Vector Spaces, Distributions and Kernels[END_REF], Corollary p. 530). By Proposition 2.1.2, E is also nuclear.

Remark 2.1.2. Note that the dual E 1 of a Fréchet space E is never a Fréchet space (for any of the natural topologies on E 1 ), unless E is actually a Banach space (see for example [START_REF] Köthe | Topological vector spaces[END_REF]). In particular, E 1 pU q is generally not Fréchet.

We now sum up various results of [START_REF] Treves | Topological Vector Spaces, Distributions and Kernels[END_REF] of importance for later purposes.

Theorem 2.1.3. [Tre67, Equations (50.17)-(50.19)] Let E and F be two Fréchet spaces, with E nuclear. The following isomorphisms of topological vector spaces hold.

E 1 p bF » Hom c pE, F q (4) E p bF » Hom c pE 1 , F q (5) E 1 p bF 1 » pE p bF q 1 » B c pE ˆF, Kq. (6) 
with B c pE ˆF, Kq the set of continuous bilinear maps K : E ˆF ÝÑ K. Here the duals are endowed with the strong dual topology, Hom c pE, F q with the strong topology and B c pE ˆF, Kq with the topology of uniform convergence on products of bounded sets.

We also need the stability of Fréchet nuclear spaces under completed tensor products, for which we need the following lemma. 

¯1 » `V 1 ˘p bk (7) 
holds for any k ě 1, where the duals are endowed with their strong topologies.

Proof. Let V be a Fréchet nuclear space. The case k " 1 is trivial. Then Equation (7) with k " 2 holds by Equation ( 6) with E " F " V . The cases k ě 2 are proved by induction, using E " V p bk´1 and F " V . The induction holds by Lemma 2.1.4.

A ProP for Fréchet nuclear spaces

We start by recalling the definition of distributions over a finite dimensional smooth manifold X. We quote [Hö89, Definition 6.3.3].

Definition 2.2.1. To every coordinate system κ :

U k Ă X ÝÑ V k Ă R n we associate a distribu- tion u k P D 1 pV k q such that u k 1 " pκ ˝κ1´1 q ˚uk in κ 1 pU k X U k 1 q;
with pκ ˝κ1´1 q ˚uk the pullback of u k by κ ˝κ1´1 whose existence and uniqueness is given by [Hö89, Theorem 6.1.2]. Then the system u k of distributions is called a distribution on X. The set of distributions on X is written D 1 pXq. Similarly we define E 1 pXq, the set of distributions with compact support.

Proposition 2.2.2. EpXq is a Fréchet nuclear space.

It is a classical result of functional analysis that the space of functions over a smooth manifold is Fréchet (see for example [vdBC13, Exercise 2.3.2]). The fact that the same space is nuclear is a folklore result, often stated without proof nor references. A proof was recently given in [START_REF] Brouder | Properties of field functionals and characterization of local functionals[END_REF]p. 4].

It then follows from Proposition 2.1.2, that the space E 1 pXq is also nuclear.

Remark 2.2.1. (Compare with Remark 2.1.2). Note that the space E 1 pXq is not Fréchet since the dual of a Fréchet space F is Fréchet if and only if F is Banach (see for example [START_REF] Köthe | Topological vector spaces[END_REF]) which is not the case of EpXq.

One further useful result is

Proposition 2.2.3. Let X and Y be two finite dimensional smooth manifolds. Then

Hom c pE 1 pXq, EpY qq » EpXq p b EpY q » EpX ˆY q holds.
The second isomorphism [Gro52, Chap. 5, p. 105] can be proved using a version of the Schwartz kernel theorem for smoothing operators [vdBC13, Theorem 2.4.5] by means of the identification Hom c pE 1 pXq, EpY qq » EpX ˆY q. The result then follows from (5) applied to EpXq and EpY q which are Fréchet nuclear spaces. Definition 2.2.4. Let V be a Fréchet nuclear space. For any k, l P N 0 , we set

Hom c V pk, lq " Hom c pV bk , V bl q » pV 1 q p bk p bV p bl ,
where, as before V 1 stands for the strong topological dual. Furthermore we set Hom c V :" pHom c

V pk, lqq k,lě0 . For any σ P S n , let θ σ be the endomorphism of V bn defined by

θ σ pv 1 b . . . b v n q " v σ ´1p1q b . . . b v σ ´1pnq .
It extends to a continuous linear map θ σ on the closure V p bn . For any f P Hom c V pk, lq, σ P S l , τ P S k , we set:

σ ¨f " θ σ ˝f, f ¨τ " f ˝θτ .
In the above definition, the superscript "c" stands for continuous. The family Hom c V carries a ProP structure.

Theorem 2.2.5. Let V be a Fréchet nuclear space. Hom c V , with the action of S ˆSop described above, is a ProP. Its horizontal concatenation is the usual (topological) tensor product of maps with I 0 : K ÝÑ K is the constant map I 0 pxq :" 1 K and its vertical concatenation is the usual composition of maps and I 1 : V ÝÑ V is the identity map.

Proof. The proof is exactly the same as the proof of Definition-Proposition 1. 3 Freeness of the ProP Gr oe of graphs

The goal of this section is to build free ProPs generated by indecomposable graphs (see Definition 3.1.1 below). A free ProP was already described by Hackney and Robertson in [START_REF] Hackney | On the category of PROPs[END_REF].

Their construction is on the category of "megagraphs", which are special types of graphs with decorations on their vertices and edges. Their work is categorical and not very adapted for the applications we have in mind, which require a more explicit description of the structures at hand. This is why we carry out the proof of the freeness of the ProP introduced in subsection 1.3. The complete proof of the main theorem (Theorem 3.2.1) is postponed to Appendix C.1.

Indecomposable graphs

Definition 3.1.1. We call a graph G indecomposable if the five following conditions hold:

1. V pGq ‰ H.

2.

IOpGq " H.

3.

LpGq " H or G is reduced to a single loop.

4. If G 1 and G 2 are two graphs such that G " G 1 ˝G2 , then V pG 1 q " H or V pG 2 q " H.

5.

If G 1 and G 2 are two graphs and σ, τ are two permutations such that G " σ ¨pG 1 ˚G2 q ¨τ , then V pG 1 q " H or V pG 2 q " H.

For any k, l P N 0 , the subspace of Gr oe pk, lq generated by isoclasses of indecomposable graphs G with ipGq " k and opGq " l is denoted by Gr oe ind pk, lq. Remark 3.1.1.

1. The permutations in the fifth item of the definition of indecomposable graphs play an important role: without them, one would allow for non connected graphs to be indecomposable, which can well happen when the indexations of the inputs and outputs of the various connected components do not match. For example, the graph

1 2 3 4 /.-, ()*+ O O ? ? /.-, ()*+ O O ? ? 1 O O 3 _ _ ❃ ❃ ❃ ❃ ❃ ❃ ❃ ❃ 2 O O
would be indecomposable. Permuting inputs we obtain

1 2 3 4 /.-, ()*+ O O ? ? /.-, ()*+ O O ? ? 1 O O 2 _ _ ❃ ❃ ❃ ❃ ❃ ❃ ❃ ❃ 3 O O
which is decomposable. The same requirement does not arise for the vertical concatenation since one can write σ.pP ˝Qq.τ " pσ.P q ˝pQ.τ q " P 1 ˝Q1 .

2. There is one special indecomposable graph O, formed by a unique loop. The other indecomposable graphs have no loop.

Proposition 3.1.2. Let G be a graph, σ P S opGq and τ P S ipGq . Then G is indecomposable if, and only if, σ ¨G ¨τ is indecomposable.

Proof. Let us assume that H " σ ¨G ¨τ is indecomposable. Then V pGq " V pHq ‰ H and IOpGq " IOpHq " H. Let us assume that G " G 1 ˝G2 . Then:

H " σ ¨pG 1 ˝G2 q ¨τ " pσ ¨G1 q ˝pG 2 ¨τ q.

As H is indecomposable, V pG 1 q " V pσ ¨G1 q " H or V pG 2 q " V pG 2 ¨τ q " H. Let us assume that G " σ 1 ¨pG 1 ˚G2 q ¨τ 1 . Then:

H " σ ¨pσ 1 ¨pG 1 ˚G2 q ¨τ 1 q ¨τ " ppσσ 1 q ¨G1 q ˚pG 2 ¨pτ τ 1 qq.

As H is indecomposable, V pG 1 q " V ppσσ 1 q ¨G1 q " H or V pG 2 q " V pG 2 ¨pτ τ 1 qq " H.

Conversely, if G is indecomposable, then G " σ ´1 ¨H ¨τ ´1 is indecomposable, so H is indecomposable.

Notations 3.1.1. Let G be a graph.

1. Let J Ď V pGq. We define (non uniquely due to the non uniqueness of the maps α 1 and β 1 ) the graph G |J by:

V pG |J q " J, EpG |J q " te P EpGq : speq P J, tpeq P Ju, IpG |J q " te P IpGq : tpeq P Ju \ te P EpGq : speq R J, tpeq P Ju, OpG |J q " te P OpGq : speq P Ju \ te P EpGq : speq P J, tpeq R Ju,

IOpG |J q " IOpGq, LpG |J q " H.
The source and target maps are defined by: @e P EpG |J q \ OpG |J q, s G |J peq " speq,

@e P EpG |J q \ IpG |J q, t G |J peq " tpeq,
The indexation of the input edges is any indexation map α 1 such that: @e, e 1 P pIpGq \ IOpGqq X `IpG |J q \ IOpG |J q ˘, α 1 peq ă α 1 pe 1 q ðñ αpeq ă αpe 1 q.

The indexation of the output edges is any indexation map β 1 such that: @f, f 1 P pOpGq \ IOpGqq X `OpG |J q \ IOpG |J q ˘, β 1 pf q ă β 1 pf 1 q ðñ βpf q ă βpf 1 q.

2. We denote by G the graph defined by:

V p Gq " V pGq, Ep Gq " EpGq, Lp Gq " H, Ip Gq " IpGq, Op Gq " OpGq, IOp Gq " H, s " s, t " t.
The indexation of the input edges is the unique indexation map α such that: @e, e 1 P IpGq, αpeq ă αpe 1 q ðñ αpeq ă αpe 1 q.

The indexation of the output edges is the unique indexation map β such that: @f, f 2 P OpGq, βpf q ă βpf 1 q ðñ βpf q ă βpf 1 q.

Roughly speaking, G is obtained from G by deletion of all the input-output edges and all the loops.

Definition 3.1.3. Let G be a graph.

1. A path in G is a sequence p " pe 1 , . . . , e k q of internal edges of G such that for any i P rk´1s, tpe i q " spe i`1 q. The source of p is spe 1 q and its target is tpe k q, and we shall say that p is a path from spe 1 q to tpe k q of length k. By convention, for any x P V pGq, there exists a unique path from x to x of length 0.

2. We shall say that a path p is a cycle if its source and its target are equal and if its length is nonzero.

Remark 3.1.2. A cycle of length one is to be distinguished from a loop.

We consider oriented-pathwise connected components of graphs.

Lemma 3.1.4. Let G be a graph such that V pGq ‰ H. We denote by OpGq the set of nonempty subsets I of V pGq such that for any x P I, for any y P V pGq, if there exists a path in G from x to y, then y P I. Then:

1. If I, J P OpGq, either I X J " H or I X J P OpGq.

2. For any x P V pGq, there exists a unique element xxy P OpGq which contains x and is minimal for the inclusion. Moreover:

xxy " ty P V pGq : there exists a path in G from x to yu.

Notice that, if G x is the connected component of G that contains x, then xxy Ď G x , but we do not necessarily have an equality, as the edges are oriented.

Proof. 1. If I X J ‰ H, let x P I X J and y P V pGq such that there exists a path in G from x to y. As I, J P OpGq, y P I X J, so I X J P OpGq.

2. Note that V pGq P OpGq. Let x P V pGq; by the first item, the following element of OpGq is the minimal (for the inclusion) element of OpGq that contains x:

xxy " č IPOpGq, xPI
I.

On the one hand, a set I in OpGq contains x if and only if any path emanating from x ends at an element of I. So it contains all the ending vertices of such paths and hence the set I x :" ty P V pGq : there exists a path in G from x to yu.

Thus, I x Ď xxy. On the other hand, let y P I and z P V pGq, such that there exists a path from y to z in G. As there exists a path from x to y in G, there exists a path from x to z, so z P I x . Hence, I x lies in OpGq which in turn contains x, so xxy Ď I x .

Proposition 3.1.5. Let G be a graph such that V pGq ‰ H. We denote by J 1 , . . . , J k the minimal elements (for the inclusion) of the set OpGq of nonempty subsets I of V pGq stable under paths as in Lemma 3.1.4, and we set G i " G|J i for any i P rks. Then G 1 , . . . , G k are indecomposable graphs with no loop and there exists a graph G 0 with no loop, integers p, ℓ and a permutation γ such that: G « pγ ¨pG 1 ˚. . . ˚Gk ˚Ip q ˝G0 q ˚O˚ℓ , where, as before O is the indecomposable graph formed by a unique loop. Such a decomposition will be called minimal.

Proof. By definition, V pG i q " J i ‰ H and IOpG i q " H for any i. Let us assume that G i " G 1 ˝G2 . If V pG 1 q ‰ H, then clearly V pG 1 q P OpG i q and, as J i P OpGq, we deduce that V pG 1 q P OpGq. As J i is minimal in OpGq, V pG 1 q " J i " V pG i q, so V pG 2 q " H. Similarly, if G i " σ ¨pG 1 ˚G2 q ¨τ , then V pG 1 q " H or V pG 2 q " H: we proved that G i is indecomposable. Let us assume that I " V pG i q X V pG j q ‰ H. Then I P OpGq and, by minimality of J i and J j , J i " J j " I, so the J i are disjoint.

Let us set K :" V pGqzpJ 1 Y . . . Y J k q and G 1 :" G |K . As J 1 , . . . , J k lie in OpGq, there is no internal edge of G from a vertex of G i to a vertex of G 1 , and any outgoing edge of G 1 is either glued in G to an incoming edge of G i or is an outgoing edge of G. Hence, there exists permutations γ, σ and τ , and three integers p :" |IOpGq|, q :" |te P IpGq : tpeq P J 1 Y . . . Y J k u| and ℓ :" |LpGq| such that:

G " γ ¨pG 1 ˚. . . ˚Gk ˚Ip q ˝pσ ¨pI q ˚G1 q ¨τ q ˚O˚ℓ .

We conclude in taking G 0 " σ ¨pI q ˚G1 q ¨τ .

Note that this decomposition is not unique: it depends on the indexation of the minimal elements of OpGq and of the choice of the indexation of their input and output edges. Importantly, it depends only on that. Proposition 3.1.6. Let G be a graph such that V pGq ‰ H and IOpGq " H. The graph G is indecomposable if, and only if, LpGq " H and for any x, y P V pGq, there exists a path from x to y in G.

Proof. First notice that if |V pGq| " 1 the result trivially holds. In the following, we therefore assume that |V pGq| ě 2.

Let G " γ ¨pG 1 ˚. . . ˚Gk ˚Ip q ˝G0 ˚O˚ℓ a minimal decomposition of G. ùñ Note that V pG 1 q ‰ H. As G is indecomposable, necessarily ℓ " 0, V pG 0 q " H, and there exists a permutation τ P S p such that G 0 " I q ¨τ . Therefore, G " γ ¨pG 1 ˚. . . ˚Gk ˚Ip q ¨τ . As G is indecomposable, k " 1 and V pGq " V pG 1 q " J 1 . Hence, V pG 1 q is both a minimal and the maximal element of OpGq, which is consequently reduced to the singleton tV pGqu. Therefore, for any x P V pGq, xxy " V pGq, so for any y P V pGq, there exists a path from x to y in G.

ðù Firstly, note that LpGq " H ñ ℓ " 0. If k ě 2, there is no path in G from any vertex of G 1 to any vertex of G 2 , so k " 1. Thus, V pG 0 q " H and there exists a permutation τ such that G 0 " I p ¨τ . We obtain that G " γ ¨pG 1 ˚Ip q ¨τ.

As IOpGq " H, we obtain that p " 0, so G " γ ¨G ¨τ is indecomposable.

Remark 3.1.3. Another way to formulate the above Proposition is to say that a graph G is indecomposable if, and only if, one (and only one) of the following conditions holds:

• G " O.

• G has no loop, is connected and for any of its vertices x, a cycle of strictly positive length goes through x.

Freeness of Gr oe

We now state and give a sketch of the proof of one of the main results of this section, namely the freeness of the ProP Gr oe . To our knowledge, this result is new.

Theorem 3.2.1. Let P be a ProP and φ : Gr oe ind ÝÑ P be a morphism of S ˆSop -modules. There exists a unique ProP morphism Φ : Gr oe ÝÑ P such that Φ |Gr oe ind " φ. In other words, Gr oe is the free ProP generated by Gr oe ind . Proof. We provide here a sketch of the proof, and refer the reader to Appendix C.1 for a full proof. We define ΦpGq for any graph G by induction on its number n of vertices. If n " 0, there exists a permutation σ P S k such that G " σ ¨Ik . We set ΦpGq " σ ¨Ik .

If n ą 0 and G is indecomposable, we set ΦpGq " φpGq. Otherwise, let G " γ ¨pG 1 ˚. . . ˚Gk ˚Ip q ˝G0 ˚O˚ℓ be a minimal decomposition of G. As V pG 1 q ‰ H, |V pG 0 q| ă n, we set:

ΦpGq " γ ¨pφpG 1 q ˚. . . ˚φpG k q ˚Ip q ˝ΦpG 0 q ˚φpOq ˚ℓ.

One can prove that this does not depend on the choice of the minimal decomposition of G with the help of the ProP axioms applied to P . Using minimal decompositions of vertical or horizontal concatenations of graphs, one can show that Φ is compatible with both concatenations.

Cycleless graphs

Definition 3.3.1. For any k, l P N 0 , we denote by Gr Ò pk, lq the subspace of Gr oe pk, lq generated by the graphs which do not contain any cycle nor any loop. Note that Gr Ò is a SˆS op -sub-module of Gr oe . As before, we write Gr Ò ind for the set of indecomposable cycleless and loopless graphs in Gr Ò .

A simple yet important observation is the following.

Proposition 3.3.2. Gr Ò is a sub-ProP of Gr oe .

Proof. First, notice that I 0 and I 1 are in Gr Ò . Let us check the stability of Gr Ò under the horizontal and vertical concatenation.

Let G 1 , G 2 be two graphs without cycle. By construction, there is no edge e of G 1 ˚G2 such that speq P V pG 1 q and tpeq P V pG 2 q, or such that speq P V pG 2 q and tpeq P V pG 1 q. So a cycle in G 1 ˚G2 is a cycle in G 1 or G 2 . Thus Gr Ò is stable by horizontal concatenation.

Similarly, let G 1 , G 2 be two graphs without cycle such that G 1 ˝G2 is defined. Then using the same argument, a cycle of G 1 ˝G2 must either be a cycle of G 1 , a cycle of G 2 (both being contradictions) or contain an edge e such that speq P V pG 1 q and tpeq P V pG 2 q. This contradicts the definition of ˝for graphs.

In this particular example, we recover the description of a free ProP in terms of oriented graphs [START_REF] Vallette | Dualité de Koszul des PROPs[END_REF][START_REF] Vallette | Free monoid in monoidal abelian categories[END_REF]: Proposition 3.3.3. For any k, l P N 0 , we denote by G k,l the graph such that:

V pG k,l q " t‹u, IpG k,l q " rks, IOpG k,l q " H, EpG k,l q " H, OpG k,l q " rls LpG k,l q " H.

For any i P rks, for any j P rls:

αpiq " i, βpjq " j, tpiq " ‹, spjq " ‹.

These graphs generate a trivial S ˆSop -module Gr Ò ind , and Gr Ò is the free ProP generated by Gr Ò ind .

Graphically, G k,l is represented as follows:

1 2 . . . l ´1 l /.-, ()*+ 5 5 • • • • • • • • • • • • • • • • • • • ; ; ✇ ✇ ✇ ✇ ✇ ✇ ✇ ✇ ✇ ❆❆ ❆ ❆ ❆ ❆ ❆ ❆ g g ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ 1 7 7 ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ 2 > > ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ . . . k ´1 c c • • • • • • • • • k i i | | | | | | | | | | | | | | | | | | (8) 
Proof. For any permutations σ P S l , τ P S k , σ ¨Gk,l ¨τ is isomorphic to G k,l , through the isomorphism defined by:

f V " Id t‹u , f I " τ ´1, f O " σ.
so indeed these graphs generate a trivial S ˆSop -module. Since sub-graphs of a graph without cycle, are without cycle, the following is an easy consequence of Proposition 3.1.5. Lemma 3.3.4. Let G be a graph without cycle and without loop, such that V pGq ‰ H, then a minimal decomposition G « γ ¨pG 1 ˚. . . ˚Gk ˚Ip q ˝G0 yields a decomposition without cycles. Note that, as G has no loop, ℓ " 0.

Let G be an indecomposable graph without cycle nor loop and let us assume that V pGq ě 2. Let x ‰ y in V pGq. As G is indecomposable, by Proposition 3.1.6, there exists a path pe 1 , . . . , e k q from x to y in G and a path pf 1 , . . . , f l q from y to x in G. Hence, there exists a cycle pe 1 , . . . , e k , f 1 , . . . , f l q in G: this is a contradiction. We obtain that V pGq is reduced to a single element. As IOpGq " LpGq " H, G " G ipGq,opGq . This gives:

Gr Ò X Gr oe ind " Gr Ò ind . As Gr oe is the free ProP generated by Gr oe ind , for any S ˆSop -sub-module P of Gr oe ind , the sub-ProP of Gr oe generated by P is freely generated by P . This holds in particular for Gr Ò ind . It remains to prove that the sub-ProP xGr Ò ind y generated by Gr Ò ind is Gr Ò . Clearly, if G and G 1 are graphs without cycles, then G ˚G1 and G ˝G1 are without cycles, so Gr Ò is a sub-ProP of Gr oe , which contains Gr Ò ind . Consequently, xGr Ò ind y Ď Gr Ò . Conversely, let G be a graph without cycle and let us prove that G P xGr Ò ind y by induction on n " |V pGq|. If n " 0, then G " σ ¨Ik for a certain permutation σ P S k , so G belongs to xGr Ò ind y. Otherwise, let us consider a minimal decomposition of G in Gr c (see Lemma 3.3.4):

G " γ ¨pG 1 ˚. . . ˚Gk ˚Ip q ˝G0 .
Since G 1 , . . . , G k are indecomposable, they lie in Gr Ò ind . Since k ě 1 and V pG i q ‰ H we have G 0 P xGr Ò ind y by the induction hypothesis, so G P xGr Ò ind y. Remark 3.3.1. One can also work with graphs with various types of edges: each edge e (internal, input, output or input-output) of the graph under consideration has a type typepeq, chosen in a fixed set of types T . The horizontal composition of two graphs G and G 1 exists in any case, whereas their vertical concatenation exists if, and only if, for any i P ropGqs, the type of the output edge β ´1piq of G and the type of the input edge α ´1piq of G 1 are the same. One obtains a T -coloured ProP, and one can prove similarly a freeness result. Restricting to typed graphs without cycles, we obtain a free T -coloured ProP generated by graphs with only one vertex (and no input-output edge).

Planar graphs and free ProPs

We recall from Definition 1.3.1 that s : EpGq \ OpGq ÝÑ V pGq stands for the source map and t : EpGq \ IpGq ÝÑ V pGq stands for the target map. Definition 3.4.1. Let G be a graph and v P EpGq be a vertex of G. We put:

Ipvq " te P IpGq \ EpGq, tpeq " vu, Opvq " te P OpGq \ EpGq, speq " vu.

We also set ipvq " |Ipvq| and opvq " |Opvq|.

The number ipvq (resp. opvq) counts the number of input (resp. output) edges and ingoing (resp. outgoing) arrows at the vertex v. Definition 3.4.2. A planar graph is a graph G such that, for any vertex v P V pGq, Ipvq and Opvq are totally ordered. The set of planar graphs is denoted by PGr oe and the set of planar graphs with no cycle and no loop is denoted by PGr Ò . The set of planar graphs G (resp. of planar graphs G with no cycle and no loop) with |IpGq| `|IOpGq| " k and rOpGq| `|IOpGq| " l is denoted by PGr oe pk, lq (resp. by PGr Ò pk, lq).

Graphically, we shall represent the orders on the incoming and outgoing edges of a vertex by drawing the vertices by boxes, the incoming and outgoing edges of any vertex being ordered from left to right. For example, we distinguish the two following situations: Remark 3.4.1. This notion of planarity is not the usual one used in graph theory, as we authorise crossings of edges.

Since a planar graph is a graph, the horizontal and vertical concatenation of planar graphs are defined by the concatenations of the underlying graphs, which preserve the orders around each of the vertices. It is a simple exercise to check that PGr oe is still a S ˆSop -module and we left it to the reader. Hence, PGr oe inherits a ProP structure from Gr oe . As before, PGr Ò is a sub-ProP of PGr oe .

We shall say that a planar graph is indecomposable if the underlying graph is indecomposable. The set PGr oe ind of indecomposable planar graphs forms a S ˆSop -module. We then obtain a minimal decomposition of planar graphs similar to the one of Proposition 3.1.5. For any k, l P N, we denote by P G k,l the planar graph obtained from G k,l by ordering the sets rks and rls of incoming and outgoing edges of the unique vertex ‹ by their usual orders. We obtain the planar counterpart of Theorem 3.2.1.

Theorem 3.4.3.

1. Let P be a ProP and φ : PGr oe ind ÝÑ P be a morphism of S ˆSopmodules. There exists a unique ProP morphism Φ : Gr oe ÝÑ P such that Φ |PGr oe ind " φ.

In other words, PGr oe is the free ProP generated by PGr oe ind .

2. The planar graphs P G k,l generate a free S ˆSop -module PGr Ò ind , and PGr Ò is the free ProP generated by PGr Ò ind .

Graphs decorated by ProPs and endofunctors of ProPs

This section is motivated by Feynman graphs, in which case the decorations are distribution kernels. Since we expect to be able to equip the later with a ProP structure, we study here graphs decorated by ProPs. The results of Section 3 then allow us to build a endofunctor Γ Ò on the category of ProPs.

4.1 The ProP Gr oe pXq of decorated graphs as a free ProP Throughout this paragraph, X " pX k,l q k,lě0 is a family of sets.

Definition 4.1.1. A graph decorated by X (or X-decorated graph, or simply decorated graph) is a couple pG, d G q with G a graph as in Definition 1.3.1 and

d G : V pGq ÝÑ ğ k,lPN 0 X k,l a map,
such that for any vertex v P V pGq, d G pvq P X ipvq,opvq . We denote by Gr oe pXq (resp. Gr Ò pXq) the set of graphs (resp. the set of cycleless graphs) decorated by X. We define similarly X-decorated planar graphs and we denote by PGr oe pXq (resp. PGr Ò pXq) the set of planar graphs (resp. the set of cycleless planar graphs) decorated by X.

Most of the results on graphs naturally generalise to X-decorated graphs. In particular, we have the horizontal (resp. vertical) concatenation of graphs, denoted by ˚(resp. ˝):

pG, d G q ˚pG 1 , d G 1 q " pG ˚G1 , d G˚G 1 q, pG, d G q ˝pG 1 , d G 1 q " pG ˝G1 , d G˝G 1 q.
The set of vertices of G ˚G1 and G 1 ˝G1 both being the disjoint union V pGq \ V pG 1 q of the vertices of G and G 1 , we define

d G˚G 1 " d G˝G 1 on the set V pGq Y V pG 1 q by d G˚G 1 | V pGq :" d G , d G˚G 1 | V pG 1 q :" d G 1 .
Furthermore, the actions on the left and on the right of the permutation group on Gr oe extend to actions on Gr oe pXq since the aforementioned actions leave the set of vertices of a graph invariant. Here are the decorated and cycleless versions of Theorem 1.3.3, which to our knowledge is new: Theorem 4.1.2. The families Gr oe pXq and PGr oe pXq, equipped the above S ˆSop -action and the above horizontal and vertical concatenations, are ProPs. The family Gr Ò pXq is a sub-ProP of Gr oe pXq and the family PGr Ò pXq is a sub-ProP of PGr oe pXq.

Proposition 3.1.5 generalises to the case of decorated graphs.

Proposition 4.1.3. Let pG, d G q be an X-decorated graph such that V pGq ‰ H. We denote by J 1 , . . . , J k the minimal elements (for the inclusion) of OpGq. As before, we set G i " G|J i and d i " d G | J i for any i P rks. Then there exists an X-decorated graph pG 0 , d 0 q with no loop, integers p, ℓ and a permutation γ such that:

pG, d G q « γ ¨ppG 1 , d 1 q ˚. . . ˚pG k , d k q ˚Ip q ˝pG 0 , d 0 q ˚O˚ℓ .
As in the non decorated case, we call such a decomposition minimal.

Proof. By Proposition 3.1.5, G admits a minimal decomposition

G « γ ¨pG 1 ˚. . . ˚Gk ˚Ip q ˝G0
˚O˚ℓ .

We observe that we can identify the vertices of G 0 with those of GzpG 1 \ ¨¨¨\ G k q. We can therefore set d 0 :" d G | V pGqzpV pG 1 q\¨¨¨\V pG k qq . The result then follows from the definition of the actions of the permutation group on Gr oe pXq using the horizontal and vertical concatenations.

As in the non decorated case, we denote by Gr oe ind pXq (resp. Gr Ò ind pXq) the indecomposable graphs (resp. the cycleless indecomposable graphs) decorated by X. Notice that the graphs pG i , d i q; for i P rks, are indecomposable. We define PGr oe ind pXq and PGr Ò ind pXq similarly. The key result of this paragraph is the decorated version of the universal property (Theorem 3.2.1). Theorem 4.1.4.

1. Let P be a ProP and φ : Gr oe ind pXq ÝÑ P be a morphism of S ˆSopmodules. There exists a unique ProP morphism Φ : Gr oe pXq ÝÑ P such that Φ |Gr oe ind pXq " φ. In other words, Gr oe pXq is the free ProP generated by the S ˆSop -module Gr oe ind pXq. Furthermore, Gr Ò pXq is the free ProP generated by the S ˆSop -module Gr Ò ind pXq, which is isomorphic to the trivial S ˆSop -module generated by X.

2. Let P be a ProP and φ : PGr oe ind pXq ÝÑ P be a morphism of S ˆSop -modules. There exists a unique ProP morphism Φ : PGr oe pXq ÝÑ P such that Φ |PGr oe ind pXq " φ. In other words, PGr oe pXq is the free ProP generated by the S ˆSop -module PGr oe ind pXq. Furthermore, PGr Ò pXq is the free ProP generated by the S ˆSop -module PGr Ò ind pXq generated by X, which is isomorphic to the free S ˆSop -module generated by X.

Remark 4.1.1.

1. This result generalises Theorem 3.2.1 and Proposition 3.3.3. However, it is not a direct consequence of these previous results. Given G P Gr oe , d G , d 1 G : V pGq ÝÑ X two decoration maps of G, we a priori have ΦpG, d G q ‰ ΦpG, d 1 G q.

2. The S ˆSop -modules Gr Ò ind pXq and PGr Ò ind pXq differ from one another in so far as for any k, l P N 0 , Gr Ò ind pk, lq is a trivial S l b S op k -module, whereas PGr Ò ind pk, lq is a free S l b S op k -module. They are both generated by X k,l . Proof. The proofs of Theorem 3.2.1 and Proposition 3.3.3 can be reproduced in extenso in the decorated setup, simply replacing graphs by decorated graphs and using the decorated version of the minimal decomposition and will therefore not reproduce it here. Let us however notice that

• the transformation of type A arising in the proof of Theorem 3.2.1 only concerns indexation of edges. As such, it easily generalises to decorated graphs.

• the transformation of type B arising in the proof of Theorem 3.2.1 exchanges two subgraphs of G. It therefore extends to the decorated case as a transformation exchanging two decorated graphs. The rest of the proof of Theorem 3.2.1 remains unchanged.

• the cycleless indecomposable graphs are still in the decorated case the graphs with exactly one vertex, since the decorations play no role in the definition of indecomposable.

• the rest of the proof of 3.3.3 also generalises in a straightforward manner to the decorated case.

An endofunctor of the category of S ˆSop -modules

We now assume that the family X " pX k,l q k,lPN 0 is a S ˆSop -module. We define another S ˆSop -module Γ oe pXq on graphs, taking into account this module structure. Let G P PGr oe . As G is a planar graph, the sets Ipvq and Opvq are canonically identified with ripvqs and ropvqs thanks to their total orders.

For any vertex v P V pGq, there is a natural action of S opvq ˆSop ipvq , obtained by acting on the total orders of Opvq and Ipvq. The graph obtained from G by the action of pσ, τ q on the vertex v is denoted by σ ¨v G ¨v τ.

For example:

p12q¨v v w " v w ¨wp12q " v w .
Let G P PGr oe pk, lq and X a S ˆSop -module. We define

GpXq " â vPXpGq Xpipvq, opvqq.

The elements of GpP q will be written as linear spans of tensors

â vPV pGq x v .
In other words, we decorate any vertex of G by an element of X, with respect to the number of incoming and outgoing edges of v, and we take these decorations to be linear in each vertex. Let PGr oe pXqpk, lq :" à Remark 4.2.1. Graphically, this element of PGr oe pXqpk, lq is represented by the planar graph G where each vertex v P V pGq is decorated by x v .

PGr oe pXqpk, lq is a S l ˆSop k -module, by the action on the indexation of the incoming and outgoing edges of the graphs.

Let Ipk, lq be the S l ˆSop k -submodule of PGr oe pXqpk, lq generated by elements of the form

σ ¨v0 G ¨v0 τ b ˜â vPV pGq x v ¸´G b ˜˜â vPV pGqztv 0 u x v ¸b σ ¨xv 0 ¨τ ¸, (9) 
where G P PGr oe pk, lq, v 0 P V pGq, σ P S opv 0 q and τ P S ipv 0 q . We further define Γ oe pXqpk, lq :" PGr oe pXqpk, lq Ipk, lq .

Here is the type of relations we obtain graphically:

x y 1 2 3 1 2 " p12q ¨x y 1 2 3 1 2 " x y ¨p12q 
1 2 3 1 2 " p12q ¨x y ¨p12q 1 2 3 1 2 , x ¨p12q 
y 1 2 3 1 2 " x y 2 1 3 1 2 , x p12q ¨y 1 2 3 1 2 " x y 2 1 3 2 1
, where x P X 3,2 and y P X 2,2 .

Example 4.2.1. Let us assume that X is a trivial S ˆSop -module: for any k, l P N 0 , for any x P X k,l , for any pσ, τ q P S l ˆSl , σ ¨x ¨τ " x. The relations defining Γ oe pXq which boil down to

σ ¨v0 G ¨v0 τ b ˜â vPV pGq x v ¸´G b ˜â vPV pGq x v ¸, (10) 
amount to the identification of two planar X-decorated graphs with the same underlying Xdecorated graph. In this case we recover the S ˆSop -module Gr oe pXq.

More generally, according to the relations defining Γ oe pXq, if for any graph G, we choose a planar graph G, the underlying graph of which is some G P Gr oe pXqpk, lq, then the set of graphs GpXqpk, lq is a basis of Γ oe pXqpk, lq. As there is no canonical way to choose the graphs G, we prefer to consider Γ oe pXq as a quotient of PGr oe pXq.

Alongside the category ProP introduced in Definition 1.1.3, we now introduce a second category.

Definition 4.2.1. Let Mod S denote the category of S ˆSop -modules: its objects are families P " pP pk, lqq pk,lqPN 2 0 , where for any pk, lq P N 2 0 , P pk, lq is a S l b S op k -module; a morphism φ : P ÝÑ Q is a family pφ k,l q pk,lqPN 2 , where for any pk, lq P N 2 0 , φ k,l : P pk, lq ÝÑ Qpk, lq is a morphism of S l b S op k -modules. To a SˆS op -module X in Mod S we have assigned another SˆS op -module Γ oe pP q in Mod S . One easily checks that a morphism ϕ : P ÝÑ Q of S ˆSop -modules induces a morphism of S ˆSop -modules Γ oe pϕq : Γ oe pP q ÝÑ Γ oe pQq defined by pull-back on the decorations of the vertices of the graphs:

Γ oe pϕqpG, d G q :" pG, ϕ ˝dG q. ( 11 
)
In summary, we have proven the following Proposition 4.2.2. The map Γ oe : Mod S ÝÑ Mod S defines an endofunctor of the category Mod S .

Moreover, for any S ˆSop -module, Γ oe pXq is a ProP:

Theorem 4.2.3. Let X be a S ˆSop -module. The vertical and horizontal concatenations of the ProP PGr oe pXq induce a ProP structure on Γ oe pXq.

Proof. We have to prove that if P P I and H P PGr oe pXq, then P ˚H, H ˚P , H ˝P and P ˝H (if these vertical concatenations are possible) belong to I. We can restrict ourselves to the case P " G ´G1 , where G is a X-decorated planar graph and G 1 is obtained from G by the action of two permutations on a vertex v of G. It is then immediate that G 1 ˚H is obtained from G ˚H by the action of two permutations on a vertex v of G ˚H, so that G ˚H ´G1 ˚H " P ˚H P I.

Similarly, H ˚P P I, and H ˝P and P ˝H belong to I if these vertical concatenations are possible. So Γ oe inherits a structure of ProP from the structure of PGr oe . Definition 4.2.4. For any S ˆSop -module X, the ProP Γ Ò pXq is defined by

Γ Ò pXq " PGr Ò pXq I X PGr Ò pXq .
As PGr Ò pXq is a sub-ProP of PGr oe pXq, Γ Ò pXq is a sub-ProP of Γ oe pXq.

Example 4.2.2. As in Example 4.2.1, if X is a trivial S ˆSop module, we recover the ProP Gr Ò pXq.

We have seen (Theorem 4.2.3) that for any S ˆSop -module, Γ oe pXq has a ProP structure, and that the same holds for Γ Ò pXq. We can then lift Γ oe pXq and Γ Ò pXq to functors between these categories: Proposition 4.2.5. The maps Γ oe : Mod S ÝÑ ProP and Γ Ò : Mod S ÝÑ ProP define functors from the category Mod S to the category ProP of ProPs.

Proof. Let X and Y be two S ˆSop -modules and ϕ : X ÝÑ Y a morphism of S ˆSop -modules and let PGr oe pϕq : PGr oe pP q ÝÑ PGr oe pQq be its pullback defined by PGr oe pϕqpG, d G q :" pG, ϕ ˝dG q (12)

for any G P PGr oe pP q. As the structure of ProP of Γ oe pXq is combinatorially given by disjoint union and grafting of graphs, PGr oe pϕq clearly defines a morphism of ProPs from PGr oe pXq to PGr oe pY q. As ϕ is a morphism of S ˆSop -modules, it follows that PGr oe pϕq sends the ideal defining Γ oe pXq to the ideal defining Γ oe pY q, hence it induces a morphism Γ oe pϕq : Γ oe pXq ÝÑ Γ oe pY q of ProPs. A similar proof holds for Γ Ò .

4.3

The ProP Γ Ò pP q of graphs decorated by another ProP

The ProPs Γ Ò pXq satisfy a universal property:

Theorem 4.3.1. Let X be a S ˆSop -module, P a ProP and ϕ : X ÝÑ P a morphism of S ˆSop -modules. There exists a unique morphism of ProPs Φ : Γ Ò pXq ÝÑ P , extending ϕ so that the following diagramme commutes:

X ι ϕ / / P Γ Ò pXq Φ < < ② ② ② ② ② ② ② ②
where ι : X ãÑ Γ Ò pXq is the map that sends an element x of X to the X-decorated graph Gpxq " pG k,l , dq with d sending the unique vertex of G k,l to x.

In other words, Γ Ò pXq is the free ProP generated by the S ˆSop -module X.

Proof. Uniqueness. As a quotient of PGr Ò ind pXq, the ProP Γ Ò pXq is generated by graphs with only one vertex v, decorated by an element of X respecting ipvq and opvq. Hence, such a morphism Φ is unique.

Existence. As PGr Ò ind pXq is the free ProP generated by the space X, for any linear map ϕ : X ÝÑ P , there exists a unique morphism of TraPs Φ : PGr Ò ind pXq ÝÑ P , extending ϕ. If ϕ is a morphism of S ˆSop -modules, that any element of the form (9) belongs to the kernel of Φ, thanks to the compatibility of the concatenation products of P and the action of the symmetric groups. so Φ induces a morphism Φ : Γ Ò pXq ÝÑ P .

Corollary 4.3.2. Given a ProP P , there is a canonical morphism of ProPs α P : Γ Ò pP q ÝÑ P induced by the decoration.

Proof. This is a straightfoward consequence of Theorem 4.3.1, with ϕ " Id P .

Example 4.3.1. Let p P P p3, 2q and q P P p2, 2q. The four following graphs (which are equal in

Γ Ò pP q) p q 1 2 3 1 2 p12q ¨p q 1 2 3 1 2 p q ¨p12q 1 2 3 1 2 p12q ¨p q ¨p12q 1 2 3 1 2
are respectively sent to q ˝p, pq ¨p12qq ˝pp12q ¨pq, pq ¨p12qq ˝pp12q ¨pq, pq ¨p12qq ˝pp12q ¨pq, which are equal in P . The two following graphs (which are equal in Γ Ò pP q)

p ¨p12q q 1 2 3 1 2 p q 2 1 3 1 2
are respectively sent to q ˝pp ¨p12qq, pq ˝pq ¨p12q, coincide in P . The two following graphs (which are equal in Γ Ò pP q) p p12q ¨q

1 2 3 1 2 p q 2 1 3 2 1
are respectively sent to pp12q ¨qq ˝p, p12q ¨pq ˝pq, which are equal in P .

Recall from Definition 1.1.1 that a ProP is a S ˆSop -module. Composing with the forgetful functor F : ProP ÝÑ Mod S endofunctors Γ oe ˝F and Γ Ò ˝F of the category ProP, which we denote also by Γ oe and Γ Ò with a slight abuse of notations.

Proposition 4.3.3. The maps α P defined in Corollary 4.3.2 give a natural transformation from the identity endofunctor of ProP to the endofunctor Γ Ò , that is to say, for any morphism ϕ : P ÝÑ Q of ProPs, the following diagram commutes:

Γ Ò pP q Γ Ò pϕq / / α P Γ Ò pQq α Q P ϕ / / Q
Proof. Since Γ Ò pϕq, α P , α Q and ϕ are morphisms of ProPs, α Q ˝ΓÒ pϕq and ϕ˝α P are morphisms of ProPs. As Γ Ò pP q is generated by classes of graphs with only one vertex, it is enough to prove that α Q ˝ΓÒ pϕq and ϕ˝α P coincide on such graphs. Let us consider the planar graph G p " P G k,l , with its unique vertex decorated by p P P pk, lq. Then, if G p is the class of G p in Γ Ò pXq: α Q ˝ΓÒ pϕqpG p q " α Q pG ϕppq q " ϕppq " ϕ ˝αP pG p q.

So α Q ˝ΓÒ pϕq " ϕ ˝αP .

The case of Hom c

V Specialising the results of the previous Subsection to Q :" Hom c V for some Fréchet nuclear topological vector space V leads us to algebras over ProPs, see e.g. [START_REF] Markl | Operads and PROPs[END_REF]. Definition 4.4.1. A Fréchet nuclear topological vector space V is an algebra over a ProP P or a P -algebra if there is a representation

ϕ : P ÝÑ Hom c V ,
of the ProP P on the vector space V i.e. if ϕ is a morphism of ProPs.

Remark 4.4.1. In the literature of ProPs, the Hom V ProP consists of the algebraic counterpart of our Hom V c .

Remark 4.4.2. Algebras over ProPs arise in Segal's axiomatic approach to conformal field theory (CFT) [ABM `01], by which a CFT is viewed as an algebra over the Segal ProP. A CFT is viewed as as an algebra over the Segal ProP in [START_REF] Ionescu | The Feynman Legacy[END_REF], where the author claims that Feynman rules of a given QFT, may be presented functorially as an algebra over the corresponding Feynman ProP.

Applying Corollary 4.3.2 to P " Hom c V and ϕ " Id| Hom c V yields: Corollary 4.4.2. A topological vector space V has a canonical algebra structure over Γ Ò pHom c V q given by the canonical morphism of ProP

α V : Γ Ò pHom c V q ÝÑ Hom c V .
Proposition 4.3.3 applied to Q " Hom c V yields the following statement.

Corollary 4.4.3. Let P be a ProP and V an algebra over P given by a ProP-morphism ϕ : P ÝÑ Hom c V . Then V also canonically has the structure of an algebra over Γ Ò pP q given by the map α V ˝ΓÒ pϕq " ϕ ˝αP .

Traces and Permutations (TraPs)

This section is dedicated to TraPs, the other main protagonist of the paper. As for ProP, the main objects of interests in the category of TraP will be the TraP of graphs Gr oe together with its variants and the TraP Hom c V of continuous morphisms on a Fréchet nuclear space V .

The category of TraPs

Definition 5.1.1. A TraP is a family pP pk, lqq k,lě0 of vector spaces, equipped with the following structures:

1. For any k, l P N 0 , P pk, lq is a S l b S op k -module.

2. For any k, l, k 1 , l 1 P N 0 , there is a map ˚: " P pk, lq b P pk 1 , l 1 q ÝÑ P pk `k1 , l `l1 q p b p 1 ÝÑ p ˚p1 , called the horizontal concatenation, such that:

(a) (Associativity). For any pk, l, k 1 , l 1 , k 2 , l 2 q P N 6 0 , for any pp, p 1 , p 2 q P P pk, lqˆP pk 1 , l 1 qP pk 2 , l 2 q, pp ˚p1 q ˚p2 " p ˚pp 1 ˚p2 q.

(b) (Unity). There exists I 0 P P p0, 0q such that for any pk, lq P N 2 0 , for any p P P pk, lq, I 0 ˚p " p ˚I0 " p.

(c) (Compatibility with the symmetric actions). For any pk, l, k 1 , l 1 q P N 4 0 , for any pp, p 1 q P P pk, lq ˆP pk 1 , l 1 q, for any pσ, τ, σ 1 , τ 1 q P S l ˆSk ˆSl 1 ˆSk 1 , pσ ¨p ¨τ q ˚pσ 1 ¨p1 ¨τ 1 q " pσ b σ 1 q ¨pp ˚p1 q ¨pτ b τ 1 q.

(d) (Commutativity). For any pk, , k 1 , l 1 q P N 4 0 , For any p P P pk, lq, p 1 P P pk 1 , l 1 q, c l,l 1 ¨pp ˚p1 q " pp 1 ˚pq ¨ck,k 1 , where c k,k 1 and c l,l 1 are defined by (2).

3. For any k, l ě 1, for any i P rks, j P rls, there is a map t i,j :

" P pk, lq ÝÑ P pk ´1, l ´1q p ÝÑ t i,j ppq, (13) 
called the partial trace map, such that:

(a) (Commutativity). For any k, l ě 2, for any i P rks, j P rls, i 1 P rk ´1s, j 1 P rl ´1s,

t i 1 ,j 1 ˝ti,j " $ ' ' ' ' & ' ' ' ' % t i´1,j´1 ˝ti 1 ,j 1 if i 1 ă i, j 1 ă j, t i,j´1 ˝ti 1 `1,j 1 if i 1 ě i, j 1 ă j, t i´1,j ˝ti 1 ,j 1 `1 if i 1 ă i, j 1 ě j, t i,j ˝ti 1 `1,j 1 `1 if i 1 ě i, j 1 ě j.
(b) (Compatibility with the symmetric actions). For any k, l ě 1, for any i P rks, j P rls, σ P S l , τ P S k , for any p P P pk, lq, t i,j pσ ¨p ¨τ q " σ j ¨pt τ piq,σ ´1 pjq ppqq ¨τi , with the following notation: if α P S n and p P rns, then α p P S n´1 is defined by 

α p pkq " $ ' ' ' ' & ' ' ' ' % αpkq if k ă α
In other words, if we represent α by a word α 1 . . . α n , then α p is represented by the word obtained by suppression of the letter p in α 1 . . . α n and subtraction of 1 to all the letters ą p.

(c) (Compatibility with the horizontal concatenation). For any k, l, k 1 , l 1 ě 1, for any i P rk `ls, j P rk 1 `l1 s, for any p P P pk, lq, p 1 P P pk 1 , l 1 q: t i,j pp ˚p1 q " # t i,j ppq ˚p1 if i ď k, j ď l, p ˚ti´k,j´l pp 1 q if i ą k, j ą l.

(d) (Unit). There exists I P P p1, 1q such that for any k, l ě 1, for any i P rk `1s, j P rl `1s, for any p P P pk, lq: t 1,j pI ˚pq " p1, 2, . . . , j ´1q ¨p if j ě 2,

t i,1 pI ˚pq " p ¨p1, 2, . . . , i ´1q ´1 if i ě 2, t k`1,j pp ˚Iq " pj, j `1, . . . , lq ´1 ¨p if j ď l, t i,l`1 pp ˚Iq " p ¨pi, i `1, . . . , kq if i ď k.
Remark 5.1.1. 1. We do not require that t 1,1 pIq " I 0 , hence the terminology partial trace map.

2. By commutativity of ˚, for any p P P p0, 0q, for any pk, lq P N 2 0 , for any p 1 P P pk, lq: p ˚p1 " p 1 ˚p, since c 0,k " Id rks .

Remark 5.1.2. Our notion of TraP is an axiomatised version of Merkulov's notion of wheeled ProPs introduced in [START_REF] Merkulov | PROP profile of Poisson geometry[END_REF]. The link between TraPs and wheeled ProPs will be made in Section 7.1 , Corollary 7.1.3. Our approach mainly differs from Merkulov's categorical approach in that it comprises units. Units of wheeled ProPs are mentioned in [Mer10b, Remark 2.3.1] but their axioms are not explicitly written down in the literature. Our axiomatic approach is tailored to address analytic issues regarding products of singularities. This axiomatic approach allows us to give a simple definition of quasi-TraPs in Section 7.3, a notion that seem absent in previous works on wheeled ProPs. However, the categorical approach seems better suited for classification problems, e.g. regarding the solutions of the master equation in the BV formalism [START_REF] Markl | Wheeled PROPs, graph complexes and the master equation[END_REF][START_REF] Merkulov | Wheeled props in algebra, geometry and quantization[END_REF].

Lemma 5.1.2. Let P " pP pk, lqq k,lPN 0 be a S b S op -module, equipped with a horizontal concatenation ˚satisfying axioms 2. (a)-(d), and with maps t i,j satisfying axioms 3. (a)-(b).

1. We assume that for any k, l, k 1 , l 1 ě 1, for any p P P pk, lq, p 1 P P pk 1 , l 1 q, t 1,1 pp ˚p1 q " t 1,1 ppq ˚p1 .

Then axiom 3.(c) is satisfied.

2. We assume for for any k, l ě 1, for any p P P pk, lq, t 1,2 pI ˚pq " p.

Then axiom 3.(d) is satisfied.

Proof. 1. Let p P P pk, lq and p 1 P P pk 1 , l 1 q. Let us take i P rk `ls, j P rk 1 `l1 s, consider the transpositions σ " p1, jq and τ " p1, iq, with the convention p1, 1q " Id. If i ď k and j ď l, then: t i,j pp ˚p1 q " t i,j pσ 2 ¨pp ˚p1 q ¨τ 2 q " σ j ¨t1,1 pσ ¨pp ˚p1 q ¨τ q ¨τi " σ j ¨pt 1,1 ppσ ¨p ¨τ q ˚p1 q ¨τi " σ j ¨pt 1,1 pσ ¨p ¨τ q ˚p1 q ¨τi " pσ j ¨pt 1,1 pσ ¨p ¨τ q ¨τi q ˚p1 " t i,j ppq ˚p1 .

If i ą k and j ą l, using c ´1 m,n " c n,m : t i,j pp ˚p1 q " t i,j pc l 1 ,l ¨pp 1 ˚pq ¨ck,k 1 q " pc l 1 ,l q j ¨ti´k,j´l pp 1 ˚pq ¨pc k,k 1 q i " c l 1 ´1,l ¨pt i´k,j´l pp 1 q ˚pq ¨ck,k 1 ´1 " p ˚ti´k,j´l pp 1 q.

2. Let us take j ě 2.

t 1,j pI ˚pq " t 1,j pp2, jq 2 ¨pI ˚pqq " p2, . . . , j ´1q ¨t1,2 pp2, jq ¨pI ˚pqq " p2, . . . , j ´1q ¨t1,2 pI ˚p1, j ´1q ¨pqq " p2, . . . , j ´1q ¨pp1, j ´1q ¨pq " p2, . . . , j ´1qp1, j ´1q ¨p " p1, . . . , j ´1q ¨p.

The three other relations are proved in the same way.

Definition 5.1.3. Let P " pP pk, lqq k,lě0 and Q " pQpk, lqq k,lě0 be two TraPs with partial trace maps pt P i,j q i,jě0 and pt Q i,j q i,jě0 respectively. A morphism of TraPs is a family φ " pφ k,l q k,lě0 of linear maps φ k,l : P pk, lq Þ Ñ Qpk, lq which are morphism for the horizontal concatenation, the actions of the symmetric groups and the partial trace maps. More precisely, for any pk, l, m, nq P N 4 0 :

• @pp, qq P P pk, lq ˆP pn, mq, φ k`n,l`m pp ˚qq " φ k,l ppq ˚φn,m pqq,

• @pσ, pq P S l ˆP pk, lq, φ k,l pσ.pq " σ.φ k,l ppq,

• @pp, τ q P P pk, lq ˆSk , φ k,l pp.τ q " φ k,l ppq.τ .

• @pp, i, jq P P pk, lq ˆrks ˆrls, φ k´1,l´1 pt P i,j ppqq " t Q i,j pφ k,l ppqq. With a slight abuse of notations, we write φppq instead of φ k,l ppq for p P P pk, lq. In particular, TraPs form a category, which we denote by TraP.

Remark 5.1.3. The abuse of notation t i,j is legitimate since a full notation such as t k,l i,j is not necessary in practice. Indeed the indices k and l in t i,j ppq are entirely determined by p to which t i,j is applied.

More so, t i,j does not strongly depend on k and l: indeed, let f : P pk, lq ÝÑ P pk `1, l `1q be the map that sends p to p ˚I (for the TraP of linear morphisms, this is the tensorisation by Id), then for i P rks and j P rls, we have t i,j ˝f ppq " f ˝ti,j ppq, which is the axiom 3.(c).

Lemma 5.1.4. Let P and Q be two TraPs and φ : P ÝÑ Q be a map. We assume that:

1. For any pk, lq P N 2 0 , for any pσ, τ q P S l ˆSk , for any x P P pk, lq, φpσ ¨x ¨τ q " σ ¨φpxq ¨τ.

2. For any k, l ě 1, for any x P P pk, lq, t 1,1 ˝φpxq " φ ˝t1,1 pxq.

Then for any k, l ě 1, for any pi, jq P rks ˆrls, for any x P P pk, lq, t i,j ˝φpxq " φ ˝ti,j pxq.

Proof. If i P rks, j P rls, and x P P pk, lq: φ ˝ti,j pxq " φ ˝ti,j pp1, jq 2 ¨x ¨p1, iq 2 q " φpp1, jq ¨t1,1 pp1, jq ¨x ¨p1, iqq ¨p1, iqq " p1, jq ¨φ ˝t1,1 pp1, jq ¨x ¨p1, iqq ¨p1, iq " p1, jq ¨t1,1 ˝φpp1, jq ¨x ¨p1, iqq ¨p1, iq " t i,j pp1, jq ¨φpp1, jq ¨x ¨p1, iqq ¨p1, iqq " t i,j ˝φpxq, with the convention p1, kq " Id if k " 1.

In particular, to show that a collection of linear maps between two TraPs preserving the horizontal concatenation and the actions of the symmetry group is a morphism of TraP, it is enough to check the properties of Lemma 5.1.4.

Recall that, for a Fréchet nuclear space V , the ProP pHom c V pk, lqq k,lě0 introduced in Subsection 2.2, Theorem 2.2.5, reads:

Hom c V pk, lq » `V 1 ˘p bk bV p bl .
Proposition 5.2.3. Let V be a Fréchet nuclear space. The family pHom c V pk, lqq k,lě0 equipped with the partial trace maps in the sense of (13) defined by tr i,j :

"

Hom c V pk, lq ÝÑ Hom c V pk ´1, l ´1q pv 1 b ¨¨¨b v k q b pw 1 b ¨¨¨b w l q Þ ÝÑ tr i,j ppv 1 b ¨¨¨b v k q b pw 1 b ¨¨¨b w l qq with tr i,j pv 1 b ¨¨¨b v k q b pw 1 b ¨¨¨b w l q defined as

v i pw j q pv 1 b ¨¨¨b x v i b ¨¨¨b v k q b pw 1 b ¨¨¨b x w j b ¨¨¨b w l q
for any k, l ě 1, for any i P rks, j P rls, where v i pw j q is the dual pairing, defines a TraP, with the topological tensor product as horizontal concatenation.

Proof. Commutativity follows from the commutativity of the field K, compatibility with the symmetric actions and compatibility with the horizontal concatenation are shown as for the ProP Hom c V . The unit is the identity map I P V ˚p bV . e I i , where I i " pi 1 , ¨¨¨, î, ¨¨¨i k q, J j " pj 1 , ¨¨¨, ĵ, ¨¨¨, j l q and b I i J j corresponds to the trace of the n ˆn matrix in the pi, jq entries of a I J with the other indices frozen.

Example 5.2.2. Let U be an open of R n . Example 2.1.2 and Equation (7) imply that the family pK U pk, lqq k,lě0 , with K U pk, lq " pE 1 pU qq bk b EpU q bl defines a TraP.

Example 5.2.3. Let X be a finite dimensional smooth manifold. Proposition 2.2.2 and Equation (7) imply that the family pK X pk, lqq k,lě0 , with K X pk, lq " pE 1 pXqq bk b EpXq bl defines a TraP.

The TraP Gr oe of graphs

We now equip graphs and planar graphs with a TraP structure. We have already equipped Gr oe and PGr oe with a structure of S ˆSop -modules and a horizontal concatenation, which we leave untouched. Let us now define partial trace maps. Let G P Gr oe pk, lq, 1 ď i ď k and 1 ď j ď l.

We set e i " α ´1 G piq, f j " β ´1 G pjq and define t i,j pGq as the graph obtained by identifying the input of e i with the output j of f j . If e i P IpGq and f j P OpGq, this creates an edge in EpGq. This case is illustrated in the figure below. Otherwise, we create an edge in IpGq, or OpGq or IOpGq or in LpGq. In all these cases, we then reindex increasingly the inputs and the outputs of the obtained graph. A more rigorous definition is given in the appendix. A similar definition can be given for planar graphs, by preserving the orders on incoming and outgoing edges of any vertex.

Example 5.3.1. Let G be the following graph: As the input edge indexed by i in σ ¨G ¨τ is the input edge of G indexed by τ piq and the output edge indexed by j in σ ¨G ¨τ is the output edge of G indexed by σ ´1pjq, G 1 " t i,j pσ ¨G ¨τ q is the graph obtained by gluing together the input indexed by τ pjq and the output indexed by σ ´1pjq, reindexing the input according to σ i and the output edges by τ j , so G 1 " σ i ¨tτpiq,σ ´1pjq pGq ¨τj . Let us prove Property 3.(c). By Lemma 5.1.2, it is enough to prove it for pp, p 1 q " pG, G 1 q a pair of graphs and pi, jq " p1, 1q. In this case, e i and f j are both edges of G, so t 1,1 pG ˚G1 q " t 1,1 pGq ˚G1 .

2 1 /.-, ()*+ O O 1 O O 2 O O 3 _ _ ❃ ❃ ❃ ❃ ❃ ❃ ❃ ❃ Then: t 1,2 pGq " 1 /.-, ()*+ O O < < 1 O O 2 _ _ ❃ ❃ ❃ ❃ ❃ ❃ ❃ ❃ t 1,1 pGq " t 2,2 pGq " t 3,2 pGq " 1 /.-, ()*+ O O 1 O O 2 _ _ ❃ ❃ ❃ ❃ ❃ ❃ ❃ ❃ t 2
For Property 3.(d), let us consider the graph I such that V pIq " EpIq " OpIq " IpIq " LpIq " H, and IOpIq being reduced to a single element. Then for any graph G with |OpGq| ě 1, t 1,2 pI ˚Gq " G.

By Lemma 5.1.2, Property 3.(d) is satisfied, so Gr oe is a TraP.

Free TraPs

Theorem 5.4.1. Let P be a TraP and, for any k, l P N 0 , let x k,l P P pk, lq such that: @σ P S l , @τ P S k , σ ¨xk,l ¨τ " x k,l .

There exists a unique TraP morphism Φ from Gr oe to P sending G k,l to x k,l for any k, l ě 0.

Proof. We provide here a sketch of the proof, and refer the reader to the appendix for a full proof. We define ΦpGq for any graph G P Gr oe pk, lq by induction on the number N of internal edges of G.

If N " 0, then G can be written as G " O ˚p ˚σ ¨pI ˚q ˚Gk 1 ,l 1 ˚. . . ˚Gkr,lr q ¨τ, (recall that O is the graph with no vertex, and only one edge belonging to LpGq) where p, q, r P N 0 , pk i , k i q P N 2 0 for any i, and σ P S q`k 1 `...`kr , τ P S q`l 1 `...`lr . We then put:

ΦpGq " t 1,1 pIq ˚p ˚σ ¨pI ˚q ˚xk 1 ,l 1 ˚. . . ˚xkr,lr q ¨τ.

We can prove that this does not depend on the choice of the decomposition of G, with the help of the TraP axioms applied to P and the invariance of the x k,l . Let us assume now that ΦpG 1 q is defined for any graph with N ´1 internal edges, for a given N ě 1. Let G be a graph with N internal edges and let e be one of these edges. Let G e be a graph obtained by cutting this edge in two, such that G " t 1,1 pG e q. We then set:

ΦpGq " t 1,1 ˝ΦpG e q.

One can prove that this does not depend on the choice of e. It can then be shown that Φ defined as above is compatible with the partial trace maps.

The following TraP counterpart of Theorem 4.3.1 can be proved in a similar way as Theorem 5.4.1: Theorem 5.4.2. Let X be a S ˆSop -module, P a TraP and ϕ : X ÝÑ P be a morphism of S ˆSop -modules. There exists a unique morphism of TraPs Φ : PGr oe pXq ÝÑ P , which extends ϕ so that the following diagramme commutes:

X ι ϕ / / P PGr oe pXq Φ : : t t t t t t t t t t
where ι : X ãÑ PGr oe pXq is the map that sends an element x of X to the planar X-decorated graph Gpxq " pP G k,l , dq with d sending the unique vertex of P G k,l to x.

In other words, PGr oe pXq is the free TroP generated by the S ˆSop -module X.

Remark 5.4.1. The invariance condition of x k,l in Theorem 5.4.1 is replaced here with the planar condition on graphs. They play the same role, namely to allow us to show that the map Φ, defined inductively, is indeed well-defined.

6 The functor Γ oe applied on TraPs 6.1 The functor Γ oe as an endofunctor of TraP Proposition 6.1.1. Let X be a S ˆSop -module. Then Γ oe pXq is a TraP.

Proof. Similarly to the proof of Proposition 5.3.1 concerning Gr oe , we can prove that PGr oe pXq is a TraP. If G and G 1 are two X-decorated planar graphs such that G 1 is obtained from G by the action of permutations on the incoming and outgoing edges of a vertex of G, then clearly, for any relevant i and j, t i,j pG 1 q is obtained from G by the same operation. So t i,j pG ´G1 q P I, and the partial trace maps of PGr oe pXq induce partial trace maps on Γ oe pXq.

Hence, Γ oe is a functor from the category Mod S to the category TraP. Combining with the forgetful functor F : TraP ÝÑ Mod S , we obtain an endofunctor Γ oe ˝F : TraP ÝÑ TraP, which we denote by Γ oe , with a slight abuse of notations. As for ProPs (Corollary 4.3.2 and Proposition 4.3.3), we have the following statement.

consistently with the number of incoming and outgoing edges. We denote by µ P pGq the graph H such that V pHq " ğ vPV pGq

V pG v q, whose edges are obtained by identifying, for any vertex v, the i-th incoming edges of v with the i-th incoming edge of G v , and the j-th outgoing edge of v with the j-th outgoing edge of G v .

To illustrate this graphically, here is an example in which µ P sends the graph on the left to the graph on the right:

p 1 2 1 2 3 2 1 2 3 1 4 1 2 q r 1 2 3 p 2 1 2 3 1 4 q r
where p P P p2, 3q, q P P p2, 2q and r P P p2, 3q.

It is clear from the combinatorics that the relations corresponding to the diagrams (15) are satisfied. Hence: Proposition 6.2.2. The triple Γ oe " pΓ oe , µ, νq is a monad in the category Mod S .

TraPs versus ProPs

We have built the free TraPs by means of graphs discussed in Subsection 5.3. This, together with the functor Γ oe of Sections 4 and 6 will allow us to show the equivalence of the categories of TraPs and wheeled ProPs.

TraPs are wheeled ProPs

The free TraP we previously built from a given TraP enables us to relate TraPs and Merkulov's notion of wheeled ProPs [START_REF] Markl | Wheeled PROPs, graph complexes and the master equation[END_REF]. We now build algebras on the monad Γ oe . Let us first recall the notion of Γ-algebra (see e.g. [MMS09, Definition 2.1.4]).

Definition 7.1.1. Let C be a category. An algebra over a monad Γ P EndpCq or a Γ-algebra is an object P of C together with a structure morphism α : ΓpP q Ñ P such that the following diagrams commute:

Γ ˝ΓpP q Γpαq / / µ P µ P ΓpP q α ΓpP q α / / P P ν P / / Id ΓpP q α } } ③ ③ ③ ③ ③ ③ ③ ③ P (16)
Proposition 7.1.2. Any Γ oe -algebra pP, αq defines a TraP defined as follows:

• For any pp, p 1 q P P pk, lq ˆP pk 1 , l 1 q, p ˚p1 is obtained by applying α to the following graph:

p 1 . . . k 1 . . . l p 1 k `1. . . k `k1 l `1 . . . l `l1
• For any p P P pk, lq, for any pi, jq P rks ˆrls, t i,j ppq is obtained by the application of α to the following graph:

p 1 . . . i ´1 i . . . k ´1 1 . . . j ´1 j . . . l ´1
Proof. Let us prove some of the axioms of TraPs for P . The others can be proved in the same way and are left to the reader. 2. (a). let pp, p 1 , p 2 q P P pk, lq ˆP pk 1 , l 1 q ˆP pk 2 , l 2 q. Then pp ˚p1 q ˚p2 is obtained by the application of α P to the graph: (For the sake of simplicity, we delete the indices of the input and output edges of this graph: they are always indexed from left to right). Hence, pp ˚p1 q ˚p2 is obtained by application of α ˝Γoe pαq to the graph: Note that for the second connected component of this graph, this comes from: α ˝Γoe pαq ˝Γoe pν P qpp 2 q " α ˝Γoe pα ˝νP qpp 2 q " α ˝Γoe pId P qpp 2 q " αpp 2 q.

We end this Subsection with a Corollary to Proposition 7.2.1.

Corollary 7.2.3. Let P be a TraP. For any p P P pk, kq, we set:

Trppq " t 1,1 ˝. . . ˝tk,k ppq.
1. For any pk, lq P N 2 0 , for any pp, qq P P pk, lq ˆP pl, kq, Trpp ˝qq " Trpq ˝pq.

2. For any pk, lq P N 2 0 , for any pp, qq P P pk, kq ˆP pl, lq,

Trpp ˚qq " TrppqTrpqq.

Example 7.2.3. 1. In Gr oe , for any graph G P Gr oe pk, kq, TrpGq is obtained by gluing together the i-th output edge with the i-th output edge of G. In particular, O " TrpIq. Graphically:

G 1 k . . . 1 k . . . T r ÝÑ G . . . . . .

2.

Let V be a finite dimensional vector space of dimension n. In the TraP Hom V introduced in Proposition 5.2.1 we obtain a trace for morphisms F : V bk Þ Ñ V bk . Specialising to the case k " 1, we recover the usual trace of linear endomorphisms: choose pe 1 , ¨¨¨, e n q a basis of V . Any morphism f : V Þ Ñ V can be represented in this basis by ř n i,j"1 a f ij e i b e j for some complex numbers a f ij . Then Trpf q " ř n i,j"1 a f ij e i pe j q " ř n i"1 a f ii . Trpf q lies in K, is viewed here as an element of Hom V p0, 0q via the identification of a constant λ in K to a linear map x Þ ÝÑ λ x on K.

The vertical composition f ˝g " t 2,1 pf ˚gq of two morphisms f and g, defined according to Proposition 7.2.1 is indeed represented by the usual matrix product:

n ÿ i,j"1 n ÿ k,l"1 a f ik a g lj e i b e k pe l q b e j " n ÿ i,j"1 ˜n ÿ k"1 a f ik a g kj ¸ei b e j ,
where pa f ij q i,j , pa g ij q i,j are the matrix representations of f and g respectively.

Proof. Again, it is enough to prove the result for a free TraP PGr oe pXq.

Let G P PGr oe pXqpk, lq and H P PGr oe pXqpl, kq be two graphs. Then TrpH ˝Gq is graphically represented by each of the graphs: 

Quasi-TraPs

The partial trace maps t i,j arising in the definition of a TraP might not be defined on every operator. To circumvent this difficulty, we work with a S ˆSop -module pP pk, lqq k,lě0 with a horizontal concatenation ‹, satisfying all the required axioms, and for any k, l ě 1, for any i P rks, j P rls, a map T i,j : P 1 pk, lq ÝÑ P pk ´1, l ´1q defined on a submodule of P pk, lq; we assume that it satisfies all the required axioms as soon as all the maps they imply are defined.

We can then embed such a quasi-TraP in a "complete" TraP: consider the TraP Γ oe pP q, and quotient it by the TraP ideal generated by the elements:

1. ν P ppq ˚νP pqq ´νP pp ‹ qq, where p, q P P . 2. t i,j ˝νP ppq ´νP ˝Ti,j ppq, where p P P such that T i,j ppq is defined.

We obtain in this way a TraP P , with partial trace maps t i,j induced on the quotient by the partial trace maps of Γ oe pP q. It contains a S ˆS-module isomorphic to P and formed by graphs with only one vertex, which we identify with P itself. Then, if T i,j ppq is defined, T i,j ppq " t i,j ppq.

Example 7.3.1. Let V " KrXs, pX n q ně0 its canonical basis and pδ n q ně0 the dual basis. Let us denote by E `the subspace of HompV q generated by the endomorphisms of the form f i,j :

"

KrXs ÝÑ KrXs X k ÝÑ δ i,k X j , where i, j ě 0 (i.e. f i,j pX k q " X j if k " i, and f i,j pX k q " 0 otherwise). This is the subspace of endomorphisms of V with a finite support when applied on monomials. Note that E `does not contains Id V : we put E " E `' KId V . For any k, l ě 0, let P pk, lq be the submodule of HompV bk , V bk q generated by E bk if k " l, and t0u otherwise. This is stable under the horizontal concatenation of Hom V . The elements of P pk, kq are linear spans of terms:

σ ¨pf 1 b . . . b f k q ¨τ, where σ, τ P S k , and for any p, f p is one of the f i,j or is Id V . We define a partial trace map on P by putting T 1,1 pf i,j q " δ i,j ; but T 1,1 pId V q is not defined. This is extended to P using the axioms of a TraP. For example:

T 1,1 pf i,j b f k,l q " δ i,j f k,l , T 1,1 pf i,j b Id V q " δ i,j Id V , T 2,2 pf i,j b f k,l q " δ k,l f i,j , T 2,2 pf i,j b Id V q is not defined, T 1,2 pf i,j b f k,l q " δ i,l f k,j , T 1,2 pf i,j b Id V q " f i,j , T 2,1 pf i,j b f k,l q " δ j,k f i,l , T 2,1 pf i,j b Id V q " f i,j .

Denoting by O the graph with only one loop, we obtain that for any k ě 0, P pk, kq " KrOs b P pk, kq, and t 1,1 pId V q " O. Any p P P pk, kq is identified with 1 b p P P pk, kq. For example, in P : t 1,1 pf i,j b f k,l q " δ i,j f k,l , t 1,1 pf i,j b Id V q " δ i,j Id V , t 2,2 pf i,j b f k,l q " δ k,l f i,j , t 2,2 pf i,j b Id V q " f i,j b O, t 1,2 pf i,j b f k,l q " δ i,l f k,j , t 1,2 pf i,j b Id V q " f i,j , t 2,1 pf i,j b f k,l q " δ j,k f i,l , t 2,1 pf i,j b Id V q " f i,j .

Choosing for any k ě 1 an element f k P P pk, lq, any graph G such that LpGq " H is sent to an element of P by Φ.

8 The TraP K 8 X of smoothing pseudo-differential operators

We apply our results on TraPs to tensor products of a class of of Fréchet nuclear spaces introduced in Section 2, namely Fréchet spaces EpXq of smooth sections of X. Recall from Proposition 2.2.3 that such spaces are stable under tensor products and morphisms in Hom c pE 1 pXq, EpY qq are determined by smoothing kernels in EpX ˆY q.

Trace of smoothing pseudo-differential operators

Let X be a smooth finite dimensional closed manifold. Let us set E " EpXq, and F " E 1 pXq, which is not Fréchet, in which case Lemma 5.2.2 does not apply. Instead, we restrict ourselves to smooth kernels which stabilise EpXq. We set, for pk, lq ‰ p1, 1q: K 8 X pk, lq :" EpX k ˆXl q » EpXq There is another topology on E b F called the projective topology; [Tre67, Definition 43.2]. The projective topology is defined as the strongest locally convex topology on E b F such that the canonical map φ : E ˆF ÝÑ E b F is continuous. We write E b π F the topological vector space obtained by endowing E b F with this topology.

The neighbourhoods of zero of the projective topology can be simply described in terms of neighbourhoods of zero in E and V . A convex subset S of E b F containing zero is a neighbourhood of zero if it exist a neighbourhood U (resp. V) of zero in E (resp. F ) such that U b V :" tu b v|u P U ^v P V u Ď S.

B Appendix: definition of the partial trace maps on Gr oe

We give a rigorous definition of the partial trace maps on the space of graphs Gr oe , which were only loosely defined in the bulk of the article.

Let G P Gr oe pk, lq with k, l ě 1, i P rks and j P rls. We put e i " α ´1 G piq and f j " β ´1 G pjq. We define the graph G 1 " t i,j pGq in the following way:

1. If e i P IpGq and f j P OpGq, then:

V pG 1 q " V pGq, EpG 1 q " EpGq \ tpe i , f j qu, IpG 1 q " IpGqzte i u, OpG 1 q " OpGqztf j u, IOpG 1 q " IOpGq, LpG 1 q " LpGq, s G 1 peq " # s G pf j q if e " pe i , f j q, s G peq otherwise, t G 1 peq " # t G pe i q if e " pe i , f j q, t G peq otherwise,

α G 1 peq " # α G peq if α G peq ă i, α G peq ´1 if α G peq ě i, β G 1 peq " # β G peq if β G peq ă j, β G peq ´1 if β G peq ě j.
2. If e i P IOpGq and f j P OpGq, then:

V pG 1 q " V pGq, EpG 1 q " EpGq, IpG 1 q " IpGq, OpG 1 q " OpGqztf j u \ tpe i , f j , qu, IOpG 1 q " IOpGqzte i u, LpG 1 q " LpGq, s G 1 peq " # s G pf j q if e " pe i , f j q, s G peq otherwise, t G 1 peq " t G peq,

α G 1 peq " # α G peq if α G peq ă i, α G peq ´1 if α G peq ě i, β G 1 peq " $ ' ' ' ' &
' ' ' ' % β G pe i q if e " pe i , f j q and β G pe i q ă j, β G pe i q ´1 if e " pe i , f j q and β G pe i q ě j, β G peq if e ‰ pe i , f j q and β G peq ă j, β G peq ´1 if e ‰ pe i , f j q and β G peq ě j.

3. If e i P IpGq and f j P IOpGq, then:

V pG 1 q " V pGq, EpG 1 q " EpGq, IpG 1 q " IpGqzte i u \ tpe i , f j qu, OpG 1 q " OpGq, IOpG 1 q " IOpGqztf j u, LpG 1 q " LpGq, s G 1 peq " s G peq, t G 1 peq " # t G pe i q if e " pe i , f j q, t G peq otherwise, α G 1 peq " $ ' ' ' ' & ' ' ' ' % α G pf i q if e " pe i , f j q and α G pf j q ă i, α G pf i q ´1 if e " pe i , f j q and α G pf j q ě i, α G peq if e ‰ pe i , f j q and α G peq ă i, α G peq ´1 if e ‰ pe i , f j q and α G peq ě i,

β G 1 peq " # β G peq if β G peq ă j, β G peq ´1 if β G peq ě j.
4. If e i P IOpGq, f j P IOpGq and e i ‰ f j , then:

V pG 1 q " V pGq, EpG 1 q " EpGq, IpG 1 q " IpGq, OpG 1 q " OpGq, IOpG 1 q " tpe i , f j qu \ IOpGqzte i , f j u, LpG 1 q " LpGq, s G 1 peq " s G peq, t G 1 peq " t G peq, α G 1 peq " $ ' ' ' ' & ' ' ' ' % α G pf i q if e " pe i , f j q and α G pf j q ă i, α G pf i q ´1 if e " pe i , f j q and α G pf j q ě i, α G peq if e ‰ pe i , f j q and α G peq ă i, β G peq ´1 if e ‰ pe i , f j q and α G peq ě i, β G 1 peq " $ ' ' ' ' & ' ' ' ' % β G pe i q if e " pe i , f j q and β G pe i q ă j, β G pe i q ´1 if e " pe i , f j q and β G pe i q ě j, β G peq if e ‰ pe i , f j q and β G peq ă j, β G peq ´1 if e ‰ pe i , f j q and β G peq ě j.

5. If e i P IOpGq, f j P IOpGq and e i " f j , then:

V pG 1 q " V pGq, EpG 1 q " EpGq, IpG 1 q " IpGq, OpG 1 q " OpGq, IOpG 1 q " IOpGqzte i , f j u, LpG 1 q " LpGq \ tpe i , f j qu,

s G 1 peq " s G peq, t G 1 peq " t G peq, α G 1 peq " # α G peq if α G peq ă i, α G peq ´1 if α G peq ě i, β G 1 peq " # β G peq if β G peq ă j, β G peq ´1 if β G peq ě j.
C Appendix: full proofs C.1 Proof of Theorem 3.2.1

Proof. Let us define ΦpGq for any graph G by induction on n " |V pGq|, such that for any permutation σ P S ipGq , τ P S opGq , Φpσ ¨G ¨τ q " σ ¨ΦpGq ¨τ.

If n " 0, there exists a unique permutation γ P S k such that G " γ ¨Ik . We put

ΦpGq " γ ¨Ik , where we used the same notation I k for the units of Gr and P . If σ, τ P S k :

Φpσ ¨G ¨τ q " Φppσγq ¨Ik ¨τ q " Φppσγτ q ¨Ik q " pσγτ q ¨Ik " σ ¨pγ ¨Ik q ¨τ " σ ¨ΦpGq ¨τ.

Let us assume that ΦpG 1 q is defined for any graph G 1 such that |V pG 1 q| ă n. Let G " γ ¨pG 1 ˚. . . ˚Gk ˚Ip q ˝G0 ˚O˚ℓ If e is an internal edge of G 1 , we obtain similarly that ΦpG 1 ˚Gq " ΦpG 1 q ˚ΦpGq. The result then follows from the commutativity of ˚(axiom 2.pdq of Definition 5.1.1). So Φ is compatible with ˚.

It remains to prove the compatibility of Φ with the partial trace maps. By Lemma 5.1.4, it is enough to prove that Φ is compatible with t 1,1 . Let G P Gr oe pk, lq be a graph, e 1 " α ´1p1q, f 1 " β ´1p1q. We put G 1 " t 1,1 pGq and e " te 1 , f 1 u be the edge of G 1 created in the process. There are five different cases:

1. If e 1 P IpGq and f 1 P OpGq, then e P EpG 1 q and G 1 e " G. By construction of ΦpG 1 q: Φ ˝t1,1 pGq " ΦpG 1 q " t 1,1 ˝ΦpG 1 e q " t 1,1 ˝ΦpGq.

2. If e 1 P IOpGq and f 1 P OpGq, let us put j " βpe 1 q. Then there exists a graph H such that p1, jq ¨G " I ˚H. Then: t 1,1 pGq " t 1,1 pp1, jq ¨pI ˚Hqq " p1, . . . , jq ¨pt 1,i pI ˚Hqq " p1, . . . , jq ¨H, so:

t 1,1 ˝ΦpGq " t 1,1 pp1, jq ¨pI ˚ΦpHqq " p1, jqp1, . . . , j ´1q ¨ΦpHq " p1, . . . , jq ¨ΦpHq " Φpp1, . . . , jq ¨Hq " Φ ˝t1,1, pGq.

3. If e 1 P IpGq and f 1 P IOpGq: similar computation.

4. If e 1 , f 1 P IOpGq, with e 1 ‰ f 1 : similar computation.

5

. If e 1 " f 1 in IOpGq, then G " I ˚H for a certain graph G and t 1,1 pGq " O ˚H. Then: Φ ˝t1,1 pGq " ΦpOq ˚ΦpHq " t 1,1 ˝ΦpIq ˚ΦpHq " t 1,1 pΦpIq ˚ΦpHq " t 1,1 ˝ΦpGq.

So Φ is compatible with the partial trace maps.
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  which are the same. So TrpH ˝Gq " TrpG ˝Hq. Moreover, the graph TrpG ˚Hq is represented by which is also a graphical representation of TrpGq ˚TrpHq. So TrpG ˚Hq " TrpGq ˚T rpHq.

p bk b

 b EpXq p bl , where the identification holds by Proposition 2.2.3. For pk, lq " p1, 1q we set K 8 X p1, 1q :" EpX ˆXq ď tδu » EpXq b EpXq ď tδu with δ the (singular) kernel of the identity operator on EpXq. With the notations of Definition 5.1.1, we will have I " δ. For a closed Riemannian manifold X equipped with a volume measure µ, the canonical embedding EpXq ãÑ E 1 pXq, f Þ ÝÑ `ϕ Þ Ñ ş X f pxq ϕpxq dµpxq ˘induces an embedding K 8 X pk, lq ãÑ K X pk, lq » E 1 pXq p bk b EpXq p bl .

  Lemma 2.1.4. The completed tensor product E p bF of two Fréchet nuclear spaces is a Fréchet nuclear space.

Proof. If E and F are two nuclear spaces then E p bF is a nuclear space ([Tre67, Equation (50.9)]). It is moreover complete since E p bF is obtained by completion.

Proposition 2.1.5. Let V be a Fréchet nuclear space. Then ´V p bk

  2.1.Example 2.2.1. For a finite dimensional vector space V the classical ProP Hom V of Proposition-Definition 1.2.1 coincides with the the ProP Hom c V . Example 2.2.2. Let U be an open of R n . From Example 2.1.2 and Equation (7) the family pK U pk, lqq k,lě0 , with K U pk, lq " pE 1 pU qq

	p bk p b pEpU qq

p bl defines a ProP.

Example 2.2.3. Let X be a smooth finite dimensional manifold. From Proposition 2.2.2 and Equation (7) the family pK X pk, lqq k,lě0 , with K X pk, lq " pE 1 pXqq p bk p b EpXq p bl defines a ProP.

  Gr oe and PGr oe , with the usual horizontal concatenation and this partial trace map, are TraPs. Proof. Properties 2.(a)-(d) are trivial. Let us give a graphical indication of the proof of Property 3.(a), when i 1 ă i and j 1 ă j.

	1 j 1 j	l	1 j 1	l	´1	1	l	´2
	. . . . . . . . .		. . . . . . . . .			. . . . . . . . .	
	,1 pGq " t 3,1 pGq " Note that t 1,2 creates a loop when applied on G. 1 /.-, ()*+ 9 9 1 O O 2 O O Remark 5.3.1. In particular, t 1,1 pIq is the graph O, which is essential for TraPs. 1 i 1 i k . . . . . . . . . t i,j ÝÑ G 1 i 1 k ´1 . . . . . . . . . t i 1 ,j 1 ÝÑ G 1 k . . . . . . . . . G 1 i 1 i k . . . . . . . . . 1 j 1 j l . . . . . . . . . t i 1 ,j 1 ÝÑ G 1 i ´1 k ´1 . . . . . . . . . 1 j ´1 l ´1 . . . . . . . . . t i´1,j´1 ÝÑ G 1 . . . . . . . . . ´2 k ´2 1 l ´2 . . . . . . . . . Proposition 5.3.1. G For Property 3.(b), let us consider p " G a graph.

The traditional notation for ProP is PROP or and more recently prop. We choose to use ProP as an acronym with capital letters for the first letter of the words and use the same convention for the related concept of TraP.

We thank B. Vallette for his enlightening comments on these historical aspects.

We use Merkulov's notations.

The terminology monoid is used in this definition with the obvious abuse of vocabulary since Γ and EndpCq are not necessarily sets.
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The TraP Hom c V

We start with the TraP version of the ProP of linear morphisms of section 1.2. Proposition 5.2.1. Let V be a finite dimensional vector space and V ˚its algebraic dual. Then for any pk, lq P N 2 0 : Hom V pk, lq " HompV bk , V bl q » V ˚bk b V bl .

S l b S op k acts on the ProP Hom V as readily described in Proposition-Definition 1.2.1. We shall make some abuse of notation setting f 1 ¨¨¨f k :" f 1 b¨¨¨bf k P V ˚bk and v 1 ¨¨¨v l :" v 1 b¨¨¨bv l P V l . We equip V ˚bk b V bl with a horizontal concatenation:

, and partial trace maps:

(with obvious abuses of notations). These make Hom V a TraP. t i,j pσ ¨f1 . . . f k b v 1 . . . v l ¨τ q " t i,j pf τ p1q . . . f τ pkq b v σ ´1p1q . . . v σ ´1plq q " f τ piq pv σ ´1pjq qf τ p1q . . . f τ pi´1q f τ pi`1q . . . f τ pkq b v σ ´1p1q . . . v σ ´1pj´1q v σ ´1pj`1q . . . v σ ´1plq " σ j ¨tτpiq,σ ´1 pjq pf 1 . . . f k b v 1 . . . v l q ¨τi . Property 3.(c) is straightforward. Let us prove property 3.(d) with the help of Lemma 5.1.2. Let us fix pe i q iPI a basis of V , then pe i q iPI is a basis of V ˚and the identity map I " ř iPI e i b e i , acts as follows, Ipvq " ř iPI e i pvqe i " v for all v P V . Then:

So Hom V is a TraP.

Remark 5.2.1. In this example of TraP, t 1,1 pIq " dimpV q " dimpV qI 0 .

In order to generalise this construction to nuclear Fréchet spaces, we need to characterise the composition of linear morphisms of such spaces.

Lemma 5.2.2. Let E 1 , E 2 be two Fréchet nuclear spaces and E 3 a Fréchet space. Then the composition of continuous morphisms L 1 : E 1 ÝÑ E 2 , L 2 : E 2 ÝÑ E 3 amounts to a dual pairing.

Proof. Let E 1 , E 2 , E 3 be three topological spaces as in the statement. Then by (4) the identifications Hom c pE 1 , E 2 q » E 1 1 bE 2 and Hom c pE 2 , E 3 q » E 1 2 bE 3 hold. For L 1 " ř i,j u 1i b u 2 j P Hom c pE 1 , E 2 q, L 2 " ř k,l u 2k b u 3 l P HompE 2 , E 3 q and u P E 1 , we have

u 1i puq u 2k pu 2 j q u 3 l so that

Proposition 6.1.2. Given a TraP P , there is a canonical morphism of TraPs α P : Γ oe pP q ÝÑ P induced by the decoration. These maps define a natural transformation from the endofunctor Γ oe to the identity endofunctor of TraP, that is to say: for any morphism of TraP ϕ : P ÝÑ Q, the following diagram commutes: 

Γ ˝Γ ˝ΓpP q

Γpµ P q / / µ ΓpP q Γ ˝ΓpP q µ P Γ ˝ΓpP q µ P / / ΓpEq ΓpP q

We want to define a transformation ν : Id Mod S ÝÑ Γ oe , i.e. maps ν P : P ÝÑ Γ oe pP q for any S ˆSop -module P . The morphism ν P sends an element p P P pk, lq to the class of the graph P G k,l ppq with one vertex v decorated by p, and k incoming edges indexed from left to right by 1, . . . , k, l outgoing edges indexed from left to right by 1, . . . , l.

The morphism ν is a unit in EndpMod S q in the following sense: for any morphism φ : P ÝÑ Q, the following diagram commutes:

The multiplication is given by morphisms µ P : Γ oe ˝Γoe pP q ÝÑ Γ oe pP q attached to S ˆSopmodules P . Elements of Γ oe ˝Γoe pP q are graphs G whose vertices v are decorated by graphs G v , As α ˝Γoe pαq " α ˝µP , pp ˚p1 q ˚p2 is obtained by application of α to the graph: The same computation can be done for p ˚pp 1 ˚p2 q, which gives the associativity of ˚. 2. (b). The unit is I 0 " αpHq, where H is the graph with no vertex and no edge. 3. (d). The unit I is αpI 1 q, where I 1 is the graph with only one input-output edge. Let p P P pk, lq and 2 ď j ď l `1. Then t 1,j pI ˚pq is obtained by application of α ˝Γoe pαq to the graph: where the curved edge relate the first edge at the bottom to the j-th edge on the top. As α ˝Γoe pαq " α ˝µP , t 1,j pI ˚pq is obtained by application of α to the graph: where the curved edge relate the first edge on the bottom to the j-th edge on the top (note that this edge is also the pj ´1q-th outgoing the vertex decorated by p). As α is a S ˆSop morphism, we obtain that this is p1, . . . , j ´1q ¨α ˝νP ppq, that is to say p1, . . . , j ´1q ¨p.

Proposition 7.1.3. Any TraP is a Γ oe -algebra.

Proof. Let P be a TraP. From Proposition 6.1.2, we obtain a unique TraP morphism α P : Γ oe pP q ÝÑ P , such that for any pk, lq P N 2 0 , for any p P P pk, lq, α P sends the graph ν P pP q to P . The map α P ˝Γoe pαq : Γ oe ˝Γoe pP q ÝÑ P is a TraP morphism, sending, for any graph G P Γ oe pP q, ν Γ oe pP q pGq to αpGq. It is not difficult to see that µ P : Γ oe ˝Γoe pP q ÝÑ Γ oe pP q is a TraP morphism. Hence, α P ˝µP : Γ oe ˝Γoe pP q ÝÑ P is a TraP morphism, sending, for any graph G P Γ oe pP q, ν Γ oe pP q pGq to α P pGq. As Γ oe ˝Γoe pP q is generated by the elements µ P pGq, both these morphisms coincide:

α P ˝Γoe pαq " α ˝µP .

For any p P P , by construction of α P , α P ˝νP ppq " p, so:

Therefore, P is a Γ oe -algebra.

Corollary 7.1.4. The categories TraP of TraPs and Γ oe ´Alg of Γ oe -algebras are isomorphic.

Proof. We defined in Propositions 7.1.2 and 7.1.3 two functors F : TraP ÝÑ Γ oe ´Alg, G : Γ oe ´Alg ÝÑ TraP.

Let P be a TraP and P 1 the TraP G ˝FpP q, with concatenation ˚1 and trace operators t 1 i,j . We set FpP q :" pP, α P q: in other words, α P is the TraP morphism of Proposition 6.1.2. For any p, q P P : p ˚1 q " α P pν P ppq ˚νP pqqq " p ˚p1 , where in the middle term ˚is the concatenation in the TraP Γ oe pP q. Therefore, ˚" ˚1. If p P P pk, lq, pi, jq P rks ˆrls, then t 1 i,j is obtained by the application of α P to the graph:

which is t i,j pν P ppqq, where here t i,j is the trace operator of Γ oe pP q. As α P is a TraP morphism:

t 1 i,j ppq " α P ˝ti,j ˝νP ppq " t i,j ˝αP ˝νP ppq " t i,j ppq, so P 1 " P and G ˝F is the identity functor of TraP.

Let now pP, αq be a Γ oe -algebra and let us consider pP 1 , α 1 q be the Γ oe -algebra F ˝GpP q. Both α and α 1 are TraP morphisms from Γ oe pP q to GpP q; for any p P P , α ˝νP ppq " α 1 ˝νP ppq " p.

As Γ oe pP q is generated, as a TraP, by the elements ν P ppq, α " α 1 , so F ˝G is the identity functor of Γ oe ´Alg.

Remark 7.1.1. Γ oe -algebras appear in the literature [START_REF] Merkulov | PROP profile of Poisson geometry[END_REF][START_REF] Markl | Wheeled PROPs, graph complexes and the master equation[END_REF][START_REF] Merkulov | Wheeled props in algebra, geometry and quantization[END_REF][START_REF] Merkulov | Wheeled Pro(p)file of Batalin-Vilkovisky formalism[END_REF] under the name of unitary wheeled props; see [START_REF] Markl | Wheeled PROPs, graph complexes and the master equation[END_REF] for the description of the monad of graphs used for wheeled props, and [START_REF] Merkulov | Wheeled props in algebra, geometry and quantization[END_REF][START_REF] Merkulov | Wheeled Pro(p)file of Batalin-Vilkovisky formalism[END_REF] for applications of wheeled props.

We defined the structure of TraPs having their application to Feynman graphs in QFT in mind. Since our focus in this paper is on traces for which we need an explicit realisation of the structures under consideration, we choose to keep here the terminology TraP.

TraPs are ProPs

TraPs can be equipped with a ProP structure as a result of the fact that both the trace and composition of morphisms can be expressed in terms of a dual pairing. Corollary 7.1.4, yields an isomorphism between the categories of TraPs and wheeled ProPs. It is known that wheeled ProPs are ProPs, and we give here a detailed construction of the ProP structure on our TraPs, showing how the partial trace maps (referred to as contractions by Merkulov) of wheeled ProPs give rise to a vertical composition, and therefore to a ProP structure, a fact readily observed in [MMS09, Remarks 2.1.1].

Proposition 7.2.1. Let P be a TraP. We define a vertical composition in the following way: @p P P pk, lq, @q P P pl, mq, q ˝p " t k`1,1 ˝. . . ˝tk`l´1,l´1 ˝tk`l,l pp ˚qq.

Then P is a ProP.

Example 7.2.1. In the TraP of graphs Gr oe :

It is enough to prove it for a free TraP PGr oe pXq, as any TraP is the quotient of such an object. If G P PGr oe pXqpk, lq and H P PGr oe pXqpl, mq are two X-decorated planar graphs, then by definition of the partial trace maps, G ˚H is the X-decorated planar graph obtained by grafting together the output edge i of G with the input edge j of H for any i P rks; this is precisely the vertical concatenation of graphs, adapted to X-decorated planar graphs. So it is indeed a ProP.

Example 7.2.2. 1. For graphs, we recover the composition defined in Section 1.3, extended to graphs.

For the

This is the composition of Hom V .

Applied to the TraP Hom c V of Proposition 5.2.3, this method allows to recover the ProP Hom c

V of Theorem 2.2.5. Proposition 7.2.2. Let V be a Fréchet nuclear space. The ProP built from the TraP pHom c V pk, lqq k,lě0 as in Proposition 7.2.1 is isomorphic, as a ProP, to the ProP Hom c V of Theorem 2.2.5. Proof. It is enough to check that the composition of two homomorphisms will give the right object. Let f " Hom c V pk, lq and g " Hom c V pl, mq. By Equation (4) we can write

Then the definition of the composition product of Proposition 7.2.1 implies

Using Equation (7), we can apply Lemma 5.2.2 to the case E 1 " V p bm , E 2 " V p bl , E 3 " V p bk . The result then follows from this lemma and the observation that

for the duality pairing in E 2 .

Proposition 8.1.1. The family of topological vector spaces pK 8 X pk, lqq k,lě0 equipped with the partial traces t i,j :

(with an obvious abuse of notation in the cases where i (or j) is equal to 1 or k (or to 1 or l)) defines a TraP, written K 8 X .

Remark 8.1.1. Technically, K 8 X is a quasi-TraP in the sense of Subsection 7.3 since t 1,1 pIq " t 1,1 pδq is not defined. Following Subsection 7.3, this quasi-TraP can be completed to a full TraP K 8 X .

Proof. The unit I 0 P K 8 X p0, 0q » C b C of the vertical concatenation ˚" b is the constant map defined by f pxq " 1. It is the unit of b by bilinearity of the tensor product.

The unit I P K 8 X p0, 0q is δ by definition of the action of Dirac's distribution on smooth kernels. It suffices to show that t i,j pK 1 b K 2 qpx 1 , ¨¨¨, x k´1 , y 1 , ¨¨¨, y l´1 q lies in K 8 X pk ´1, l ´1q. The axioms of the TraP will then hold since they are in K X pk, lq (Example 5.2.3).

The existence of the integral comes from the smoothness of K 1 and K 2 and the closedness of X. It is enough to show that the function t i,j pK 1 b K 2 q : X k´1 ˆXl´1 ÝÑ C is smooth. Since K 1 and K 2 are smooth, the map

is infinitely differentiable for any z P X. Since X is compact, the partial derivatives

x B β y K 1 px 1 , ¨¨¨, x i´1 , z, x i ¨¨¨, x k´1 q K 2 py 1 , ¨¨¨, y j´1 , z, y j ¨¨¨, y k q are bounded uniformly in z. We can therefore use the dominated convergence theorem to get that ż

Therefore the map t i,j pK 1 b K 2 qpx 1 , ¨¨¨, x k´1 , y 1 , ¨¨¨, y l´1 q is smooth.

In view of the fact that the trace of a smoothing pseudodifferential operator P with kernel 

Generalised convolution of smoothing operators

Let X be a smooth finite dimensional closed Riemannian manifold. Set X k,l :" K 8 X pk, lq. Recall from Proposition 6.1.2 that there exists a TraP map Φ : Γ oe pP q ÝÑ X, as X is a TraP. Definition 8.2.1. Let G be a graph decorated by X " pK 8 X pk, lqq kl,PN 0 . The generalised convolution associated to G is the smoothing operator ΦpGq P K 8 X given by the image of G under Φ.

The name generalised convolution is justified by the following remark.

Remark 8.2.1. Let G be a ladder graph decorated by X " pK 8 X pk, lqq kl,PN 0 i.e., a graph such that IpGq " OpGq " r1s, IOpGq " LpGq " H, V pGq " tv 1 , ¨¨¨, v n u, EpGq " te 1 , ¨¨¨, e n´1 u and the source and target maps defined by

Here is a graphical representation of this graph:

Let O i be the smoothing pseudo-differential operator defined by the kernel K i that decorates the vertex v i : K i :" decpv i q for any v i P rns. Then the generalised convolution associated to the graph G is the convolution of the kernels K i , ¨¨¨, K n , which is the kernel of the smoothing pseudo-differential operator O 1 ˝¨¨¨˝O n .

The previous remark leads to the following statement.

Corollary 8.2.2. The convolution of smoothing pseudo-differential operators is well-defined and associative.

Proof. Well-definedness follows from the definition. The associativity follows from the fact that the vertical composition build from the TraP structure of graphs is associative, together with the fact that φ Id is a morphism of TraP.

A Appendix: topologies on tensor products

Tensor products ot topological spaces can be equipped with various topologies. A first possibility is the so-called ǫ-topology; (resp. F 1 σ ) the topological dual of E (resp. F ) for σ, the weak topology. Recall that a bilinear map f : E ˆF ÝÑ K is called separately continuous if, for any pair px, yq P E ˆF , the maps z Ñ f px, zq and z Ñ f pz, yq are continuous. We then clearly have that continuous bilinear maps build a linear subspace of the space B sc pE ˆF, Kq of separately continuous bilinear maps.

The space B sc pE ˆF, Kq can be equipped with the topology of uniform convergence on products of equicontinuous subsets of E 1 σ with equicontinuous subsets of F 1 σ . Recall that, for a topological space X and a topological vector space G, a set S of maps from X to G is said to be equicontinuous at x 0 P X if, for any V Ď G neighbourhood of zero, there is some neighbourhood V px 0 q Ď X of x 0 , such that @f P S, x P V px 0 q ñ f pxq ´f px 0 q P V.

In our case, G is K and X is E σ (resp. F σ ). This topology induces a topology on the subspace B c pE 1 σ ˆF 1 σ , Kq and thus on E b F . We denote by E b ǫ F the topological vector space obtained by endowing E b F with this topology. be a minimal decomposition of G. If G is indecomposable, we set ΦpGq " φpGq. Otherwise, as V pG 1 q ‰ H, |V pG 0 q| ă n. We put:

ΦpGq " γ ¨pφpG 1 q ˚. . . ˚φpG k q ˚Ip q ˝ΦpG 0 q ˚φpOq ˚ℓ.

Let us first prove that this does not depend on the choice of the minimal decomposition of G. Starting from a minimal decomposition of G, one obtains all possible minimal decompositions of G by a finite sequence of operations of type A and B:

• Type A: changing the indexations of the input and output edges of the graphs G i . We obtain a minimal decomposition G " γ 1 ¨pG 1 1 ˚. . . ˚G1 k ˚Ip q ˝G1 0 ˚O˚ℓ , such that there exists permutations α i , β i , with:

• Type B: permuting G l and G l`1 for l P rk ´1s. We obtain another minimal decomposition G " γ 1 ¨pG 1 1 ˚. . . ˚G1 k ˚Ip q ˝G1 0 ˚O˚ℓ , with:

G 1 0 " pId ipG 1 q`...`ipG l´1 q b c ipG l`1 q,ipG l q b Id ipG l`2 q`...`ipG k q`p q ˝G0 , γ 1 " γpId opG 1 q`...`opG l´1 q b c opG l q,opGl`1q b Id opG l`2 q`...`opG k q`p q.

Let G " γ ¨pG 1 1 ˚. . . ˚G1 k ˚Ip q ˝G1 0 ˚O˚ℓ 1 be another minimal decomposition of G. Then ℓ " ℓ 1 is the number of loops of G. It is enough to prove that γ ¨pφpG 1 q ˚. . . ˚φpG k q ˚Ip q ˝ΦpG 0 q " γ 1 ¨pφpG 1 1 q ˚. . . ˚φpG 1 k q ˚Ip q ˝ΦpG 1 0 q.

We can assume that G 1 is obtained from G by a single operation of type A or of type B. If it is of type A:

Id p q ¨ΦpG 0 q " γ ¨pφpG 1 q b . . . b φpG k q ˚Ip q ˝ΦpG 0 q.

If it is of type B: γ 1 ¨pφpG 1 1 q ˚. . . ˚φpG 1 k q ˚Ip q ˝ΦpG 1 0 q " γpId opG 1 q`...`opG l´1 q b c opG l q,opG l`1 q b Id opG l`2 q`...`opG k q`p q ¨pφpG 1 q ˚. . . ˚φpG l`1 q ˚φpG l q ˚. . . ˚φpG k q ˚Ip q ˝ΦppId ipG 1 q`...`ipG l´1 q b c ipG l`1 q,ipG l q b Id ipG l`2 q`...`ipG k q`p q ¨G0 q γ 1 ¨pφpG 1 1 q ˚. . . ˚φpG 1 k q ˚Ip q ˝ΦpG 1 0 q " γpId opG 1 q`...`opG l´1 q b c opG l q,opG l`1 q b Id opG l`2 q`...`opG k q`p q ¨pφpG 1 q ˚. . . ˚φpG l`1 q ˚φpG l q ˚. . . ˚φpG k q ˚Ip q ˝pId ipG 1 q`...`ipG l´1 q b c ipG l`1 q,ipG l q b Id ipG l`2 q`...`ipG k q`p q ¨ΦpG 0 q " γ ¨pφpG 1 q ˚. . . ˚copG l q,opG l`1 q ¨pφpG l`1 q ˚φpG l qq ¨cipG l`1 q,ipG l q ˚. . . ˚φpG k q ˚Ip q ˝ΦpG 0 q " γ ¨pφpG 1 q ˚. . . ˚φpG l q ˚φpG l`1 qq ˚. . . ˚φpG k q ˚Ip q ˝ΦpG 0 q " γ ¨pφpG 1 q b . . . b φpG k q ˚Ip q ˝ΦpG 0 q. So ΦpGq is well-defined. Let σ P S opGq and τ P S ipGq . We put H " σ ¨G ¨τ . A minimal decomposition of H is given by:

Hence:

ΦpHq " σγ ¨pφpG 1 q ˚. . . ˚φpG k q ˚Ip q ˝ΦpG 0 ¨τ q ˚φpOq ˚ℓ " σγ ¨pφpG 1 q ˚. . . ˚φpG k q ˚Ip q ˝ΦpG 0 q ¨τ ˚φpOq ˚ℓ " σ ¨pγ ¨pφpG 1 q ˚. . . ˚φpG k q ˚Ip q ˝ΦpG 0 qq ¨τ ˚φpOq ˚ℓ " σ ¨ΦpGq ¨τ.

Consequently, we have defined a map Φ : Gr oe ÝÑ P , extending the morphism φ of S ˆSopmodules. Let us prove that it is compatible with both concatenations. Let G and G 1 be two graphs, both with no loop. Let us prove that ΦpG ˚G1 q " ΦpGq ˚ΦpG 1 q by induction on n 1 " |V pG 1 q|. If n 1 " 0, there exists τ 1 P S q and ℓ 1 P N 0 , such that G 1 " σ 1 ¨Iq . We proceed by induction on n " |V pGq|. If n " 0, there exists τ P S p , such that G " σ ¨Ip . Then G ˚G1 " pσ b σ 1 q ¨Ip`q , and: ΦpG ˚G1 q " pσ b σ 1 q ¨Ip`q " pσ b σ 1 q ¨pI p ˚Iq q " pσ ¨Ip q ˚pσ 1 ¨Iq q " ΦpGq ˚ΦpG 1 q.

Otherwise, let G " γ ¨pG 1 ˚. . . ˚Gk ˚pq ˝G0 be a minimal decomposition of G. A minimal decomposition of G ˚G1 is:

G ˚G1 " pα b σ 1 q ¨pG 1 ˚. . . ˚Gk ˚Ip`q q ˝pG 0 ˚Iq q, so, using the induction hypothesis on G 0 :

ΦpG ˚G1 q " pγ b σ 1 q ¨pφpG 1 q ˚. . . ˚φpG k q ˚Ip`q q ˝ΦpG 0 ˚Iq q " pγ b σ 1 q ¨φpG 1 q ˚. . . ˚φpG k q ˚Ip ˚Iq q ˝pΦpG 0 q ˚Iq q " pγ ¨pφpG 1 q ˚. . . ˚φpG k q ˚Ip q ˝ΦpG 0 qq ˚pσ 1 ¨Iq q " ΦpGq ˚ΦpG 1 q.

So the result holds at rank n 1 " 0.

Let us assume the results hold at any rank ă n 1 . Let us consider minimal decompositions of G and G 1 :

with the convention k " 0 if V pGq " H. We obtain a minimal decomposition of G ˚G1 :

G ˚G1 " pγ b γ 1 qpId opG 1 q`...`opG k q b c p,opG 1 1 q`...`opG 1 l q b Id q q ¨pG 1 ˚. . . ˚Gk ˚G1 1 ˚. . . ˚G1 l ˚Ip`q q ˝ppId ipG 1 q`...`ipG k q b c ipG 1 1 q`...`ipG 1 l q,p b Id q qq ¨pG 0 ˚G1 0 qq.

We apply the induction assumption ΦpG ˚G1 q " ΦpGq ˚ΦpG 1 q for |V pG 1 q| ă n 1 to G 1 0 whose number of vertices is smaller than that of G 1 and hence smaller than n 1 . ΦpG ˚G1 q " pγ b γ 1 qpId opG 1 q`...`opG k q b c p,opG 1 1 q`...`opG 1 l q b Id q q ¨pφpG 1 q ˚. . . ˚φpG k q ˚φpG 1 1 q ˚. . . ˚φpG 1 l q ˚Ip`q q ˝ΦppId ipG 1 q`...`ipG k q b c ipG 1 1 q`...`ipG 1 l q,p b Id q qq ¨pG 0 ˚G1 0 qq " pγ b γ 1 qpId opG 1 q`...`opG k q b c p,opG 1 1 q`...`opG 1 l q b Id q q ¨pφpG 1 q ˚. . . ˚φpG k q ˚φpG 1 1 q ˚. . . ˚φpG 1 l q ˚Ip`q q ˝pId ipG 1 q`...`ipG k q b c ipG 1 1 q`...`ipG 1 l q,p b Id q qq ¨ΦpG 0 ˚G1 0 q " pγ b γ 1 qpId opG 1 q`...`opG k q b c p,opG 1 1 q`...`opG 1 l q b Id q q ¨pφpG 1 q ˚. . . ˚φpG k q ˚φpG 1 1 q ˚. . . ˚φpG 1 l q ˚Ip ˚Iq q ˝pId ipG 1 q`...`ipG k q b c ipG 1 1 q`...`ipG 1 l q,p b Id q qq ¨pΦpG 0 q ˚ΦpG 1 0 qq " pγ b γ 1 q ¨pφpG 1 q ˚. . . ˚φpG k q ˚Ip ˚φpG 1 1 q ˚. . . ˚φpG 1 l q ˚Iq q ˝pΦpG 0 q ˚ΦpG 1 0 qq " pγ ¨pφpG 1 q ˚. . . ˚φpG k q ˚Ip q ˝ΦpG 0 qq ˚pγ 1 ¨pφpG 1 1 q ˚. . . ˚φpG 1 l q ˚Iq q ˝pΦpG 1 0 qq " ΦpGq ˚ΦpG 1 q.

So if G and G 1 are both graphs with no loop, ΦpG ˚G1 q " ΦpGq ˚ΦpG 1 q.

Let G, G 1 be two graphs, both with no loop. Let us prove that ΦpG 1 ˝Gq " ΦpG 1 q ˝ΦpGq. We proceed by induction on n " |V pGq| `|V pG 1 q|. If V pG 1 q " H, there exists a permutation σ P S p such that G 1 " σ ¨Ik . Then: ΦpG 1 ˝Gq " Φpσ ¨Gq " σ ¨ΦpGq " σ ¨pI p ˝ΦpGqq " pσ ¨Ip q ˝ΦpGq " ΦpG 1 q ˝ΦpGq. Similarly, if V pGq " H, ΦpG 1 ˝Gq " ΦpG 1 q ˝ΦpGq. Thus we have proved the cases n " 0 and 1.

Let us assume it holds up to rank N and take G and G 1 such that n " N `1. By the previous argument, ΦpG ˝G1 q " ΦpGq ˝ΦpG 1 q if V pGq " H or V pG 1 q " H. We now assume that V pGq and V pG 1 q are nonempty. Let us consider minimal decompositions of G and G 1 :

In G 1 ˝G, the output edges of G are glued with an input or an input-output edge of G 1 . In particular, for any i, output edges of G i are glued with input edges or input-output edges of G 1 . Up to a change of indexation we assume that there is some r such that:

• For all i ď r, at least one output edge of G i is glued with an input edge of G 1 .

• If i ą r, all output edges of G i are glued with input-output edges of G 1 .

A particular sub-case. We assume that the input-output edges of G 1 glued with an output of one of the G i are the input edges of G 1 with the greatest indices. Then G 1 0 " G 2 0 ˚Is`opG r`1 q`...`opG k q for a certain s. Moreover, γ can be written as γ " γ 1 b γ 2 , such that a minimal decomposition of H " G 1 ˝G is given by: H 0 " pId ipG 1 1 q`...`ipG 1 l q b c ipG r`1 q`...`ipG k q`p,s q ¨G1 0 ˝pγ 1 ¨pG 1 ˚. . . ˚Gr ˚IipG r`1 q`...`ipG k q`p q ¨G0 , pH 1 , . . . , H m q " pG 1 1 , . . . , G 1 l , G r`1 , . . . , G k q, γ 2 " γ 1 pId opG 1 1 q`...`opG 1 l q b c s,opG r`1 q`...`opG k q`p qpId opG 1 1 q`...`opG 1 l q`s b γ 2 q. Applying the induction hypothesis on G 0 and G 1 0 :

ΦpHq " γ 1 pId opG 1 1 q`...`opG 1 l q b c s,opG r`1 q`...`opG k q`p qpId opG 1 1 q`...`opG 1 l q`s b γ 2 q ¨ppφpG 1 1 q ˚. . . ˚φpG 1 l q ˚φpG r`1 ˚. . . ˚φpG k qq ˝ΦppId ipG 1 1 q`...`ipG 1 l q b c ipG r`1 q`...`ipG k q`p,s q ¨G1 0 ˝pγ 1 ¨pφpG 1 q ˚. . . ˚φpG r q ˚IipG r`1 q`...`ipG k q`p q ¨G0 q " γ 1 pId opG 1 1 q`...`opG 1 l q b c s,opG r`1 q`...`opG k q`p qpId opG 1 1 q`...`opG 1 l q`s b γ 2 q ¨ppφpG 1 1 q ˚. . . ˚φpG 1 l q ˚φpG r`1 ˚. . . ˚φpG k qq ˝pId ipG 1 1 q`...`ipG 1 l q b c ipG r`1 q`...`ipG k q`p,s q ¨ΦpG 1 0 q ˝pγ 1 ¨pφpG 1 q ˚. . . ˚φpG r q ˚IipG r`1 q`...`ipG k q`p q ¨ΦpG 0 qq " pγ ¨pφpG 1 q ˚. . . ˚φpG k q ˚Ip q ˝ΦpG 0 qq ˝pγ 1 ¨pφpG 1 1 q ˚. . . ˚φpG 1 l q ˚Iq q ˝ΦpG 1 0 qq " ΦpGq ˝ΦpG 1 q.

General case. There exists a permutation σ, such that if H 1 " G 1 ¨σ´1 and H " σ ¨G, then the condition of the particular sub-case holds for pH, H 1 q. Then: ΦpG 1 ˝Gq " ΦppG 1 ¨σ´1 σq ˝Gq " ΦppG 1 ¨σ´1 q ˝pσ ¨Gqq " ΦpG 1 ¨σ´1 q ˝Φpσ ¨Gq since the subcase holds " pΦpG 1 q ¨σ´1 q ˝pσ ¨ΦpGqq " pΦpG 1 q ¨σ´1 qσq ¨ΦpGq " ΦpG 1 q ¨ΦpGq. Finally, if G and G 1 are both graphs with no loop, ΦpG ˝G1 q " ΦpGq ˝ΦpG 1 q.

Let us finish this proof by considering loops. First, if H is a graph, there exist a (unique) graph with no loop and a (unique) integer ℓ, such that H " G ˚O˚ℓ . Let G " γ ¨pG 1 ˚. . . ˚Gk ˚Ip q ˝G0 be a minimal decomposition of G. Then a minimal decomposition of H is:

H " γ ¨pG 1 ˚. . . ˚Gk ˚Ip q ˝G0 ˚O˚ℓ , so ΦpHq " γ ¨pφpG 1 q ˚. . . φpG k q ˚Ip q ˝ΦpG 0 q ˚φpOq ℓ " ΦpGq ˚φpOq ℓ .

Hence, if H and H 1 are two graphs, let us consider graphs G and G 1 with no loop and integers ℓ and ℓ 1 , such that

Then H ˚H1 " G ˚G1 ˚O˚pℓ`ℓ 1 q and G ˚G1 is a graph with no loop. Hence, by commutativity of the horizontal concatenation of the product of P :

ΦpH ˚H1 q " ΦpG ˚G1 q ˚φpOq ˚pℓ`ℓ 1 q " ΦpGq ˚ΦpG 1 q ˚φpOq ˚ℓ ˚φpOq ˚ℓ1 " ΦpGq ˚φpOq ˚ℓ ˚ΦpG 1 q ˚φpOq ˚ℓ1 " ΦpHq ˚ΦpH 1 q.

So Φ is compatible with the horizontal concatenation.

If moreover, H P Gr oe pl, mq and H 1 P Gr oe pk, lq, then H ˝H1 " pG ˝G1 q ˚O˚pℓ`ℓ 1 q , and G ˝G1 is a graph with no loop. By the compatibility of the two concatenations of P : ΦpH ˝H1 q " ΦpG ˝G1 q ˚φpOq ˚pℓ`ℓ 1 q " pΦpGq ˝ΦpG 1 qq ˚φpOq ˚ℓ ˚φpOq ˚ℓ1 " pΦpGq ˚φpOq ˚ℓq ˝pΦpG 1 q ˚φpOq ˚ℓ1 q " ΦpHq ˝ΦpH 1 q.

So Φ is compatible with the vertical concatenation.

C.2 Proof of Theorem 5.4.1

Proof. We first define ΦpGq for any graph such that, if G P Gr oe pk, lq, for any pσ, τ q P S l ˆSk , Φpσ ¨G ¨τ q " σ ¨ΦpGq ¨τ . We proceed by induction on the number N of internal edges of G. If N " 0, then G can be written (non uniquely) as G " O ˚p ˚σ ¨pI ˚q ˚Gk 1 ,l 1 ˚. . . ˚Gkr,lr q ¨τ, where p, q, r P N 0 are unique, pk i , k i q P N 2 0 for any i, unique up to a permutation, and σ P S q`k 1 `...`kr , τ P S q`l 1 `...`lr . We then put:

ΦpGq " t 1,1 pIq ˚p ˚σ ¨pI ˚q ˚xk 1 ,l 1 ˚. . . ˚xkr,lr q ¨τ. Let us prove that this does not depend of the choice of the writing of G. As this is up to a permutation of the vertices and of the choice of σ and τ , we can go from one decomposition of G to any other one in a finite steps among the following two cases:

1. We consider two writing of G of the form

Then, by commutativity of ˚:

σ 1 ¨pI ˚q ˚xk 1 ,l 1 ˚. . . ˚xkr,lr q ¨τ 1 " σ ¨pI ˚q ˚xk 1 ,l 1 ˚. . . ˚cl i ,l i`1 ¨px k i`1 ,l i`1 ˚xk i ,l i q ¨ck i`1 ,k i ˚. . . ˚xkr,lr q ¨τ " σ ¨pI ˚q ˚xk 1 ,l 1 ˚. . . ˚xk i ,l i ˚xk i`1 ,l i`1 ˚. . . ˚xkr,lr q ¨τ.

2. We consider two writings of G of the form G " O ˚p ˚σ ¨pI ˚q ˚Gk 1 ,l 1 ˚. . . ˚Gkr,lr q ¨τ, G " O ˚p ˚σ1 ¨pI ˚q ˚Gk 1 ,l 1 ˚. . . ˚Gkr,lr q ¨τ 1 , with

with σ 0 P S q , σ i P S k i and τ i P S l i if i ě 1. Using the commutativity of ˚and the invariance of the x k,l :

σ 1 ¨pI ˚q ˚xk 1 ,l 1 ˚. . . ˚xkr,lr q ¨τ 1 " σ ¨pσ 0 ¨I˚q ¨σ´1 0 ˚σ1 ¨xk 1 ,l 1 ¨τ1 ˚. . . ˚σr ¨xkr,lr ¨τr q ¨τ " σ ¨pI ˚q ˚xk 1 ,l 1 ˚. . . ˚xkr,lr q ¨τ.

Hence, ΦpGq is well-defined. Moreover, of τ 1 P S k , σ 1 P S l , choosing a writing of G of the form

and, by definition of ΦpG 1 q:

ΦpG 1 q " t 1,1 pIq ˚p ˚σ1 σ ¨pI ˚q ˚xk 1 ,l 1 ˚. . . ˚xkr,lr q ¨τ τ 1 " σ 1 ¨pt 1,1 pIq ˚p ˚σ ¨pI ˚q ˚xk 1 ,l 1 ˚. . . ˚xkr,lr q ¨τ q ˚τ 1 " σ 1 ¨ΦpGq ¨τ 1 .

Let us assume now that ΦpG 1 q is defined for any graph with N ´1 internal edges, for a given N ě 1. Let G be a graph with N internal edges and let e be one of these edges. Let G e be a graph obtained by cutting this edge in two:

1. V pG e q " V pGq.

2. EpG e q " EpGqzteu, IpG e q " IpGq \ teu, OpG e q " OpGq \ teu, IOpG e q " IOpGq, LpG e q " LpGq.

3. s Ge " s G and t Ge " t G .

4. For any e 1 P IpG e q \ IOpG e q, for any f 1 P OpG e q \ IOpG e q:

α Ge pe 1 q " # 1 if e 1 " e, α G pe 1 q `1 if e 1 ‰ e, β Ge pf 1 q "

Then G " t 1,1 pG e q and G e has N ´1 internal edges. We then put:

ΦpGq " t 1,1 ˝ΦpG e q.

Let us prove that this does not depend of the choice of e. If e 1 is another internal edge of G, then: pG e q e 1 " p12q ¨pG e 1 q e ¨p12q, which implies, by definition of ΦpG e q and ΦpG e 1 q:

t 1,1 ˝ΦpG e q " t 1,1 ˝t1,1 ˝ΦppG e q e 1 q " t 1,1 ˝t1,1 ˝pp12q ¨ΦppG e 1 q e q ¨p12qq " t 1,1 ˝t2,2 ˝ΦppG e 1 q e q " t 1,1 ˝t1,1 ˝ΦppG e 1 q e q " t 1,1 ˝ΦpG e 1 q.

So ΦpGq is well-defined. Let σ P S k and τ P S l . Then: pσ ¨G ¨τ q e " pp1q b σq ¨pG e q ¨pp1q b τ q, so:

Φpσ ¨G ¨τ q " t 1,1 ˝Φppσ ¨G ¨τ q e q " t 1,1 pp1q b σq ¨ΦpG e q ¨pp1q b τ q " pp1q b σq 1 ¨t1,1 ˝ΦpG e q ¨pp1q b τ q 1 " σ ¨ΦpGq ¨τ.

where, for σ P S k we use σ i for the permutation in S k´1 defined by

where pp1q b τ q 1 is defined by (14).

We have therefore defined a map Φ : GGr ÝÑ P , compatible with the action of the symmetric groups. Let us prove that for any graphs G, G 1 , ΦpG ˚G1 q " ΦpGq ˚ΦpG 1 q.

We proceed by induction on the number N of internal edges of G ˚G1 . If N " 0, we put:

G " O ˚p ˚σ ¨pI ˚q ˚Gk 1 ,l 1 ˚. . . ˚Gkr,lr q ¨τ, G 1 " O ˚p1 ˚σ1 ¨¨¨pI ˚q1 ˚Gk 1 1 ,l 1 1 ˚. . . ˚Gk 1 r 1 ,l 1 r 1 q ¨τ 1 . We obtain: G ˚G1 " O ˚pp`p 1 q ˚pσ b σ 1 q ˚pId q b c k 1 `...`kr,q 1 b Id k 1 1 `...`k 1 r 1 q ¨pI q`q 1 ˚Gk 1 ,l 1 ˚. . . ˚Gk 1 r 1 ,l 1 r 1 q ¨pId q b c q 1 ,l 1 `...`lr b Id l 1 1 `...`l 1 r 1 q, which gives, by commutativity of ˚:

ΦpG ˚G1 q " t 1,1 pIq ˚pp`p 1 q ˚pσ b σ 1 q ˚pId q b c l 1 `...`lr,q 1 b Id l 1 1 `...`l 1 r 1 q ¨pI q`q 1 ˚xk 1 ,l 1 ˚. . . ˚xk 1 r 1 ,l 1 r 1 q ¨pId q b c q 1 ,k 1 `...`kr b Id k 1 1 `...`k 1 r 1 q " t 1,1 pIq ˚p ˚σ ¨pI ˚q ˚xk 1 ,l 1 ˚. . . ˚xkr,lr q ¨τ ˚t1,1 pIq ˚p1 ˚σ1 ¨pI ˚q1 ˚xk 1 1 ,l 1 1 ˚. . . ˚xk 1 r 1 ,l 1 r 1 q ¨τ 1 " ΦpGq ˚ΦpG 1 q.

If N ě 1, let us take an internal edge e of G ˚G1 . If e is an internal edge of G, then pG ˚G1 q e " G e ˚G1 , and:

ΦpG˚G 1 q " t 1,1 ˝ΦppG˚G 1 q e q " t 1,1 ˝ΦpG e ˚G1 q " t 1,1 pΦpG e q˚G 1 q " t 1,1 ˝ΦpG e q˚ΦpG 1 q " ΦpGq˚ΦpG 1 q.