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An enhanced spatial smoothing technique with
ESPRIT algorithm for direction of arrival estimation

in coherent scenarios
Jingjing Pan, Meng Sun, Yide Wang, Xiaofei Zhang

Abstract—Subspace-based methods suffer from the rank loss
of the noise free data covariance matrix in the context of direction
of arrival (DOA) estimation of coherent sources. The well-known
spatial smoothing techniques are then widely employed to create
a rank restored data covariance matrix. However, conventional
spatial smoothing techniques, such as the spatial smoothing
pre-processing (SSP), modified spatial smoothing pre-processing
(MSSP), and improved spatial smoothing (ISS), do not make full
use of the available information in the data covariance matrix.
In this paper, an enhanced spatial smoothing (ESS) technique
is proposed to exploit both the covariance matrices of indi-
vidual subarrays and the cross-covariance matrices of different
subarrays. Besides, the proposed method can work directly on
the signal subspace (ESS-SS), since the signal subspace contains
all the information of the DOAs of incoming signals. After de-
correlation, the subspace method ESPRIT is adopted to estimate
the DOAs. Compared with conventional approaches, the proposed
method is more powerful to de-correlate the correlation between
signals, and also more robust to the noise impact. The proposed
method is tested on numerical data in coherent scenarios, and
compared with conventional approaches. Simulation results show
that the proposed method has an enhanced resolving capability
and a lower signal-to-noise ratio threshold.

Index Terms—Direction of arrival (DOA) estimation, enhanced
spatial smoothing (ESS), signal subspace.

I. INTRODUCTION

Direction of arrival (DOA) estimation is a major issue
in array signal processing [1], [2] and practical engineering
applications, e.g., radar, sonar, navigation, non-destructive
testing, and wireless communications [3], [4], [5]. A variety of
array signal processing methods have been proposed for DOA
estimation. Since the 1970s, a class of eigenstructure-based
methods, called subspace-based methods or high-resolution
methods, have been developed and become very popular, such
as multiple signal classification (MUSIC) [6], estimation of
signal parameters via rotational invariance techniques (ES-
PRIT) [7], matrix pencil method (MPM) [8], and subspace
fitting method [9], [10]. These methods have been proven to
have higher resolution capability than conventional Fourier-
based methods, the Capon method [11], and linear-prediction-
based methods [12]. Among the subspace-based methods,
MUSIC and ESPRIT are the two leading methods. In the
1990s, propagator-based methods or linear subspace methods,
such as orthogonal propagator method (OPM) [13], were pro-
posed for the estimation of DOA, which use linear operations
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instead of eigenvalue decomposition (EVD) or singular value
decomposition (SVD).

Both subspace-based and propagator-based methods were
originally proposed for uncorrelated signals, they are based on
the assumption of the non-singularity of the source covariance
matrix. In reality, there are practical applications where coher-
ent signals are presented because of multi-path propagation
by different reflective media or deliberate jamming in military
scenarios [14], [15]. In this case, the cross-correlation between
signals may be high enough to degrade the performance of
the aforementioned methods, since there is a rank loss in
the source covariance matrix. The authors of [16] proposed a
generalized MUSIC algorithm for DOA estimation of coherent
signals, and subspace fitting methods [9], [10] can also handle
the case of coherent signals in DOA estimation. Unfortunately,
both the generalized MUSIC and subspace fitting methods
require multi-dimensional search, which is computationally
expensive for real-time applications.

To counter the deleterious effect of the coherency between
signals, a number of techniques have been developed to de-
correlate the correlation between signals. The well-known spa-
tial smoothing pre-processing (SSP) technique was proposed
in [17] and modified in [14], [18], [19] (modified SSP or
MSSP), which partitions the entire observation array into a
series of overlapping subarrays to obtain a new data covariance
matrix with restored rank. The subspace-based method MPM
can directly solve the problem of coherent signals [8]. Its
principle is to first construct a Hankel matrix of the received
signals, which is equivalent to the spatial smoothing approach,
and then use the generalized idea of the pencil function for
DOA estimation. The spatial-smoothing-based techniques have
achieved numerous results, and many improvements based on
SSP have been proposed [20]-[21].

In addition, there are many matrix-reconstruction-based
approaches for coherent signals. The authors of [22], [23]
proposed the construction of new matrices, whose ranks are
independent of the coherency between signals in DOA estima-
tion. In [22], the authors attempted to reconstruct a Toeplitz
matrix from the data covariance matrix in order to estimate
DOA. This method is not affected by the coherency between
signals and shows reasonable performance, but with a reduced
array aperture. To achieve a larger effective array aperture, a
non-Toeplitz matrix was used in [23] to resolve more signals
than the number of arrays under the coexistence of coherent
and incoherent signals. In [24], the authors proposed to modify
the received signal model with a multi-invariance property and
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apply multi-invariance ESPRIT or MUSIC for coherent DOA
estimation.

Within the aforementioned de-correlation methods, two im-
proved spatial smoothing (ISS) techniques [25], [26] have
drawn much attention [27], [28], [29], [30]. The two ISS
techniques exploit not only the covariance matrices of indi-
vidual subarrays, but also the cross-covariance matrices of
different subarrays. In contrast, the conventional SSP only
uses the covariance matrices of individual subarrays [25]. The
ISS techniques have been proved to be more powerful to de-
correlate the correlation between signals than the conventional
SSP [25], [26].

However, the two ISS techniques [25], [26] do not use all
the information from the received signals (details are given
in Section 3). In this paper, an enhanced spatial smoothing
technique (called ESS) is proposed, which takes the full
advantage of the covariance matrices of individual subarrays
as well as the cross-covariance matrices of different subarrays.
Furthermore, the proposed method can be operated on the
signal subspace instead of the entire data covariance matrix,
since the signal subspace contains all the information of
the signals [1]. Then, the subspace-based method, ESPRIT,
is applied for DOA estimation in coherent scenarios, after
the proposed de-correlation pre-processing. Compared with
conventional approaches, the proposed method has two major
merits: 1) it fully utilizes the information coming from the
signal subspace, which is more powerful for de-correlation,
2) it is more robust to noise. Performance analysis of the
proposed method on DOA estimation of coherent sources is
provided with numerical data, which proves the effectiveness
of the proposed method.

The rest of this paper is organized as follows. Far field
narrow band signal model is presented in Section 2. In
Section 3, the principle of the conventional SSP and two ISS
techniques [25], [26] are briefly reviewed. In Section 4, the
proposed ESS technique is described. Simulation results and
a discussion on the performance of the ESPRIT algorithm
with the two ISS techniques presented in [25], [26], and the
proposed method are provided in Section 5. Conclusions and
perspectives are given in Section 6.

II. SIGNAL MODEL

Consider K far field narrow band signals impinging on a
uniform linear array (ULA) with N isotropic antenna ele-
ments. The received signals are coherent. The index of the
antennas is set to be 0, 1, . . . , N − 1, as shown in Fig. 1,
the 0th sensor is set to be the reference sensor. The received
signal for the mth sensor (m = 0, 1, . . . , N − 1) at time t
(t = 1, 2, . . . , Tk, with Tk the number of snapshots, t is
normalized with the sampling period) can be written as

rm(t) =
K∑
k=1

sk(t) exp(−j2mπ d
λ

sin θk) + nm(t), (1)

where sk(t) is the complex envelope of the kth signal with
corresponding DOA θk received at the 0th sensor, nm(t) is the
additive white Gaussian noise (AWGN) at the corresponding

0 N-11

θ 

Fig. 1. Uniform Linear Array.

sensor with zero mean and variance σ2, d denotes the distance
between two adjacent sensors, and λ is the wavelength of
incoming signals.

(1) can be written in the following vector form:

r(t) = As(t) + n(t) (2)

with the following notation definitions:

• r(t) = [r0(t) r1(t) · · · rN−1(t)]
T is the (N × 1) re-

ceived signal vector; the superscript T denotes the trans-
pose operation;

• A = [a(θ1) a(θ2) . . . a(θK)] is the (N×K) directional
matrix;

• a(θk) = [1 exp(−j2π dλ sin θk) . . . exp(−j2(N −
1)π dλ sin θk)]T is the directional vector;

• s(t) = [s1(t) s2(t) · · · sK(t)]
T is the (K × 1) source

vector;
• n(t) = [n0(t) n1(t) · · · nN−1(t)]

T is the (N ×1) noise
vector, with zero mean and covariance matrix σ2I; I is
the (N ×N) identity matrix.

According to signal model (2) and assuming that the noise
is independent from the signals, the data covariance matrix R
can be written as

R = E
{
r(t)rH(t)

}
= AE

{
s(t)sH(t)

}
AH + E

{
n(t)nH(t)

}
= ASAH + σ2I,

(3)

where E{:} denotes the mathematical expectation, S is the
(K ×K)-dimensional covariance matrix of the source vector
s(t), and the superscript H denotes the conjugate transpose
operation. Matrix S is full rank when the received signals
are not fully correlated. However, when the received signals
are fully correlated (coherent), matrix S is singular (rank loss
phenomena) [14], [16].

By applying EVD, the data covariance matrix R can be
reformulated in terms of its eigenvalues and associated eigen-
vectors:

R = UΛUH , (4)

where Λ = diag{λ1, λ2, . . . , λN} is a diagonal matrix of
eigenvalues (λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λN ), and their associated
eigenvectors are in the columns of U = {u1,u2, . . . ,uN}.
Consequently, the data covariance matrix R can be decom-
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posed into

R = Γs + Γn

= UsΛsU
H
s + UnΛnUH

n ,
(5)

where Λs is a diagonal matrix containing the K maximum
eigenvalues λ1 ≥ · · · ≥ λK > σ2; and their associated
eigenvectors are in the columns of Us, which span the signal
subspace; Λn is also a diagonal matrix that contains the
N − K small eigenvalues λK+1 = · · · = λN = σ2; and
their associated eigenvectors are in the columns of Un, which
span the noise subspace.

Nevertheless, in coherent scenarios, only 1 eigenvalue is
larger than the noise variance, i.e., λ1 > λ2 = λ3 = · · · =
λN = σ2. Therefore, Λs is a scalar (λ1) and Us is a vector
(u1). Matrix Γs can be rewritten as

Γs = UsΛsU
H
s = λ1u1u

H
1 . (6)

Therefore, the rank of Γs drops to 1. In this case, methods such
as MUSIC and ESPRIT cannot be directly applied, because
they are based on the full rank property of matrix Γs.

III. SPATIAL SMOOTHING TECHNIQUE

As mentioned previously, the main obstacle to apply
subspace-based and propagator-based methods is the co-
herency between the received signals. In this section, the
de-correlation process of the conventional spatial smoothing
technique [17], [18] and two ISS techniques [25], [26] are
briefly reviewed.

0 N-1   1

r1

r2

rM

L-1

Fig. 2. Overlapping subarrays for spatial smoothing techniques.

The conventional way of mitigating the influence of cross-
correlation magnitude is to apply spatial-smoothing-based
techniques on the data covariance matrix R. As shown in
Fig. 2, the entire array is partitioned into M overlapping
subarrays, each consisting of L elements. Therefore, it is easy
to verify that the maximum number of signals that can be
estimated is L − 1. Parameters N , L, and M are related to
each others by

N = L+M − 1.

Let ri denote the (L × 1) received signal vector on the ith
subarray, it can be written as

ri = A1D
i−1s + ni, (7)

where ni is the (L× 1) noise vector on the ith subarray; the
(L×K) matrix A1 denotes the first L rows of the directional

matrix A, which is independent of parameter i; D is a (K×K)
diagonal matrix:

D = diag
{

exp{−j2π d
λ

sin θ1}, ... , exp{−j2π d
λ

sin θK}
}
.

Therefore, the noiseless cross-covariance matrix of the ith and
jth subarrays Rij can be written as

Rij = E
{
ri(t)r

H
j (t)

}
= A1D

i−1S(Dj−1)HAH
1 .

(8)

Similarly, after some mathematical manipulations, the back-
ward cross-covariance matrix between the ith and jth subar-
rays can be defined as

Rij = JE
{
r∗i (t)r

T
j (t)

}
J

= JR∗ijJ,
(9)

where J is the (L×L) anti-identity matrix (exchange matrix)
and the operator ∗ denotes the complex conjugate.

According to [14], the rank restored data covariance matrix
RSSP after SSP is

RSSP =
1

M

M∑
i=1

Rii. (10)

MSSP is an extension of SSP, which utilizes the covariance
matrix of the ith forward and backward subarrays to construct
the rank restored data covariance matrix RMSSP as follows
[18]:

RMSSP =
1

2M

M∑
i=1

{Rii + Rii}. (11)

Unlike the conventional SSP and MSSP, the authors of [25],
[26] proposed two different ISS techniques, which are based
on quadratic spatial smoothing and yield better angular resolu-
tion for coherent signals. The method proposed in [25], called
ISS1 in this paper, takes advantage of all the cross-covariance
matrices Rij and part of the covariance matrices Rii/Rjj .
ISS1 constructs the following rank restored data covariance
matrix RISS1:

RISS1 =
1

2M

M∑
i=1

M∑
j=1

{RijRji + RijRji}. (12)

The method proposed in [26], called ISS2 in this paper, takes
advantage of all the covariance matrices Rii/Rjj , by using
the following rank restored matrix:

RISS2 =
1

2M

M∑
i=1

M∑
j=1

{RiiRjj + RiiRjj}. (13)

It can be seen from (12) and (13) that neither ISS1 nor ISS2
uses all the information from the subarrays. In (12), ISS1 does
not use the information from RiiRjj for i 6= j; all the cross-
covariance matrices Rij , i 6= j are missing in ISS2 (13).

IV. ENHANCED SPATIAL SMOOTHING TECHNIQUE

As shown in the previous section, one drawback of the
two ISS techniques is that they do not fully utilize the
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information from the subarrays. Therefore, in this section,
the ESS technique is proposed. The proposed rank restored
data covariance matrix RESS after ESS including all the cross-
covariance matrices of different subarrays Rij and covariance
matrices of individual subarrays Rii/Rjj , is expressed as

RESS =
1

2M

M∑
i=1

M∑
j=1

{(RijRji + RijRji)

+ (RiiRjj + RiiRjj)}.

(14)

As shown in Appendix A, the rank of the source covariance
matrix after the proposed ESS technique is equal to K.
Therefore, it is clear that the proposed method can restore
the rank of the data covariance matrix.

As mentioned in Section 2, only the signal subspace con-
tains the information of the received signals. Nevertheless, the
conventional spatial-smoothing-based techniques are applied
on the data covariance matrix. The proposed ESS technique
can also work on the signal subspace, called ESS-SS in this
paper. As discussed before, for coherent signals, Λs = λ1 is a
scalar, and Us = u1 is an (N × 1) vector. The received data
covariance matrix R can then be written as

R = λ1u1u
H
1 + σ2UnUH

n . (15)

Since
u1u

H
1 + UnUH

n = I,

we have

ASAH = R− σ2I

= λ1u1u
H
1 + σ2UnUH

n − σ2I

= (λ1 − σ2)u1u
H
1 ,

(16)

therefore, we can deduce that

u1 =
1

λ1 − σ2
ASAHu1

= At,
(17)

where t =
1

λ1 − σ2
SAHu1 is a (K × 1) vector. The expres-

sion of matrix Γs is different for coherent signals and for no-
fully correlated signals. For coherent signals, Γs = λ1u1u

H
1 ;

for no-fully correlated signals, Γs = UsΛsU
H
s . In the

following, matrix Γs is normalized, index 1 in u1 and index
s in Γs are dropped for notational convenience.

We define the ith and jth subarrays of matrix Γ for coherent
signals as

Γij = viv
H
j (18)

where vi = A1D
i−1t is the (L × 1) vector. For no-fully

correlated signals, according to [1], Us = AT, T is (K×K)-
dimensional invertible matrix. The ith and jth subarrays of
matrix Γ for no-fully correlated signals can be expressed as

Γij = A1D
i−1TΛsT

H(Dj−1)HAH
1

= viΛsv
H
j ,

(19)

where vi in (19) can be written as vi = A1D
i−1T. Then,

we apply the proposed ESS technique on the signal subspace.
In the following, only the coherent signals are studied, the

case of no-fully correlated signals is just a straightforward
extension. The rank restored covariance matrix RESS-SS can
be reformulated as follows:

RESS-SS =
1

2M

M∑
i=1

M∑
j=1

{(ΓijΓji + ΓijΓji)

+ (ΓiiΓjj + ΓiiΓjj)}.

(20)

To facilitate the expression of the proposed ESS-SS tech-
nique, the forward only smoothed covariance matrix is taken
as an example, which can be expressed as

Rf
ESS-SS =

1

2M

M∑
i=1

M∑
j=1

{ΓijΓji + ΓiiΓjj}. (21)

More specifically, we define

Rf
1 =

M∑
i=1

M∑
j=1

{ΓijΓji} =

M∑
i=1

M∑
j=1

{viv
H
j vjv

H
i }

=

M∑
i=1

M∑
j=1

{A1D
i−1ttH(Dj−1)HAH

1 A1D
j−1ttH(Di−1)HAH

1 }

= A1{
M∑
i=1

M∑
j=1

Di−1ttH(Dj−1)HAH
1 A1D

j−1ttH(Di−1)H}AH
1

and

Rf
2 =

M∑
i=1

M∑
j=1

{ΓiiΓjj} =

M∑
i=1

M∑
j=1

{viv
H
i vjv

H
j }

=

M∑
i=1

M∑
j=1

{A1D
i−1ttH(Di−1)HAH

1 A1D
j−1ttH(Dj−1)HAH

1 }

= A1{
M∑
i=1

M∑
j=1

Di−1ttH(Di−1)HAH
1 A1D

j−1ttH(Dj−1)H}AH
1

Similarly, the forward smoothed covariance matrix

Rf
ESS-SS =

1

2M
{Rf

1 + Rf
2} also has a rank of K as in

the conventional methods. The proof is in Appendix B .
Moreover, the proof for the forward-backward smoothed
covariance matrix is just a straightforward extension of the
above.

Compared with the conventional approaches, the proposed
method takes full advantage of the signal subspace and is more
robust to noise. With the rank restored data covariance matrix,
the subspace-based method ESPRIT can then be applied for
DOA estimation.

The ESPRIT algorithm divides the directional matrix A1

into two overlapping submatrices A ↑ and A ↓ with ((L −
1)×K) dimensions. Define A ↑ and A ↓ by deleting the last
and first row from A1, respectively,

A1 =

(
A ↑

last row

)
=

(
first row

A ↓

)
.

Therefore, A ↑ and A ↓ are related to each other by the
(K × K) diagonal matrix D, the elements of which depend
on the DOA to be estimated as

A ↓= A ↑ D. (22)

In theory, matrix D cannot be estimated from data. Ac-
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Method θ̂1 θ̂2
ISS1 −6.02◦ 6.96◦

ISS2 −5.85◦ 7.07◦

ESS −5.93◦ 6.97◦

ESS-SS −6.02◦ 6.99◦

TABLE I
CASE a, ESTIMATED DOAS OF SIGNALS BY ISS1, ISS2, PROPOSED ESS,

AND ESS-SS WITH A SINGLE RUN OF ESPRIT ALGORITHM; THE TRUE
DOAS ARE θ1 = −6◦ AND θ2 = 7◦ .

cording to [7], on the basis of the EVD of the data covariance
matrix, it can be shown that the diagonal elements of D can be
retrieved from a similar matrix X (the detail is in Appendix
C ) having the same eigenvalues as D. As such, the DOAs
can be estimated by calculating the phase of the eigenvalues
of this new matrix X:

θ̂k = − arcsin{ λ

2πd
6 xk}, (23)

where xk is the kth eigenvalue of X, 6 is the angle.
The general steps of the proposed ESS technique with the

ESPRIT algorithm are summarized as follows:

• Estimate the data covariance matrix R from (3).
• Apply the EVD on R.
• Apply the proposed ESS technique on the signal subspace

(ESS-SS).
• Estimate the DOAs by the ESPRIT algorithm.

V. SIMULATIONS AND DISCUSSION

In this section, the performance of the proposed ESS
technique combined with the ESPRIT algorithm is tested on
simulated data with 5 different simulations. A ULA with
N = 11 isotropic sensors is considered, along with two far-
field coherent narrow band signals (K = 2) with equal power.
The number of subarrays is equal to M = 6. Moreover, the
distance between two adjacent sensors is equal to half of the
wavelength with d

λ = 0.5. In the simulations, the propagator
method presented in [28] is applied to reduce the noise impact.
Two cases are taken into account with different DOAs of
incoming signals:

• Case a. θ1 = −6◦ and θ2 = 7◦;
• Case b. θ1 = −2◦ and θ2 = 3◦.

In the first simulation, the proposed ESS and ESS-SS are
tested in a single run of ESPRIT algorithm. The estimation
results of ISS1 [25] and ISS2 [26] are taken as comparisons.
The signal-to-noise ratio (SNR) is fixed at 0 dB. The data co-
variance matrix is estimated from 500 independent snapshots.

Tables I and II show the estimated DOAs of signals ob-
tained by these methods for Cases a and b. In a single run,
the proposed ESS-SS can accurately detect the true DOAs
of the incoming signals in both cases, compared with the
proposed ESS, ISS1, and ISS2. However, the performance of
the proposed method cannot be evaluated in a single run of the
algorithm. To better show the merits of the proposed method,
the statistical results of the proposed method are presented in
the following.

Method θ̂1 θ̂2
ISS1 −2.13◦ 2.94◦

ISS2 −1.95◦ 3.25◦

ESS −2.01◦ 3.12◦

ESS-SS −2.01◦ 3.01◦

TABLE II
CASE b, ESTIMATED DOAS OF SIGNALS BY ISS1, ISS2, PROPOSED ESS,

AND ESS-SS WITH A SINGLE RUN OF ESPRIT ALGORITHM; THE TRUE
DOAS ARE θ1 = −2◦ AND θ2 = 3◦ .

In the second simulation, the performance of the proposed
method versus SNR is assessed with a Monte-Carlo process
of 200 independent runs. The root-mean-square error (RMSE)
of the estimated DOA is defined as follows:

RMSE =

√√√√ 1

KJ

K∑
k=1

J∑
j=1

(
θ̂kj − θk

)2
, (24)

where θ̂kj denotes the estimated DOA of the kth incoming
signal for the jth run of the algorithm, and J is the total
number of Monte-Carlo trials. SNR varies from −15 to 10
dB. The statistical performance of all the methods in both
cases is presented. Moreover, the Cramér-Rao Bound (CRB)
results are also provided [31].
Figs. 3 and 4 plot the RMSEs of DOA estimation against
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Fig. 3. Case a, RMSE of DOA estimation versus SNR.
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Fig. 4. Case b, RMSE of DOA estimation versus SNR.

SNR. For all the methods, it can be seen that the RMSEs con-
tinuously decrease when SNR increases. The proposed ESS-SS
has a more significant decrease of the RMSE, especially with
low SNR. Furthermore, the RMSE of the proposed ESS-SS is
smaller (with better accuracy) than that of the other methods
at every SNR, which is very close to the CRB with small angle
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separation (Case b), see Fig. 4. In Case a (with large angle
separation), the proposed ESS shares a similar performance
as ISS1, while ISS2 is inferior to the others. When the angle
separation is small, as in Case b, the performance of the
proposed ESS is slightly better than that of ISS2 and ISS1.

0 50 100 150 200 250 300 350 400 450 50010-1

100

101

102

Number of snapshots

R
M

SE
 (d

eg
re

e)

ISS1
ISS2
ESS
ESS-SS
CRB

Fig. 5. Case a, RMSE of DOA estimation as function of number of snapshots.
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Fig. 6. Case b, RMSE of DOA estimation as function of number of snapshots.

Moreover, the performance of the proposed ESS and ESS-
SS versus the number of snapshots is evaluated. Both Cases
a and b are studied with SNR= −5 dB. Figs. 5 and 6 plot
the RMSEs of the proposed ESS-SS, ESS, ISS1, and ISS2 as
function of number of snapshots. According to Figs. 5 and 6,
when the number of snapshots is small, the above-mentioned
methods cannot work. In addition, with an increasing number
of snapshots, the RMSEs decrease. Similar to the results
obtained in the second simulation, the proposed ESS-SS offers
better performance than that of ESS, ISS1 and ISS2 in both
Cases a and b. However, ISS1 and ISS2 perform differently
when the angle separation changes. When the angle separation
is small (Case b), the performance of ISS1 is worse than that
of ISS2; the opposite results can be found with large angle
separation (Case a).

To better understand the influence of angle separation on the
performance of the proposed method, in the fourth simulation,
the statistical performance of the proposed method versus
angle separation between two incoming signals is studied. The
relative RMSE (RRMSE) of the estimated DOAs versus angle
separation are calculated. The number of Monte-Carlo trials
is 400 with 500 independent snapshots. One of the incoming
signals is fixed at θ1 = 0◦, while the other comes from
θ2 = θ1 + ∆θ. ∆θ varies from 2◦ to 15◦, SNR = −10 dB.
It can be seen from Fig. 7 that all the methods fail to resolve
closely spaced incident waves satisfactorily at the beginning.
The RRMSEs decrease when the angle separation increases.

The proposed ESS-SS offers the best performance with the
smallest RRMSE, particularly when the angle separation is
small. The proposed ESS and ISS2 perform similarly (the
performance of the proposed ESS is slightly better than that
of ISS2). However, the performance of ISS2 degrades rapidly
as the angle separation becomes larger. On the contrary, ISS1
provides more biased estimations with small angle separation.
As the angle separation becomes greater, ISS1 tends toward
similar performance as the proposed ESS and ESS-SS as the
curves of RRMSE coincide with each other. In this situation,
ISS1 performs better than that of the ISS2.
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Fig. 7. RRMSE of DOA estimation as function of angle separation.

In the last simulation, the performance of the proposed
ESS-SS versus the number of subarrays M is tested with
500 independent runs. The angles in both Cases a and b are
applied, SNR is fixed at 10 dB, and M ∈ [1, 9] is due to
N = L + M − 1, L > 2. According to Appendix D, the
optimal value of M varies with the changing of the DOAs of
the incoming signals. It can be seen from Fig. 8, for Case a,
the RMSE reaches its minimum when M = 7; for Case b, this
value (M ) is 2. The simulation results confirm the theoretical
analysis in Appendix D. However, the RMSEs are similar with
different M . In this paper, the number of subarrays (M ) is set
to 6.
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Fig. 8. RMSE of DOA estimation as function of number of subarrays.

VI. CONCLUSIONS

In this paper, an enhanced spatial smoothing technique com-
bined with ESPRIT algorithm is proposed for DOA estimation
in coherent scenarios. This new technique takes full advantage
of both autocorrelations and cross-correlations of the received
signals and can be applied on the signal subspace instead
of the entire data covariance matrix. Compared with ISS1



ACCEPTED MANUSCRIPT

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2020.2994514, IEEE
Transactions on Signal Processing

SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING 7

[25] and ISS2 [26], the proposed ESS and ESS-SS have been
proved to be more powerful to de-correlate the correlation
between signals and more robust to noise. The performance
of the proposed method is tested on numerical data. Simulation
results prove that the proposed method improves the stability
and robustness of DOA estimation, especially in the scenarios
of low SNR, insignificant number of snapshots as well as small
angle separation. In the future, we would like to investigate
the performance of the proposed method in more practical
environment, for example, in the presence of nonuniform noise
like in [32], [33], or with real measured data.
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APPENDIX A

In Appendix A, we will prove that the proposed method can
restore the rank of the data covariance matrix (the rank of the
source covariance matrix after the proposed ESS technique
is equal to K). To facilitate the expression of the proposed
ESS technique, the forward only smoothed noiseless covari-
ance matrix

∑M
i=1

∑M
j=1{RijRji + RiiRjj} is taken as an

example.

Firstly, the above matrices can be decomposed as
M∑
i=1

M∑
j=1

{RijRji} =

M∑
i=1

M∑
j=1

{A1D
i−1S(Dj−1)HAH

1 A1D
j−1S(Di−1)HAH

1 }

=
M∑
i=1

M∑
j=1

Ψjj{A1D
i−1S(Di−1)HAH

1 }

= A1S1A
H
1

M∑
i=1

M∑
j=1

{RiiRjj} =

M∑
i=1

M∑
j=1

{A1D
i−1S(Di−1)HAH

1 A1D
j−1S(Dj−1)HAH

1 }

=
M∑
i=1

M∑
j=1

Ψij{A1D
i−1S(Dj−1)HAH

1 }

= A1S2A
H
1

where Ψij = pH(Di−1)HAH
1 A1D

j−1p is real, and S =
ppH . It has been proved in [26], the source covariance matrix

S1 or S2 is of rank K. In addition,

A1SijA
H
1

= A1

{ M∑
i=1

M∑
j=1

Ψij{Di−1S(Dj−1)H}
}

AH
1

= A1

{ M∑
i=1

{ψiDi−1p}
M∑
j=1

{ψ∗j (Dj−1p)H}
}

AH
1

= A1

{ M∑
i=1

{ψiDi−1p}
M∑
i=1

{ψ∗i (Di−1p)H}
}

AH
1 ,

where Ψij = ψiψ
∗
j . Therefore, the noiseless matrices∑M

i=1

∑M
j=1{RijRji} and

∑M
i=1

∑M
j=1{RiiRjj} are positive

semidefinite matrices. Due to
M∑
i=1

M∑
j=1

{RijRji + RiiRjj}

= A1

{
S1 + S2

}
AH

1

we can conclude that the source covariance matrix
{S1 + S2} is also of rank K and the noiseless matrix∑M
i=1

∑M
j=1{RijRji + RiiRjj} is positive semidefinite. In

addition, the above proof can easily be extended to the
forward-backward smoothed covariance matrix.

APPENDIX B

In this appendix, we will prove that the rank of
Rf

1 + Rf
2 equals to K. To begin with, define Φij =

tH(Di−1)HAH
1 A1D

j−1t. We can deduce that

Rf
1 + Rf

2 =

A1

{ M∑
i=1

M∑
j=1

Φij{Di−1ttH(Dj−1)H}

+ Φjj{Di−1ttH(Di−1)H}
}

AH
1 .

Therefore, we need prove {
∑M
i=1

∑M
j=1ΦijD

i−1ttH(Dj−1)H

+ΦjjD
i−1ttH(Di−1)H} is not singular, which is exactly the

same as the case in Appendix A. The only difference is that we
use ttH instead of S as in Appendix A. Therefore, to finish our
proof, we must prove that the Hermitian square root C (C is a
(K×K)-dimensional matrix with CCH = ttH ) of ttH should
have at least one nonzero element in each row. For coherent
signals, the signal eigenvector u is a linear combination
of the directional vectors a(θ1), a(θ2), . . . , a(θK) with u =
k1a(θ1)+k2a(θ2)+. . .+kKa(θK) = At, k1, k2, . . . , kK 6= 0,
and t = [k1 k2 · · · kK ]

T [1]. The elements inside ttH are
non-zero, and we can prove that the Hermitian square root
C of ttH has at least one nonzero element in each row.
Therefore, the rank of {

∑M
i=1

∑M
j=1ΦijD

i−1ttH(Dj−1)H

+ΦjjD
i−1ttH(Di−1)H} is K.

To conclude, the forward smoothed covariance matrix
Rf

ESS-SS constructed by the proposed ESS-SS technique has
the same rank as the noise free data covariance matrix for the
totally uncorrelated or partly correlated cases.



ACCEPTED MANUSCRIPT

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2020.2994514, IEEE
Transactions on Signal Processing

SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING 8

APPENDIX C

In this appendix, the expression of matrix X will be given.
After applying the proposed de-correlation procedure, the new
data covariance matrix RESS-SS can be calculated. Define the
signal eigenvectors of RESS-SS are in the columns of V. As
mentioned in [1], the matrices A1 and V span the same
range space when the source covariance matrix is full rank.
Therefore, there exists a full rank matrix T with (K × K)
dimensions:

V = A1T.

Define

V =

(
V1

last row

)
=

(
first row

V2

)
,

it can be deduced that

A ↑ T = V1

A ↓ T = A ↑ DT = V2,

we can get
V1T

−1DT = V1X = V2.

Therefore,
X = V+

1 V2,

where + is the Moore-Penrose inverse operator. Note that X
and D are related by a similarity transformation, therefore they
have the same eigenvalues.

APPENDIX D

In this appendix, we will give the theoretical analysis of the
optimal M . Only the forward only smoothed covariance matrix
Rf

ESS-SS is studied. According to the results in Appendix B,
Rf

ESS-SS can be expressed as

Rf
1 + Rf

2 =

A1

{ M∑
i=1

M∑
j=1

ΦijD
i−1ttH(Dj−1)H

+ Φjj Di−1ttH(Di−1)H
}

AH
1 .

where Φij and Φjj are scalar. Define
SESS-SS = {

∑M
i=1

∑M
j=1ΦijD

i−1ttH(Dj−1)H+

ΦjjD
i−1ttH(Di−1)H}, matrix Rf

ESS-SS can be rewritten as

Rf
ESS-SS = A1SESS-SSA

H
1 .

Define SESS-SS(m,n) as the (m,n)th element of SESS-SS,
t(m) and t(n) are the mth and nth elements of vector

t, respectively. According to [19],
SESS-SS(m,n)

t(m)t∗(n)
represents

the effective correlation coefficient between the mth and nth
received signals after decorrelation, which can be expressed

as
SESS-SS(m,n)

t(m)t∗(n)

=
M∑
i=1

M∑
j=1

{
Φij exp{−j2π d

λ
sin θm}i exp{j2π d

λ
sin θn}j

+ Φjj exp{j2π d
λ

(sin θn − sin θm)}i
}
.

From the above equation, it is clear that the decorrelation effect
of the proposed method depends on the number of subarrays
(M ) and DOAs of signals. Given θm and θn of the mth and
nth received signals, the optimal value of M (M̂opt) can be
deduced from the following equation:

M̂opt = arg min
M

|SESS-SS(m,n)

t(m)t∗(n)
|.

The above complex optimization problem can be solved by the

exhaustive search of the minimal value of |SESS-SS(m,n)

t(m)t∗(n)
|.
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