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ZOMBIE VORTEX INSTABILITY IN THE
PROTOPLANETARY DISK: CAN WE FIND IT IN THE LAB?

G. Facchini' 2, M. Wang?, P. Marcus® and M. Le Bars!

Abstract. Without instabilities, the gas in the protoplanetary disk ap-
proximately a forming protostar remains in orbit rather than falling
onto the protostar and completing its formation into a star. More-
over without instabilities in the fluid flow of the gas, the dust grains
within the disk’s gas cannot accumulate, agglomerate, and form plan-
ets. Keplerian disks are linearly stable by Rayleigh theorem because
the angular momentum of the disk increases with increasing radius.
This has led to the belief that there exists a large region in proto-
planetary disks, known as the dead zone, which is stable to pure hy-
drodynamic disturbances. The dead zone is also believed to be stable
against magneto-rotational instability (MRI) because the disks’ cool
temperatures inhibit ionization and therefore prevent the MRI. A re-
cent study Marcus et al. (2013) shows the existence of a new hydro-
dynamic instability called the Zombie Vortex Instability (ZVI), where
successive generations of self-replicating vortices (zombie vortices) fill
the disk with turbulence and destabilize it. The instability is triggered
by finite-amplitude perturbations, including weak Kolmogorov noise,
in stratified flows with Brunt-Vaisala frequency N, background rota-
tion 2 and horizontal shear . So far there is no observational evidence
of the Zombie Vortex Instability and there are very few laboratory ex-
periments of stratified plane Couette flow with background rotation in
the literature. We perform systematic simulations to determine where
the Zombie Vortex Instability exists in terms of the control parameters
(Reynolds number Re, o/f and N/f). We present a parameter map
showing two regimes where ZVI occurs, and interpret the physics that
determines the boundaries of the two regimes. We also discuss the ef-
fects of viscosity and the existence of a threshold for Re. Our study
on viscous effects, parameter map and its underlying! physics provide
guidance for designing practical laboratory experiments in which ZVI
could be observed.
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1 Introduction

The stability of a rotating flow with vertical stratification and horizontal shear has
drawn great attention in recent years, due to the the interest of astrophysicists in
determining a mechanism that can create turbulence in a protoplanetary accretion
disk. This topic is of particular interest in the regions of a nearly Keplerian proto-
planetary disk (PPD) where gas is weakly ionized, because the magneto-rotational
instability MRI (Chandrasekhar 1960; Hawley & Balbus 1991) cannot occur, mo-
tivating the appellation of dead zones for such a regions. In unstratified Keplerian
disks, we expect the flow to be stable to purely hydrodynamic instabilities be-
cause the angular momentum increases with increasing radius, i.e. it is stable
by Rayleighs criterion (Rayleigh 1917). Similarly, in unstratified Taylor-Couette
(TC) flows in which the angular momentum increases with radius, we also expect
the flow to be stable. Nevertheless if the fluid is stratified, such a configuration
may become unstable (Molemaker et al. 2001; Yavneh et al. 2001). The possible
existence of this new linear instability in weakly ionized disks was analysed by
Dubrulle et al. (2005) who also introduced the appellation of Strato-Rotational-
Instability SRI. Further work on SRI was performed by Shalybkov & Riidiger
Shalybkov & Riidiger (2005) whose theoretical predictions were confirmed in the
first experimental observation of SRI, reported by Le Bars & Le Gal (2007). More
recently Lesur et al. (2014) and Gole et al. (2016) studied the effect of a MRI-
driven inner core on an outer ohmic dead zone, while Nelson et al. (2013) and
Barker & Latter (2015) studied the Vertical Shear Instability, possibly induced
by the thermal or entropic radial structure of accretion disks. For a background
scenario similar to SRI, i.e. when rotation, vertical stratification and horizontal
shear are of the same order of magnitude, Barranco & Marcus (2005) first ob-
served the occurrence of a new finite-amplitude instability subsequently analyzed
and identified as the self-replicating “Zombie” Vortex Instability ZVI by Marcus
et al. (2013). As ZVI evolves, an initial ab initio perturbation in the form of a
vortex or wave excites a baroclinic critical layer at a proscribed distance from the
perturbation; by vortex stretching and tilting, the critical layer turns into a vortex
layer; by linear instability, the vortex layer then rolls up into one or more vortices;
these new vortices then excite new critical layers, and the process self-replicates
until the entire domain fills with vortices and the flow becomes turbulent. Marcus
et al. (2015) confirmed the existence of the instability using more general initial
conditions (Kolmogorov noise), and described the late stage instability as a truly
turbulent scenario, thus designating ZVI as a favorite candidate to destabilize the
dead zone of a protoplanetary disk. Even more recently ZVI was independently
recovered by the theoretical analysis of Umurhan et al. (2016) and the numerical
simulations of Lesur & Latter (2016). Conclusions on the prevalence of ZVI in
protoplanetary disks remain however under discussion.

In the present work we systematically explore the existence of ZVI in the pa-
rameter space of the two dimensionless parameters o/f and N/ f, where f is the
Coriolis parameter (rotation), N is the Brunt-Vaisild frequency (stratification)
and o is the cross-stream velocity gradient (shear). We observe that the instability
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region is restricted to a relatively small region for both cyclonic (o/f > 0) and
anticyclonic (o/f < 0) regimes, with the exception of the N/o ~ 1, f — 0 area,
where no boundary could be detected. Preliminary results are also shown for
two benchmark cases when viscosity is included in the calculations. In Section 2
we describe the equations we solve and the numerical methods. In Section 3 we
review the main features of ZVI, explain how to recognize it, and present the sta-
bility diagram showing where the flow is unstable and forms zombie turbulence.
In Section 4 we discuss about the regions of the 2-dimensional parameter space
that are suitable for experimental investigation, and we comment on the possible
coexistence of ZVI and SRI.

2 Problem set-up

2.1 Theoretical frame

We consider the Navier-Stokes equations for a rotating, linearly stratified and
horizontally sheared flow in the Boussinesq approximation. The density gradient
is parallel to the rotation axis and aligned with the vertical direction 2, while shear
acts along 9.

ou Vp p Ou

E—&—(u.V)u:VV?u—E—p—ogﬁ—l—fuxi—U(y)a—x—&—auyfc (2.1)
0p N2 0p

el (u-V)p= po= "z = U% (2:2)

V-u=0 (2.3)

where & is the stream-wise direction, ¢ is the cross-stream direction and 2 is
the vertical direction. Also we decompose the velocity field as uiotar = U(y)X +
u(z,y, z,t) where U(y) = —oy is the base shear velocity, and the density field as
p(z,y,2,t) = p(x,y,2,t) + p(z) where p(z) = po(1 — N?z/g) is the unperturbed
density profile.

2.2 Numerical methods

The system above is implemented in a periodic cubic domain and the equations
solved with a pseudo-spectral method. This approach imposes the use of shear-
ing sheet coordinates (2/,y',2',t') = (x + oyt,y, z,t) to make Equation (2.1) au-
tonomous in y. The main part of the present work is done in the inviscid limit
(same as Marcus et al. 2013), which corresponds to neglect the first term on the
right-hand side of (2.1). To solve numerically the initial value Equations (2.1)—(2.3)
we replace viscosity with hyper-viscosity, i.e. ¥V? — vg(V?)? in order to prevent
the accumulation of energy at the grid scale (we also added a hyper-diffusivity
to the density Equation (2.2). One may question whether the hyper-dissipations
affect the onset of the instability. We ruled out this possibility by demonstrat-
ing that different functional forms of hyper-dissipations lead to the same flow, as
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Fig. 1. Vertical vorticity w. in the plane z = 1.5 (top) and vertical velocity u. in the plane
x = 0 (bottom) at four different times: 290/c, 480/0, 1920/0, 3840/c. Red corresponds
to positive values of vorticity and velocity, blue to negative ones (respectively cyclonic
and anti-cyclonic flows in the case of vorticity).

long as hyper-dissipation only affects wave numbers that are bigger than the wave
numbers that are associated with the baroclinic critical layer. Details about the
numerical methods we used and their implementation can be found in Barranco
& Marcus (2006).

3 Results

3.1 ZVI mechanism

Here we recall briefly the fundamental stages that the flow undergoes when ini-
tialized with a 3D gaussian vortex at the center (zx = y = z = 0) of the cubic
domain (L, = L, = L, = 8). We also provide a convenient tool to detect the
onset of ZVI. In Figure 1 (top) we report the vertical vorticity w, at four different
times in the horizontal plane z = 1.5, i.e. where the first generation of vortices is
created. In Figure 1 (bottom) we report the corresponding evolution of the verti-
cal velocity u, in the vertical mid plane x = 0. In both sequences we label each
panel with the letters a,b,c,d, which refer to the four distinct stages we identify.
Monitoring w, is the most suitable tool to describe the flow throughout all its
evolution: the flow is initiated with a single vortex, then a large number of new
vortices are created when ZVI is triggered, and late turbulence stage still contains
large coherent vorticity structures. The field u, provides an intelligible insight in
the instability mechanism, because the vertical velocity is initially null everywhere,
and the critical layers characteristic of ZVI appear spontaneously in the form of
strong jets or shear layers in this component. However we stress that the critical
layers structure appear (not shown here) in all the three components of both u,
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Fig. 2. Left: vertical kinetic energy Ej . as a function of time. Red ticks refer to the
sequences in Figure 1. Right: peak of the vertical velocity w. inside the critical layers
as a function of time, for different Reynolds numbers (different colours). Note that only
the cyan curve appears not decreasing in the end; this is consistent with the fact that it
corresponds to the only experiment where Re 2> Re..

and w,. Simultaneously we also consider the time evolution of the vertical kinetic
energy Ej, . (Fig. 2), which evolves from zero to almost a constant, and turns out
to serve as the most succinct and practical tool to determine whether the flow has
created self-sustaining zombie turbulence. All the figures refer to the benchmark
case o/f = —0.75,N/f = 1, but similar features were observed for all unstable
cases. Below we schematically describe the generic features of each step:

a) wvortex sheet: the first generation of critical layers (Fig. 1 bottom) is visible at
the position predicted by Marcus et al. (2013). w, field (Fig. 1 top) shows
the formation of two pairs of vortex sheets of opposite vorticity (stripes
corresponding to planes in the x — z projection), which progressively cover
the whole stream-wise direction. E}, . slowly increases (Fig. 2).

b) zombie vortex: Critical layers increase in strength and depending on the
anti-cyclonic (cyclonic) nature of the flow, the anti-cyclonic (cyclonic) sheets
become unstable and roll up to form the first generation of new vortices,
whose cross-stream locations in y bracket the y-location (i.e. y = 0) of the
initial perturbing vortex. Ej , increases at a nearly uniform rate.

c) self replication: Each new vortex produces a set of independent critical lay-
ers, which undergo in turn the steps a,b. The self-replicating mechanism is
triggered and a large number of vortices is rapidly generated. Ej . experi-
ences a rapid increase.

d) zombie turbulence: The flow reaches a quasi-stationary state, i.e. FEj,
is almost constant, u, shows strong and rapidly varying features but the
critical layer structure is now barely visible. Reminiscences of “zombie”
anti-cyclones (cyclones) and not-rolled up cyclonic (anti-cyclonic) vortex
sheets are still visible in the w, field, but strong small-scale features are
now ubiquitous.
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Fig. 3. Inviscid parameter map for ZVI. Each run is labelled with a red dot when
unstable, a black triangle when marginal and a blue cross when stable. Vertical axis

corresponds to N/ f while horizontal axis corresponds to o/ f. The left part of the diagram
refers to anti-cyclonic cases, the right part to the cyclonic ones.

We originally (Marcus et al. 2013) perturbed the stratified TC equilibrium with
an isolated, small, non-equilibrium vortex to produce ZVI and zombie turbulence.
This was done to test numerically an analytical expression for the distance between
a locally-confined initial perturbation and the location of the critical layer that was
excited by the perturbation. However, other perturbations such as Kolmogorov
noise and waves were also shown (Marcus et al. 2016) to produce zombie turbu-
lence. It was found that if a flow produced zombie turbulence, the statistically-
steady properties of the late-time flow such as the energy spectrum as a function
of wave number, were independent of the initial perturbation. A question of some
importance here is: Does the form and amplitude of the initial perturbation have
any significant effect on the regions in o/f-N/f-Re space where zombie turbu-
lence can be produced? The answer to that question is beyond the scope of this
study, but is answered in Wang et al. (submitted 2016): the form of the initial per-
turbation is nearly irrelevant as long as its amplitude (as measured by its Rossby
number) is sufficiently large. In constructing the stability diagram (Fig. 3) we al-
ternatively used different initial perturbations: isolated vortex, weak Kolmogorov
turbulence and the zombie turbulence that was produced by a flow with slightly
different values of the non-dimensional parameters.

3.2 Inviscid stability diagram

We explored the behavior of our flow varying the dimensionless parameters o/ f
and N/f and label each case as stable, unstable or marginal, according to the
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protocol below:

e unstable: The flow undergoes all the stages listed in the previous section
and in the end zombie turbulence appears and persists; the vertical kinetic
energy rapidly oscillates around a large constant value.

e stable: Critical layers still show up, but at some point their strength starts
decreasing and finally vanishes. The flow comes to the unperturbed state
and the vertical kinetic energy relaxes to zero.

e marginal: The route to ZVI stops at an intermediate stage. All the veloc-
ity and vorticity fields appear like frozen, or evolve extremely slowly. The
vertical kinetic energy saturates to a finite, slightly oscillating value.

The parameter o/ f corresponds to the strain rate in TC geometry (Yavneh et al.
2001), while N/ f = 1/(2Fr) is half the inverse of the Froude number. The choice
of the dimensionless parameters is not unique, but in the case of protoplane-
tary disk, rotation is the most persistent parameter and thus the best candi-
date to make the stability diagram non-dimensional. The results are reported in
Figure 3. Depending on the sign of o/ f we distinguish between anti-cyclonic flow
(left) and cyclonic flow (right). Firstly we observe that the region o/f < —1 is
linearly unstable, which was observed in numerical simulations and confirmed by
spectral analysis. This limit can be seen as the Rayleigh criterion in the plane
Couette geometry. Instability occurs in two distinct zones. The first one spans
quite a narrow region around the benchmark case of a Keplerian PPD, i.e. the
same as Marcus et al. (2013) and Marcus et al. (2015), and is bounded from all
sides. The second unstable zone belongs to the cyclonic region and looks analogous
to the previous one except at large values of o/f and N/f, where no boundaries
could be found. Approaching o = 0, the flow appears marginally stable, while at
any other boundary the transition is always between stable and unstable cases,
or at least no marginally stable case could be detected. The lack of instability at
low N/ f and |0/ f| suggests that whenever N or o vanishes, ZVI does not appear.
The existence of boundaries at large N/f and moderate |0/ f| indicated that ZVI
disappears also for vanishing f, which was confirmed by numerical simulations
(not reported here) at f = 0. Thus we claim that ZVI may happen only when
stratification, rotation and shear are of the same order, with the exception of the
limit f — 0 and N/o ~ 1 where further studies are required. We note that a
stability diagram like Figure 3 can be constructed for the SRI instability criterion
for plane Couette flows. The green lines (Fig. 3) show the boundaries between
which SRI exists.

3.3 Viscous flow

In the previous section we look at the stability diagram of ZVI in the inviscid
limit. Here we discuss what happens when viscosity is considered. With regard to
Equation (2.1), viscous dissipation, i.e. ¥V?u, is now included and the Reynolds
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number Re = LZU /v is introduced, where L, is the domain size length in the cross-
stream direction. We select two sample cases N/f = 1,0/f = —0.75 and N/f =
2,0/f = 0.75, and observe that ZVI occurs in viscous flows. The critical Reynolds
number is around Re. ~ 5 - 108 for the anti-cyclonic case and Re. ~ 7.5 - 10% for
the cyclonic case. We verify that these thresholds are not sensitive to the initial
conditions and that we obtain similar results when considering viscosity only at the
late stage, i.e. when turning on viscosity only once ZVI is fully developed. When
Re is large, i.e. for Re > Re., hyper-viscosity must be included beside viscosity.
This happens because reasonable simulations times limit us to a space resolution
at which the turbulent Kolmogorov scale is not resolved. Thus we adopt the same
protocol as in the inviscid case and verify that results barely change for different
types of hyper-viscosity. In Figure 2 (right) we report the time evolution of the
maximum value of the vertical velocity u, observed inside the critical layers for
different values of Re. One clearly sees that u, always increases with a similar slope
at the beginning, showing that critical layers do form for any Re. When Re < Re,,
u, finally decreases at some time, showing the crucial role of critical layers when
viscous dissipation is on. The critical Re number we find may appear unusually
large (i.e. compared to other finite-amplitude instabilities), but this is consistent
with the small thickness of baroclinic critical layers, which are extremely sensitive
to viscous dissipation. The definition of Re given above contains the cross-stream
length L,, as it is customary with the plane Couette flow, and thus provides a
numerical benchmark for direct comparison with experiments, where cross-stream
direction is often imposed by the shearing device. Nevertheless the position of
critical layers (Marcus et al. 2013, 2015; Umurhan et al. 2016; Lesur & Latter
2016), does not depend on L,. A different Re number could then be defined as
intrinsically related to the instability Res = 620 /v, where § is the thickness of
the critical layers. In the sample case considered here we find /L, ~ 107> and
Res,, ~ 35.

4 Conclusions

We consider a rotating, stratified, plane Couette flow and perform direct numerical
simulations in a triply periodic domain, using the shearing-sheet approximation.
We extended previous works on ZVI (Marcus et al. 2013, 2015) constructing the
stability diagram in the space o/f — N/ f. We find that the ZVI does occur in both
cyclonic and anti-cyclonic regimes when the three ambient frequencies f, o, N are
of the same order of magnitude. SRI may coexist with ZVI in the anti-cyclonic
region and the flow is linearly unstable whenever o/f < —1, which could serve as
a first comparison in experiments. Looking for ZVI, the cyclonic region seems to
be more suitable, not only because the unstable region is bigger, but also because
SRI does not appear here. We do observe ZVI both in the inviscid limit and
when viscosity is included. Numerical issues impose the implementation of hyper-
viscosity in any case, which may question the genuine character of our results.
With regard to that we stress that independent simulations were performed with
the finite-volumes code Athena (Marcus et al. 2015), where no hyper-viscosity was
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included. Also, as a general remark we observe that hyper-viscosity does dissipate
energy at small-scales and ZVI originates from critical layers whose typical size is
small, thus hyper-viscosity may, in principle, limit the onset of ZVI. Conversely,
there is no clue to think that it may enhance ZVI in a fictitious way. Preliminary
investigations show a large critical Reynolds number of the order Re. ~ 5 - 10,
which follows from the small size of critical layers. Such a value can only be
reproduced with very large experimental apparatus (typically 1.5m in diameter).
But an intermediate step in exploring ZVI, using more standard set-up, may be to
excite baroclinic critical layers as previously achieved by Boulanger et al. (2008)
in the related context of an inclined vortex in a linear stratification. This is
encouraged by the fact that in our simulations critical layers always show up
(at least the first generations), even for a Reynolds number orders of magnitude
smaller than Re..
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