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Abstract

We generalize here the celebrated Partial Regularity Theory of Caffarelli, Kohn and Nirenberg to the
MHD equations in the framework of parabolic Morrey spaces. This type of parabolic generalization using
Morrey spaces appears to be crucial when studying the role of the pressure in the regularity theory for
the classical Navier-Stokes equations as well as for the MHD equations.
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1 Introduction

In this article we study regularity results for the incompressible 3D magnetohydrodynamic (MHD) equations
which are given by the following system:

∂t~U = ∆~U − (~U · ~∇)~U + ( ~B · ~∇) ~B − ~∇P + ~F , div(~U) = div(~F ) = 0,

∂t ~B = ∆ ~B − (~U · ~∇) ~B + ( ~B · ~∇)~U + ~G, div( ~B) = div(~G) = 0,

~U(0, x) = ~U0(x), div(~U0) = 0 and ~B(0, x) = ~B0(x), div( ~B0) = 0, x ∈ R3,

(1.1)

where ~U, ~B : [0, T ] × R3 −→ R3 are two divergence-free vector fields which represent the velocity and the
magnetic field, respectively, and the scalar function P : [0, T ]×R3 −→ R stands for the pressure. The initial
data ~U0, ~B0 : R3 −→ R3 and the external forces ~F , ~G : [0, T ]× R3 −→ R3 are given.

Of course, when the magnetic field ~B becomes the zero vector, the MHD equations (1.1) are reduced to
the 3D classical Navier-Stokes equations

∂t~U = ∆~U − (~U · ~∇)~U − ~∇P + ~F , div(~U) = div(~F ) = 0. (1.2)

It is worth noting here that for the Navier-Stokes equations there are two different regularity theories. The
first one, known as the Serrin local theory [19], is essentially based on a control of the velocity vector field
of the type ~U ∈ (LptL

q
x)loc with 2

p + 3
q ≤ 1 (the case 2

p + 3
q = 1 was proved by Struwe [20] and Takahashi

[21]) and with this assumption it is possible to obtain a local gain of regularity of the solutions of (1.2).
One very important feature of this theory is the fact that no particular restrictions are asked to the pressure
P which can be a very general object (for example we can ask P ∈ D′). However, this generality implies
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paradoxically some constraints and the gain of regularity is only obtained in the spatial variable as the tempo-
ral regularity is linked to some information on the pressure (see Section 13.1 of [15] for this particular point).

The second regularity theory, known as the partial regularity theory, is due to Caffarelli, Kohn and
Nirenberg and it was developed in [3]. In this case the local boundedness assumption is replaced by local
energy estimates and with some additional hypothesis on the pressure P (usually P ∈ (Lq0t,x)loc for some
1 < q0 < +∞) we can deduce a gain of regularity in both variables, space and time.

These two points of view are of course quite different since they rely on different techniques and require
different hypotheses. However it is important to point out that a common treatment of these two theories
can be performed by using the framework of parabolic Morrey spaces Mp,q

t,x (see formula (2.6) below for a
precise definition of these functional spaces). Indeed, O’Leary [16] generalized Serrin’s theory by replacing
the local Lebesgue hypothesis with a local information expressed in terms of parabolic Morrey spaces, while
Kukavica [11] proposed a generalization of Caffarelli-Kohn-Nirenberg’s theory using this parabolic frame-
work. An interesting point of this common framework appears clearly when studying the role of the pressure
in the Caffarelli-Kohn-Nirenberg theory for the classical Navier-Stokes equations, indeed, as it is shown in
[4], the language of parabolic Morrey spaces is a powerful tool which allows to mix, in a very specific sense,
these two regularity theories.

In a recent article [5], we have generalized to the MHD equations (1.1) the local regularity theory using
parabolic Morrey spaces. The aim of this article is now to generalize these techniques in order to study the
partial regularity theory for the MHD equations and we will deduce here parabolic Hölder regularity for the
solutions of theses equations in small neighborhoods (see Theorem 1 for a precise statement).

Note that the Caffarelli-Kohn-Nirenberg theory has been investigated for the MHD equations (see [9],
[10]), but to the best of our knowledge the generalization using parabolic Morrey spaces is new and we find
this approach interesting since this framework admits some important applications.

The plan of the article is as follows: in Section 2 we introduce some notation and we state the main
theorem. In Section 3 we present, under some particular assumptions, the general strategy for proving
Theorem 1 while in Sections 4, 5 and 6 we deduce these assumptions from the general hypothesis of the
partial regularity theory. Finally, in Appendix A we recall some useful properties of Morrey spaces and in
Appendix B we give the proof of a technical lemma.

2 Notation and presentation of the results

The starting point of this work relies on the use of the Elsasser formulation for the MHD equations (see [7])
which enables us to obtain a more symmetric expression of the problem considered here 1. More precisely,
if we define ~u = ~U + ~B, ~b = ~U − ~B, ~f = ~F + ~G and ~g = ~F − ~G, then the original system (1.1) becomes

∂t~u = ∆~u− (~b · ~∇)~u− ~∇P + ~f, div(~u) = div(~f) = 0,

∂t~b = ∆~b− (~u · ~∇)~b− ~∇P + ~g, div(~b) = div(~g) = 0,

~u(0, x) = ~u0(x), div(~u0) = 0, ~b(0, x) = ~b0(x), div(~b0) = 0,

(2.1)

where, since div(~u) = div(~b) = 0, we have that P satisfies the equation

∆P = −
3∑

i,j=1

∂i∂j(uibj), (2.2)

1This approach is interesting since we will assume the same hypotheses on the variables ~U and ~B.
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and from this equation, we remark that the pressure P is only determined by the couple (~u,~b). We will
see that in Section 4 this equation is crucial when doing pressure estimates. Remark in particular that the
solution (~u,~b) to (2.1) has the same regularity as the solution (~U, ~B) to (1.1), so all the rest of the article
will be devoted to study the regularity of the couple (~u,~b).

Now, let Ω be a bounded domain of ]0,+∞[×R3, we assume the following (local) hypotheses:

~u,~b ∈ L∞t L2
x ∩ L2

t Ḣ
1
x(Ω),

P ∈ Lq0t,x(Ω) with 1 < q0 ≤ 3
2 ,

~f ,~g ∈ L
10
7
t,x(Ω).

(2.3)

Remark 2.1 Without loss of generality, we can assume that P ∈ L
3
2
t,x(Ω), as this sole condition implies the

hypotheses P ∈ Lq0t,x(Ω) in the whole range 1 ≤ q0 ≤ 3
2 .

We will say that the couple (~u,~b) ∈ L∞t L2
x ∩ L2

t Ḣ
1
x(Ω) satisfies the MHD equations (2.1) in the weak sense

if for all ~ϕ, ~φ ∈ D(Ω) such that div(~ϕ) = div(~φ) = 0, we have〈∂t~u−∆~u+ (~b · ~∇)~u− ~f |~ϕ〉D′×D = 0,

〈∂t~b−∆~b+ (~u · ~∇)~b− ~g|~φ〉D′×D = 0,

note that if (~u,~b) are solutions of the previous system, then due to the expression (2.2) there exists a pressure
P such that (2.1) is fulfilled in D′.

The class of weak solutions is too wide for our purposes and we need to reduce the set of admissible
solutions and actually we will only work with a very specific subset given by the following definition.

Definition 2.1 (Suitable solution) Let (~u, P,~b) be a weak solution over Ω of equations (2.1). We will
say that the (~u, P,~b) is a suitable solution if the distribution µ given by the expression

µ = −∂t(|~u|2 + |~b|2) + ∆(|~u|2 + |~b|2)− 2(|~∇⊗ ~u|2 + |~∇⊗~b|2)

−div
(

(|~u|2 + 2P )~b+ (|~b|2 + 2P )~u
)

+ 2(~f · ~u+ ~g ·~b),

is a non-negative locally finite measure on Ω.

It is worth noting here that from the set of hypotheses (2.3) we can deduce that µ is well defined as a
distribution but we will need to assume its positivity, which is the whole point of suitable solutions.

We still need to introduce one more ingredient which is related to the parabolic structure of the functional
spaces we are going to work with. We consider the homogeneous space (R×R3, d, λ) where d is the parabolic
quasi-distance given by

d
(
(t, x), (s, y)

)
= |t− s|

1
2 + |x− y|, (2.4)

and where λ is the usual Lebesgue measure dλ = dtdx. Remark that the homogeneous dimension is now
N = 5. See [8] for more details concerning the general theory of homogeneous spaces. Associated to
this distance, we can define homogeneous (parabolic) Hölder spaces Ċα(R × R3,R3) where α ∈]0, 1[ by the
following condition:

‖~ϕ‖Ċα = sup
(t,x)6=(s,y)

|~ϕ(t, x)− ~ϕ(s, y)|(
|t− s|

1
2 + |x− y|

)α < +∞, (2.5)
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as we can see this quantity captures Hölder regularity in both time and space variables.
Now, for 1 < p ≤ q < +∞, we define the parabolic Morrey spacesMp,q

t,x as the set of measurable functions
~ϕ : R× R3 −→ R3 that belong to the space (Lpt,x)loc such that ‖~ϕ‖Mp,q

t,x
< +∞ where

‖~ϕ‖Mp,q
t,x

= sup
(t0,x0)∈R×R3,r>0

(
1

r
5(1− p

q
)

∫
|t−t0|<r2

∫
B(x0,r)

|~ϕ(t, x)|pdxdt

) 1
p

. (2.6)

Remark in particular that we have Mp,p
t,x = Lpt,x and we will list some useful properties of these spaces in

Appendix A.

These parabolic spaces are very useful in the analysis of the properties of the solutions of the Navier-
Stokes equations, hence of the MHD equations and their properties appears to be more and more useful in
the study of some PDEs. See for example [4], [5], [6], [11], [16], [17] and the book [15].

We can now state our main theorem which studies the Hölder regularity of suitable solutions of the MHD
equations (2.1).

Theorem 1 Let Ω be a bounded domain of ]0,+∞[×R3. Let (~u, P,~b) be a weak solution on Ω of the MHD
equations (2.1). Assume that

1) (~u,~b, P, ~f,~g) satisfies the conditions (2.3),

2) (~u, P,~b) is suitable in the sense of Definition 2.1,

3) we have the following local information on ~f and ~g: 1Ω
~f ∈ M

10
7
,τa

t,x and 1Ω~g ∈ M
10
7
,τb

t,x for some

τa, τb >
5

2−α with 0 < α < 1
3 .

There exists a positive constant ε∗ which depends only on τa and τb such that, if for some (t0, x0) ∈ Ω, we
have

lim sup
r→0

1

r

∫∫
]t0−r2,t0+r2[×B(x0,r)

|~∇⊗ ~u|2 + |~∇⊗~b|2dxds < ε∗, (2.7)

then (~u,~b) is Hölderian of exponent α in a neighborhood of (t0, x0) (in the sense of (2.5)) for some small α
in the interval 0 < α < 1

3 .

Some remarks are in order here. First, since we are assuming some control in the pressure (see Remark
2.1 above) we can obtain regularity results in time and space variables which is expressed here in terms of
parabolic Hölder spaces. Remark also that the parameters τa and τb that define the Morrey spaces for the
forces ~f and ~g are linked to the exponent α of the expected Hölderian regularity and this is somehow natural
as the information given by the external forces is not involved in the nonlinear terms and must be taken into

account. Note now that since 10
7 ≤

5
2−α < τa, τb, then by Lemma A.2 the local conditions 1Ω

~f ∈ M
10
7
,τa

t,x

and 1Ω~g ∈ M
10
7
,τb

t,x are stronger than the conditions ~f,~g ∈ L
10
7
t,x(Ω) given in (2.3) and this fact explains the

third hypothesis above. Finally, we note that the regularity obtained is only valid on small neighborhoods of
points for which we have (2.7), and this justifies the designation of partial regularity associated to this theory.

To end this section, let us remark that the set Σ0 of points for which we have

lim sup
r→0

1

r

∫∫
]t0−r2,t0+r2[×B(x0,r)

|~∇⊗ ~u|2 + |~∇⊗~b|2dxds > 0,

is called the set of large gradients and from Theorem 1 and a standard Vitali covering Lemma it can be
deduced (see Section 13.10 of the book [15]) that the parabolic Hausdorff measure of the set Σ0 is null,
which means that this set is actually very small.
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3 Proof of the main Theorem

The strategy of the proof of Theorem 1 is based on regularity results of solutions of parabolic equations.
Indeed, following a classical result given in the book [12] (see also the article [13]) we have the following
lemma (stated using parabolic Morrey spaces and borrowed from Proposition 13.4 of the book [15]):

Lemma 3.1 (Hölder regularity) For ~v, ~Φ : [0,+∞[×R3 −→ R3 two vector fields, we consider the follow-
ing equation ∂t~v(t, x) = ∆~v(t, x) + ~Φ(t, x),

~v(0, x) = 0.
(3.1)

Assume moreover that we have the information ~Φ ∈ Mp0,q0
t,x with 1 ≤ p0 ≤ q0, 5

2 < q0 < 3 and 1
q0

= 2−α
5 ,

0 < α < 1
3 . Then the function ~v equal to 0 for t ≤ 0 and to

~v(t, x) =

∫ t

0
e(t−s)∆~Φ(s, ·) ds,

for t > 0, is a solution of equation (3.1) that is Hölderian of exponent α with respect to the parabolic distance
(2.4).

Of course, as we only have local hypotheses, we can not apply directly this lemma to the MHD equations
(2.1) and the first step is to localize our framework: we fix the point (t0, x0) considered in the hypotheses
of Theorem 1 and we construct two auxiliary non-negative functions ϕ,ψ : R× R3 −→ R by the conditions
ϕ,ψ ∈ C∞0 (R× R3,R)

supp(ϕ) ⊂]− 1
16 ,

1
16 [×B(0, 1

4),

supp(ψ) ⊂]− 1
4 ,

1
4 [×B(0, 1

2),

and such that

ϕ ≡ 1 on ]− 1
64 ,

1
64 [×B(0, 1

8),

ψ ≡ 1 on ]− 1
16 ,

1
16 [×B(0, 1

4).
(3.2)

Remark in particular that ψ ≡ 1 on the support of ϕ and thus we have the pointwise identity ψϕ = ϕ in
R× R3. Now, for a small fixed R0 such that 0 < 4R0 < t0 we define

φ(t, x) = ϕ

(
t− t0
R2

0

,
x− x0

R0

)
and ~U = φ(~u+~b), (3.3)

as we can observe, we have the identity ~U = ~u +~b on a small neighborhood of the point (t0, x0) and the
support of the variable ~U is contained in the parabolic ball of the form

QR0(t0, x0) =]t0 −R2
0, t0 +R2

0[×B(x0, R0). (3.4)

When the context is clear, we will write QR0 instead of QR0(t0, x0) and for usual (euclidean) balls we will
write BR0 instead of B(x0, R0). We will assume moreover that R0 is small enough to grant that

Q4R0(t0, x0) ⊂ Ω. (3.5)

Note now that, since 0 < 4R0 < t0 and supp(φ) ⊂]t0 −
R2

0
16 , t0 +

R2
0

16 [×B(x0,
R0
4 ), we have ~U(0, x) = 0 and we

obtain the following equation ∂t
~U(t, x) = ∆~U(t, x) + ~Φ(t, x),

~U(0, x) = 0,
(3.6)

5



where

~Φ = (∂tφ−∆φ)(~u+~b)︸ ︷︷ ︸
(a)

−2
3∑
i=1

(∂iφ)(∂i(~u+~b))︸ ︷︷ ︸
(b)

−φ
(

(~b · ~∇)~u+ (~u · ~∇)~b
)

︸ ︷︷ ︸
(c)

−2φ(~∇P )︸ ︷︷ ︸
(d)

+φ(~f + ~g)︸ ︷︷ ︸
(e)

. (3.7)

Thus, in order to apply Lemma 3.1, we only need to proof that the function ~Φ belongs to the Morrey space
Mp0,q0

t,x with 1 ≤ p0 ≤ q0, 5
2 < q0 < 3 and 1

q0
= 2−α

5 , 0 < α < 1
3 : then due to the formulas (3.2) and (3.3),

it is straightforward to deduce that the function ~u+~b is Hölder regular of order α on a small neighborhood
of (t0, x0) contained in the parabolic ball QR0 .

Remark 3.1 Since the hypotheses on ~u and ~b are completely symmetric, it is possible to perform a separated
study of ~u and ~b in order to obtain the Hölder regularity for each one of these variables. As the computations
are exactly the same, for the sake of simplicity, we prefer to study the function ~u+~b.

The fact that ~Φ ∈ Mp0,q0
t,x will made possible as long as we have some interesting estimates of the

constitutive terms of (3.7). In this sense we have the following proposition:

Proposition 3.1 Let R1, R2, R3 be three real numbers such that

0 < R0 < R1 < R2 < R3 < 2R0 < t0,

and consider (~u, P,~b) a suitable solution of MHD equations (2.1) over Ω in the sense of Definition 2.1. In the
framework of the general assumptions of Theorem 1, assume moreover that on some parabolic neighborhood
QR3(t0, x0), QR2(t0, x0) and QR1(t0, x0) of type (3.4) we have the following information:

1) 1QR3
~u, 1QR3

~b ∈M3,τ0
t,x for some τ0 >

5
1−α ,

2) 1QR3

~∇⊗ ~u, 1QR3

~∇⊗~b ∈M2,τ1
t,x with 1

τ1
= 1

τ0
+ 1

5 ,

3) 1QR2
~u, 1QR2

~b ∈M3,δ
t,x with 1

δ + 1
τ0
≤ 1−α

5 ,

4) for all 1 ≤ i, j ≤ 3 we have 1QR1

~∇∂i∂j
(−∆) (uibj) ∈Mp,q

t,x with p0 ≤ p < +∞ and q0 ≤ q < +∞,

5) 1QR3

~f ∈M
10
7
,τa

t,x and 1QR3
~g ∈M

10
7
,τb

t,x for some τa, τb >
5

2−α ,

then we have that all the terms of (3.7), and therefore the function ~Φ itself, belong to the Morrey space
Mp0,q0

t,x with 1 ≤ p0 ≤ 6
5 and 5

2 < q0 < 3 where 1
q0

= 2−α
5 with 0 < α < 1

3 .

Remark 3.2 Note that Theorem 1 follows at once if we have the conclusion of this proposition: we only
need to apply Lemma 3.1 to obtain that the function ~U defined in (3.3) is Hölderian of exponent α and since
the information over ~u and ~b is symmetric, it is easy to obtain that the couple (~u,~b) is itself Hölderian of
exponent α.

Remark 3.3 The upper bound 1 ≤ p0 ≤ 6
5 given in Proposition 3.1 is technical and ensures the condition

p0 ≤ q0. Note in particular that in Lemma 3.1 the Hölder regularity exponent 0 < α < 1
3 is only related to

the parameter q0 and not to p0.

Remark 3.4 It is important to mention here that the term
~∇∂i∂j
(−∆) (uibj) in the hypothesis 4) is related to the

pressure term ~∇P in (3.7). Note however that in Proposition 3.1 we do not state any particular assumption
on the pressure P but, as we will see later on, in order to obtain the hypotheses 1)-5) of this proposition we
will need the information P ∈ Lq0t,x(Ω) with 1 < q0 ≤ 3

2 as stated in the general framework (2.3).

6



Remark 3.5 The points 3) and 4) of the hypotheses will be deduced later on from the points 1), 2) and 5)
and this explains the fact that we need to reduce the support of the information as some extra localization
properties are needed here. See Section 6 for more details.

Proof of Proposition 3.1. Assuming for the moment the information stated in the points 1)-5) we will
study each term (a)-(e) of (3.7) separately.

(a) Since we have by the point 1) the information 1QR3
~u, 1QR3

~b ∈M3,τ0
t,x for some τ0 > 5, then it is easy to

obtain that (∂tφ−∆φ)(~u+~b) ∈Mp0,q0
t,x . Indeed, since φ is a smooth function, then due to its support

properties (see (3.3)), from the first point of Lemma A.1, from Lemma A.2 and since 1 < p0 ≤ 6
5 ,

5
2 < q0 < 3, we have∥∥∥(∂tφ−∆φ)(~u+~b)

∥∥∥
Mp0,q0

t,x

≤ C‖1QR0
(~u+~b)‖Mp0,q0

t,x
≤ C‖1QR3

(~u+~b)‖M3,τ0
t,x

< +∞.

(b) For the second term of (3.7) we use the information given by the point 3) of the hypotheses of Propo-
sition 3.1. Thus, by the Hölder inequalities in Morrey spaces (see Lemma A.1) we obtain∥∥∥(∂iφ)(∂i(~u+~b))

∥∥∥
Mp0,q0

t,x

≤ ‖1QR0
∂iφ‖Mp1,q1

t,x

(
‖1QR0

∂i~u‖M2,q2
t,x

+ ‖1QR0
∂i~b‖M2,q2

t,x

)
,

where 1
p1

+ 1
2 ≤

1
p0

and 1
q1

+ 1
q2

= 1
q0

, moreover, by Lemma A.2 we have for τ1 ≥ q2:∥∥∥(∂iφ)(∂i(~u+~b))
∥∥∥
Mp0,q0

t,x

≤ C
(
‖1QR3

~∇⊗ ~u‖M2,τ1
t,x

+ ‖1QR3

~∇⊗~b‖M2,τ1
t,x

)
< +∞.

Note that since 1 < p0 ≤ 6
5 , the condition p1 ≥ 3 is enough to satisfy 1

p1
+ 1

2 ≤
1
p0

. On the other hand,

since 1
q0

= 2−α
5 and 1

τ1
= 1

τ0
+ 1

5 we should have 1
q1

= 2−α
5 − 1

q2
≤ 2−α

5 − 1
τ1

= 1−α
5 − 1

τ0
, thus since

τ0 >
5

1−α , this is possible as long as q1 is big enough.

(c) We study the term
∥∥∥φ((~b · ~∇)~u+ (~u · ~∇)~b

)∥∥∥
Mp0,q0

t,x

. Since 1 < p0 ≤ 6
5 and 5

2 < q0 < 3, by Lemma A.2,

by the Hölder inequalities in Morrey spaces and using the information of points 2)-3), we have:∥∥∥φ((~b · ~∇)~u+ (~u · ~∇)~b
)∥∥∥
Mp0,q0

t,x

≤ C
∥∥∥1QR0

(
(~b · ~∇)~u+ (~u · ~∇)~b

)∥∥∥
M

6
5 ,q0
t,x

≤ C
(
‖1QR2

~b‖M3,δ
t,x
‖1QR3

~∇⊗ ~u‖M2,τ1
t,x

+‖1QR2
~u‖M3,δ

t,x
‖1QR3

~∇⊗~b‖M2,τ1
t,x

)
< +∞,

where we have 1
δ + 1

τ1
≤ 1

q0
, but since 1

q0
= 2−α

5 and 1
τ1

= 1
τ0

+ 1
5 , the previous conditions is equivalent

to 1
δ + 1

τ0
≤ 1−α

5 , which is exactly the condition stated in the point 2).

(d) The term that contains the pressure can be treated as follows: by the formula (2.2) we have

P =
1

(−∆)

3∑
i,j=1

∂i∂j(uibj), so we need to study the quantity

‖φ~∇P‖Mp0,q0
t,x
≤

3∑
i,j=1

∥∥∥∥∥φ
(

~∇
(−∆)

∂i∂j(uibj)

)∥∥∥∥∥
Mp0,q0

t,x

,

but since we assumed in 4) that 1QR1

~∇
(−∆)∂i∂j(uibj) ∈ M

p,q
t,x with p0 ≤ p < +∞ and q0 ≤ q < +∞,

then by Lemma A.2 we obtain for all 1 ≤ i, j ≤ 3:∥∥∥∥∥φ
(
~∇∂i∂j
(−∆)

(uibj)

)∥∥∥∥∥
Mp0,q0

t,x

≤

∥∥∥∥∥1QR1

~∇∂i∂j
(−∆)

(uibj)

∥∥∥∥∥
Mp,q

t,x

< +∞.
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(e) For the last term of (3.7), we need to study ‖φ(~f + ~g)‖Mp0,q0
t,x

, but since 1 < p0 ≤ 10
7 and since

q0 = 5
2−α < τa, τb, then from the first point of Lemma A.1 and from Lemma A.2 we have

‖φ(~f + ~g)‖Mp0,q0
t,x
≤ C‖1QR1

(~f + ~g)‖
M

10
7 ,min{τa,τb}
t,x

≤ C
(
‖1QR3

~f‖
M

10
7 ,τa
t,x

+ ‖1QR3
~g‖
M

10
7 ,τb
t,x

)
< +∞.

This completes the proof of Proposition 3.1. �

As mentioned in the Remark 3.2, Theorem 1 follows from the Proposition 3.1, so it suffices to show the
five hypotheses stated in Proposition 3.1, i.e. we will prove points 1)-5) from the general hypotheses of
Theorem 1. To be more precise, the points 1) and 2) will be shown in Section 5 by using the estimates
given in Section 4, while the points 3) and 4) will be verified in Section 6. Note also that since R3 < 2R0

and Q4R0 ⊂ Ω by (3.5), then hypothesis 5) of Proposition 3.1 follows from the third hypothesis of Theorem
1.

4 Local bounds

Remark that all the information assumed in the hypotheses of Proposition 3.1 is presented in the framework
of Morrey spaces, thus to carry on our study it will be useful to fix some averaged quantities: for a point
(t, x) ∈ QR0(t0, x0) and for a general radius 0 < r < R3, following the notation (3.4) we consider the
parabolic ball

Qr(t, x) =]t− r2, t+ r2[×B(x, r),

and when the context is clear, we will write Qr and Br instead of Qr(t, x) and B(x, r).

We define now the following dimensionless quantities (in the sense that they are scale invariant):

Ar(t, x) = sup
t−r2<s<t+r2

1

r

∫
B(x,r)

|~u(s, y)|2dy, αr(t, x) = sup
t−r2<s<t+r2

1

r

∫
B(x,r)

|~b(s, y)|2dy,

Br(t, x) =
1

r

∫∫
Qr(t,x)

|~∇⊗ ~u(s, y)|2dyds, βr(t, x) =
1

r

∫∫
Qr(t,x)

|~∇⊗~b(s, y)|2dyds,

Cr(t, x) =
1

r2

∫∫
Qr(t,x)

|~u(s, y)|3dyds, γr(t, x) =
1

r2

∫∫
Qr(t,x)

|~b(s, y)|3dyds, (4.1)

Dr(t, x) =
1

r
5
7

∫∫
Qr(t,x)

|~f(s, y)|
10
7 dyds, δr(t, x) =

1

r
5
7

∫∫
Qr(t,x)

|~g(s, y)|
10
7 dyds,

Pr(t, x) =
1

r5−2q0

∫∫
Qr(t,x)

|P (s, y)|q0dyds with 10
7 < q0 ≤ 3

2 .

The aim of this section is to obtain two inequalities (given in Proposition 4.1 and in Proposition 4.2 below)
that involves all the previous quantities. These inequalities are necessary to apply an inductive procedure
that will lead us to some of the controls assumed in Proposition 3.1. This inductive argument will be dis-
played in the next section.

In the following lemma we exhibit a first relationship between some of the terms in (4.1) that will be
used in Proposition 4.1.

Lemma 4.1 Under the general hypotheses of Theorem 1, for any 0 < r < R3, there exists an absolutely
constant C, which does not depend on r, such that we have

C
1
3
r ≤ C(Ar + Br)

1
2 , and γ

1
3
r ≤ C(αr + βr)

1
2 .
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Proof. We only detail the proof of the first estimate as the second follows the same computations. Thus,
by the definition of Cr given in (4.1) and Hölder’s inequality, we have

C
1
3
r =

1

r
2
3

‖~u‖L3
t,x(Qr) ≤ C

1

r
1
2

‖~u‖
L

10
3
t,x(Qr)

.

Now we remark that we have the interpolation inequality ‖~u(t, ·)‖
L

10
3 (Br)

≤ ‖~u(t, ·)‖
2
5

L2(Br)
‖~u(t, ·)‖

3
5

L6(Br)
and

applying the Hölder inequality with respect to the time variable, we obtain

‖~u‖
L

10
3
t,x(Qr)

≤ ‖~u‖
2
5

L∞t L
2
x(Qr)

‖~u‖
3
5

L2
tL

6
x(Qr)

.

For the L2
tL

6
x norm of ~u, we use the classical Gagliardo-Nirenberg inequality (see [2]) to obtain

‖~u‖L2
tL

6
x(Qr) ≤ C

(
‖~∇⊗ ~u‖L2

tL
2
x(Qr) + ‖~u‖L∞t L2

x(Qr)

)
,

and using Young’s inequalities we have

‖~u‖
L

10
3
t,x(Qr)

≤ C‖~u‖
2
5

L∞t L
2
x(Qr)

(
‖~∇⊗ ~u‖

3
5

L2
tL

2
x(Qr)

+ ‖~u‖
3
5

L∞t L
2
x(Qr)

)
≤ C

(
‖~u‖L∞t L2

x(Qr) + ‖~∇⊗ ~u‖L2
tL

2
x(Qr)

)
. (4.2)

Noting that ‖~u‖L∞t L2
x(Qr) = r

1
2A

1
2
r and ‖~∇⊗ ~u‖L2

tL
2
x(Qr) = r

1
2B

1
2
r , we finally obtain C

1
3
r ≤ C(Ar + Br)

1
2 and

Lemma 4.1 is proven. �

We give now the first general inequality that bounds all the term defined in formula (4.1).

Proposition 4.1 (First Estimate) Under the hypotheses of Theorem 1, for 0 < r < ρ
2 ≤

R3
2 , we have

Ar + Br + αr + βr ≤ C
r2

ρ2
(Aρ + αρ) + C

ρ2

r2

(
(Aρ + αρ + βρ)B

1
2
ρ + (αρ +Aρ + Bρ)β

1
2
ρ

)
+ C

ρ2

r2
P

1
q0
ρ

(
(Aρ + Bρ)

1
2 + (αρ + βρ)

1
2

)
+ C

ρ

r

(
D

7
10
ρ (Aρ + Bρ)

1
2 + δ

7
10
ρ (αρ + βρ)

1
2

)
.

Proof of Proposition 4.1. To obtain this estimate we will use the local energy estimate satisfied by
solutions of equation (2.1). It is crucial to choose here a good test function and following Scheffer [18] we
will consider the non-negative function ω ∈ C∞0 (R× R3) defined by the formula

ω(s, y) = r2φ

(
s− t
ρ2

,
y − x
ρ

)
θ

(
s− t
r2

)
g(4r2+t−s)(x− y), 0 < r <

ρ

2
≤ R3

2
, (4.3)

where φ ∈ C∞0 (R × R3) is a non-negative function supported on ] − 1, 1[×B(0, 1) and is equal to 1 on
]− 1

4 ,
1
4 [×B(0, 1

2) and θ : R −→ R is a non-negative smooth function such that θ ≡ 1 on ]−∞, 1[ and θ ≡ 0
on ]2,+∞[ and gt(x) is the usual heat kernel.

We gather in the following lemma some properties of this test function:

Lemma 4.2 Recalling that 0 < r < ρ
2 (and thus Qr(t, x) ⊂ Qρ(t, x)), we have
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1) the function ω is a bounded non-negative smooth function and its support is contained in the parabolic
ball Qρ(t, x) and for all (s, y) ∈ Qr(t, x) we have the lower bound ω(s, y) ≥ C

r ,

2) for all (s, y) ∈ Qρ(t, x) with 0 < s < t+ r2 we have ω(s, y) ≤ C
r ,

3) for all (s, y) ∈ Qρ(t, x) with 0 < s < t+ r2 we have |~∇ω(s, y)| ≤ C
r2 ,

4) moreover, for all (s, y) ∈ Qρ(t, x) with 0 < s < t+ r2 we have |(∂s + ∆)ω(s, y)| ≤ C r2

ρ5 .

See the Appendix B for a proof of this lemma. Now, with this particular test function ω, we can construct
the following local energy inequality∫

R3

(
|~u(τ, y)|2 + |~b(τ, y)|2

)
ω(τ, y)dy + 2

∫
s<τ

∫
R3

(
|~∇⊗ ~u(s, y)|2 + |~∇⊗~b(s, y)|2

)
ω(s, y)dyds

≤
∫
s<τ

∫
R3

(
|~u(s, y)|2 + |~b(s, y)|2

)
(∂t + ∆)ω(s, y)dyds

+

∫
s<τ

∫
R3

(
|~u(s, y)|2 + 2P (s, y)

)
(~b · ~∇)ω(s, y)dyds (4.4)

+

∫
s<τ

∫
R3

(
|~b(s, y)|2 + 2P (s, y)

)
(~u · ~∇)ω(s, y)dyds

+2

∫
s<τ

∫
R3

(
~f(s, y) · ~u(s, y) + ~g(s, y) ·~b(s, y)

)
ω(s, y)dyds.

Now, we define the quantities (|~u|2)ρ and (|~b|2)ρ as the following averages:

(|~u|2)ρ(t, x) =
1

|B(x, ρ)|

∫
B(x,ρ)

|~u(t, y)|2 dy, (|~b|2)ρ(t, x) =
1

|B(x, ρ)|

∫
B(x,ρ)

|~b(t, y)|2 dy, (4.5)

and since ~u and ~b are divergence free, for any test function φ compactly supported within B(x, ρ), we have

∫
B(x,ρ)

(|~u|2)ρ (~b · ~∇)φ(t, y) dy = 0 and

∫
B(x,ρ)

(|~b|2)ρ (~u · ~∇)φ(t, y) dy = 0,

these facts will allow us to introduce the averages (|~u|2)ρ and (|~b|2)ρ in inequality (4.4) in order to use
Poincaré’s inequality. Indeed, we can rewrite the previous local energy inequality in the following manner∫

R3

(
|~u(τ, y)|2 + |~b(τ, y)|2

)
ω(τ, y)dy + 2

∫
s<τ

∫
R3

(
|~∇⊗ ~u(s, y)|2 + |~∇⊗~b(s, y)|2

)
ω(s, y)dyds

≤
∫
s<τ

∫
R3

(
|~u(s, y)|2 + |~b(s, y)|2

)
(∂t + ∆)ω(s, y)dyds

+

∫
s<τ

∫
R3

(
|~u(s, y)|2 − (|~u|2)ρ

)
(~b · ~∇)ω(s, y)dyds

+

∫
s<τ

∫
R3

(
|~b(s, y)|2 − (|~b|2)ρ

)
(~u · ~∇)ω(s, y)dyds

+C

∫
s<τ

∫
R3

P (s, y)
(

(~b · ~∇)ω(s, y) + (~u · ~∇)ω(s, y)
)
dyds

+C

∫
s<τ

∫
R3

(
~f(s, y) · ~u(s, y) + ~g(s, y) ·~b(s, y)

)
ω(s, y)dyds.
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Using the properties of the test function ω stated in Lemma 4.2 we have:

1

r

∫
Br

|~u(τ, y)|2 + |~b(τ, y)|2dy +
1

r

∫∫
Qr

|~∇⊗ ~u(s, y)|2 + |~∇⊗~b(s, y)|2dyds

≤ C r2

ρ5

∫∫
Qρ

|~u(s, y)|2 + |~b(s, y)|2dyds︸ ︷︷ ︸
(I)

+
C

r2

∫∫
Qρ

∣∣|~u(s, y)|2 − (|~u|2)ρ
∣∣ |~b(s, y)|dyds︸ ︷︷ ︸

(II)

+
C

r2

∫∫
Qρ

∣∣∣|~b(s, y)|2 − (|~b|2)ρ

∣∣∣ |~u(s, y)|dyds︸ ︷︷ ︸
(III)

+
C

r2

∫∫
Qρ

|P (s, y)|
(
|~u(s, y)|+ |~b(s, y)|

)
dyds︸ ︷︷ ︸

(IV )

+
C

r

∫∫
Qρ

|~f(s, y)||~u(s, y)|+ |~g(s, y)||~b(s, y)|dyds︸ ︷︷ ︸
(V )

.

(4.6)

We will study each one of the previous terms separately. The first term on the right-hand side above is easy
to bound: indeed, by definition of the quantities Aρ and αρ given in (4.1), we get directly

(I) ≤ C r
2

ρ2

(
sup

t−ρ2<s<t+ρ2

1

ρ

∫
Bρ

|~u(s, y)|2dy + sup
t−ρ2<s<t+ρ2

1

ρ

∫
Bρ

|~b(s, y)|2dy

)
≤ C r

2

ρ2
(Aρ + αρ). (4.7)

The terms (II) and (III) can be treated in the same fashion since we have symmetric information on the
functions ~u and ~b, so we only study one of them: indeed, for (II) we have

1

r2

∫∫
Qρ

∣∣|~u(s, y)|2 − (|~u|2)ρ
∣∣ |~b(s, y)|dyds ≤ 1

r2

∫ t+ρ2

t−ρ2

‖|~u(s, ·)|2 − (|~u|2)ρ‖
L

3
2 (Bρ)

‖~b(s, ·)‖L3(Bρ)ds,

thus, by the Poincaré inequality we obtain

(II) ≤ C

r2

∫ t+ρ2

t−ρ2

‖~∇(|~u(s, ·)|2)‖L1(Bρ)‖~b(s, ·)‖L3(Bρ)ds

≤ C

r2

∫ t+ρ2

t−ρ2

‖~u(s, ·)‖L2(Bρ)‖~∇⊗ ~u‖L2(Bρ)‖~b(s, ·)‖L3(Bρ)ds

≤ C

r2
‖~u‖L6

tL
2
x(Qρ)‖~∇⊗ ~u‖L2

t,x(Qρ)‖~b‖L3
t,x(Qρ),

where we used the Hölder inequality in the time variable in the last estimate. Now we remark that we have
the following bounds for ‖~u‖L6

tL
2
x(Qρ), ‖~∇⊗ ~u‖L2

t,x(Qρ) and ‖~b‖L3
t,x(Qρ) (recall the expressions given in (4.1)):

‖~u‖L6
tL

2
x(Qρ) ≤ Cρ

1
3 ‖~u‖L∞t L2

x(Qρ) ≤ Cρ
5
6

(
sup

t−ρ2<s<t+ρ2

1

ρ

∫
Bρ

|~u(s, y)|2dy

) 1
2

= Cρ
5
6A

1
2
ρ ,

‖~∇⊗ ~u‖L2
t,x(Qρ) = ρ

1
2B

1
2
ρ and ‖~b‖L3

t,x(Qρ) = ρ
2
3γ

1
3
ρ ,

we obtain then

(II) ≤ Cρ
2

r2
A

1
2
ρ B

1
2
ρ γ

1
3
ρ ≤ C

ρ2

r2
A

1
2
ρ B

1
2
ρ (αρ + βρ)

1
2

where we used Lemma 4.1 to estimate the term γ
1
3
ρ . Since the same computations can be performed for

(III) we have

(II) + (III) ≤ C
ρ2

r2

(
A

1
2
ρ B

1
2
ρ (αρ + βρ)

1
2 + α

1
2
ρ β

1
2
ρ (Aρ + Bρ)

1
2

)
≤ C

ρ2

r2

(
(Aρ + αρ + βρ)B

1
2
ρ + (αρ +Aρ + Bρ)β

1
2
ρ

)
. (4.8)
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We study now the term (IV ) of (4.6). Using Hölder’s inequality, we have with 1
q0

+ 1
q′0

= 1:

(IV ) =
C

r2

∫∫
Qρ

|P (s, y)|
(
|~u(s, y)|+ |~b(s, y)|

)
dyds ≤ C

r2
‖P‖Lq0t,x(Qρ)

(
‖~u‖

L
q′0
t,x(Qρ)

+ ‖~b‖
L
q′0
t,x(Qρ)

)
.

Since we have 10
7 < q0 ≤ 3

2 and 3 ≤ q′0 < 10
3 we can write

(IV ) ≤ C

r2
‖P‖Lq0t,x(Qρ)ρ

5( 7
10
− 1
q0

)
(
‖~u‖

L
10
3
t,x(Qρ)

+ ‖~b‖
L

10
3
t,x(Qρ)

)
Since by definition (see expression (4.1)) we have ρ

( 5
q0
−2)P

1
q0
ρ = ‖P‖Lq0t,x(Qρ) and since by (4.2) we have the

estimates ‖~u‖
L

10
3
t,x(Qr)

≤ Cρ
1
2 (Aρ + Bρ)

1
2 and ‖~b‖

L
10
3
t,x(Qr)

≤ Cρ
1
2 (αρ + βρ)

1
2 , then we obtain

(IV ) ≤ Cρ
2

r2
P

1
q0
ρ

(
(Aρ + Bρ)

1
2 + (αρ + βρ)

1
2

)
. (4.9)

Finally for the last term (V ) of (4.6) we have by the Hölder inequality

(V ) =
C

r

∫∫
Qρ

|~f ||~u|+ |~g||~b|dyds ≤ C 1

r

(
‖~f‖

L
10
7
t,x(Qρ)

‖~u‖
L

10
3
t,x(Qρ)

+ ‖~g‖
L

10
7
t,x(Qρ)

‖~b‖
L

10
3
t,x(Qρ)

)
.

Recalling the control ‖~u‖
L

10
3
t,x(Qρ)

≤ C
(
‖~u‖L∞t L2

x(Qρ) + ‖~∇⊗ ~u‖L2
t,x(Qρ)

)
(see inequality (4.2)) and since by

(4.1) we have the identities ‖~u‖L∞t L2
x(Qρ) = ρ

1
2A

1
2
ρ , ‖~∇ ⊗ ~u‖L2

t,x(Qρ) = ρ
1
2B

1
2
ρ , ρ

1
2D

7
10
ρ = ‖~f‖

L
10
7
t,x(Qρ)

and

ρ
1
2 δ

7
10
ρ = ‖~g‖

L
10
7
t,x(Qρ)

, we obtain:

(V ) ≤ Cρ
r

(
D

7
10
ρ (Aρ + Bρ)

1
2 + δ

7
10
ρ (αρ + βρ)

1
2

)
. (4.10)

Gathering the estimates (4.7),(4.8),(4.9) and (4.10), we have

1

r

∫
Br

|~u(τ, y)|2 + |~b(τ, y)|2dy +
1

r

∫∫
Qr

|~∇⊗ ~u(s, y)|2 + |~∇⊗~b(s, y)|2dyds

≤ C r
2

ρ2
(Aρ + αρ) + C

ρ2

r2

(
(Aρ + αρ + βρ)B

1
2
ρ + (αρ +Aρ + Bρ)β

1
2
ρ

)
+ C

ρ2

r2
P

1
q0
ρ

(
(Aρ + Bρ)

1
2 + (αρ + βρ)

1
2

)
+ C

ρ

r

(
D

7
10
ρ (Aρ + Bρ)

1
2 + δ

7
10
ρ (αρ + βρ)

1
2

)
.

Since this estimate is uniform with respect of the time variable of the left-hand side, we finally can write:

Ar + Br + αr + βr ≤ C
r2

ρ2
(Aρ + αρ) + C

ρ2

r2

(
(Aρ + αρ + βρ)B

1
2
ρ + (αρ +Aρ + Bρ)β

1
2
ρ

)
+ C

ρ2

r2
P

1
q0
ρ

(
(Aρ + Bρ)

1
2 + (αρ + βρ)

1
2

)
+ C

ρ

r

(
D

7
10
ρ (Aρ + Bρ)

1
2 + δ

7
10
ρ (αρ + βρ)

1
2

)
,

and Proposition 4.1 is proven. �

The second estimate that we need relies on a detailed study of the properties of the pressure and following
Kukavica [11] we have:
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Proposition 4.2 (Second Estimate) With the quantities defined in (4.1), under the hypotheses of The-
orem 1 and for 0 < r < ρ

2 ≤
R3
2 we have the estimate:

Pr ≤ C

((ρ
r

)3−q0
(Aρβρ)

q0
2 +

(
r

ρ

)2q0−2

Pρ

)
. (4.11)

In order to obtain the previous inequality we will first study a general estimate stated in the lemma below
and then (4.11) will follow by a scaling argument.

Lemma 4.3 For 0 < σ ≤ 1
2 and for a parabolic ball Qσ, there is a constant C such that whenever P ∈

Lq0t,x(Q1) for 1 < q0 ≤ 3
2 , ∆P = −

3∑
i,j=1

∂i∂j(uibj) in Qσ, ~u ∈ L∞t L2
x(Q1) and ~∇⊗~b ∈ L2

t,x(Q1), then we have

the following control

‖P‖Lq0t,x(Qσ) ≤ C
(
σ

2
q0
−1‖~u‖L∞t L2

x(Q1)‖~∇⊗~b‖L2
t,x(Q1) + σ

3
q0 ‖P‖Lq0t,x(Q1)

)
, (4.12)

where Qσ and Q1 are parabolic balls of radius σ and 1 respectively.

Proof. To obtain this inequality we introduce η : R3 −→ [0, 1] a smooth function supported in the ball B1

such that η ≡ 1 on the ball B 3
5

and η ≡ 0 outside the ball B 4
5
. Note in particular that on Qσ we have the

identity P = ηP . Now a straightforward calculation shows that we have the identity

−∆(ηP ) = −η∆P + (∆η)P − 2

3∑
i=1

∂i((∂iη)P ),

from which we deduce the inequality

‖P‖Lq0t,x(Qσ) = ‖ηP‖Lq0t,x(Qσ) ≤

∥∥∥∥∥
(
− η∆P

)
(−∆)

∥∥∥∥∥
L
q0
t,x(Qσ)︸ ︷︷ ︸

(I)

+

∥∥∥∥(∆η)P

(−∆)

∥∥∥∥
L
q0
t,x(Qσ)︸ ︷︷ ︸

(II)

+2
3∑
i=1

∥∥∥∥∂i((∂iη)P )

(−∆)

∥∥∥∥
L
q0
t,x(Qσ)︸ ︷︷ ︸

(III)

. (4.13)

For the first term of (4.13), since ∆P = −
3∑

i,j=1

∂i∂j(uibj) on Qσ, if we denote by Ni,j = ui(bj − (bj)1) where

(bj)1 is the average of bj over the ball of radius 1 (recall the definition (4.5)) since ~u is divergence free we

have
3∑

i,j=1

∂i∂j(uibj) =
3∑

i,j=1

∂i∂jNi,j and thus we can write

(I) =

∥∥∥∥∥
(
− η∆P

)
(−∆)

∥∥∥∥∥
L
q0
t,x(Qσ)

≤ Cσ5( 1
q0
− 2

3
)

∥∥∥∥∥∥ 1

(−∆)

(
η

3∑
i,j=1

∂i∂jNi,j

)∥∥∥∥∥∥
L

3
2
t,x(Qσ)

≤ Cσ
5( 1
q0
− 2

3
)

3∑
i,j=1

∥∥∥∥ 1

(−∆)

(
∂i∂j(ηNi,j)− ∂i

(
(∂jη)Ni,j

)
− ∂j

(
(∂iη)Ni,j

)
+ 2(∂i∂jη)Ni,j

)∥∥∥∥
L

3
2
t,x(Qσ)

(4.14)

Denoting byRi = ∂i√
−∆

the usual Riesz transforms on R3, by the boundedness of these operators in Lebesgue

spaces and using the support properties of the auxiliary function η, we have for the first term above:∥∥∥∥ ∂i∂j(−∆)
ηNi,j(t, ·)

∥∥∥∥
L

3
2 (Bσ)

≤ ‖RiRj(ηNi,j)(t, ·)‖
L

3
2 (R3)

≤ C‖ηNi,j(t, ·)‖
L

3
2 (B1)

≤ C‖ui(t, ·)‖L2(B1)‖bj(t, ·)− (bj)1‖L6(B1)

≤ C‖~u(t, ·)‖L2(B1)‖~∇⊗~b(t, ·)‖L2(B1),
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where we used Hölder and Poincaré inequalities in the last line. Now taking the L
3
2 -norm in the time variable

of the previous inequality we obtain∥∥∥∥ ∂i∂j(−∆)
ηNi,j

∥∥∥∥
L

3
2
t,x(Qσ)

≤ Cσ
1
3 ‖~u‖L∞t L2

x(Q1)‖~∇⊗~b‖L2
t,x(Q1). (4.15)

The remaining terms of (4.14) can all be studied in a similar manner. Indeed, noting that ∂iη vanishes on
B 3

5
∪Bc

4
5

and since Bσ ⊂ B 1
2
⊂ B 3

5
, using the integral representation for the operator ∂i

(−∆) we have for the

second term of (4.14) the estimate∥∥∥∥ ∂i
(−∆)

(
(∂jη)Ni,j

)
(t, ·)

∥∥∥∥
L

3
2 (Bσ)

≤ Cσ2

∥∥∥∥ ∂i
(−∆)

(
(∂jη)Ni,j

)
(t, ·)

∥∥∥∥
L∞(Bσ)

≤ C σ2

∥∥∥∥∥
∫
{ 3

5
<|y|< 4

5
}

xi − yi
|x− y|3

(
(∂jη)Ni,j

)
(t, y) dy

∥∥∥∥∥
L∞(Bσ)

≤ C σ2‖Ni,j(t, ·)‖L1(B1) (4.16)

≤ C σ2‖ui(t, ·)‖L2(B1)‖bj(t, ·)− (bj)1‖L2(B1)

≤ C ‖~u(t, ·)‖L2(B1)‖~∇⊗~b(t, ·)‖L2(B1),

where we used the same ideas as previously and the fact that 0 < σ < 1, and with the same arguments as
in (4.15) before, taking the L

3
2 -norm in the time variable, we obtain∥∥∥∥ ∂i

(−∆)

(
(∂jη)Ni,j

)∥∥∥∥
L

3
2
t,x(Qσ)

≤ Cσ
1
3 ‖~u‖L∞t L2

x(Q1)‖~∇⊗~b‖L2
t,x(Q1). (4.17)

A symmetric argument gives∥∥∥∥ ∂j
(−∆)

(
(∂iη)Ni,j

)∥∥∥∥
L

3
2
t,x(Qσ)

≤ Cσ
1
3 ‖~u‖L∞t L2

x(Q1)‖~∇⊗~b‖L2
t,x(Q1), (4.18)

and observing that the convolution kernel associated to the operator 1
(−∆) is C

|x| , following the same ideas

we have for the last term of (4.14) the inequality∥∥∥∥(∂i∂jη)Ni,j

(−∆)

∥∥∥∥
L

3
2
t,x(Qσ)

≤ Cσ
1
3 ‖~u‖L∞t L2

x(Q1)‖~∇⊗~b‖L2
t,x(Q1). (4.19)

Therefore, combining the estimates (4.15), (4.17), (4.18) and (4.19) and getting back to (4.14) we finally
have:

(I) =

∥∥∥∥∥
(
− η∆P

)
(−∆)

∥∥∥∥∥
L

3
2
t,x(Qσ)

≤ Cσ5( 1
q0
− 2

3
)
(
σ

1
3 ‖~u‖L∞t L2

x(Q1)‖~∇⊗~b‖L2
t,x(Q1)

)
≤ σ

5
q0
−3‖~u‖L∞t L2

x(Q1)‖~∇⊗~b‖L2
t,x(Q1) (4.20)

We continue our study of expression (4.13) and for the term (II) we first treat the space variable. Recalling
the support properties of the auxiliary function η and properties of the convolution kernel associated to the
operator 1

(−∆) , we can write as before (see (4.16)):∥∥∥∥(∆η)P (t, ·)
(−∆)

∥∥∥∥
Lq0 (Bσ)

≤ Cσ
3
q0 ‖P (t, ·)‖L1(B1) ≤ Cσ

3
q0 ‖P (t, ·)‖Lq0 (B1),
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and thus, taking the Lq0-norm in the time variable we obtain:

(II) =

∥∥∥∥(∆η)P

(−∆)

∥∥∥∥
L
q0
t,x(Qσ)

≤ Cσ
3
q0 ‖P‖Lq0t,x(Q1). (4.21)

For the last term of expression (4.13), following the same ideas developed in (4.16) we can write∥∥∥∥ ∂i
(−∆)

(∂iη)P (t, ·)
∥∥∥∥
Lq0 (Bσ)

≤ Cσ
3
q0 ‖P (t, ·)‖L1(B1) ≤ Cσ

3
q0 ‖P (t, ·)‖Lq0 (B1),

and we obtain

(III) =

∥∥∥∥∂i((∂iη)P )

(−∆)

∥∥∥∥
L
q0
t,x(Qσ)

≤ Cσ
3
q0 ‖P‖Lq0t,x(Q1). (4.22)

Now, gathering the estimates (4.20), (4.21) and (4.22) we obtain the inequality

‖P‖Lq0t,x(Qσ) ≤ C
(
σ

5
q0
−3‖~u‖L∞t L2

x(Q1)‖~∇⊗~b‖L2
t,x(Q1) + σ

3
q0 ‖P‖Lq0t,x(Q1)

)
,

recalling at this point that since 1 < q0 < 3
2 , we have 2

q0
− 1 < 5

q0
− 3 and since 0 < σ ≤ 1

2 we have

σ
5
q0
−3 ≤ σ

2
q0
−1

and we finally obtain the estimate

‖P‖Lq0t,x(Qσ) ≤ C
(
σ

2
q0
−1‖~u‖L∞t L2

x(Q1)‖~∇⊗~b‖L2
t,x(Q1) + σ

3
q0 ‖P‖Lq0t,x(Q1)

)
,

and the proof of Lemma 4.3 is finished. �

Proof of Proposition 4.2. Once we have established the estimate (4.12) it is quite simple to deduce
inequality (4.11). Indeed, if we fix σ = r

ρ ≤
1
2 and if we introduce the functions Pρ(t, x) = P (ρ2t, ρx),

~uρ(t, x) = ~u(ρ2t, ρx) and ~bρ(t, x) = ~b(ρ2t, ρx) then from (4.12) we have

‖Pρ‖Lq0t,x(Q r
ρ

) ≤ C

((
r

ρ

) 2
q0
−1

‖~uρ‖L∞t L2
x(Q1)‖~∇⊗~bρ‖L2

t,x(Q1) +

(
r

ρ

) 3
q0

‖Pρ‖Lq0t,x(Q1)

)
,

and by a convenient change of variable we obtain

‖P‖Lq0t,x(Qr)
ρ
− 5
q0 ≤ C

((
r

ρ

) 2
q0
−1

ρ−
3
2 ‖~u‖L∞t L2

x(Qρ)ρ
− 3

2 ‖~∇⊗~b‖L2
t,x(Qρ) +

(
r

ρ

) 3
q0

ρ
− 5
q0 ‖P‖Lq0t,x(Qρ)

)
.

Now, recalling that by (4.1) we have the identities

r
5
q0
−2P

1
q0
r = ‖P‖Lq0t,x(Qr)

, ρ
1
2A

1
2
ρ = ‖~u‖L∞t L2

x(Qρ) and ρ
1
2β

1
2
ρ = ‖~∇⊗~b‖L2

t,x(Qρ),

we obtain

P
1
q0
r ≤ C

((ρ
r

) 3
q0
−1

(Aρβρ)
1
2 +

(
r

ρ

)2− 2
q0

P
1
q0
ρ

)
,

and we finish the proof of Proposition 4.2 by taking all this inequality to the q0-power. �
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5 Inductive argument

In Section 4, we have proven the following relationships between the averaged quantities defined in the
expression (4.1):

Ar + Br + αr + βr ≤ C
r2

ρ2
(Aρ + αρ) + C

ρ2

r2

(
(Aρ + αρ + βρ)B

1
2
ρ + (αρ +Aρ + Bρ)β

1
2
ρ

)
+ C

ρ2

r2
P

1
q0
ρ

(
(Aρ + Bρ)

1
2 + (αρ + βρ)

1
2

)
+ C

ρ

r

(
D

7
10
ρ (Aρ + Bρ)

1
2 + δ

7
10
ρ (αρ + βρ)

1
2

)
and

Pr ≤ C

((ρ
r

)3−q0
(Aρβρ)

q0
2 +

(
r

ρ

)2q0−2

Pρ

)
.

(5.1)

In this section we will see how to use these relationships to obtain some of the local Morrey information
assumed in Proposition 3.1. Indeed, we have:

Proposition 5.1 Let (~u, P,~b) be a suitable solution of MHD equations (2.1) over Ω in the sense of Defini-
tion 2.1. Recall that in the framework of the general assumptions of Theorem 1, we have the following local

information on the pressure P ∈ Lq0t,x(Ω) with 1 < q0 ≤ 3
2 and on the external forces ~f and ~g: 1Ω

~f ∈M
10
7
,τa

t,x

and 1Ω~g ∈M
10
7
,τb

t,x for some τc = min{τa, τb} > 5
2−α >

5
3 with 0 < α < 1

3 .

Define now a real parameter τ0 such that 5
1−α < τ0 < 5q0 and 2 − 5

τc
+ 5

τ0
> 0. There exists a positive

constant ε∗ which depends only on τa, τb and τ0 such that, if (t0, x0) ∈ Ω and

lim sup
r→0

1

r

∫∫
]t0−r2,t0+r2[×B(x0,r)

|~∇⊗ ~u (s, y)|2 + |~∇⊗~b (s, y)|2dyds < ε∗, (5.2)

then there exists a (parabolic) neighborhood QR3 of (t0, x0) with 0 < R0 < R1 < R2 < R3 < 2R0 such that

1QR3
~u ∈M3,τ0

t,x , 1QR3

~b ∈M3,τ0
t,x and 1QR3

P ∈Mq0,
τ0
2

t,x .

Note that the conclusion of this proposition gives exactly the information on ~u and ~b that was assumed in
the first point of Proposition 3.1. However, although we have some information on the pressure P , this is
not enough to obtain the fourth hypothesis of Proposition 3.1. This term will be studied in detail in Section
6 below.

Proof of Proposition 5.1. Recall that from the global hypothesis of Theorem 1, we have a local control
over the set Ω (see the set of hypotheses (2.3)), thus as we want to obtain a local information and since
we assumed Q4R0(t0, x0) ⊂ Ω, by the definition of Morrey spaces given in (2.6), we only need to prove that
there exists a radius R3 small enough such that for all 0 < r < R3 and for all (t, x) ∈ QR3(t0, x0) we have
the following controls∫∫

Qr(t,x)
|~u(s, y)|3 + |~b(s, y)|3 dy ds ≤ C r5(1− 3

τ0
)

and

∫∫
Qr(t,x)

|P (s, y)|q0 dy ds ≤ C r5(1− 2q0
τ0

)
, (5.3)

indeed, for larger values of r theses quantities will be controlled by the information over the set Ω.
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In order to obtain these estimates, we will implement an inductive argument using the averaged quantities
defined in (4.1) and the inequalities (5.1) obtained in the previous section. Indeed, in a first step, we remark
that by Lemma 4.1, we can write∫∫

Qr(t,x)
|~u(s, y)|3 + |~b(s, y)|3 dy ds ≤ C r2(Ar + Br + αr + βr)

3
2 (t, x),

moreover, since we have the identity r5−2q0Pr(t, x) = ‖P‖q0
L
q0
t,x(Qr)

, we see that in order to obtain (5.3) for all

small 0 < r < R3 and all point (t, x) ∈ QR3 , it is enough to show the estimates

(Ar +Br + αr + βr)(t, x) ≤ Cr2(1− 5
τ0

)
and Pr(t, x) ≤ C r2q0(1− 5

τ0
)
.

Let us now introduce the following quantities:

Ar(t, x) =
1

r
2(1− 5

τ0
)

(Ar + Br + αr + βr) (t, x) and Qr(t, x) =
1

r
2q0(1− 5

τ0
)
Pr(t, x), (5.4)

again, to prove (5.3) we only need to show that there exists 0 < κ < 1 and 0 < R3 < 2R0 such that for all
n ∈ N and (t, x) ∈ QR3 , we have

AκnR3(t, x) ≤ C and QκnR3(t, x) ≤ C, (5.5)

and the whole idea here is to use an inductive argument that ensures that we have these two previous esti-
mates for all radii of the type κnR3 > 0. This idea will be implemented in two steps by studying separately
each one of the quantities of (5.5).

In order to simplify the arguments, we shall also need the quantities:

Br(t, x) = (Br + βr)(t, x), Pr(t, x) =
1

r
q0(1− 5

τ0
)
Pr(t, x), Dr(t, x) =

1

r3− 5
τc

(
D

7
10
r + δ

7
10
r

)
(t, x). (5.6)

With these new quantities, we can rewrite the two inequalities of expression (5.1) as follows

Ar ≤ C

((
r

ρ

) 10
τ0

Aρ +
(ρ
r

)4− 10
τ0 AρB

1
2
ρ +

(ρ
r

)4− 10
τ0 P

1
q0
ρ A

1
2
ρ +

(ρ
r

)3− 10
τ0 ρ

2+ 5
τ0
− 5
τc DρA

1
2
ρ

)
, (5.7)

and

Pr ≤ C

((ρ
r

)3− 5q0
τ0 (AρBρ)

q0
2 +

(
r

ρ

)q0(1+ 5
τ0

)−2

Pρ

)
. (5.8)

Observe that these two estimates essentially give us the estimate for ~u,~b and P within the (small) parabolic
ball Qr in terms of ~u,~b and P within the (larger) parabolic ball Qρ.

We define now a new expression that will help us to set up the inductive argument:

Θr(t, x) = Ar(t, x) +
(
κ

5q0( 2
τ0
−1)

Pr(t, x)
) 2
q0 with κ =

r

ρ
< 1, (5.9)

and we will see how to obtain from (5.7) and (5.8) a recursive equation in terms of Θr from which we will
deduce (5.5). Indeed, we have the following lemma:

Lemma 5.1 For all (t, x) ∈ Q2R0(t0, x0), for all 0 < r < ρ
2 and for ρ small enough we have the inequality

Θr(t, x) ≤ 1

2
Θρ(t, x) + ε, (5.10)

where ε is a small constant that depends on the information available on the external forces ~f and ~g through
the quantity Dr given in (5.6).
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It is worth noting here that since 0 < r < ρ this inequality expresses a control of the quantities Ar, Br, αr, βr
and Pr on small domains through the information on larger domains.

Proof of Lemma 5.1. As announced, this inequality relies on the controls (5.7) and (5.8) obtained

previously. In order to construct Θr we first multiply expression (5.8) by κ
5q0( 2

τ0
−1)

, we take the 2
q0

-power
of it and then we sum the resulting inequality to (5.7) and we obtain (recall that κ = r

ρ):

Θr = Ar +
(
κ

5q0( 2
τ0
−1)

Pr(t, x)
) 2
q0

≤ C

(
κ

10
τ0 Aρ + κ

10
τ0
−4

AρB
1
2
ρ + κ

10
τ0
−4

P
1
q0
ρ A

1
2
ρ + κ

10
τ0
−3
ρ

2+ 5
τ0
− 5
τc DρA

1
2
ρ

)
+C

(
κ

15q0
τ0
−5q0−3

(AρBρ)
q0
2 + κ

15q0
τ0
−4q0−2

Pρ

) 2
q0

.

As it is clear from the definition of Θr given in (5.9) that we have Ar ≤ Θr, we can write

Θr ≤ C

κ 10
τ0 Θρ + κ

10
τ0
−4

B
1
2
ρΘρ + κ

10
τ0
−4

P
1
q0
ρ A

1
2
ρ︸ ︷︷ ︸

(I)

+κ
10
τ0
−3
ρ

2+ 5
τ0
− 5
τc DρA

1
2
ρ︸ ︷︷ ︸

(II)


+C

(
κ

15q0
τ0
−5q0−3

(AρBρ)
q0
2 + κ

15q0
τ0
−4q0−2

Pρ

) 2
q0

︸ ︷︷ ︸
(III)

. (5.11)

We now study the terms (I), (II) and (III). The first one is easy to handle since we have

κ
10
τ0
−4

P
1
q0
ρ A

1
2
ρ = κ

10
τ0
−4
(
κ

5( 1
τ0
− 1

2
)
P

1
q0
ρ × κ

5( 1
2
− 1
τ0

)
A

1
2
ρ

)
≤ κ

10
τ0
−4
(
κ

10( 1
2
− 1
τ0

)
Aρ + κ

10( 1
τ0
− 1

2
)
P

2
q0
ρ

)
≤ κ

(
Aρ +

(
κ

5q0( 2
τ0
−1)

Pρ

) 2
q0

)
≤ κΘρ. (5.12)

For the term (II) of (5.11) we simply write

κ
10
τ0
−3
ρ

2+ 5
τ0
− 5
τc DρA

1
2
ρ ≤ κ

10
τ0
−3
ρ

2+ 5
τ0
− 5
τc (D2

ρ + Aρ) ≤ κ
10
τ0
−3
ρ

2+ 5
τ0
− 5
τc (D2

ρ + Θρ). (5.13)

The last term (III) of (5.11) is treated in the following way.(
κ

15q0
τ0
−5q0−3

(AρBρ)
q0
2 + κ

15q0
τ0
−4q0−2

Pρ

) 2
q0

≤ C

(
κ

30
τ0
−10− 6

q0 AρBρ + κ
10
τ0

+2− 4
q0

(
κ

5q0( 2
τ0
−1)

Pρ(t, x)
) 2
q0

)
≤ Cκ

30
τ0
−10− 6

q0 BρΘρ + Cκ
10
τ0

+2− 4
q0 Θρ. (5.14)

Plugging estimates (5.12), (5.13) and (5.14) in inequality (5.11) we obtain

Θr ≤ C

(
κ

10
τ0 Θρ + κ

10
τ0
−4

B
1
2
ρΘρ + κΘρ + κ

10
τ0
−3
ρ

2+ 5
τ0
− 5
τc D2

ρ + κ
10
τ0
−3
ρ

2+ 5
τ0
− 5
τc Θρ

+ κ
30
τ0
−10− 6

q0 BρΘρ + κ
10
τ0

+2− 4
q0 Θρ

)
≤ C

(
κ

10
τ0 + κ

10
τ0
−4

B
1
2
ρ + κ+ κ

10
τ0
−3
ρ

2+ 5
τ0
− 5
τc + κ

30
τ0
−10− 6

q0 Bρ + κ
10
τ0

+2− 4
q0

)
Θρ

+Cκ
10
τ0
−3
ρ

2+ 5
τ0
− 5
τc D2

ρ. (5.15)
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Now we want to fix a small κ such that (5.10) can be deduced from this inequality: we thus want to prove

C

(
κ

10
τ0 + κ

10
τ0
−4

B
1
2
ρ + κ+ κ

10
τ0
−3
ρ

2+ 5
τ0
− 5
τc + κ

30
τ0
−10− 6

q0 Bρ + κ
10
τ0

+2− 4
q0

)
≤ 1

2
and

Cκ
10
τ0
−3
ρ

2+ 5
τ0
− 5
τc D2

ρ ≤ ε. (5.16)

At this point we remark that due to the hypothesis (5.2) and to the definition of quantities Bρ and βρ given
in (4.1) we have

lim sup
ρ→0

Bρ = lim sup
ρ→0

(Bρ + βρ) < 2ε∗,

and thus, although we have 0 < κ < 1 and 10
τ0
− 4 < 0 and 30

τ0
− 10 − 6

q0
< 0, then the following terms of

(5.15)

κ
10
τ0
−4

B
1
2
ρ and κ

30
τ0
−10− 6

q0 Bρ, (5.17)

can be made very small if ρ is small enough. Moreover, since by hypothesis we have 2 + 5
τ0
− 5

τc
> 0, then

the fourth term of (5.15) κ
10
τ0
−3
ρ

2+ 5
τ0
− 5
τc can also be made small. Finally we observe that 10

τ0
+ 2 − 4

q0
> 0

which is equivalent to 4τ0
10+2τ0

< q0, but since 1 < q0 <
3
2 and 5

1−α < τ0 < 5q0, then this condition is fulfilled

and the term κ
10
τ0

+2− 4
q0 can be small if κ is small. We also observe that by (5.6) and by the definition of

the averaged quantities Dρ and δρ given in (4.1) we have that Dρ is bounded and controlled by the Morrey

norms of the external forces ~f and ~g. Thus since 2 + 5
τ0
− 5

τc
> 0 the term

κ
10
τ0
−3
ρ

2+ 5
τ0
− 5
τc D2

ρ, (5.18)

can also be made very small if ρ is small enough. With all these observations we have the controls (5.16)
and the inequality (5.15) can thus be rewritten in the following form:

Θr(t, x) ≤ 1

2
Θρ(t, x) + ε,

and Lemma 5.1 is proven. �

Remark 5.1 The terms (5.17) and (5.18) can be made small if R0 is small enough and we can see here
that all the techniques displayed here will only be valid on a small neighborhood of the point (t0, x0).

Now, we turn to the proof of Proposition 5.1. With the inequality (5.10) at hand we can obtain the first
estimate of (5.5). We first consider the estimates centered at the fixed point (t0, x0). Indeed, notice that
for any radius ρ such that 0 < ρ < 2R0 and since we have Q4R0(t0, x0) ⊂ Ω (recall formula (3.5)), by the
hypotheses given in (2.3) we have the bounds:

‖~u‖L∞t L2
x(Qρ(t0,x0)) ≤ ‖~u‖L∞t L2

x(Ω) < +∞, ‖~∇⊗ ~u‖L2
t,x(Qρ(t0,x0)) ≤ ‖~∇⊗ ~u‖L2

t,x(Ω) < +∞,

and ‖P‖Lq0t,x(Qρ(t0,x0)) ≤ ‖P‖Lq0t,x(Ω) < +∞.

Now, by the definition of the quantities Aρ(t0, x0), Bρ(t0, x0), αρ(t0, x0), βρ(t0, x0) and Pρ(t0, x0) given in
(4.1) we have

ρAρ(t0, x0) = ‖~u‖2L∞t L2
x(Qρ(t0,x0)), ρBρ(t0, x0) = ‖~∇⊗ ~u‖2L2

t,x(Qρ(t0,x0)),

ραρ(t0, x0) = ‖~b‖2L∞t L2
x(Qρ(t0,x0)), ρβρ(t0, x0) = ‖~∇⊗~b‖2L2

t,x(Qρ(t0,x0)),

and ρ5−2q0Pρ(t0, x0) = ‖P‖Lq0t,x(Qρ(t0,x0)),
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and thus we have the following uniform bounds

sup
0<ρ<2R0

{
ρAρ(t0, x0), ρBρ(t0, x0), ραρ(t0, x0), ρβρ(t0, x0), ρ5−2q0Pρ(t0, x0)

}
< +∞,

from which we can deduce, by the definition of the quantities Aρ(t0, x0) given in (5.4) and Pρ(t0, x0) given
in (5.6), the uniform bounds

sup
0<ρ<2R0

ρ
3− 10

τ0 Aρ(t0, x0) < +∞ and sup
0<ρ<2R0

ρ
5−q0(1+ 5

τ0
)
Pρ(t0, x0) < +∞. (5.19)

Note now, that there exists a 0 < κ < 1
2 and a fixed 0 < ρ0 < 2R0 small such that, on one hand, by (5.19)

the quantities Aρ0(t0, x0) and Pρ0(t0, x0) are bounded (then the quantity Θρ0 defined by expression (5.9) is
itself bounded) and, on the other hand, if ρ0 is small enough, then the inequality (5.10) in Lemma 5.1 holds
true and we can write

Θκρ0(t0, x0) ≤ 1

2
Θρ0(t0, x0) + ε.

We can iterate this process and we obtain for all n ≥ 1:

Θκnρ0(t0, x0) ≤ 1

2n
Θρ0(t0, x0) + ε

n−1∑
j=0

2−j ,

therefore, there exists N ≥ 1 such that for all n ≥ N we have

Θκnρ0(t0, x0) ≤ 4ε, (5.20)

from which we obtain (from formula (5.9)) that

AκNρ0
(t0, x0) ≤ 1

8
C and PκNρ0

(t0, x0) ≤ 1

32
C. (5.21)

This information is centered at the point (t0, x0), in order to treat the uncentered bound, we can let 1
2κ

Nρ0

to be the radius R3 we want to find, thus for all points (t, x) ∈ QR3 we have QR3(t, x) ⊂ Q2R3 , which implies

AR3(t, x) ≤ 2
3− 10

τ0 A2R3(t0, x0) ≤ 8 A2R3(t0, x0) ≤ 8 AκNρ0
(t0, x0) < C,

and
PR3(t, x) ≤ 2

5−q0(1+ 5
τ0

)
P2R3(t0, x0) ≤ 32 P2R3(t0, x0) ≤ 32 PκNρ0

(t0, x0) < C,

by definition of ΘR3 , we thus get ΘR3(t, x) ≤ C. Applying Lemma 5.1 and iterating once more, we find
that the same will be true for κR3 and then for all κnR3, n ∈ N,i.e.

AκnR3(t, x) ≤ C, for all n ∈ N and (t, x) ∈ QR3

and the first inequality of (5.5) is proven.

The second inequality of (5.5) requires a different treatment since from (5.20) and by the definition of
the quantity Qκnρ0 given in (5.4), we can only deduce that for all n ≥ N we have the bound

κ
nq0(1− 5

τ0
)+5q0( 2

τ0
−1)

Qκnρ0(t0, x0) ≤ C,

which is not enough to ensure that the quantity Qκnρ0(t0, x0) is bounded (since q0(1− 5
τ0

) < 0).
To overcome this issue, using the definition of the quantities Ar and Qr given in (5.4) and using the estimate
(4.11) we can write (recalling that κ = r

ρ):

Qr(t0, x0) ≤ C

((ρ
r

)3+q0(1− 10
τ0

)
Aq0
ρ (t0, x0) +

(
r

ρ

)2(
5q0
τ0
−1)

Qρ(t0, x0)

)

≤ C

(
κ
−3−q0(1− 10

τ0
)
Aq0
ρ (t0, x0) + κ

2(
5q0
τ0
−1)

Qρ(t0, x0)

)
. (5.22)
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We need to impose a smallness condition on 0 < κ̃ < 1 and we will assume that we have

C κ̃
2(

5q0
τ0
−1)

<
1

2
,

which is possible since 5
1−α < τ0 < 5q0. Now, from (5.21) we know that the quantity Aρ(t0, x0) can be made

small enough if ρ is small enough, and thus the estimate (5.22) becomes

Qr(t0, x0) ≤ 1

2
Qρ(t0, x0) + ε̃, (5.23)

where ε̃ is a small constant.

As before, for a small 0 < κ̃ < 1
2 and for a fixed small 0 < ρ̃0 < 2R0, we have by (5.19) that the quantity

Qρ̃0(t0, x0) is bounded and if κ̃ and ρ̃0 are small enough then inequality (5.23) holds true, i.e.,

Qκ̃ρ̃0(t0, x0) ≤ 1

2
Qρ̃0(t0, x0) + ε̃,

Iterating the inequality above, we obtain that for all n ≥ 1

Qκ̃nρ̃0(t0, x0) ≤ 1

2n
Qρ̃0(t0, x0) + ε̃

n−1∑
j=0

2−j ,

and there exists Ñ ≥ 1 such that for all n ≥ Ñ we have

Qκ̃nρ̃0(t0, x0) ≤ 4ε̃ ≤ 1

32
C.

In order to treat the uncentered bound, we proceed as before: let 1
2 κ̃

Ñ ρ̃0 be the radius R3, thus for all points
(t, x) ∈ QR3 we have QR3(t, x) ⊂ Q2R3 , which implies

QR3(t, x) ≤ 2
(5− 10q0

τ0
)
Q2R3(t0, x0) ≤ 32 Q2R3(t0, x0) ≤ Qκ̃nρ̃0(t0, x0) ≤ C,

and the second inequality of (5.5) is now proved since the inequality above holds true for all κnR3, n ∈ N.

We conclude the proof of Proposition 5.1 by choosing R3 = max{1
2κ

Nρ0,
1
2 κ̃

Ñ ρ̃0}. �

From the proof of Proposition 5.1, we can deduce a more specific result on ~∇⊗ ~u and ~∇⊗~b. Indeed, we
can obtain the following result that gives the assumption 2) of Proposition 3.1:

Corollary 5.1 Under all the assumptions of Proposition 5.1, we have

1QR3

~∇⊗ ~u ∈M2,τ1
t,x and 1QR3

~∇⊗~b ∈M2,τ1
t,x ,

with 1
τ1

= 1
τ0

+ 1
5 .

Proof. From the definition of Ar in (5.4) and from the first estimate of (5.5), in the proof of Proposition
5.1, for all 0 < r small and for all (t, x) ∈ QR3(t0, x0), we have shown that we have

(Br + βr)(t, x) =
1

r

∫∫
Qr(t,x)

|~∇⊗ ~u(s, y)|2dyds+
1

r

∫∫
Qr(t,x)

|~∇⊗~b(s, y)|2dyds ≤ C r2(1− 5
τ0

)
= C r

4− 10
τ1 ,

where we used the relationship 1
τ1

= 1
τ0

+ 1
5 . We obtain then, for all 0 < r small, the estimate∫∫

Qr(t,x)
|~∇⊗ ~u(s, y)|2dyds+

∫∫
Qr(t,x)

|~∇⊗~b(s, y)|2dyds ≤ C r5(1− 2
τ1

)
,

and to conclude it is enough to recall the definition of the Morrey space M2,τ1
t,x given in (2.6). �
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6 Further estimates

In the previous sections we have proven so far the points 1), 2) and 5) that were assumed in Proposition
3.1 (for a small R3 < 2R0):

1QR3
~u, 1QR3

~b ∈M3,τ0
t,x for some τ0 >

5

1− α
,

1QR3

~∇⊗ ~u, 1QR3

~∇⊗~b ∈M2,τ1
t,x with

1

τ1
=

1

τ0
+

1

5
,

1QR3

~f ∈M
10
7
,τa

t,x , 1QR3
~g ∈M

10
7
,τb

t,x for some τa, τb >
5

2− α
.

(6.1)

Our current task consists in proving the remaining points 3) and 4) using all the information available up
to now, i.e. we need to study the following assertions (with R0 < R1 < R2 < R3):

1QR2
~u, 1QR2

~b ∈M3,δ
t,x with

1

δ
+

1

τ0
≤ 1− α

5
, (6.2)

for 1 ≤ i, j ≤ 3 we have 1QR1

~∇∂i∂j
(−∆)

(uibj) ∈Mp,q
t,x with p0 ≤ p < +∞, q0 ≤ q < +∞, (6.3)

where 1 ≤ p0 ≤ 6
5 and 5

2 < q0 < 3 where 1
q0

= 2−α
5 with 0 < α < 1

3 .

These two points are actually related and in order to study them we need to recall some tools of harmonic
analysis in the setting of parabolic spaces. Let us now introduce, for 0 < a < 5, the parabolic Riesz potential
Ia of a locally integrable function ~f : R× R3 −→ R3 which is given by the expression

Ia(~f)(t, x) =

∫
R

∫
R3

1

(|t− s|
1
2 + |x− y|)5−a

~f(s, y)dy ds. (6.4)

As for the standard Riesz Potential in R3, we have a corresponding boundedness property:

Lemma 6.1 (Adams-Hedberg’s inequality) If 0 < a < 5
q , 1 < p ≤ q < +∞ and ~f ∈ Mp,q

t,x(R × R3)

then for λ = 1− aq
5 , we have the inequality

‖Ia(~f)‖
M

p
λ
,
q
λ

t,x

≤ C‖~f‖Mp,q
t,x
.

See [1] for a proof of this fact.

We can state now the main proposition of this section which will focus on the information (6.2):

Proposition 6.1 Let (~u, p,~b) be a suitable solution of MHD equations (2.1) over Ω in the sense of Definition
2.1. Assume the general hypotheses (2.3) and assume moreover the local informations (6.1) for a parabolic
ball QR3. Then for some R2 such that R0 < R2 < R3 we have

1QR2
~u ∈M3,δ

t,x and 1QR2

~b ∈M3,δ
t,x ,

with 1
δ + 1

τ0
< 1−α

5 .

Proof. For a point (t0, x0) that satisfies the hypothesis (2.7), consider the following radii

0 < R0 < R2 < R̄ < R̃ < R3 < 2R0 < t0,

22



and the corresponding parabolic balls (recall formula (3.4))

QR2(t0, x0) ⊂ QR̄(t0, x0) ⊂ Q
R̃

(t0, x0) ⊂ QR3(t0, x0) ⊂ Q2R0(t0, x0).

We introduce now two test functions φ̄, ϕ̄ : R × R3 −→ R that belong to the space C∞0 (R × R3) and such
that

φ̄ ≡ 1 on QR2 and supp(φ̄) ⊂ QR̄, (6.5)

ϕ̄ ≡ 1 on Q
R̃

and supp(ϕ̄) ⊂ QR3 . (6.6)

Note that since R3 < 2R0 < t0 we have φ̄(0, ·) = ϕ̄(0, ·) = 0 and remark that we have by construction the
identity φ̄ϕ̄ ≡ φ̄. We define the variable ~V by the expression

~V = φ̄(~u+~b),

and if we study the equation satisfied by ~V we obtain∂t
~V(t, x) = ∆~V(t, x) + ~N (t, x),

~V(0, x) = 0,
(6.7)

where

~N = (∂tφ̄−∆φ̄)(~u+~b)− 2
3∑
i=1

(∂iφ̄)(∂i(~u+~b))− φ̄
(

(~b · ~∇)~u+ (~u · ~∇)~b
)
− 2φ̄(~∇P ) + φ̄(~f + ~g). (6.8)

Although this problem is very similar to the one studied with the variable ~U defined in (3.3) which satisfies
equation (3.6), we will perform different computations in order to obtain the conclusion of Proposition 6.1.
The main point is to express the pressure P in a very specific manner, indeed, since P = ϕ̄P on the cylinder
Q
R̃

(see (6.6)), then over the parabolic ball QR2 we have the identity

−∆(ϕ̄P ) = −ϕ̄∆P + (∆ϕ̄)P − 2
3∑
i=1

∂i((∂iϕ̄)P ),

from which we deduce the formula

φ̄(~∇P ) = φ̄
~∇
(
− ϕ̄∆P

)
(−∆)

+ φ̄
~∇
(
(∆ϕ̄)P

)
(−∆)

− 2

3∑
i=1

φ̄
~∇
(
∂i((∂iϕ̄)P )

)
(−∆)

. (6.9)

Recalling that we have the identity ∆P = −
3∑

i,j=1

∂i∂j(uibj), then the first term of (6.9) can be rewritten in

the following manner:

φ̄
~∇
(
− ϕ̄∆P

)
(−∆)

= φ̄
~∇

(−∆)

(
ϕ̄

3∑
i,j=1

∂i∂j(uibj)
)

=
3∑

i,j=1

φ̄
~∇

(−∆)

(
∂i∂j(ϕ̄uibj)− ∂i

(
(∂jϕ̄)uibj

)
− ∂j

(
(∂iϕ̄)uibj

)
+ (∂i∂jϕ̄)(uibj)

)
, (6.10)

note that the first term of the right-hand side above satisfies the identity

φ̄
~∇

(−∆)
∂i∂j(ϕ̄uibj) =

[
φ̄,

~∇∂i∂j
(−∆)

]
(ϕ̄uibj) +

~∇∂i∂j
(−∆)

(φ̄uibj), (6.11)
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where in the last term above we used the identity φ̄ = φ̄ϕ̄. Now, plugging the identity (6.11) in (6.10) and
modifying accordingly expression (6.9), we obtain the following formula for the term ~N defined in (6.8):

~N =

11∑
k=1

~Nk = (∂tφ̄−∆φ̄)(~u+~b)− 2

3∑
i=1

(∂iφ̄)(∂i(~u+~b))− φ̄
(

(~b · ~∇)~u+ (~u · ~∇)~b
)

− 2
3∑

i,j=1

[
φ̄,

~∇∂j∂k
(−∆)

]
(ϕ̄uibj)− 2

3∑
i,j=1

~∇∂i∂j
(−∆)

(φ̄uibj) + 2
3∑

i,j=1

φ̄~∇∂i
(−∆)

(∂jϕ̄)uibj

+ 2
3∑

i,j=1

φ̄~∇∂j
(−∆)

(∂iϕ̄)uibj − 2
3∑

i,j=1

φ̄
~∇

(−∆)
(∂i∂jϕ̄)(uibj)

− 2φ̄
~∇
(
(∆ϕ̄)P

)
(−∆)

+ 4
3∑
i=1

φ̄
~∇
(
∂i((∂iϕ̄)P )

)
(−∆)

+ φ̄(~f + ~g).

Once we have obtained this expression for the term ~N , we study the solutions of the equation (6.7) and we
obtain

~V =

∫ t

0
e(t−s)∆ ~N (s, ·) ds =

11∑
k=1

∫ t

0
e(t−s)∆ ~Nk(s, ·) ds :=

11∑
k=1

~Vk,

where we have

11∑
k=1

~Vk =

∫ t

0
e(t−s)∆(∂tφ̄−∆φ̄)(~u+~b)ds︸ ︷︷ ︸

~V1

−2
3∑
i=1

∫ t

0
e(t−s)∆(∂iφ̄)(∂i(~u+~b))ds︸ ︷︷ ︸

~V2

−
∫ t

0
e(t−s)∆φ̄

(
(~b · ~∇)~u+ (~u · ~∇)~b

)
ds︸ ︷︷ ︸

~V3

−2
3∑

i,j=1

∫ t

0
e(t−s)∆

[
φ̄,

~∇∂i∂j
(−∆)

]
(ϕ̄uibj)ds︸ ︷︷ ︸

~V4

− 2
3∑

i,j=1

∫ t

0
e(t−s)∆

~∇∂i∂j
(−∆)

(φ̄uibj)ds︸ ︷︷ ︸
~V5

+2

3∑
i,j=1

∫ t

0
e(t−s)∆ φ̄

~∇∂i
(−∆)

(∂jϕ̄)uibjds︸ ︷︷ ︸
~V6

+ 2
3∑

i,j=1

∫ t

0
e(t−s)∆ φ̄

~∇∂j
(−∆)

(∂iϕ̄)uibjds︸ ︷︷ ︸
~V7

−2
3∑

i,j=1

∫ t

0
e(t−s)∆φ̄

~∇
(−∆)

(∂i∂jϕ̄)(uibj)ds︸ ︷︷ ︸
~V8

− 2

∫ t

0
e(t−s)∆φ̄

~∇
(−∆)

(
(∆ϕ)P

)
ds︸ ︷︷ ︸

~V9

+4
3∑
i=1

∫ t

0
e(t−s)∆φ̄

~∇∂i
(−∆)

((∂iϕ̄)P )ds︸ ︷︷ ︸
~V10

+

∫ t

0
e(t−s)∆φ̄(~f + ~g)ds︸ ︷︷ ︸

~V11

.

(6.12)

We will study each one of these terms with the following lemma.

Lemma 6.2 In addition to the general hypotheses of Theorem 1 let us further assume that we have all the
informations stated in (6.1). Then for all k = 1, . . . , 11 we have

1QR2

~Vk ∈M3,σ
t,x ,
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where τ0 < σ < 10.

Remark 6.1 The upper bound σ < 10 is given here to fix the possible values for this parameter. However
we will see later on that in fact σ must be quite close to τ0. See Remark 6.2 below for more details.

Proof.

• For the term ~V1, recalling that e(t−s)∆f = gt−s ∗ f where gt is the usual 3D-heat kernel, we can write

|1QR2

~V1(t, x)| =
∣∣∣∣1QR2

∫ t

0

∫
R3

gt−s(x− y)[(∂tφ̄−∆φ̄)(~u+~b)](s, y)dyds

∣∣∣∣ ,
and using the decay properties of the heat kernel as well as the properties of the test function φ̄ (see
(6.5)), we have

|1QR2

~V1(t, x)| ≤ C1QR2

∫
R

∫
R3

1

(|t− s|
1
2 + |x− y|)3

∣∣∣1QR̄(~u+~b)(s, y)
∣∣∣ dy ds.

Now, recalling the definition of the Riesz potential given in (6.4) and since QR2 ⊂ QR̄ we obtain the
pointwise estimate

|1QR2

~V1(t, x)| ≤ C1QR̄I2(|1QR̄(~u+~b)|)(t, x),

thus, taking Morrey M3,σ
t,x norm in this inequality, we have

‖1QR2

~V1(t, x)‖M3,σ
t,x
≤ C‖1QR̄I2(|1QR̄(~u+~b)|)‖M3,σ

t,x
.

Now, for some 2 < q < 5
2 we set λ = 1− 2q

5 and we define 3 = a
λ and σ < 10 < q

λ (remark that a ≤ q).
Thus, by Lemma A.2 and by Lemma 6.1 we can write:

‖1QR̄I2(|1QR̄(~u+~b)|)‖M3,σ
t,x
≤ C‖I2(|1QR̄(~u+~b)|)‖

M
a
λ
,
q
λ

t,x

,

≤ C‖1QR̄(~u+~b)‖Ma,q
t,x
≤ C‖1QR3

(~u+~b)‖M3,τ0
t,x

< +∞, (6.13)

where in the last estimate we applied Lemma A.2 again noting that a ≤ 3 and q < τ0.

• For the second term of (6.12) we start writing (∂iφ̄)(∂i(~u+~b)) = ∂i((∂iφ̄)(~u+~b))− (∂2
i φ̄)(~u+~b), and

we have

|1QR2

~V2(t, x)| ≤
3∑
i=1

∣∣∣∣1QR2

∫ t

0
e(t−s)∆∂i

(
(∂iφ̄)(~u+~b)

)
ds

∣∣∣∣+

∣∣∣∣1QR2

∫ t

0
e(t−s)∆(∂2

i φ̄)(~u+~b)ds

∣∣∣∣ . (6.14)

For the first term above, by the properties of the heat kernel and by the definition of the Riesz potential
I1 (see (6.4)), we obtain∣∣∣∣1QR2

∫ t

0
e(t−s)∆∂i

(
(∂iφ̄)(~u+~b)

)
ds

∣∣∣∣ =

∣∣∣∣1QR2

∫ t

0

∫
R3

∂igt−s(x− y)(∂iφ̄)(~u+~b)(s, y)dyds

∣∣∣∣
≤ C1QR2

∫
R

∫
R3

|1QR̄(~u+~b)(s, y)|
(|t− s|

1
2 + |x− y|)4

dyds

≤ C1QR2
(I1(|1QR̄(~u+~b)|))(t, x).

The second term of (6.14) can be treated as the term ~V1 and we have the pointwise estimate∣∣∣∣1QR2

∫ t

0
e(t−s)∆(∂2

i φ̄)(~u+~b)ds

∣∣∣∣ ≤ C1QR̄I2(|1QR̄(~u+~b)|)(t, x),
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and gathering these two estimates we have

|1QR2

~V2(t, x)| ≤ C1QR2
(I1(|1QR̄(~u+~b)|))(t, x) + C1QR̄I2(|1QR̄(~u+~b)|)(t, x),

and taking the Morrey M3,σ
t,x we obtain

‖1QR2

~V2‖M3,σ
t,x
≤ C‖1QR2

(I1(|1QR̄(~u+~b)|))‖M3,σ
t,x

+ C‖1QR̄I2(|1QR̄(~u+~b)|)‖M3,σ
t,x
.

The second term of the right-hand above can be treated in the same manner as (6.13), thus we only
study now the quantity ‖1QR2

(I1(|1QR̄(~u+~b)|))‖M3,σ
t,x

. For some 4 ≤ q < 5 we define λ = 1− q
5 , noting

that 3 ≤ 3
λ and σ < 10 < q

λ , by Lemma 6.1, we can write

‖1QR2
(I1(|1QR̄(~u+~b)|))‖M3,σ

t,x
≤ C‖I1(|1QR̄(~u+~b)|)‖

M
3
λ
,
q
λ

t,x

≤ C‖1QR̄(~u+~b)‖M3,q
t,x

≤ C‖1QR3
(~u+~b)‖M3,τ0

t,x
< +∞,

from which we deduce that ‖1QR2

~V2‖M3,σ
t,x

< +∞.

• For the term ~V3 in (6.12), in a similar manner we obtain the inequality

|1QR2

~V3(t, x)| =

∣∣∣∣1QR2

∫ t

0

∫
R3

gt−s(x− y)
[
φ̄
(

(~b · ~∇)~u+ (~u · ~∇)~b
)]

(s, y)dyds

∣∣∣∣
≤ C1QR2

∫
R

∫
R3

∣∣∣φ̄((~b · ~∇)~u+ (~u · ~∇)~b
)∣∣∣ (s, y)

(|t− s|
1
2 + |x− y|)3

dy ds

≤ C1QR2
I2

(∣∣∣1QR̄ ((~b · ~∇)~u+ (~u · ~∇)~b
)∣∣∣) (t, x),

from which we deduce

‖1QR2

~V3‖M3,σ
t,x
≤ C

∥∥∥1QR2
I2

(
|1QR̄(~b · ~∇)~u|

)∥∥∥
M3,σ

t,x

+ C
∥∥∥1QR2

I2

(
|1QR̄(~u · ~∇)~b|

)∥∥∥
M3,σ

t,x

. (6.15)

As we have completely symmetric information on ~u and ~b it is enough the study one of these terms
and we will treat the first one. We set now 5

3−α < q < 5
2 and λ = 1− 2q

5 . Since 3 ≤ 6
5λ and τ0 < σ < q

λ ,
applying Lemma A.2 and Lemma 6.1 we have∥∥∥1QR2

I2

(
|1QR̄(~b · ~∇)~u|

)∥∥∥
M3,σ

t,x

≤ C
∥∥∥1QR2

I2

(
|1QR̄(~b · ~∇)~u|

)∥∥∥
M

6
5λ
,
q
λ

t,x

≤ C
∥∥∥1QR̄(~b · ~∇)~u

∥∥∥
M

6
5 ,q

t,x

.

Recall that we have 5
1−α < τ0 < σ < 10 and by the Hölder inequality in Morrey spaces (see Lemma

A.1) we obtain ∥∥∥1QR̄(~b · ~∇)~u
∥∥∥
M

6
5 ,q

t,x

≤
∥∥∥1QR3

~b
∥∥∥
M3,τ0

t,x

∥∥∥1QR3

~∇⊗ ~u
∥∥∥
M2,τ1

t,x

< +∞,

where 1
q = 1

τ0
+ 1
τ1

= 2
τ0

+ 1
5 . Note that the condition 5

1−α < τ0 < σ < 10 and the relationship 1
q = 2

τ0
+ 1

5

are compatible with the fact that 5
3−α < q < 5

2 . Applying exactly the same ideas in the second term of
(6.15) we finally obtain

‖1QR2

~V3‖M3,σ
t,x

< +∞.

Remark 6.2 The condition 5
3−α < q < 5

2 required to apply the Hölder inequality jointly with the
constraint τ0 < σ < q

λ implies that σ must be very close from τ0.
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• The quantity ~V4 in (6.12) is the most technical one and it will be treated as follows

|1QR2

~V4(t, x)| ≤
3∑

i,j=1

1QR2

∫
R

∫
R3

∣∣∣[φ̄, ~∇∂i∂j(−∆)

]
(ϕ̄uibj)(s, y)

∣∣∣
(|t− s|

1
2 + |x− y|)3

dyds

≤
3∑

i,j=1

1QR2
I2

(∣∣∣∣∣
[
φ̄,

~∇∂i∂j
(−∆)

]
(ϕ̄uibj)

∣∣∣∣∣
)

(t, x),

and taking the Morrey M3,σ
t,x norm we have

‖1QR2

~V4‖M3,σ
t,x
≤

3∑
i,j=1

∥∥∥∥∥1QR2
I2

(∣∣∣∣∣
[
φ̄,

~∇∂i∂j
(−∆)

]
(ϕ̄uibj)

∣∣∣∣∣
)∥∥∥∥∥
M3,σ

t,x

.

If we set 1
q = 2

τ0
+ 1

5 and λ = 1− 2q
5 then we have 3 ≤ 3

2λ and σ ≤ q
λ = 5τ0

10−τ0 and by Lemma A.2 and
Lemma 6.1 we obtain:∥∥∥∥∥1QR2

I2

(∣∣∣∣∣
[
φ̄,

~∇∂i∂j
(−∆)

]
(ϕ̄uibj)

∣∣∣∣∣
)∥∥∥∥∥
M3,σ

t,x

≤ C

∥∥∥∥∥1QR2
I2

(∣∣∣∣∣
[
φ̄,

~∇∂i∂j
(−∆)

]
(ϕ̄uibj)

∣∣∣∣∣
)∥∥∥∥∥
M

3
2λ
,
q
λ

t,x

≤ C

∥∥∥∥∥
[
φ̄,

~∇∂i∂j
(−∆)

]
(ϕ̄uibj)

∥∥∥∥∥
M

3
2 ,q

t,x

,

We will study this norm and by the definition of Morrey spaces (2.6), if we introduce a threshold

r = R̄−R2
2 , we have∥∥∥∥∥
[
φ̄,

~∇∂i∂j
(−∆)

]
(ϕ̄uibj)

∥∥∥∥∥
3
2

M
3
2 ,q

t,x

≤ sup
(t,x̄)

0<r<r

1

r
5(1− 3

2q
)

∫
Qr(t,x̄)

∣∣∣∣∣
[
φ̄,

~∇∂i∂j
(−∆)

]
(ϕ̄uibj)

∣∣∣∣∣
3
2

dxdt

+ sup
(t,x̄)
r<r

1

r
5(1− 3

2q
)

∫
Qr(t,x̄)

∣∣∣∣∣
[
φ̄,

~∇∂i∂j
(−∆)

]
(ϕ̄uibj)

∣∣∣∣∣
3
2

dxdt.

(6.16)

Now, we study the second term of the right-hand side above, which is easy to handle as we have r < r
and we can write

sup
(t,x̄)∈R×R3

r<r

1

r
5(1− 3

2q
)

∫
Qr(t,x̄)

∣∣∣∣∣
[
φ̄,

~∇∂i∂j
(−∆)

]
(ϕ̄uibj)

∣∣∣∣∣
3
2

dxdt ≤ Cr

∥∥∥∥∥
[
φ̄,

~∇∂i∂j
(−∆)

]
(ϕ̄uibj)

∥∥∥∥∥
3
2

L
3
2
t,x

,

and since φ̄ is a regular function and
~∇∂i∂j
(−∆) is a Calderón-Zydmund operator, by the Calderón commu-

tator theorem (see [14]), we have that the operator
[
φ̄,

~∇∂i∂j
(−∆)

]
is bounded in the space L

3
2
t,x and we can

write∥∥∥∥∥
[
φ̄,

~∇∂i∂j
(−∆)

]
(ϕ̄uibj)

∥∥∥∥∥
L

3
2
t,x

≤ C ‖ϕ̄uibj‖
L

3
2
t,x

≤ C‖1QR3
uibj‖

M
3
2 ,

3
2

t,x

≤ C‖1QR3
~u‖M3,3

t,x
‖1QR3

~b‖M3,3
t,x
≤ C‖1QR3

~u‖M3,τ0
t,x
‖1QR3

~b‖M3,τ0
t,x

< +∞,

where in the last line we used Hölder inequalities in Morrey spaces and we applied Lemma A.2.
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The first term of the right-hand side of (6.16) requires some extra computations: indeed, as we are
interested to obtain information over the parabolic ball Qr(t, x̄) we can write for some 0 < r < r:

1Qr

[
φ̄,

~∇∂i∂j
(−∆)

]
(ϕ̄uibj)) = 1Qr

[
φ̄,

~∇∂i∂j
(−∆)

]
(1Q2r ϕ̄uibj) + 1Qr

[
φ̄,

~∇∂i∂j
(−∆)

]
((I− 1Q2r)ϕ̄uibj), (6.17)

and as before we will study the L
3
2
t,x norm of these two terms. For the first quantity in the right-hand

side of (6.17), by the Calderón commutator theorem, by the definition of Morrey spaces and by the
Hölder inequalities we have∥∥∥∥∥1Qr

[
φ̄,

~∇∂i∂j
(−∆)

]
(1Q2r ϕ̄uibj)

∥∥∥∥∥
3
2

L
3
2
t,x

≤ C‖1Q2r ϕ̄uibj‖
3
2

L
3
2
t,x

≤ Cr5(1− 3
τ0

)‖1QR3
uibj‖

3
2

M
3
2 ,
τ0
2

t,x

≤ Cr
5(1− 3

τ0
)‖1QR3

~u‖
3
2

M3,τ0
t,x

‖1QR3

~b‖
3
2

M3,τ0
t,x

,

for all 0 < r < r, from which we deduce that

sup
(t,x̄)

0<r<r

1

r
5(1− 3

2q
)

∫
Qr(t,x̄)

∣∣∣∣∣1Qr
[
φ̄,

~∇∂i∂j
(−∆)

]
(1Q2r ϕ̄uibj)

∣∣∣∣∣
3
2

dxdt ≤ C‖1QR3
~u‖

3
2

M3,τ0
t,x

‖1QR3

~b‖
3
2

M3,τ0
t,x

< +∞.

We study now the second term of the right-hand side of (6.17) and for this we consider the following
operator:

T : f 7→

(
1Qr

[
φ̄,

~∇∂i∂j
−∆

]
(I− 1Q2r)ϕ̄

)
f,

and by the properties of the convolution kernel of the operator 1
(−∆) we obtain

|T (f)(x)| ≤ C1Qr(x)

∫
R3

(I− 1Q2r)(y)1QR3
(y)|f(y)||φ̄(x)− φ̄(y)|
|x− y|4

dy.

Recalling that 0 < r < r = R̄−R2
2 , by the support properties of the test function φ̄ (see (6.5)), the

integral above is meaningful if |x− y| > r and thus we can write∥∥∥∥∥1Qr
[
φ̄,

~∇∂i∂j
(−∆)

]
((I− 1Q2r)ϕ̄uibj)

∥∥∥∥∥
3
2

L
3
2
t,x

≤ C

∥∥∥∥1Qr ∫
R3

1|x−y|>r

|x− y|4
(I− 1Q2r)(y)1QR3

(y)|uibj |dy
∥∥∥∥ 3

2

L
3
2
t,x

≤ C

(∫
|y|>r

1

|y|4
‖1QR3

|uibj |(· − y)‖
L

3
2
t,x(Qr)

dy

) 3
2

≤ Cr−
3
2 ‖1QR3

uibj‖
3
2

L
3
2
t,x(Qr)

,

with this estimate at hand and using the definition of Morrey spaces, we can write

∫
Qr(t,x̄)

∣∣∣∣∣1Qr
[
φ̄,

~∇∂i∂j
(−∆)

]
((I− 1Q2r)ϕ̄uibj)

∣∣∣∣∣
3
2

dxdt ≤ Cr−
3
2 r

5(1− 3
τ0

)‖1QR3
uibj‖

3
2

M
3
2 ,
τ0
2

t,x

≤ Cr
5(1− 3

2q
)‖1QR3

uibj‖
3
2

M
3
2 ,
τ0
2

t,x

,
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where in the last inequality we used the fact that 1
q = 2

τ0
+ 1

5 , which implies r−
3
2 r

5(1− 3
τ0

)
= r

5(1− 3
2q

)
.

Thus we finally obtain

sup
(t,x̄)

0<r<r

1

r
5(1− 3

2q
)

∫
Qr(t,x̄)

∣∣∣∣∣1Qr
[
φ̄,

~∇∂i∂j
(−∆)

]
((I− 1Q2r)ϕ̄uibj)

∣∣∣∣∣
3
2

dxdt ≤ C‖1QR3
~u‖

3
2

M3,τ0
t,x

‖1QR3

~b‖
3
2

M3,τ0
t,x

< +∞.

We have proven so far that all the term in (6.16) are bounded and we can conclude that

‖1QR2

~V4‖M3,σ
t,x

< +∞.

• For the quantity ~V5 in (6.12) we write

|1QR2

~V5(t, x)| ≤
3∑

i,j=1

1QR2

∣∣∣∣∫ t

0

∫
R3

~∇gt−s(x− y)
∂i√
−∆

∂j√
−∆

(φ̄uibj)(s, y)dyds

∣∣∣∣
≤ C

3∑
i,j=1

1QR2

∫
R

∫
R3

|RiRj(φ̄uibj)(s, y)|
(|t− s|

1
2 + |x− y|)4

dyds

≤ C

3∑
i,j=1

1QR2
I1

(
|RiRj(φ̄uibj)|

)
(t, x),

where we used the decaying properties of the heat kernel (recall that Ri = ∂i√
−∆

are the Riesz trans-

forms). Now taking the Morrey M3,σ
t,x norm and by Lemma A.2 (with ν = 4τ0+5

5τ0
, p = 3, q = τ0 such

that p
ν > 3 and q

ν > σ which is compatible with the condition τ0 < σ) we have

‖1QR2

~V5‖M3,σ
t,x
≤ C

3∑
i,j=1

‖1QR2
I1

(
|RiRj(φ̄uibj)|

)
‖
M

p
ν ,
q
ν

t,x

Then by Lemma 6.1 with λ = 1− τ0/2
5 (recall 5

1−α < τ0 < 10 so that ν > 2λ) and by the boundedness
of Riesz transforms in Morrey spaces we obtain:

‖1QR2
I1

(
|RiRj(φ̄uibj)|

)
‖
M

p
ν ,
q
ν

t,x

≤ C‖I1

(
|RiRj(φ̄uibj)|

)
‖
M

p
2λ
,
q

2λ
t,x

≤ C‖RiRj(φ̄uibj)‖
M

3
2 ,
τ0
2

t,x

≤ ‖1QR3
uibj‖

M
3
2 ,
τ0
2

t,x

≤ C‖1QR3
~u‖M3,τ0

t,x
‖1QR3

~b‖M3,τ0
t,x

< +∞.

• The quantities ~V6 and ~V7 in (6.12) can be treated in a very similar fashion since their inner structure
is essentially the same. We thus only treat here the term ~V6 and following the same ideas we have

|1QR2

~V6| ≤ C
3∑

i,j=1

1QR2

∫
R

∫
R3

∣∣∣ φ̄~∇∂i(−∆)(∂jϕ̄)uibj(s, y)
∣∣∣

(|t− s|
1
2 + |x− y|)3

dyds = C
3∑

i,j=1

1QR2
I2

(∣∣∣∣∣ φ̄~∇∂i(−∆)
(∂jϕ̄)uibj

∣∣∣∣∣
)
.

For 2 < q < 5
2 , define λ = 1 − 2q

5 , we thus have 3 ≤ 3
2λ and σ < 10 ≤ q

λ . Then, by Lemma A.2 and
Lemma 6.1 we can write∥∥∥∥∥1QR2

I2

(∣∣∣∣∣ φ̄~∇∂i(−∆)
(∂jϕ̄)uibj

∣∣∣∣∣
)∥∥∥∥∥
M3,σ

t,x

≤ C

∥∥∥∥∥1QR2
I2

(∣∣∣∣∣ φ̄~∇∂i(−∆)
(∂jϕ̄)uibj

∣∣∣∣∣
)∥∥∥∥∥
M

3
2λ
,
q
λ

t,x

≤ C

∥∥∥∥∥ φ̄~∇∂i(−∆)
(∂jϕ̄)uibj

∥∥∥∥∥
M

3
2 ,q

t,x

,
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but since the operator φ̄~∇∂i
(−∆) is bounded in Morrey spaces and since 2 < q < 5

2 <
τ0
2 , one has by Lemma

A.2 and by the Hölder inequalities∥∥∥∥∥ φ̄~∇∂i(−∆)
(∂jϕ̄)uibj

∥∥∥∥∥
M

3
2 ,q

t,x

≤ C
∥∥∥1QR3

uibj

∥∥∥
M

3
2 ,q

t,x

≤
∥∥∥1QR3

uibj

∥∥∥
M

3
2 ,
τ0
2

t,x

≤ C‖1QR3
~u‖M3,τ0

t,x
‖1QR3

~b‖M3,τ0
t,x

< +∞,

from which we deduce ‖1QR2

~V6‖M3,σ
t,x

< +∞. The same computations can be performed to obtain that

‖1QR2

~V7‖M3,σ
t,x

< +∞.

• The quantity ~V8 in (6.12) is treated in the following manner: we first write

|1QR2

~V8(t, x)| ≤
3∑

i,j=1

∣∣∣∣∣1QR2

∫ t

0
e(t−s)∆φ̄

~∇
(−∆)

(∂i∂jϕ̄)(uibj)ds

∣∣∣∣∣
≤ C

3∑
i,j=1

1QR2

(
I2

∣∣∣∣∣φ̄ ~∇
(−∆)

(∂i∂jϕ̄)(uibj)

∣∣∣∣∣
)

(t, x),

from which we deduce the estimate

‖1QR2

~V8‖M3,σ
t,x
≤ C

3∑
i,j=1

∥∥∥∥∥1QR2

(
I2

∣∣∣∣∣φ̄ ~∇
(−∆)

(∂i∂jϕ̄)(uibj)

∣∣∣∣∣
)∥∥∥∥∥
M3,σ

t,x

.

We set 1 < ν < 3
2 , 2ν < q < 5ν

2 and λ = 1− 2q
5ν , thus we have 3 ≤ ν

λ and σ < 10 < q
λ , then, by Lemma

A.2 and by Lemma 6.1 we can write∥∥∥∥∥1QR2

(
I2

∣∣∣∣∣φ̄ ~∇
(−∆)

(∂i∂jϕ̄)(uibj)

∣∣∣∣∣
)∥∥∥∥∥
M3,σ

t,x

≤ C

∥∥∥∥∥1QR2

(
I2

∣∣∣∣∣φ̄ ~∇
(−∆)

(∂i∂jϕ̄)(uibj)

∣∣∣∣∣
)∥∥∥∥∥
M

ν
λ
,
q
λ

t,x

≤ C

∥∥∥∥∥φ̄ ~∇
(−∆)

(∂i∂jϕ̄)(uibj)

∥∥∥∥∥
Mν,q

t,x

≤ C

∥∥∥∥∥φ̄ ~∇
(−∆)

(∂i∂jϕ̄)(uibj)

∥∥∥∥∥
M

ν, 5ν2
t,x

≤ C

∥∥∥∥∥φ̄ ~∇
(−∆)

(∂i∂jϕ̄)(uibj)

∥∥∥∥∥
Lνt L

∞
x

, (6.18)

where in the last estimate we used the space inclusion LνtL
∞
x ⊂ M

ν, 5ν
2

t,x . Let us focus now in the L∞

norm above (i.e. without considering the time variable). Remark that due to the support properties
of the auxiliary function ϕ̄ given in (6.6) we have supp(∂i∂jϕ̄) = QR3 \QR̃ and recall by (6.5) we have

supp φ̄ = QR̄ where R̄ < R̃ < R3, thus by the properties of the kernel of the operator
~∇

(−∆) we can
write ∣∣∣∣∣φ̄ ~∇

(−∆)
(∂i∂jϕ̄)(uibj)

∣∣∣∣∣ ≤ C

∣∣∣∣∫
R3

1

|x− y|2
1QR̄(x)1QR3

\Q
R̃

(y)(∂i∂jϕ̄)(uibj)(·, y)dy

∣∣∣∣
≤ C

∣∣∣∣∣
∫
R3

1|x−y|>(R̃−R̄)

|x− y|2
1QR̄(x)1QR3

\Q
R̃

(y)(∂i∂jϕ̄)(uibj)(·, y)dy

∣∣∣∣∣ , (6.19)

and the previous expression is nothing but the convolution between the function (∂i∂jϕ̄)(uibj) and a
L∞-function, thus we have∥∥∥∥∥φ̄ ~∇

(−∆)
(∂i∂jϕ̄)(uibj)(t, ·)

∥∥∥∥∥
L∞

≤ C‖(∂i∂jϕ̄)(uibj)(t, ·)‖L1 ≤ C‖1QR3
(uibj)(t, ·)‖Lν , (6.20)
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and taking the Lν-norm in the time variable we obtain∥∥∥∥∥φ̄ ~∇
(−∆)

(∂i∂jϕ̄)(uibj)

∥∥∥∥∥
Lνt L

∞
x

≤ C‖1QR3
uibj‖Lνt,x = C‖1QR3

uibj‖Mν,ν
t,x

≤ C‖1QR3
~u‖M3,τ0

t,x
‖1QR3

~b‖M3,τ0
t,x

< +∞,

where we used the fact that 1 < ν < 3
2 <

τ0
2 and we applied Hölder’s inequality. Gathering together

all these estimates we obtain ‖1QR2

~V8‖M3,σ
t,x

< +∞.

• The quantity ~V9 in (6.12) can be treated in the same way as the term ~V8. Indeed, by the same arguments
displayed to deduce (6.18), we can write (recall that 1 < ν < 3

2 and thus we can replace ν by q0 without

loss of generality, see (2.3)): ‖1QR2

~V9‖M3,σ
t,x
≤ C

∥∥∥∥∥φ̄ ~∇
(−∆)

((∆ϕ̄)P )

∥∥∥∥∥
L
q0
t L
∞
x

and if we study the L∞-norm

in the space variable of this term, by the same ideas used in (6.19)-(6.20) we obtain∥∥∥∥∥φ̄ ~∇
(−∆)

((∆ϕ̄)P )(t, ·)

∥∥∥∥∥
L∞

≤ C‖(∆ϕ̄)P (t, ·)‖L1 ≤ C‖1QR2
P (t, ·)‖Lq0 .

Thus, taking the Lq0-norm in the time variable we have

‖1QR2

~V9‖M3,σ
t,x
≤ C

∥∥∥∥∥φ̄ ~∇
(−∆)

((∆ϕ̄)P )

∥∥∥∥∥
L
q0
t L
∞
x

≤ C‖1QR3
P‖Lq0t,x < +∞.

• The study of the quantity ~V10 in (6.12) follows the same lines as the terms ~V8 and ~V9. However instead
of (6.19) we have∣∣∣∣∣φ̄ ~∇∂i

(−∆)
((∂iϕ̄)P )

∣∣∣∣∣ ≤ C
∣∣∣∣∣
∫
R3

1|x−y|>(R̃−R̄)

|x− y|3
1QR̄(x)1QR3

\Q
R̃

(y)(∂iϕ̄)P (y)dy

∣∣∣∣∣ , (6.21)

and thus we can write (again replacing ν by q0)

‖1QR2

~V10‖M3,σ
t,x
≤

∥∥∥∥∥φ̄ ~∇∂i
(−∆)

((∂iϕ̄)P )

∥∥∥∥∥
L
q0
t L
∞
x

≤ C‖1QR3
P‖Lq0t,x < +∞.

• The last term of (6.12) is easy to handle, indeed, we have

|1QR2

~V11(t, x)| ≤
∣∣∣∣1QR2

∫ t

0
e(t−s)∆φ̄(~f + ~g)ds

∣∣∣∣ ≤ C1QR2

∫
R

∫
R3

|φ̄(~f + ~g)(s, y)|
(|t− s|

1
2 + |x− y|)3

dyds

≤ C1QR2
I2(1QR3

|~f + ~g|)(t, x),

and taking the Morrey M3,σ
t,x norm we obtain ‖1QR2

~V11‖M3,σ
t,x
≤ C‖1QR2

I2(1QR3
|~f + ~g|)‖M3,σ

t,x
, then if

we set 11
5 < q < 5

2 and λ = 1 − 2q
5 we thus have 3 ≤ 10

7λ and σ < 10 < q
λ . Now by Lemma A.2 and

Lemma 6.1 we have

‖1QR2
I2(1QR3

|~f + ~g|)‖M3,σ
t,x
≤ C‖I2(1QR3

|~f + ~g|)‖
M

10
7λ
,
q
λ

t,x

≤ C‖1QR3
|~f + ~g|‖

M
10
7 ,q

t,x

,

but since q < 5
2 <

5
2−α < τa, τb, by Lemma A.2 we obtain

‖1QR3
|~f + ~g|‖

M
10
7 ,q

t,x

≤ C
(
‖1QR3

~f‖
M

10
7 ,τa
t,x

+ ‖1QR3
~g‖
M

10
7 ,τb
t,x

)
< +∞,

thus, gathering all the estimates above we have ‖1QR2

~V11‖M3,σ
t,x

< +∞.
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Lemma 6.2 is now completely proven. �

End of the proof of Proposition 6.1. With this Lemma 6.2 we have proven so far that 1QR2
~u ∈ M3,σ

t,x

and 1QR2

~b ∈ M3,σ
t,x for τ0 < σ with σ very close to τ0, say σ = τ0 + ε (see Remark 6.2)). But this is not

enough to ensure the hypothesis (6.2), i.e. the condition 1
δ + 1

τ0
< 1−α

5 stated in Proposition 6.1.

In order to obtain this relationship, we will iterate the arguments above. Indeed, plugging the information
1QR2

~u ∈ M3,τ0+ε
t,x and 1QR2

~b ∈ M3,τ0+ε
t,x in the set of hypotheses (6.1) and reapplying Lemma 6.2, we

will obtain 1QR̄2
~u ∈ M3,σ1

t,x and 1QR̄2

~b ∈ M3,σ1
t,x where R̄2 < R2 and σ1 = σ + ε = τ0 + 2ε. Repeating

these arguments until obtaining 1Q ¯̄R2
~u ∈ M3,σn

t,x and 1Q ¯̄R2

~b ∈ M3,σn
t,x where σn = τ0 + (n + 1)ε such that

1
σn

+ 1
τ0
< 1−α

5 with ¯̄R2 < R̄2. As we can see, at each iteration we have to consider smaller parabolic balls
and without fear of confusion we can set δ = σn with the corresponding radius to be R2. We thus have
1QR2

~u ∈M3,δ
t,x and 1QR2

~b ∈M3,δ
t,x with 1

δ + 1
τ0
< 1−α

5 and the proof of Proposition 6.1 is finished. �

Remark 6.3 Note that the parameter δ can be made big enough in order to satisfy δ ≥ 10.

We study now the information stated in (6.3) and we have the following corollary.

Corollary 6.1 Let (~u, p,~b) be a suitable solution of MHD equations (2.1) over Ω in the sense of Definition
2.1. Assume the general hypotheses (2.3) and assume moreover the local informations (6.1) for a parabolic
ball QR3 and (6.2) for a parabolic ball QR2. Then for some R1 such that R0 < R1 < R2 < R3 and for all
1 ≤ i, j ≤ 3 we have

1QR1

~∇∂i∂j
(−∆)

(uibj) ∈Mp,q
t,x,

with p0 ≤ p < +∞, q0 ≤ q < +∞ and where 1 ≤ p0 ≤ 6
5 and 5

2 < q0 < 3 where 1
q0

= 2−α
5 with 0 < α < 1

3 .

Proof. We consider here two auxiliary functions φ̃ and ϕ̃ satisfying the same properties stated in (6.5) and
(6.6) where we replace R3 by R2 and R2 by R1, respectively. Thus, by definition of the auxiliary function

φ̃ we have the identity 1QR1
= φ̃1QR1

and then we can study the term φ̃~∇P = φ̃

3∑
i,j=1

~∇
(−∆)

∂i∂j(uibj), but

due to the computations performed in (6.9)-(6.10) we have the identity

φ̃~∇P =
3∑

i,j=1

φ̃
~∇∂i∂j
(−∆)

(ϕ̃uibj)︸ ︷︷ ︸
(a)

−
3∑

i,j=1

φ̃~∇∂i
(−∆)

(∂jϕ̃)uibj︸ ︷︷ ︸
(b)

−
3∑

i,j=1

φ̃~∇∂j
(−∆)

(∂iϕ̃)uibj︸ ︷︷ ︸
(c)

+ 2
3∑

i,j=1

φ̃
~∇

(−∆)
(∂i∂jϕ̃)(uibj)︸ ︷︷ ︸

(d)

+ φ̃
~∇
(
(∆ϕ̃)P

)
(−∆)︸ ︷︷ ︸
(e)

−2
3∑
i=1

φ̃
~∇
(
∂i((∂iϕ̃)P )

)
(−∆)︸ ︷︷ ︸

(f)

(6.22)

and we only need to prove that each one of these terms belong to the Morrey space M
6
5
,3

t,x .

• The term (a) is treated as follows: since the Riesz transforms are bounded in Morrey spaces we obtain∥∥∥∥∥φ̃ ~∇∂i∂j(−∆)
(ϕ̃uibj)

∥∥∥∥∥
M

6
5 ,3

t,x

≤ C
∥∥∥~∇(ϕ̃uibj)

∥∥∥
M

6
5 ,3

t,x

,
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now, for 1 ≤ k ≤ 3, by Remark 6.3, using all the information available and by Hölder’s inequality in
Morrey spaces (recall that 0 < α < 1

3 and 1
δ + 1

τ0
< 1−α

5 ), we have

‖(∂kϕ̃)uibj‖
M

6
5 ,5

t,x

≤ C
∥∥∥1QR2

uibj

∥∥∥
M

3
2 ,5

t,x

≤ C‖1QR2
ui‖M3,δ

t,x
‖1QR2

bj‖M3,δ
t,x
< +∞

‖ϕ̃(∂kui)bj‖
M

6
5 ,3

t,x

≤ C‖1QR3

~∇⊗ ~u‖M2,τ1
t,x
‖1QR3

uj‖M3,δ
t,x
< +∞

‖ϕ̃ui(∂kbj)‖
M

6
5 ,3

t,x

≤ C‖1QR3
ui‖M3,δ

t,x
‖1QR3

~∇⊗~b‖M2,τ1
t,x

< +∞,

thus we can deduce that we have the estimate∥∥∥∥∥φ̃ ~∇∂i∂j(−∆)
(ϕ̃uibj)

∥∥∥∥∥
M

6
5 ,3

t,x

< +∞.

• The terms (b) and (c) of (6.22) can be treated in a similar fashion and we have:∥∥∥∥∥ φ̃~∇∂i(−∆)
(∂jϕ̄)uibj

∥∥∥∥∥
M

6
5 ,3

t,x

≤ C‖1QR2
uibj‖

M
6
5 ,5

t,x

≤ C‖1QR2
uibj‖

M
3
2 ,5

t,x

≤ C‖1QR2
ui‖M3,10

t,x
‖1QR2

bj‖M3,10
t,x
≤ C‖1QR2

ui‖M3,δ
t,x
‖1QR2

bj‖M3,δ
t,x
< +∞.

• The term (d) is treated as follows.∥∥∥∥∥φ̃ ~∇
(−∆)

(∂i∂jϕ̃)(uibj)

∥∥∥∥∥
M

6
5 ,3

t,x

≤ C

∥∥∥∥∥φ̃ ~∇
(−∆)

(∂i∂jϕ̃)(uibj)

∥∥∥∥∥
M

3
2 ,

15
4

t,x

≤ C

∥∥∥∥∥φ̃ ~∇
(−∆)

(∂i∂jϕ̃)(uibj)

∥∥∥∥∥
L

3
2
t L
∞
x

,

where we used the space inclusion L
3
2
t L
∞
x ⊂ M

3
2
, 15

4
t,x . Following the same ideas displayed in formulas

(6.18)-(6.20), due to the support properties of the auxiliary functions we obtain∥∥∥∥∥φ̃ ~∇
(−∆)

(∂i∂jϕ̃)(uibj)

∥∥∥∥∥
L

3
2
t L
∞
x

≤ ‖1QR3
uibj‖

L
3
2
t,x

≤ C‖1QR3
~u‖M3,τ0

t,x
‖1QR3

~b‖M3,τ0
t,x

< +∞.

• The term (e) of (6.22) follows the same ideas as previous one, and we have∥∥∥∥∥φ̃ ~∇
(
(∆ϕ̃)P

)
(−∆)

∥∥∥∥∥
M

6
5 ,3

t,x

≤ C

∥∥∥∥∥φ̃ ~∇
(
(∆ϕ̃)P

)
(−∆)

∥∥∥∥∥
L

3
2
t L
∞
x

≤ C‖1QR3
P‖

L
3
2
t,x

< +∞.

• The last term of (6.22) is estimated in a very similar manner (see also (6.21)):∥∥∥∥∥φ̃ ~∇
(
∂i((∂iϕ̃)P )

)
(−∆)

∥∥∥∥∥
M

6
5 ,3

t,x

≤ C

∥∥∥∥∥φ̃ ~∇
(
∂i((∂iϕ̃)P )

)
(−∆)

∥∥∥∥∥
L

3
2
t L
∞
x

≤ C‖1QR3
P‖

L
3
2
t,x

< +∞.

The proof of Corollary 6.1 is finished. �

From the set of hypotheses of Theorem 1 we have now deduced the framework used to prove Proposition
3.1 and thus the proof of Theorem 1 is finished.
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A Useful Properties of Morrey spaces

Lemma A.1

1) If ~f,~g : R × R3 −→ R3 are two functions such that ~f ∈ Mp,q
t,x(R × R3) and ~g ∈ L∞t,x(R × R3), then for

all 1 ≤ p ≤ q < +∞ we have
‖~f · ~g‖Mp,q

t,x
≤ C‖~f‖Mp,q

t,x
‖~g‖L∞t,x .

2) If ~f,~g : R × R3 −→ R3 are two functions that belong to the space Mp,q
t,x(R × R3) then we have the

inequality
‖~f · ~g‖

M
p
2 ,
q
2

t,x

≤ C‖~f‖Mp,q
t,x
‖~g‖Mp,q

t,x
.

3) More generally, let 1 ≤ p0 ≤ q0 < +∞, 1 ≤ p1 ≤ q1 < +∞ and 1 ≤ p2 ≤ q2 < +∞. If 1
p1

+ 1
p2
≤ 1

p0

and 1
q1

+ 1
q2

= 1
q0

, then for two measurable functions ~f,~g : R × R3 −→ R3 such that ~f ∈ Mp1,q1
t,x and

~g ∈Mp2,q2
t,x , we have the following version of the Hölder inequality in Morrey spaces:

‖~f · ~g‖Mp0,q0
t,x

≤ ‖~f‖Mp1,q1
t,x
‖~g‖Mp2,q2

t,x
.

Our next lemma (which is a particular case of the previous lemma) explains the behaviour of parabolic
Morrey spaces with respect to localization in time and space.

Lemma A.2 Let Ω be a bounded set of R × R3. If we have 1 ≤ p0 ≤ p1, 1 ≤ p0 ≤ q0 ≤ q1 < +∞ and if
the function ~f : R× R3 −→ R3 belongs to the space Mp1,q1

t,x (R× R3) then we have the following localization
property

‖1Ω
~f‖Mp0,q0

t,x
≤ C‖1Ω

~f‖Mp1,q1
t,x

≤ C‖~f‖Mp1,q1
t,x

.

B A technical Lemma

Proof of Lemma 4.2.

1) This point holds true thanks to the properties of the test function φ (see (4.3)) and the properties of
the heat kernel gt(x). Indeed, for all (s, y) ∈ Qr(t, x) we have 3r2 < 4r2 + t− s < 5r2 and |x− y| < r
and thus we obtain:

g(4r2+t−s)(x− y) =
1

(4π(4r2 + t− s))
3
2

e
− |x−y|2

4(4r2+t−s) ≥ C

r3
.

Thus, estimate the estimate ω(s, y) ≥ C
r holds due to the definition of the auxiliary functions φ and θ.

2) For the second point, for s < t+ r2, by the usual heat kernel estimates, we have

g(4r2+t−s)(x− y) ≤ C

(4r2 + t− s)
3
2 + |x− y|3

≤ C

r3
, (B.1)

hence, the estimate ω(s, y) ≤ C
r is valid for all (s, y) ∈ Qρ(t, x).

3) Note that we have

|~∇g(4r2+t−s)(x− y)| ≤ C

(4r2 + t− s)2 + |x− y|4
≤ C

r4
for s < t+ r2. (B.2)

Since∇φ is supported outside the cylinderQ 1
2
, we shall only consider the case (s, y) ∈ Qρ(t, x)\Q ρ

2
(t, x).

Using (B.1) again, we find the following estimate

g(4r2+t−s)(x− y) ≤ C

ρ3
≤ C

r3
for (s, y) ∈ Qρ(t, x) \Q ρ

2
(t, x). (B.3)

This estimate and (B.2) imply by contruction (recall (4.3)) that |~∇ω(s, y)| ≤ C
r2 .
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4) Regarding the last estimate, we first note that (∂s+∆y)g(4r2+t−s)(x−y) = 0, so it remains to treat the

term involving ~∇g and the case when time derivative and space derivative fall on the two test function
φ and θ. For the time derivative, we see that ∂s

(
θ
(
s−t
r2

))
is neglected for all s < t + r2. For space

derivative, we have

|~∇g(4r2+t−s)(x− y)| ≤ C

ρ4
, for (s, y) ∈ Qρ(t, x) \Q ρ

2
(t, x).

For the same reason as before, since ∇φ vanishes on Q 1
2
, the estimate |(∂s + ∆)ω(s, y)| ≤ C r2

ρ5 follows

from the estimate above and (B.3). �
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