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Multi-exponential Transverse Relaxation Times
Estimation from Magnetic Resonance Images under

Rician Noise and Spatial Regularization
Christian EL HAJJ, Saı̈d MOUSSAOUI, Guylaine COLLEWET and Maja MUSSE

Abstract—Relaxation signal inside each voxel of magnetic res-
onance images (MRI) is commonly fitted by a multi-exponential
decay curve. The estimation of a discrete multi-component
relaxation model parameters from magnitude MRI data is a
challenging nonlinear inverse problem since it should be con-
ducted on the entire image voxels under non-Gaussian noise
statistics. This paper proposes an efficient algorithm allowing the
joint estimation of relaxation time values and their amplitudes
using different criteria taking into account a Rician noise model,
combined with a spatial regularization accounting for low spatial
variability of relaxation time constants and amplitudes between
neighboring voxels. The Rician noise hypothesis is accounted for
either by an adapted nonlinear least squares algorithm applied
to a corrected least squares criterion or by a majorization-
minimization approach applied to the maximum likelihood crite-
rion. In order to solve the resulting large-scale non-negativity
constrained optimization problem with a reduced numerical
complexity and computing time, an optimization algorithm based
on a majorization approach ensuring separability of variables
between voxels is proposed. The minimization is carried out
iteratively using an adapted Levenberg-Marquardt algorithm
that ensures convergence by imposing a sufficient decrease of
the objective function and the non-negativity of the parameters.
The importance of the regularization alongside the Rician noise
incorporation is shown both visually and numerically on a
simulated phantom and on magnitude MRI images acquired on
fruit samples.

Index Terms—Multi-exponential decay, Rician noise,
Maximum Likelihood estimation, Majoration-Minimization,
Levenberg-Marquardt, T2 Relaxation times

I. INTRODUCTION

MAGNETIC Resonance Imaging (MRI) is frequently
used in several domains for sample structure and com-

position monitoring. MRI is a reference modality for medical
applications, however it is also used in non-medical contexts
such as food science [1] and civil engineering [2]. Multiple
Spin Echo (Multi-SE) is an acquisition technique used in
MRI in order to get accurate characterization of samples
by analyzing their transverse relaxation times (T2). Multiple
T2-weighted images, at a fixed sampling rate, are acquired
and an exponential decay curve is fitted to the measured
relaxation signal at each voxel (a 3D pixel where the third
dimension corresponds to the thickness of the MRI slice).
These data are used for the evaluation of the spatial distribution
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(maps) of the relaxation times T2 from the decay curves and
their corresponding amplitudes A0 [3]. Actually, the measured
relaxation signal in each voxel can be modeled, either by
a mono-exponential decay, or, in a more general case, by
a multi-exponential decay. In the latter case, extracting the
multi-exponential parameters at each voxel provides relevant
information on the micro-structure and the composition of the
tissue. Indeed, the voxel (usually of the order of 1 to few
mm3) generally contains different water pools with specific
properties and/or different tissues, water and fat for example.
In the case of plants, T2 decay components correspond to
water in the principal sub-cellular compartments (vacuole,
cytoplasm, cell wall) of the tissue inside each voxel [4]. MRI
can therefore be used to access information about water status
and distribution at the subcellular level. This is useful for
example for the assessment of fruit characteristics during the
monitoring of the postharvest ripening of tomato fruit [5]
or during apple storage [6]. Multi-exponential T2 maps are
also used for the quantification of myelin in the brain [7],
where three major components can be identified; water trapped
between the myelin, the intra/extracellular water and the
cerebro-spinal fluid.

The relaxation time values inside each voxel can be modeled
by a non-parametric T2 distribution model [8], [9] which is
sampled on a pre-defined grid of T2 values. This approach
has been used extensively for myelin quantification [10], [11].
Alternative models use parametric representation based on
a finite number of T2 components inside each voxel. Each
component in this parametric model is represented by either
a continuous distribution function (Gaussian [12] , inverse
Gaussian [13] or gamma shape [14]) described by few pa-
rameters (location, width and amplitude) or by a single T2
peak with unknown value and amplitude [15], [16]. We will
focus this study on the latter case, assuming that the number of
T2 components is known while their locations and amplitudes
are unknown. Indeed, it has been shown that the parametric
discrete-model gives more accurate description in applications
where the number of components within each voxel can be
considered as known and of low value (bi and tri-exponential
models are mostly used) [17]. However, such model requires
the solving of a nonlinear estimation problem [18].

The acquisition of MRI data is carried out in the complex
domain, where the real and the imaginary parts of the relax-
ation signal are corrupted by an independent and identically
distributed Gaussian noise. Due to various factors (magnetic
field inhomogeneity, thermal noise, eddy currents...), the phase
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of the complex data usually presents both time and space
variability. As a consequence, parameter estimation in the
complex domain is a challenging problem [19], and the general
approach used for estimating T2 and A0 parameters is to
exploit the magnitude of the complex data [20], [21]. This
nonlinear transformation of the data yields a modification of
the noise statistics. The noise in conventional magnitude MRI
data can be described by a Rician distribution [22], [23],
which, when not properly accounted for by the estimation
algorithm, introduces a bias on the estimated relaxation times
and signal component amplitudes [24]. For a high signal to
noise ratio (SNR) the Rician distribution approaches the Gaus-
sian one [25] and the maximum likelihood (ML) estimator can
be approached by minimizing a least squares (LS) criterion.
However, in T2 MRI relaxometry, signal samples at the end
of the decay curve inevitably have low SNR and therefore the
noise statistics deviate from the Gaussian distribution.

Several correction strategies have been originally suggested
on the LS criterion in order to deal with the Rician distribution
in the context of MRI signal denoising [26], [27], [21].

Their application for discrete multi-exponential model pa-
rameter estimation [28], [29] leads to what we call hereafter
Corrected Least Squares (CLS) criteria. Finally, a ML esti-
mator exploiting the Rician probability density function has
been exploited by several works for signal denoising [19],
[20], [30], T1 relaxation parameter estimation [21] and discrete
multi-exponential model parameters estimation [28], [29]. The
ordinary LS and the CLS criteria are usually minimized using
gradient-based descent methods or nonlinear least squares
algorithms in order to estimate the parameters in each voxel
separately [29] and their extension to the image level would
benefit from the adding of a spatial regularization. Indeed,
approaches based on processing each voxel separately do not
take advantage of the image structure and suffer from high
estimation variability [10], [31]. However, adding the spatial
regularization makes the solution for each voxel dependent on
the solution of the other voxels. Thus, solving the inversion
problem by direct implementation of spatial regularization
would be intractable due to heavy necessary amount of mem-
ory and computation time. In the case of non-parametric T2
distributions, spatial regularization has been proposed [10],
[9], [11], [32] as well as in combined diffusion and relaxation
estimation [33], with adapted optimization algorithms for non-
negative least squares estimation. It has also been proposed
for a parametric multi-Gaussian model [31]. To our knowledge
spatial regularization has not been proposed for the parametric
discrete model framework.

The main purpose of this paper is to propose an effi-
cient algorithm allowing the estimation of the discrete multi-
exponential relaxation model parameters at the entire image
level and to take into account the Rician noise statistics. In that
respect, a Majorization-Minimization (MM) approach based
on using a quadratic majorant of the ML criterion is used. This
majoration strategy has been initially proposed by [30] in the
context of MRI signal estimation under Rician and non-central
chi distribution noise. The proposed adaptation to handle the
case of a discrete multi-exponential model estimation is to
carry out an approximate minimization of the underlying non-

linear least squares criterion using an early stopped Levenberg-
Maquardt (LM) algorithm. We provide a comparison between
the ML approach and the minimization of CLS criteria using
this adapted variant of the LM algorithm. The second contri-
bution is to propose an efficient optimization algorithm which
deals with the minimization of the criterion resulting from the
inclusion of the spatial regularization. The MM approach is
also adopted according to the strategy proposed in [34] for the
majorization using separable functions and their early-stopped
minimization using the modified version of the LM algorithm.

The rest of this paper is organized as follows. Section
II introduces the estimation problem by presenting both the
signal decay model and the noise statistics. Different criteria
that can be minimized for the multi-exponential decay model
parameter estimation are presented in section III. These criteria
are discussed regarding the way how the non-Gaussian noise
is accounted for and the proposed approach for incorporat-
ing spatial information. The proposed estimation algorithm
is presented in section IV, and finally sections V and VI
provide, respectively, a description of the materials used for
the evaluation of the methods and a comparison of the different
estimation approaches. The data used here are related to fruits
which are the main target of our work and for which we
have expertise regarding the expected values of T2 and A0.
However, the proposed approach can be applied in medical
MRI imaging as well.

II. RELAXATION DECAY MODELING

MRI data, measured with a Multi-SE sequence, is composed
of Nτ images, each having a dimension of [Nx ×Ny] which
represent Nv = NxNy voxels. The minimum time ∆TE
between two successive echoes τt and τt+1 is limited by the
image acquisition sequence, and the duration τNτ is chosen in
order to measure the complete relaxation decay in all voxels.

A. Signal model

The measured signal yjt in each voxel j at time τt is
represented by a multi-exponential decay model sjt given by:

sjt (θj) =

Nc∑
c=1

A0(c,j)e
− τt
T2(c,j) , for t = 1, ..., Nτ (1)

where Nc represents the number of exponential de-
cay components, the parameters (relaxation time T2 and
amplitude A0) correspond to different components in-
side each voxel of the MRI image. The vector θj =
[A0(1,j) , T2(1,j) ... A0(Nc,j)

, T2(Nc,j) ] contains the unknown
parameters at voxel j and is of length Np = 2Nc. This model
is based on the hypothesis that indirect and stimulated echoes
do not interfere with the acquired signal [35].

For a given voxel j, the real and imaginary parts of the
complex MRI data at time τt can be modeled as follows:

yrejt = sjt cos (φjt) + nrejt (2)

yimjt = sjt sin (φjt) + nimjt (3)

here sjt is the relaxation signal amplitude and φjt the phase
of the complex signal at voxel j at time τt. nrejt and nimjt
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represent the additive Gaussian noise at voxel j on the real and
imaginary parts, respectively. In order to overturn the problem
of estimating the time dependent phase [36], parameters esti-
mation is carried out on the magnitude of the complex data:

yjt =
√

(yrejt )2 + (yimjt )2. (4)

B. Noise statistics

In conventional MRI, the noise in the magnitude data is
modeled using a non-central chi distribution which reduces
to a Rician distribution in certain cases. Conventional MRI
is considered here by assuming that the data are acquired
using a regular cartesian sampling, that the different sources of
noise are independent and that no post-processing schemes are
applied [37]. This excludes for example parallel MRI which
is used to reduce the acquisition time. The probability density
function of a Rician distribution is given by:

PR (yjt | sjt, σj) =
yjt
σ2
j

e
−
y2jt+s

2
jt

2σ2
j I0

(
yjtsjt
σ2
j

)
Iyjt>0, (5)

where I0 is the zeroth order modified Bessel function of the
first kind and Ix≥0 stands for the indicator function. σ2

j , the
noise variance, does not depend on τt. Figure 1 illustrates
the Rician distribution shape for σj = 7 and different SNR
levels, expressed by (sjt/σj). The dashed vertical lines rep-
resent the projection of the actual value of (sjt/σj) on its
corresponding distribution function showing its dependance
on the distribution mode. It can be clearly observed that as
the SNR becomes higher, the Rician distribution approaches
the Gaussian distribution. However, as mentioned in the in-
troduction, low SNR level always occurs in relaxometry for
high values of τt. In this case, the noisy data deviates from
the underlying relaxation signal as illustrated in Figure 2 and
the data distribution becomes asymmetric.

Fig. 1. Rician distribution shape for different values of sjt
σj

and σj = 7.

III. PARAMETER ESTIMATION CRITERIA

Different criteria can be used for the estimation of the
relaxation model parameters (relaxation times and amplitudes)
from the measured signals. Actually, these criteria differ in
the way how the noise statistics are accounted for in order
to overcome the limitation of the Gaussian noise hypothesis.

Fig. 2. Effect of the Rician distribution on the data. The underlying signal is
shown in blue and the noisy data is shown in red.

A detailed analysis of the bias and the variance of these
estimators for MRI signal estimation is given by [36]. In
the sequel, it will be assumed that the noise variance σ2

j , in
each voxel is known or has been previously estimated using a
dedicated algorithm (See for instance the survey of [38] and
the references therein).

A. Ordinary Least Squares

The classical hypothesis of Gaussian noise comes down to
minimizing the LS criterion which is the squared difference
between the fitted signal according to the multi-exponential
model and the measured data. For each voxel j the quadratic
criterion CLSj to be minimized is given by:

CLSj (yj ,θj) =
1

2σ2
j

Nτ∑
t=1

[yjt − sjt (θj)]
2
, (6)

where yj corresponds to a vector containing the Nτ samples
of the decay signal in voxel j.

B. Corrected Least Squares

Different modifications have been introduced to the LS
criterion in order to reduce the bias due to the Rician dis-
tribution of the noise [20]. One technique consists of adding
a constant offset to the imposed model in order to account for
the deviation from the underlying signal at low SNR [39].
However, this technique assumes a constant shift over the
scope of the decay curve which is not precisely the case for
high SNR. Another approach consists in weighting the LS
squares criterion [40] in order to assign smaller weights for
signal samples at low SNR. A special case of this approach
is to set weights to zero for signal samples below a given
SNR threshold. However, the difficulty lies in the choice of
an appropriate weighting strategy whatever the signal level.
Alternatively, there are some modifications of the LS criterion
that take explicitly the Rician statistics into account. We will
present the ones that have been used in the literature in the
context of T2 estimation.
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1) McGibney Corrected LS: In order to cope with the
Rician distribution, McGibney and Smith [26] and Miller and
Joseph [41] proposed independently to use the second order
moment of the decay signal which is given by (a detailed
formulation is provided in appendix B1):

ERice
[
y2jt
]

= s2jt + 2σ2
j . (7)

Based on this equation, the so-called McGibney corrected LS
(MGCLS) criterion is given by:

CMGCLSj (yj ,θj) =

Nτ∑
t=1

[
y2jt −

(
sjt (θj)

2 + 2σ2
j

)]2
. (8)

2) Rician Expectation Corrected LS: By considering the
first order moment of the noise distribution, the estimation bias
caused by the Rician distribution can be reduced by minimiz-
ing the squared difference between the measured signal and
the Rician expectation value of the multi-exponential decay
model [21], [24]. The Rician expectation value of the measured
signal yjt, knowing the noise standard deviation σj and the
signal amplitude sjt, is given by:

ERice[yjt]

= σj

√
π

2
e−αjt [(1 + 2αjt)I0(αjt) + 2αjtI1(αjt)],

(9)

with αjt =
s2jt
4σ2
j

and I1 the modified Bessel function of the
first order [21]. Therefore, the Rician expectation corrected LS
criterion, noted CRECLSj , is given by:

CRECLSj (yj ,θj) =
1

2σ2
j

Nτ∑
t=1

[
yjt−f (sjt (θj) , σj)

]2
, (10)

with f (sjt (θj) , σj) = ERice[yjt].

C. Maximum Likelihood

Under the noise stationarity and the Rician distribution
assumption, the Likelihood function Lj is given by:

Lj(yj ,θj) =

Nτ∏
t=1

PR (yjt | sjt (θj) , σj) . (11)

Its maximization is equivalent to the minimization of the
negative log-likelihood function:

− log
(
Lj(yj ,θj)

)
=

Nτ∑
t=1

[
y2jt
2σ2

j

− log

(
yjt
σ2
j

)]

+

Nτ∑
t=1

[
sjt (θj)

2

2σ2
j

− log (I0 (zjt))

]
,

(12)

where zjt =
yjtsjt (θj)

σ2
j

.

Therefore, maximizing the likelihood for parameter esti-
mation from the measured relaxation signal comes down to
minimizing the ML criterion given by:

CMLj

(
yj ,θj

)
=

Nτ∑
t=1

[
sjt (θj)

2σ2
j

2

− log (I0 (zjt))

]
. (13)

Although this estimator presents desirable statistical proper-
ties, the minimization of the underlying criterion is more
challenging than the LS based criteria.

D. Accounting for the spatial dimension

The signals inside different voxels of the image are not
totally mutually independent. Actually, coherent regions are
found inside MRI images that share similarities in decay
curve parameters. Taking into account the image structure and
constitution is crucial for both computational time reduction
and ensuring parameter estimation stability.

1) Considering simultaneously the image voxels: The cri-
teria discussed in section III are classically minimized for
each voxel independently from others. This does not take
into account the image structure of the MRI data. We sug-
gest expanding the criteria by adding a summation over the
entire scope of the image. The criteria to be minimized, thus
becomes, for any of the previously defined criteria Cj :

C (y,θ) =

Nv∑
j=1

Cj
(
yj ,θj

)
, (14)

where y is a vector containing the measurement at all the
voxels of the MRI image and θ = [θ1, ..., θNv ]. In a
numerical computing point of view, this reformulation may
render the estimation process faster than by minimizing the
criteria at each voxel independently. However, the main ad-
vantage of this reformulation is the possibility to deal with
the ill-posed inverse problem more efficiently by adding spatial
regularization.

2) Spatial regularization: Finding the relaxation model
parameters by minimizing any of the previously described
criteria is a highly ill-posed inverse problem. The low SNR
and the high number of parameters implies a solution space
with many local minima which affect the stability of the
estimation process. Spatial regularization methods proved to
be efficient in enforcing numerical stability of the algorithm
and reducing the estimation uncertainty [10], [9]. The coherent
regions usually found in the MRI images imply slow variation
of the relaxation model parameters between adjacent voxels
with the exception of voxels located at borders between two
different tissues. Spatial regularity can be accounted for by
adding a regularization term to the criteria in such a way
that high differences in parameter values between adjacent
voxels are disadvantaged. Thus, for each voxel j we define
a neighboring voxel set Vj (for example : a window of 3× 3
voxels) and impose a penalty function ψ on the difference
between the parameters:

R(θ) =

Np∑
p=1

βp

Nv∑
j=1

∑
k∈Vj

ψ (θj (p)− θk (p)) , (15)

where (β1, . . . , βNp) is a set of regularization parameters
allowing to adjust the influence of the regularization term in
the global criterion. In order to equally penalize the roughness
of the different parameters, a smaller βp for parameters with
high magnitudes might be chosen.
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Accounting for a data fitting measure, expressed by a least
squares or a maximum likelihood criterion, and the regulariza-
tion term favoring spatial smoothness, the penalized estimation
approach consists in solving the optimization problem:

θ̂ = arg min
θ≥0

F (y,θ) (16)

with a penalized criterion F (y,θ) = C(y,θ) +R(θ)

IV. PROPOSED ESTIMATION ALGORITHM

The minimization of the penalized criterion F by solving
problem (16) does not admit an analytic solution. Hence,
an iterative optimization approach must be adopted for the
estimation of the relaxation model parameters. Moreover, the
minimization over the whole image leads to a large-scale opti-
mization problem. We propose to use a quadratic majorization-
minimization approach coupled with the LM algorithm. Adap-
tations are introduced to ensure the positivity of the esti-
mated parameters and to perform the optimization on the
whole image. More precisely, the majorization-minimization
approach is used to overturn the non-quadratic nature of the
criterion (13) and to reduce the computation load by ensuring
separability of the variables during the minimization of the
regularization term (15).

A. Levenberg-Marquardt Algorithm

The LM algorithm [42], [43] is widely used for solving
nonlinear least squares problems. It is an iterative descent
method that exploits the gradient of the criterion and a local
approximation of its Hessian at each iterate. Firstly, a residual
vector r(θ) is expressed in such a way that the criterion F can
be written as F (θ) = 1

2 ||r(θ)||22. At each iteration ` of the LM
algorithm, the parameters are updated in the direction d(`):

θ(`+1) = θ(`) + α(`) d(`), (17)

where α(`) is a step-size allowing to control the algorithm
convergence. The LM descent direction at each iteration ` is
calculated as follows:

d(`) = −
[
J(θ(`))TJ(θ(`)) + λ(`) I

]−1
g(θ(`)), (18)

where J(θ) and g(θ) = J(θ)Tr(θ) are respectively the
Jacobian matrix of r(θ) and the gradient of F at θ. The
damping parameter λ(`) is updated at each iteration in order
to ensure an adequate balance between gradient-like descent
(stability) and Gauss-Newton update (quadratic convergence
rate) [44], [45].

The detailed expressions of the gradient and the Jacobian in
the case of the least squares criteria and the multi-exponential
decay model are given in appendix A, B2 and C.

The applications of the LM algorithm to the analysis of
multi-exponential decay model in the whole image space is
carried out according to the following improvements:
• Accounting for image structure: In the LM algorithm

the heaviest computation step is the inversion of the
first term in equation (18). Actually, by applying the
LM algorithm on the whole image at once, we obtain
a Jacobian of size Nτ × (NpNv), thus a matrix of size

NpNv × NpNv to inverse. However, by considering the
fact of variable separability (the solutions are independent
from one voxel to another) the matrix to inverse becomes
block diagonal. The inversion is therefore performed on
Nv blocks of size Np × Np. This formulation reduces
considerably the computational heaviness and memory
usage [46].

• Choice of the step-size: A linesearch strategy based on
a backtracking technique to satisfy the Armijo condition
[45] is used in order to compute an adequate step-size
α(`) that ensures a sufficient decrease of the criterion
F (θ):

F (θ(`+1)) ≤ F (θ(`))+c1α
(`)g(`)

T

d(`) with c1 ∈]0, 1/2].

A typical value for c1 is 10−3. The backtracking is started
from the largest step-size αmax that preserves the non-
negativity of the parameters. It is obtained using the
following expression:

αmax = min
k∈K
− θ(`)k /d

(`)
k with K = {k; d

(`)
k < 0}.

The main steps of the modified LM algorithm for multi-
exponential decay model parameter estimation for the whole
image voxels simultaneously is given by Algorithm 1. The
algorithm is considered to have converged either if the relative
variation of the cost function between two successive iterations
is less then a small value εf or when the gradient norm is
below some threshold εg [45].

Algorithm 1: Summary of the main steps of the
modified LM algorithm including an Armijo linesearch

Input: θ(0), ρ ∈]0; 1[ ;
for `← 0 to `max or until convergence do

Compute r(θ(`)) and J(θ(`));
Update λ(`);
Compute d(`);
Compute the maximum step size αmax ;
Set α(0) = αmax;
for n← 0 to nmax or until Armijo condition is

met do
Set α(n+1) ← ρα(n);
Check Armijo condition;

end
Set α(`) = α(n+1);
Update θ(`+1) = θ(`) + α(`) d(`);

end
Output: θ(`+1)

B. Likelihood Majorization-Minimization

The minimization of a given criterion using the MM ap-
proach is carried out by a succession of approximate minimiza-
tion of majorant functions easier to minimize than the initial
criterion [47], [48]. MM algorithms operate by exploiting the
properties of the original criterion in terms of convexity and
concavity. Let us for instance consider a convex criterion F
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defined for x ∈ domf . At each iteration m of the MM
algorithm [48], there exists a function M (m) such that:

M (m)(x(m)) = F (x(m)),

M (m) (x) ≥ F (x), ∀ x ∈ domf

(19)

M (m) is called a tangent majorant of F at x(m). The next
iterate x(m) is generally taken as the minimizer of M (m) (x).
However, the exact minimization of the majorant function is
not necessary since the main requirement for theoretical con-
vergence is to ensure the iterative decrease of the minimized
criterion [49], [50].

Actually, the criterion CMLj can be rewritten as∑Nτ
t=1 (C1 (sjt) + C2 (sjt)), a sum of two functions; a strictly

convex quadratic function:

C1 (sjt) =
s2jt
2σ2

j

, (20)

and a strictly concave function:

C2 (sjt) = − log (I0 (zjt)) . (21)

The later function can be majorized [30] by its tangent at any
point s̃jt according to:

− log (I0 (zjt)) ≤ − log (I0 (z̃jt))

− yjt
σ2
j

R (z̃jt) (sjt − s̃jt), (22)

where R(·) =
I1(·)
I0(·)

and z̃jt =
yjts̃jt
σ2
j

. Such majorization leads

to:

C1 (sjt) + C2 (sjt) ≤
s2jt
2σ2

j

− ỹjt
σ2
j

sjt

− log (I0 (z̃jt)) +
ỹjt
σ2
j

s̃jt. (23)

where ỹjt = R (z̃jt) yjt. The last two terms are independent
from θj and consequently, by setting s̃jt = sjt(θ

(m)
j ), the

majorant criterion MML of the maximum likelihood criterion
CML resulting from the Rician noise distribution model can
be approximated at each iteration m of the MM algorithm by:

M
(m)
ML (y,θ) =

Nτ∑
t=1

Nv∑
j=1

1

2σ2
j

[ỹjt − sjt (θj)]
2
. (24)

It can be noticed that the MM strategy leads to a nonlinear
least squares criterion whose minimization can be performed
using few steps of the LM algorithm, as the exact minimization
is not required. Our proposal is to alternate iteratively between
updating the majorant function and few steps of the LM algo-
rithm. The resulting Majorize-Minimize Maximum Likelihood
(MM-ML) algorithm is summarized by Algorithm 2.

C. Separable Majorization-Minimization

Adding the spatial regularization introduces a coupling
between the parameters, which breakdowns the separability
of the optimisation with respect to different voxels of the
image. Actually, the separability is important to reduce the

Algorithm 2: The main steps of the MM-LM algo-
rithm for ML estimation
Input: θ(0),y;
for m← 0 to mmax or until convergence do

Set s̃jt = sjt(θ
(m)
j ), ∀j = 1, . . . , Nv;

Compute ỹjt = R (z̃jt) yjt, ∀j = 1, . . . , Nv;
Minimize M (m)

ML (y,θ) using Algorithm 1 with the
following settings:
• Set `max to a small number;
• Input : θ(m);
• Output : θ(m+1);

end
Output θ(m+1)

computation burden for Jacobian evaluation and matrix inver-
sion for LM direction calculation in Algorithm 1. The MM
approach can be used to alleviate this limitation by setting a
voxel wise separable majorant functions. Based on convexity
properties [47], by setting a symmetric convex penalization
function ψ, a separable majorant function can be obtained.
For any variables (u, v) from the parameters vector θ, it has
been established by [34] that:

ψ (u− v) ≤ 1

2
ψ
(

2u− δ(m)
uv

)
+

1

2
ψ
(

2v − δ(m)
uv

)
, (25)

with δ(m)
uv =

(
u(m) + v(m)

)
. The majorant function is thus a

sum of two separable convex functions. Applying this strategy
to the regularization criterion on the whole image voxels leads
to the following majorant:

M
(m)
Reg (θ) =

Np∑
p=1

βp

Nv∑
j=1

∑
k∈Vj

ψ
(

2θj (p)− δ(m)
jk (p)

)
, (26)

where δ
(m)
jk (p) =

(
θ
(m)
j (p) + θ

(m)
k (p)

)
and θ

(m)
j (p) stands

for the p-th parameter inside the j-th voxel at iteration m
of the MM algorithm. When a quadratic function ψ is used,
the separable majorant MReg will also be quadratic. An
additional reformulation will be involved in the case of non-
quadratic function in order to get a nonlinear least squares
form according to:

M
(m)
Reg (θ) =

Np∑
p=1

Nv∑
j=1

∑
k∈Vj

(
β

1
2
p ψ

1
2

(
2θj (p)− δ(m)

jk (p)
))2

,

(27)
with the requirement that ψ takes non-negative values, which
is the case in classical regularization functions [51].

D. Optimization algorithm using the MM-LM approach

By combining either the least squares-based criteria (CLS ,
CMGCLS or CRECLS) or the majorant function of the ML
criterion MML and the majorant function MReg of the reg-
ularization term, the Minimization-Majorization algorithm for
penalized criteria optimization is summarized in Algorithm 3.
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Algorithm 3: The proposed MM-LM algorithm for
penalized criteria minimization

Initialize θ(0) ;
for m← 0 to mmax or until convergence do

Compute δ(m)
jk (p) for all j and k ;

Define Mm
Reg(θ);

if C = FML then
Compute ỹjt = R

(
z
(m)
jt

)
yjt;

Set M (m)
Q (y,θ) = M

(m)
ML (y,θ);

end
else

Set M (m)
Q (y,θ) = C (y,θ)

end
Minimize M (m)

Q (y,θ) +M
(m)
Reg (y,θ) using

Algorithm 1 with following settings:
• Set `max to a small number
• Input : θ(m);
• Output : θ(m+1);

end
Output θ(m+1)

V. PERFORMANCE EVALUATION SETUP

The performances of the multi-exponentional model estima-
tion using different criteria are assessed using synthetic and
experimental MRI images which are presented in this section.
A three-exponential model (Nc = 3) is used since such model
seems to be relevant to describe the different water pools in
plant tissues [6]. The same number of components is used
in myelin fraction quantification [52]. However, the proposed
estimation algorithm can be applied for different number of
components.

A. Simulated data
The empirical analysis of the algorithm performance is

performed using a phantom constituted by a circular disk
(Region 2) within an image of 128×128 voxels, with an outer
ring (Region 1) and 9 inner disks simulating three internal
regions as represented in table I. Within each of the five
regions of the phantom, a different three-exponential model
was generated. The values of T2 and A0 parameters are set to
be close to typical values found in tomato fruits. A stationary
Rician noise acquisition model with σj = σ∀j and with
different σ values is set in order to evaluate the algorithms
under different noise levels. The SNR evaluated for the images
acquired at the first echo time is computed as follows:

SNR =

∑Nv
j=1 yj1

σNv
. (28)

Depending on the number of averaged scans in the k-space,
typical values of SNR in real experiments varies from 150 to
500.

B. Experimental data
The experimental MRI settings have been obtained using

a Multi-SE sequence on a 1.5T MRI scanner (Magnetom,

TABLE I
SIMULATED PHANTOM IMAGE AND VALUES OF THE (A0, T2)

PARAMETERS IN EACH REGION.

No. Region A01 T21 A02 T22 A03 T23
1 Outer ring 95 88 459 356 1015 716
2 Inner medium 96 76 410 433 1024 870
3 Central disc 71 50 339 218 908 627
4 Left-right discs 109 78 375 303 1004 685
5 Top-down discs 108 50 482 202 756 508

Avanto, Siemens, Erlangen, Germany) [3], with inter-echo
spacing (∆TE) of 6.5 ms, bandwidth of 260 Hz/pixel, 512
echoes per echo train and a repetition time of 10s. The median
planes of fruit (transverse section at middle height of fruit)
were imaged with a total of 128 × 128 voxels and a slice
thickness of 5 mm, resulting in voxel size of 1.19× 1.19× 5
mm3. A head-array coil composed of 4 elements was used, the
images of which were combined using a spatial matched filter
[53]. Data were acquired in a regular cartesian scheme and no
post-processing was applied. A first set of images was acquired
with only one scan, which corresponds to a SNR of 145 and
to realistic acquisition times for the targeted application (21
minutes). In order to get reference maps we could use as
“ground truth”, a set of images with high SNR (687) was
acquired using 32 scans. The average of the multiple scans
was computed in the complex space thus maintaining the same
noise statistic for 1 and 32 scans.

C. Algorithm settings

In order to implement the regularization, we had to choose
the regularization function ψ and the regularization weight
vector β. The choice of the regularization function affects
the inter-tissues smoothness, whilst the regularization weight
affects the degree of smoothness on the whole image. In
this study, we used a quadratic penalization function with a
weight β = [0.4, 0.4, 0.06, 0.06, 0.01, 0.01] chosen by
trial and error so as to preserve a good separation between
image components. The algorithm stopping criteria was set to
εf = εg = 10−6.
Results were evaluated using the normalized root mean square
error, NRMSE, computed as follows:

NRMSE = 100

√√√√ 1

NvNp

Nv∑
j=1

Np∑
p=1

(
θj (p)− θ∗j (p)

)2
θ∗j (p)

2 (29)

with θ∗j (p) the reference parameters at voxel j for parameter p.

D. Noise Variance estimation

In practice, in the case of a Rician noise stationary in the
spatial domain, the noise standard-deviation can be estimated
from regions where no signal is present such as the back-
ground or, in the relaxation acquisition framework, the images
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acquired at the highest τt [54]. Actually, if sjt = 0, the Rician
distribution leads to the Rayleigh distribution:

PR(yjt|sjt = 0, σj) =
yjt
σ2
j

e
−
y2jt

2σ2
j Iyjt>0, . (30)

Therefore, the maximum likelihood estimator of the noise
standard deviation σj in each voxel can be obtained according
to:

σj =

√
2

π

1

N

Nτ∑
t=Nτ−N+1

yjt, (31)

where N is the number of decay samples yjt with signal value
theoretically equal to zero. More sophisticated noise estimation
strategies can be envisaged such as those based on local
statistics in MRI data [55]. In the acquisition configuration
considered in this paper, and without loss of generality, the
noise stationarity was checked and the noise standard deviation
was estimated from the background voxels.

E. Estimation criteria

The proposed optimization algorithm has been firstly ap-
plied in the case of non-regularized criteria to discuss the ef-
fectiveness of the proposed optimization approach in addition
to a comparative analysis of the impact of how the Rician
distribution is accounted for. In a second step, the spatial
regularization was tested on the two approaches that yielded
the lowest NRMSE, which turned out to be the RECLS and
the ML approach (defined hereafter).

The different algorithms that were evaluated on the phantom
are summarized below:

1) LS: LM algorithm for minimizing the LS criterion CLS ,
2) MGCLS: LM algorithm for minimizing the McGibney

Corrected LS criterion CMGCLS ,
3) RECLS: LM algorithm for minimizing the LS corrected

by taking the Rician Expectation value CRECLS ,
4) ML: MM-LM algorithm for minimizing the ML crite-

rion CML,
5) PRECLS: MM-LM algorithm for minimizing the penal-

ized LS corrected by taking the Rician Expectation value
FRECLS ,

6) PML: MM-LM algorithm for minimizing the penalized
ML criterion FML.

The initial values of the parameters are taken from a prelim-
inary estimation from a region of interest manually delimited
on a tomato where the (A0, T2) values were estimated on
the average signal. Based on these results the following initial
vector is chosen:

θ
(0)
j = [(95, 75), (425, 365), (600, 605)], (∀ j = 1, . . . , Nv).

VI. PERFORMANCE EVALUATION RESULTS

A. Algorithm convergence

The evolution of the FML criterion during the LM itera-
tions of the optimization algorithm is shown in figure 3. A
comparison is made between choosing a high number of LM
iterations (inner loop with `max = 10) and choosing a low
number (`max = 2). This choice does not affect the overall

Fig. 3. Evolution of the FML criterion across the external MM steps (orange
and purple points) and the internal LM steps (blue and yellow points)

convergence of the algorithm, and subsequently the results, but
it however impacts the speed of convergence of the algorithm.
As a result, we can clearly see that by choosing a high
number of internal LM iteration, the algorithm converges with
a lower number of MM steps but with a higher computation
time. Furthermore, it is clearly shown that by decreasing
the majorant criterion, (MML + Mreg), the descent of the
majorized criterion is guaranteed which validates the choice
of the majorant functions.

B. Results on the virtual phantom

1) Estimation without regularization: Table II summarizes
the NRMSE of the estimation using the four non regularized
criteria.

TABLE II
NRMSE ON THE PHANTOM FOR EACH OF THE FOUR NON-REGULARIZED

ALGORITHMS LS, MGCLS, RECLS AND ML FOR DIFFERENT SNR

SNR=150 SNR=300 SNR=450
LS 125.1 40.0 17.4
MGCLS 36.4 24.9 23.3
RECLS 35.2 15.1 11.5
ML 34.8 15.2 11.7

As expected, the LS criterion leads to the highest error
especially at low SNR since it does not take the Rician noise
into account. MGCLS method gave better results than LS
except for high SNR but under-performed compared to ML
and RECLS methods. These latter two methods gave very
close results and provided the lowest error between the non-
regularized methods across the entire scope of the image. It
can be explained by the fact that these methods explicitly
account for the noise statistics. In the sequel, the analysis will
be focused on these these two methods and an improvement
of performances will be achieved by accounting for the spatial
regularization.

2) Spatial regularization: Figure 4 summarizes the perfor-
mances of the RECLS, ML, PRECLS and PML methods in
terms of estimation quality (NRMSE per voxel at the image
level) for different SNR values and Figure 5 details the results
for the fast, medium and slow decaying components. One can
notice that there is no significant difference between RECLS
and ML performances. However, an important reduction of the
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error is obtained by PML and the PRECLS methods, which
highlights the importance of the spatial regularization. It is
interesting to note that the performance of the regularized
versions depends very slightly on the SNR. Furthermore,
we can clearly see that the estimation error was higher for
classes with higher parameter couple (A0, T2). Concerning
the computing time, the PML algorithm was faster than the
PRECLS algorithm, since its computing time on a work
desktop was 84s whilst the PRECLS took on average 251s.

Fig. 4. NRMSE of the RECLS, ML, PRECLS and PML methods for different
SNR values.

Fig. 5. NRMSE for the different parameters couples (A0, T2) estimated on
the phantom for the different methods. The legend is the same as the one in
figure 4.

Figures 6 and 7 represent the T2 and A0 maps obtained on
the phantom in the case of an SNR of 150. The positive impact
of the regularization is clearly shown since the reconstructed
maps are no longer drowned in noise and the separation be-
tween different regions of the phantom are more pronounced.
Moreover, there is no significant difference between PRECLS
and PML results. Therefore, for display convenience, we will
show the results of the PML method for the rest of the study
since it is faster to converge.

C. Experimental results

Figures 8 and 9 show the results obtained on the real MRI
images of a tomato with acquisitions realized with 1 scan and
32 scans (long acquisition time) with the PML method. This
validates the robustness of the method since the reconstructed
maps from low and high SNR data were quite similar for all
the different parameters. We used the parameters estimated

from the high SNR image as a reference and obtained a low
NRMSE equal to 6%. This shows that even with low SNR
the algorithm converged to values close to those estimated
from high SNR data This confirms the results obtained on
the phantom. As the SNR is directly linked to the number of
scans, this result shows that the proposed PML algorithm can
save crucial acquisition time since it leads to satisfying results
by its application to data acquired with only one scan.

VII. CONCLUSION

An efficient method for the estimation of T2 and A0 maps
from noisy MRI magnitude data has been proposed in the
context of a discrete parametric multi-exponential model. It
is based on the minimization of a penalized criterion that
takes into account the Rician distribution by using either a
penalized maximum likelihood approach or by minimizing a
penalized least squares criterion based on the expectation value
of the Rician distribution. Both approaches gave similarly
satisfying results by explicitly taking into account the noise
statistics and the spatial regularity of the parameters. The first
main challenge is the proposal of an efficient and convenient
way to carry out the minimization on the whole image at
once based on a majorization-minimization approach coupled
with an adapted LM algorithm. We showed that visually and
numerically the proposed method yields good results both on
a simulated data and on real scans of a tomato.

One perspective to be studied is related to the choice of the
regularization parameters. An automatic approach for these
choices would be ideal, yielding a totally user independent
algorithm. One solution would be to adapt the regularization
function and the regularization weights to the experimental
parameters for each application (fruits, brain studies, liver
studies) using databases. Another prospect to study is the
choice of the number of components inside each voxel, this is
important in studies where the number of components might
not be the same between different voxel inside the same MRI
image.
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APPENDIX

In this appendix we will present both the computation
steps for obtaining the different criteria and computing their
Jacobians.

A. Least Squares Criterion

In order to minimize the least squares criterion using the LM
algorithm, the Jacobian matrix setting requires the computing

of
∂sjt (θj)

∂θj (p)
for every component θj (p) of the vector parameter θj =

[A0(1,j) , T2(1,j) ... A0(Nc,j)
, T2(Nc,j) ]. It can be noted that

θj(p) correspond to an amplitude A0 for an odd value of p



DRAFT VERSION MAY 5, 2020. SUBMISSION TO IEEE TRANS. ON IMAGE PROCESSING 10

Fig. 6. Reconstructed intensities A0 maps for the fast (first row), medium (second row) and slow (third row) relaxation times. The Reference map (first
column) is compared to the results of the RECLS (second column), PRECLS (third column), the ML (fourth column) and the PML (fifth column) algorithm.

Fig. 7. Reconstructed T2 maps from a tri-exponential model with T21 representing the shortest relaxation time (first row), T22 representing the medium
relaxation time(second row) and T23 representing the longest relaxation time (third row). The Reference map (first column) is compared to the results of the
RECLS (second column), PRECLS (third column), the ML (fourth column) and the PML (fifth column) algorithm.

and to a T2 value for an even value of p.
For odd p:

∂sjt (θj)

∂θj (p)
= e−τt/θj(p+1). (32)

For even p:

∂sjt (θj)

∂θj (p)
=
θj (p− 1) τt

θj (p)
2 e−τt/θj(p). (33)

B. McGibney Corrected Least Squares

1) Criterion: The measured signal being expressed in the
complex domain by yrejt = sjt cosφjt + nrejt and yimjt =

sjt sinφjt + nimjt , the second order moment of its magnitude
is expressed by

E
[
y2jt
]

=

s2jt cos2 φjt + s2jt sin2 φjt

+ 2sjt cos (φjt)E
[
nrejt
]

+ 2sjt sin (φjt)E
[
nimjt

]
+ E

[
(nrejt )

2
]

+ E
[
(nimjt )2

]
= s2jt + 2σ2

j ,

(34)

since the additive noise is of zero-mean and of variance σ2
j .

2) Derivative computation: The derivative to be computed
in the case of the MGCLS is given by:

∂sjt (θj)
2

∂θj (p)
=
∂sjt (θj)

2

∂sjt (θj)

∂sjt (θj)

∂θj (p)
,

= 2sjt (θj)
∂sjt (θj)

∂θj (p)
.

(35)
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Fig. 8. Estimated intensities A0 and relaxation times T2 using PML from
the shortest (left) to the longest (right) from MRI data acquired with 1 scan.
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Fig. 9. Estimated intensities A0 and relaxation times T2 using PML from the
shortest (left) to the longest (right) from MRI data acquired with 32 scans.

C. Rician Expectation Corrected Least Squares

This criterion involves the first order moment

ERice[yjt] = σj

√
π

2
e−αjt [(1 + 2αjt)I0(αjt) + 2αjtI1(αjt)]

with αjt =
sjt(θj)

2

4σ2
j

. Its derivative with respect to parameters
θj can be reformulated as follows

∂ERice [yjt]

∂θj
=
∂ERice[yjt]

∂αjt

∂αjt
∂sjt (θj)

∂sjt (θj)

∂θj
. (36)

Moreover, since I ′0(x) = I1(x) and I ′1(x) = I0(x)− 1

x
I0,

∂ERice [sjt (θj)]

∂αjt
=

σj

√
π

2

(
− e−αjtI0 (αjt) + e−αjtI1 (αjt) + 2e−αjtI0 (αjt)

− 2αjte
−αjtI0 (αjt) + 2αjte

−αjtI1 (αjt)

+ 2I1 (αjt) e
−αjt + 2αjte

−αjt
(
I0 (αjt)−

1

αjt
I1 (αjt)

)
− 2αjte

−αjtI1 (αjt)
)

= σj

√
π

2
e−αjt [I0 (αjt) + I1 (αjt)] .

(37)

Therefore:

∂ERice[yjt]

∂θj
=
sjt(θj)

2σj

√
π

2
e−αjt

× [I0 (αjt) + I1 (αjt)]
∂sjt (θj)

∂θj (p)
. (38)
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