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1 The Phased Array Company
Nantes, France

nans.laroche@tpac-ndt.com

2 Ecole Centrale de Nantes /
Laboratoire des Sciences
du Numérique de Nantes

Nantes, France

3 Laboratoire d’Acoustique
de l’Université du Maine
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Abstract—Multi-element probes are widely used in Non-
Destructive Testing (NDT) for their ability to produce images.
Full Matrix Capture (FMC) is a standard acquisition process that
consists in acquiring all inter-element responses. The common
reconstruction procedure, namely the Total Focusing Method
(TFM), is a linear reconstruction technique that does not account
for the instrumental response of the transducers. Thus, its
resolution remains limited. The inversion of the direct model con-
sidering the acoustic response of the transducers and formulated
on the FMC data is a heavy procedure in terms of computing
resources and storage. In order to reduce the size of the problem,
the proposed approach considers the beamformed TFM image as
a back-projection of the data in the space domain. The proposed
model linearly links the TFM image and the reflectivity map of
the media under inspection. The PSF (Point Spread Function)
associated to a pixel is the TFM reconstruction from data
acquired on a reflectivity map where only this pixel is reflecting
the signal. This raises a 2D “deconvolution” problem where the
PSF is varying spatially. To limit the number of computations, the
proposed method assumes that the variation of the PSF is slow,
so that it can be interpolated accurately. The interpolation model
involves convolution products that can be quickly computed using
Fast Fourier Transforms (FFTs). The reconstructed image is
obtained within an iterative procedure enforcing sparsity and
spatial smoothness. The resolution improvement is evidenced
from experimental data acquired from a stainless steel block
containing Side Drilled Holes (SDH) inspected with a 128-element
probe.

Index Terms—Non Destructive Testing, Total Focusing Method,
Deconvolution, Point Spread Function

I. INTRODUCTION

The use of phased array probes has become very common
in NDT [1] and medical imaging. Delay-and-Sum (DAS)
methods such as the Total Focusing Method (TFM) [2] are
used in real time for industrial applications thanks to the
capabilities of Graphic Processing Units (GPU). Such post-
processing methods focus on each pixel of an image by simply
summing all signals at the corresponding times of flight. Thus,
the narrow bandwidth of the ultrasonic transducers limits the
resolution of these methods to the Rayleigh criterion [3]. Some
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methods based on a sparse prior have been proposed in order to
improve the resolution of ultrasonic images [4], [5]. However,
the acoustic response of the transducers [6] is not considered
in these models whose resolution hence remains limited. The
acoustic response has been considered in an inverse approach
proposed in [7] that computes highly resolved images from
FMC data. Nevertheless, the computational cost of such a
method is high due to the large size of the FMC data.

The approach proposed in this paper considers the beam-
formed TFM image as a back-projection of the ultrasonic
data in the image domain. The Point Spread Function (PSF)
associated to each pixel is the TFM image corresponding to
a reflectivity map where only the considered pixel reflects the
signals. This model formulates a 2D “deconvolution” problem
with a spatially varying PSF. The computation of all PSFs
being computationally expensive, we propose to interpolate
the PSF at each pixel from the computation of a few reference
PSFs. Then, a penalized least-squares criterion is minimized
within an iterative procedure imposing sparsity and spatial
continuity. This procedure can be fastly implemented for two
main reasons. Firstly, the size of the optimization problem
is independent of the size of FMC data. Secondly, matrix
operations are convolution products that can be computed
efficiently using Fast Fourier Transforms (FFTs). A variant
of the interpolation model has been proposed in the context
of Plane Wave Imaging (PWI) in the medical field [8] but
appears hardly applicable in the context of FMC.

The paper is organized as follows. Section II presents
the FMC acquisition process and the model that links the
reflectivity image to the ultrasonic data. Section III presents
the contribution of the paper at different stages: the deconvolu-
tion and interpolation models and the inversion scheme with
sparsity and spatial smoothness priors. Section IV presents
comparisons of computation times on synthetic data. Section V
presents an experimental application on a tightly spaced set of
flaws from a stainless steel block.



II. MODEL ON FMC DATA

FMC acquisition consists in acquiring the signals from each
emitter-receiver pair of a multi-element probe. For a probe
with Nel transducers, N2

el signals are recorded. The signal
from the i-th emitter to the j-th receiver is denoted yij(t).
Each signal can be modeled as a convolution between the
reflectivity of the media and an elementary waveform, defined
as the acoustic response of the transducers distorted by the
media [9]. Under this assumption, a waveform matrix Ht can
be built to link the FMC data to the reflectivity image [7]:

y = Hto+ nt, (1)

where y ∈ RNtN
2
el collects all the signals yij , o ∈ RNxNz

represents the ultrasonic reflectivity and each column of Ht ∈
RNtN

2
el×NxNz gathers the signature in the data of a scatterer

at the proper position in the reflectivity image. The term nt ∈
RNtN

2
el represents the noise and model errors.

The Total Focusing Method (TFM) [2] is a common method
to process such data based on the computation of times of
flight τ(x, z, i, j) which reads, in the case of an inspection in
contact of a flat specimen:

τ(x, z, i, j) =

√
(x− ui)2 + z2 +

√
(x− vj)2 + z2

c
, (2)

where ui and vj respectively denote the abscissa of the emitter
and receiver and c is the sound velocity. The principle of TFM
consists in summing all the signals at the proper times of flight
for each pixel (x, z):

oTFM(x, z) =

Nel∑
i=1

Nel∑
j=1

yi,j(τ) ⇐⇒ oTFM = By. (3)

That is, the TFM can be described (up to discretization errors)
as the application of a binary matrix B to the data y, where
each column of B contains only one “1” at the corresponding
time of flight.

III. DIRECT MODEL ON TFM IMAGE AND
INVERSION

The reflectivity map o contains high frequencies that have
been filtered out by the observation process due to the limited
bandwidth of the transducers. Thus, the inverse problem de-
fined in (1) is ill-posed. The inversion of such a model (noted
Inversion T) has been performed by considering a sparse a
priori in [7] to reconstruct highly resolved ultrasonic images.
The reconstructed image is the solution of the optimization
problem:

ot = argmin
o

‖y −Hto‖2 + φ(o). (4)

where φ is a penalization function. The regularization is
performed using sparsity and spatial smoothness priors:

φ(o) = µ1 ‖o‖1 + µ2 ‖Do‖2 , (5)

where D is a matrix computing differences between neighbor
pixels. This inversion requires a lot of computations due to
the large size of FMC data.

We propose to reduce the number of computations by
combining (1) and (3) in order to link the TFM image to
the reflectivity linearly:

oTFM = Hso+ ns, with Hs = BHt. (6)

This model formulates another inverse problem in the image
domain. The TFM image is considered as a spatial projection
of the data on the reconstruction grid. Each column of the
matrix Hs represents the PSF associated to a pixel, that is,
the TFM image corresponding to the reflectivity map where
only this pixel reflects the signal. We consider that the loss of
information resulting from this projection can be compensated
by accurately modeling the PSF in the matrix Hs. In practice,
the computation of the PSF associated to each pixel requires
a lot of computational and storage resources. Besides, it is
natural to consider that the spatial variations of the PSF are
slow and that the PSF can be interpolated accurately from a
few PSFs spread across the grid [10]–[12]. The PSF spatial
variation is emphasized in Fig. 1. Fig. 1 (a) represents 25
PSFs spread across a grid corresponding to a 64-element probe
pulsing in a medium where the wavelength is equal to 1 mm
and the inter-element space is 0.5 mm. Fig. 1 (b), (c) and (d)
are focused views on three different PSFs. The slow spatial
variations are clearly visible on these figures, as well as the
interest to interpolate them. Notation r = (x, z) represents the
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Fig. 1. Example of PSFs selected at several places in the reconstruction grid.
Fig. 1 (a) represents the sum of 25 PSFs spread over the image. Fig. 1 (b),
(c) and (d) respectively focus on PSF 1, 7 and 13.

spatial coordinate of a pixel and hr is the associated PSF. From
the computation of a limited number NPSF of PSFs hi located
at pixels ri = (xi, zi), i = 1, . . . , NPSF, the PSF at pixel r0
can be approximated as:

hr0(r) ≈
NPSF∑
i=1

wi(r0)hi(r). (7)

where wi are weighting coefficients depending on the distance
between the pixel of interest r0 and the pixel ri. In the



proposed method, the Inverse Distance Weighting (IDW) [10]
is used to compute these coefficients:

∀j = 1, . . . , NPSF;wi(rj) = 1 if i = j and 0 otherwise , (8)

and wi(r0) = ‖r0 − ri‖−1
/NPSF∑

j=1

‖r0 − rj‖−1 elsewhere.

(9)
The term corresponding to the pixel r0 in the product Hso
can than be computed as follows:

(Hso)(r0) =
∑
r

hr(r0−r)o(r) ≈
∑
r

NPSF∑
i=1

wi(r)hi(r0−r)o(r),

(10)
which can be reformulated using convolution products:

(Hso)(r0) ≈
NPSF∑
i=1

(hi ∗ oi)(r0), (11)

with oi(r) = wi(r)o(r). Thus the matrix products involving
Hs can be approximated as:

Hso ≈
NPSF∑
i=1

Hi(Wio), and Ht
so ≈

NPSF∑
i=1

Wi(H
t
io), (12)

with Hi the discrete convolution matrix associated to the PSF
hi and Wi the diagonal matrix containing the weights wi. The
computational cost of these products is NPSF convolutions,
computed quickly using FFTs. These operations yield the
solution (noted Inversion S) of the optimization problem:

os = argmin
o

‖oTFM −Hso‖2 + φ(o), (13)

Optimization is performed with FISTA. The iterative proce-
dure is implemented in Matlab once the TFM image and the
PSF are computed.

IV. COMPARISON OF COMPUTATION TIMES ON
SYNTHETIC DATA

Computation times have been compared in the configuration
used in Fig. 1. A pair of close flaws distant from λ/2 is placed
at the center of each of the 25 areas. Three methods have been
compared : Inversion T detailed in [7] computed with Matlab
and GPU and Inversion S with 1 (area 13) and 4 PSFs (areas 7,
9, 17 ,19) computed with Matlab. Results are shown in Fig. 2.
The upper graph shows the influence of the number of pixels
in the reconstructed image with a fixed number of transducers
equal to 64. For each method, the computation time increases
with the number of pixels but it remains at least 10 times
smaller for Inversion S. The lower graph shows the influence
of the transducer number with a fixed number of pixels equal
to 2512. Note that the computing time of the proposed method
is nearly independent of the number of transducers. Indeed,
this value only influences the pre-computation time of TFM
and PSF, which is negligible.
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Fig. 2. Computation times of Inversion T and Inversion S with 1 and 4 PSFs.

V. APPLICATION TO RESOLUTION
ENHANCEMENT OF TFM IMAGES

The purpose of this experiment is to emphasize both the
resolution capability of the proposed method and the benefit of
the PSF interpolation model. Data have been acquired using a
128-element probe designed by Imasonic (Voray-sur-l’Ognon,
France), pulsing around 10 MHz, with an inter-element space
equal to 0.3 mm. The experimental test block is made of
Stainless Steel 304 (c = 5650 m/s) and contains close side
drilled holes of 0.3 mm diameter at 50.8 mm depth. On
this experiment, the Rayleigh criterion is equal to 0.98 mm.
The smallest distance between two close flaws is theoretically
around 0.4 mm center to center, i.e. 0.1 mm edge to edge.
In practice, the distance between flaws is not well known and
Inversion T has been considered as a reference. Fig. 3 (a) is a
picture of the experiment and Fig. 3 (b) is a TFM reconstruc-
tion on a large view showing the position of the reconstruction
grid and the transducers. The proposed method has been tested
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Fig. 3. (a) Picture of the inspection. (b) TFM reconstruction, transducers are
marked with a green star (∗) and the reconstruction grid is framed in red.

with one and three PSFs represented in Fig. 4 (a), the central
one being used for the deconvolution with one PSF. The two
others are estimated at 2 mm from the extremities of the
image but not at the edge to avoid side effects.The elementary
waveform used to compute the PSF is a Gaussian echo. The
center frequency, bandwidth and phase of the Gaussian echo
are estimated on the backwall echo positioned at 76.2 mm



by minimizing a non linear least-squares criterion using the
Levenberg-Marquardt algorithm. Reconstructions are shown in
Fig. 4. The proposed inverse method using one PSF improves
significantly the resolution of the image compared to the TFM
but is not able to separate the closest flaws around x = 19 mm.
These flaws are well separated in the reconstruction using three
PSFs which emphasizes the relevance of the proposed method.
Fig. 5 shows the mean of pixel intensities over the z direction
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Fig. 4. Image of the sum of the three PSFs used for the inversion (a). TFM
reconstruction (b), Inversion S 1 PSF (c) and 3 PSFs (d).

from previous reconstructions. The black diamonds indicate
the position of the flaws computed from the Inversion T. The
upper figure clearly shows the benefit of the proposed method
to improve the resolution compared to TFM. The lower figure
is a zoom on the closest flaws showing the benefit of using
the interpolation method. In this experiment, the reconstructed
grid has 201×1231 pixels and the reconstruction time of TFM
and Inversion S with one and three PSFs are 0.33 s, 7.57 s
and 25.87 s respectively. On this data set involving a large
number of transducers and pixels, the computation time of the
Inversion T chosen as reference is around 450 s.

VI. CONCLUSIONS
This work proposes an inverse method to improve the

resolution of ultrasonic images from FMC data. Whereas [7]
performed the inversion from the large size FMC data, we
propose to compute the back-projection of the FMC data in the
space domain first, and then to perform the inversion step from
the resulting smaller size TFM image. Finding the exact solu-
tion of this problem implies the computation of the PSF at each
pixel of the grid, which has a heavy computational cost. The
proposed interpolation method limits these computations while
keeping a good precision of reconstruction. It also enables the
fast computation of matrix products using FFTs. Therefore,
this method is able to reconstruct high resolution images with
a reasonable computation time and can be considered for
industrial applications.

A wiser choice of the number and positions of the PSFs is
a potential lever to improve the quality of the reconstructed
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Fig. 5. Intensity curves (in dB) of reconstructed reflectivity around the flaws
depth for TFM (.−), Inversion S 1 PSF (−) and 3 PSFs(−−).

image. This method could also be applied to complex materials
by coupling the spatial variations of the PSF to acoustic
models. Such a method could be relevant in order to separate
close flaws in scattering materials.
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[11] L. Denis, E. Thiébaut, F. Soulez, J.-M. Becker, and R. Mourya, “Fast
Approximations of Shift-Variant Blur,” Int. J. Comput. Vis., vol. 115,
no. 3, pp. 253–278, Dec. 2015.

[12] L. Roquette, M. Simeoni, P. Hurley, and A. Besson, “On an analytical,
spatially-varying, point-spread-function,” in 2017 IEEE Int. Ultrason.
Symp., Sep. 2017.


