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We propose a new greedy sparse approximation algorithm, called SLS for Single L1 Selection, that addresses a least squares optimization problem under a cardinality constraint. The specificity and increased efficiency of SLS originate from the atom selection step, based on exploiting 1 -norm solutions. At each iteration, the regularization path of a least-squares criterion penalized by the 1 norm of the remaining variables is built. Then, the selected atom is chosen according to a scoring function defined over the solution path. Simulation results on difficult sparse deconvolution problems involving a highly correlated dictionary reveal the efficiency of the method, which outperforms popular greedy algorithms when the solution is sparse.

INTRODUCTION

Sparse approximation is a very active research topic, in which we search for a sparse vector x ∈ R M (i.e., with a large number of zero components), to approximate data y ∈ R N as a linear combination of a small number of atoms, i.e., columns from a dictionary H ∈ R N ×M . Applications range from sparsity-enhancing inverse problems in geophysics [START_REF] Taylor | Deconvolution with the l1 norm[END_REF][START_REF] Mendel | Optimal seismic deconvolution: An estimationbased approach[END_REF] or nondestructive testing [3,4], compression and denoising [START_REF] Eldar | Compressed Sensing: Theory and Applications[END_REF], or subset selection in Statistics [START_REF] Miller | Subset selection in regression[END_REF].

The sparse approximation problem can be formulated by minimizing the least-squares approximation error and imposing an upper bound on the number of non-zero elements of the solution [START_REF] Tropp | Computational methods for sparse solution of linear inverse problems[END_REF]:

min x 1 2
y -Hx 2 2 subject to (s.t.)

x 0 ≤ K, (1) 
where x 0 denotes the 0 "norm": x 0 := Card{x j |x j = 0}.

Finding the best K-sparse solution essentially resorts to combinatorial optimization, which is often not possible for high-dimensional problems-the problem (1) is NP-hard [START_REF] Natarajan | Sparse approximate solutions to linear systems[END_REF]. Therefore, many works in signal processing and statistics have proposed computationally efficient, suboptimal, methods, that can be classified into two categories [START_REF] Tropp | Computational methods for sparse solution of linear inverse problems[END_REF].

On the one hand, continuous relaxation methods replace the 0 norm by a continuous surrogate function. Problem (1) is then converted into a continuous optimization problem. In particular, many works have considered the convex case with the 1 norm x 1 := n |x n | [START_REF] Tropp | Computational methods for sparse solution of linear inverse problems[END_REF]. On the other hand, partial combinatorial exploration strategies generate a sequence of sparse iterates by performing simple transitions on the support (the set of non-zero components) of x. Among this category fall the well-known Matching Pursuit (MP) [START_REF] Mallat | Matching Pursuits with Time-Frequency Dictionaries[END_REF], Orthogonal Matching Pursuit (OMP) [START_REF] Pati | Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition[END_REF] and Orthogonal Least Squares (OLS) [START_REF] Chen | Orthogonal least squares methods and their application to non-linear system identification[END_REF] greedy methods. However, the selection step of a new atom in such methods is very sensitive to interferences between the different atoms, in particular in the case of highly correlated dictionaries [START_REF] Soussen | From Bernoulli Gaussian Deconvolution to Sparse Signal Restoration[END_REF]. More sophisticated strategies try to circumvent this issue (see for example [START_REF] Selesnick | Sparse signal estimation by maximally sparse convex optimization[END_REF]). Among them, the Single Best Replacement (SBR) algorithm [START_REF] Soussen | From Bernoulli Gaussian Deconvolution to Sparse Signal Restoration[END_REF] includes possible removal steps allowing to correct erroneously detected components, CoSAMP [START_REF] Needell | Cosamp: Iterative signal recovery from incomplete and inaccurate samples[END_REF] considers including 2K components at each iteration and selects the K most likely ones, and A OMP [START_REF] Karahanoglu | A* orthogonal matching pursuit: Best-first search for compressed sensing signal recovery[END_REF] performs a partial tree-search exploration step for the selection step.

While the 1 -norm convex formulation exactly solves an approximate problem, the second class of methods returns a local optimum for the exact problem. In the compressed sensing framework [START_REF] Eldar | Compressed Sensing: Theory and Applications[END_REF], conditions on H have been established, for which such approaches are ensured to solve the initial problem [START_REF] Taylor | Deconvolution with the l1 norm[END_REF]. However, in the case of inverse problems where H is ill-conditioned, or if the mutual correlation of its columns is high, such guarantees are lost and, in practice, they often fail in finding the global optimum [START_REF] Bourguignon | Exact sparse approximation problems via mixed-integer programming: Formulations and computational performance[END_REF]. The relative performance of methods is then evaluated under a compromise criterion between the quality of the solution and its computational cost.

In this paper, we propose an algorithm which gathers advantages of the two classes of methods. It essentially consists of a greedy strategy, where the selection rule at each iteration is based on exploiting 1 -norm solutions. The number of iterations is then controlled by the sparsity level K of the searched solution, limiting the computational burden. Moreover, the selection of each new atom, based on solving a convex optimization problem, is expected to be more robust to interferences (high correlations) between the different atoms than standard greedy methods. More precisely, at a given iteration, an 1 -norm-penalized problem is built, where the 1 norm operates on the non-selected variables, and the regularization path is computed by an homotopy continuation algorithm [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF][START_REF] Donoho | Fast solution of 1-norm minimization problems when the solution may be sparse[END_REF]. A heuristic selection rule is then proposed, which considers the predominant variable along the regularization path.

Section 2 presents classical greedy forward algorithms and discusses the limitations of their variable selection rules. In Section 3, we introduce our new selection rule, and implementation issues are addressed. The resulting algorithm, called SLS for Single 1 Selection, is then evaluated and compared to other sparse approximation algorithms in Section 4.

LIMITATIONS OF FORWARD GREEDY ALGORITHMS

Forward greedy methods start from an empty set and iteratively construct a sparse solution, by alternating between two steps: a new atom is selected by maximizing a score function, denoted by F, and then the model is updated. Let S denote the index set of the variables already selected (the current support of the solution), and let H S denote the matrix composed of the columns of H indexed by S. Similarly, S indexes the remaining variables. We also denote the size of S (respectively, of S) by k (respectively, k). The general principle of forward selection algorithms is given in Algorithm 1. In the sequel, we suppose that all columns in H have unit norm. For both MP and OMP algorithms, the selected atom is the most correlated to the residual:

F(O)MP(j) = |h T j r|, j ∈ R M , ( 2 
)
where hj is the j-th column of H. OMP includes an additional orthogonalization step, which updates the current solution on its support by:

x S = argmin x S ∈R k y -H S x S 2 2 = (H T S H S ) -1 H T S y,
such that the residual is orthogonal to the model H S x S . In this case, the score function ( 2) is computed only for j ∈ S.

For OLS [START_REF] Chen | Orthogonal least squares methods and their application to non-linear system identification[END_REF], the approximation error is minimized among all possible supports including one new component:

 = argmin j∈S min x S ∈R k y -H S∪{j} x S∪{j} 2 2 ,
which amounts to

FOLS(j) = H S∪{j} (H T S∪{j} H S∪{j} ) -1 H T S∪{j} y 2 .
The atom selection stage of MP, OMP and OLS is a one-step procedure, which is a short-term vision of the selection issue. In the case of highly correlated dictionaries, this represents a major limitation of such greedy algorithms. For illustration purposes, let us consider a sparse deconvolution problem, where H is composed of shifted versions of the impulse response of the filter, and adjacent atoms give very close contributions to the model. The toy example in Figure 1 (a) and (b) illustrates a situation where x is composed of two close spikes, giving strongly overlapping echoes in the data y. The score function for the first iteration of both OMP and OLS is F(j) = |h T j y|, and is shown in Figure 1 (c). It is maximal for the index located in the middle of the two true indices, thus selecting a wrong atom -even in the noiseless case.

SINGLE L1 SELECTION (SLS)

In this Section, we build a new forward method, where a more accurate selection rule is proposed, based on a global, convex, formulation of the problem.

Selection rule based on 1 problems

Our selection rule exploits the solutions of 1-norm-based problems. Recall the example in Figure 1. It is clear that a joint approach to the sparse estimation problem would be less sensitive to interferences between the atom contributions, by allowing non-zero weights to the true atom locations. Therefore, we propose to base the selection of a new atom by considering the following 1-norm optimization problem at each iteration of a greedy forward procedure:

min x S ∈R k ,x S ∈R k 1 2 y -H S x S -H S x S 2 2 + λ x S 1, (3) 
Similarly to OLS, such a criterion allows the joint re-estimation of the amplitudes of previously selected components (whereas they are fixed in the residual for the selection rule of OMP). It also jointly estimates a sparse vector for the remaining ones, which is not restricted to a single non-zero component as in OLS.

We remark first that the problem in Eq. ( 3) can be recast as an optimization problem in variables x S only: indeed, for a given x S , the solution in x S is explicit. Its expression can be inserted into the least-squares term in (3), so that the problem amounts to the following standard 1-norm-penalized problem:

P λ : min x S ∈R k 1 2 y -H S x S 2 2 + λ x S 1, (4) 
where y := Py, H S := PH S and P := I k -H S (H T S H S ) -1 H T S , with I k the k × k identity matrix.

Exploiting the regularization path

We now build a selection rule based on problem P λ in (4). Instead of considering a particular solution for a given value of λ, we propose the following two-step strategy.

Homotopy -We first build the solution path, that is, the set of solutions of P λ for λ ∈ [λ min , λ max ], by the homotopy continuation algorithm, which is acknowledged as a very efficient algorithm for 1-norm optimization problems when the solution is sparse [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF][START_REF] Donoho | Fast solution of 1-norm minimization problems when the solution may be sparse[END_REF]. Starting from λ max := H T S y ∞ (such that the solution is identically zero for λ ≥ λ max ), homotopy iteratively identifies the different breakpoints, denoted λ (p) , p = 1, . . . , P , that lead to changes in the support configuration (the set of positive, negative and zero variables). Between two breakpoints, the solution is linear in λ and has an analytical expression. Implementation details can be found, e.g., in [START_REF] Donoho | Fast solution of 1-norm minimization problems when the solution may be sparse[END_REF]. Figure 2 illustrates the iterations performed by the homotopy algorithm.

x * 1 x * 5 x * 2 x * 3 x * 4 λ P λ (0) λ (1) λ (2) λ (3) λ (4)
λ (5) λ (6) x * λ stop after P iterations OMP selection SLS selection Fig. 2. Selection rule computed over the solution path obtained by the homotopy method, as λ decreases from λ (0) = λ max to λ (P ) . Path corresponding to non-zero variables in x * , renamed x * 1 to x * 5 . Although x1 is the first component to be non-zero, x2 is the most prominent variable on [λ (P ) , λ (0) ].

Scoring -Then, we use the score function defined over the set of solutions for λ ∈ [λ min , λ max ] by:

FSLS(j) = P p=0 |x (p) j |, j ∈ S, (5) 
where x (p) denotes the solution of P λ at the breakpoint λ = λ (p) . The score function can be updated recursively at each iteration of the homotopy algorithm. This heuristic rule aims at selecting the most prominent component over the regularization path [λ min , λ max ].

In order to control the computing time with a simple rule, we limit the number P of iterations of the homotopy algorithm (which defines λ min ), to P = c(K -k), where K -k is the number of components that still need to be included in the greedy search, and c is a parameter whose tuning will be discussed in Section 4. Such an empirical rule follows the idea that a larger solution path is preferred for the first iterations of the greedy procedure, because more competition may exist between atoms, so the solution may be less stable as a function of λ.

The SLS selection rule is illustrated on a simulated regularization path in Figure 2. Remark that in the limiting case c → 0 (λ → λ max ), it corresponds to selecting the first non-zero component in the regularization path, that is, arg max j∈S h T S j y, corresponds to the OMP selection rule. On the toy example of Section 2, the first iteration of the SLS algorithm allows the correct selection of one true atom -see Figure 1 (e). Then, after two iterations, the true support is correctly estimated, as shows Figure 1 (f). Algorithm 2 summarizes the computation of FSLS via the homotopy algorithm.

At each iteration k of SLS, we call the homotopy algorithm to build the solution path in [λ (P ) , λ (0) ]. From the computational point of view, each step of the homotopy algorithm essentially involves the rank-one update of a linear system to compute d. Our implementation makes use of the blockwise inversion technique to solve the linear systems in an incremental way.

SIMULATION RESULTS

We evaluate the performance of the SLS algorithm, compared to several well-known sparse estimation algorithms: OMP [START_REF] Pati | Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition[END_REF], 1- Algorithm 2: Homotopy algorithm for computing the score function F. Indexation by I returns non-zero variables.

1 Set p = 0, s (0) = 0 and x (0) = 0.

2 Initialize λ (0) = λ max and I = {arg max j∈S h T S j y}. norm regularization or BP (Basis Pursuit), computed here by the homopotopy algorithm [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF], OLS [START_REF] Chen | Orthogonal least squares methods and their application to non-linear system identification[END_REF], SBR1 [START_REF] Soussen | From Bernoulli Gaussian Deconvolution to Sparse Signal Restoration[END_REF], Subspace Pursuit2 [START_REF] Needell | Cosamp: Iterative signal recovery from incomplete and inaccurate samples[END_REF], accelerated Iterative Hard Thresholding 3 (IHT) [START_REF] Blumensath | Iterative Thresholding for Sparse Approximations[END_REF] and A OMP 4 [START_REF] Karahanoglu | A* orthogonal matching pursuit: Best-first search for compressed sensing signal recovery[END_REF]. All algorithms are implemented in Matlab and are tuned in order to obtain solutions with the true sparsity level K.

Algorithms are tested on difficult sparse deconvolution problems, with an up-sampled convolution model in order to achieve high-resolution spike locations [START_REF] Carcreff | Resolution enhancement of ultrasonic signals by up-sampled sparse deconvolution[END_REF]. The problem is underdetermined with M = 1, 000 and N = 350. Columns of H are then highly correlated, with mutual coherence max i =j |h T i hj| = 0.81. White Gaussian noise is then added with SNRdB = 10 log Hx realizations of the sparse sequence and of noise. A typical signal is shown in Figure 3. We respectively denote by x and x true the estimated and the true solutions. In order to focus on the capacity of the methods to find the best solution and to detect the correct support, we consider several error measures:

• the quadratic error EQ = y -Hx 2 2 ; • the support error ES = bb true 0, where bj = 1 (respectively, bj = 0) if xj = 0 (respectively, if xj = 0);

• the exact recovery rate Eexact, which is the average number of instances for which the algorithm correctly locates the support of the true sequence.

We first analyze the efficiency of our SLS algorithm as a function of the control parameter c. Figure 4 shows errors EQ and ES by varying c from 0.5 to 5, as a function of the computation time, compared to the previously introduced algorithms, and for sparsity levels K ranging from 10 to 40. For small c, SLS still behaves as a fast and poorly performing algorithm on such difficult problems (recall that for c = 0, SLS identifies with OMP). As could be expected, the quality of the solution improves as c increases, at the expense of the increase of the computation time. In particular, for K ≤ 30, the quality of solutions provided by OLS and SBR is achieved with smaller computation time (c ∼ 1.5), and much better solutions than OLS and SBR are obtained for their respective computation time (c ∼ 3). For less sparse solutions (K ≥ 40), SLS behaves like OLS and SBR on such "quality vs. time diagram", although better solutions can be obtained with higher computation times. A OMP competes with SLS for K = 20, but takes much more time for greater values of K.

From Figure 4, we remark that the value of c = 3 is a good compromise between computation time and solution quality. Thus, we fix it at this value for the next comparisons. Figure 5 presents quantitative results for all algorithms as a function of K. The performance of SLS is clearly the best one in terms of solution quality with respect to the three error criteria. Finally, SLS has a lower computation time than OLS and SBR up to K = 30 and slightly higher for K = 40. Compared to A OMP, SLS has a slightly higher computation time up to K = 20, but A OMP becomes computationally too expensive. Note that other fast algorithms (OMP, BP, IHT and SP) are always much faster than SLS-but always give worse solutions. 

CONCLUSIONS

We proposed a novel sparse approximation greedy algorithm, called SLS for Single L1 Selection, whose atom selection rule is based on the 1-norm solutions. This selection rule exploits the regularization path of the least squares criterion penalized by the 1-norm, with a view to improve the robustness of the selection step. We empirically showed that SLS outperforms other standard greedy methods to solve difficult inverse problems where the dictionary columns are highly correlated such as in deconvolution. Moreover, the computing cost of SLS can be made comparable to that of OLS and SBR, exploiting the fact that only partial 1 regularization paths are needed.
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 1 Fig. 1. a) Toy example where standard greedy selection fails. (a) Contribution of two atoms and (b) corresponding noise-free data. (c) Scoring function for OMP and OLS at first iteration and (d) OLS solution after two iterations. (e) Scoring function at the first iteration of the proposed SLS algorithm and (f) SLS solution after two iterations. Circles (resp. stars) locate the true (resp. estimated) spikes.
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 23 Fig. 3. Typical sparse deconvolution data y.
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 4 Fig. 4. Performance of SLS (*) as a function of the computation time, by varying parameter c from 0.5 (left) to 5 (right), compared to different sparse approximation methods. The tuning with c = 3 is highlighted with a red marker.
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 5 Fig. 5. Estimation errors and computation time as a function of K for SLS with c = 3 (*) and other sparse approximation methods.

© 2020 IEEE. This is the author's version of an article that has been published in ICASSP 2020. Changes were made to this version by the publisher prior to publication. The final version of record is available at http://dx.doi.org/10.1109/ICASSP40776.2020.9054670 Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Implementation was taken from the multimedia material linked to[START_REF] Soussen | From Bernoulli Gaussian Deconvolution to Sparse Signal Restoration[END_REF].

B. Sturm's implementation taken at http://media.aau.dk/null_