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ABSTRACT:

Historical aerial imagery plays an important role in providing unique information about evolution of our landscapes. It possesses
many positive qualities such as high spatial resolution, stereoscopic configuration and short time interval. Self-calibration reamains
a main bottleneck for achieving the intrinsic value of historical imagery, as it involves certain underdeveloped research points such as
detecting inter-epoch tie-points. In this research, we present a novel algorithm to detecting inter-epoch tie-points in historical images
which do not rely on any auxiliary data. Using SIFT-detected keypoints we perform matching across epochs by interchangeably
estimating and imposing that points follow two mathematical models: at first a 2D spatial similarity, then a 3D spatial similarity.
We import GCPs to quantitatively evaluate our results with Digital Elevation Models (DEM) of differences (abbreviated as DoD)
in absolute reference frame, and compare the results of our method with other 2 methods that use either the traditional SIFT or
few virtual GCPs. The experiments show that far more correct inter-epoch tie-points can be extracted with our guided technique.

Qualitative and quantitative results are reported.

1. INTRODUCTION

Historical (i.e. analogue) aerial imagery plays an important
role in providing unique information about evolution of our
landscapes. The imagery had been acquired by many coun-
tries all over the world and can be traced back to the begin-
ning of 20" century (Cowley, Stichelbaut, 2012). In many
cases high spatial resolution stereoscopic acquisitions were per-
formed (Giordano, Mallet, 2019), allowing for 3D restitution
of territories. Coupled with high temporal sampling, the im-
agery becomes also suitable for long-term environmental stud-
ies. As of now, many historical images collections have been
digitized (Giordano, Mallet, 2019; USGS, 2019; IGN, 2019)
and a number of attempts have been made to process the im-
ages with the state-of-the-art automated methods developed in
photogrammetry and computer vision community over the last
twenty years (Ayoub et al., 2009; Bakker, Lane, 2017; Chen,
Tseng, 2016; Ellis et al., 2006; Feurer, Vinatier, 2018).

Apart from imagery itself, sometimes corresponding metadata
is archived too. For instance, camera focal length and phys-
ical size of the images are commonly found, whereas flight
plans, camera calibration certificates or orientations are rarely
available. Because the images were scanned, and prior to scan-
ning they may have been kept in unsuitable conditions, a self-
calibration is always necessary.

Historical images are self-calibrated in a bundle block ad-
justment (BBA) routine, using tie-points and Ground Control
Points (GCPs) as input observations. When dealing with single-
epoch datasets, tie-points are efficiently recovered with modern
extraction algorithms, such as SIFT (Lowe, 2004), while GCPs
originate from (i) field surveys (Micheletti et al., 2015; Walstra
et al., 2004; Cardenal et al., 2006), (ii) existing orthophotos and
DEM (Nurminen et al., 2015; Ellis et al., 2006; Fox, Czifer-
szky, 2008), (iii) recent satellite images (Ellis et al., 2006; Ford,

2013). In many scenarios none of the auxiliary data is at dis-
posal. When processing multi-epoch image blocks, ideally a
joint self-calibrating bundle adjustment is carried out, includ-
ing inter-epoch image observations. However, extracting inter-
epoch tie-points remains challenging because the scene changes
over time, and images are often of low radiometric quality vi-
olating the brightness constancy rule that all modern extraction
algorithms rely upon.

In this work we propose a new approach to detecting inter-
epoch tie-points. Using SIFT-detected key-points we perform
matching across epochs by interchangeably estimating and
imposing that points follow two mathematical models: at first
a 2D spatial similarity, then a 3D spatial similarity. We do
not rely on any auxiliary data, making it a generic approach.
We adopt GCPs only to quantitatively evaluate our results. In
the following we briefly describe existing feature matching
methods, as well as recent approaches to georeferencing of
historical images. In Section 3 we introduce our methodology,
and in Section 4 the experiments as well as results are given.
The terms features and tie-points are considered synonymous
and used interchangeably throughout this publication.

2. RELATED WORK
2.1 Feature Extraction

Feature extraction refers to finding discriminative structure in
images such as corner, blob, edge and so on, followed by a
matching step. According to whether machine learning tech-
niques are applied, the image features can be categorized as
hand-crafted or learned.

2.1.1 Hand-crafted Features In the early stage, Moravec
detects corner feature by measuring the sum-of-squared-
differences (SSD) by applying a small shift in a number of



directions to the patch around a candidate feature (Moravec,
1980). Based on this, Harris computes an approximation to the
second derivative of the SSD with respect to the shift (Harris,
Stephens, 1988). Since both Moravec and Harris are sensit-
ive to changes in image scale, algorithms invariant to scale and
affine transformations based on Harris are presented (Mikola-
jezyk, Schmid, 2004). Other than corner feature, SIFT (Scale-
invariant feature transform) (Lowe, 2004) detects blob feature
in scale-space, which is an entire pipeline including detection
and description. It uses a difference-of-Gaussian function to
identify potential feature points that are invariant to scale and
orientation. SIFT is a milestone among hand-crafted features,
and comparable with machine learning alternatives. RootSIFT
(Arandjelovi¢, Zisserman, 2012) uses a square root (Hellinger)
kernel instead of the standard Euclidean distance to measure
the similarity between SIFT descriptors, which leads to a dra-
matic performance boost. Similar to SIFT, SURF (Bay et al.,
2006) resorts to integral images and Haar filters to extract blob
feature in a computationally efficient way. DAISY (Tola et al.,
2009) is a local image descriptor, which uses convolutions of
gradients in specific directions with several Gaussian filters to
make it very efficient to extract dense descriptors. KAZE (Al-
cantarilla et al., 2012) is an algorithm that detects and describes
multi-scale 2D feature in nonlinear scale spaces. AKAZE (Al-
cantarilla et al., 2013) is an accelerated version based on KAZE.

2.1.2 Learned Features With the rise of machine learn-
ing, learned features have shown their feasibility in the image
matching problem when enough ground truth data is available.
FAST (Rosten, Drummond, 2006) uses decision tree to speed
up the process of finding corner feature. LIFT (Learned In-
variant Feature Transform) (Yi et al., 2016) is a deep network
architecture that implements a full pipeline including detection,
orientation estimation and feature description. It is based on
the previous work TILDE (Verdie et al., 2015), the method
of (Moo Yi et al., 2016) and DeepDesc (Simo-Serra et al.,
2015). SuperPoint (DeTone et al., 2018) is a self-supervised,
fully-convolutional model that operates on full-sized images
and jointly computes pixel-level feature point locations and as-
sociated descriptors in one forward pass. LF-Net (Ono et al.,
2018) is a deep architecture that embeds the entire feature ex-
traction pipeline, and can be trained end-to-end with just a col-
lection of images. Finally, D2-Net (Dusmanu et al., 2019) is
a single convolutional neural network that works as a feature
detector and a dense feature descriptor simultaneously.

Even though the learned features demonstrate better perform-
ance when compared to hand-crafted features on certain bench-
mark, it does not necessarily imply a better performance in
terms of subsequent processing steps. For example, in the con-
text of Structure from Motion (SfM), finding additional corres-
pondences for image pairs where SIFT already provides enough
matches does not necessarily results in more accurate or com-
plete reconstructions (Schonberger et al., 2017).

2.2 Geo-referencing of Historical Images

Pose estimation describes the intrinsic and extrinsic parameters
of an image and is classically solved with the SfM algorithms
(Snavely et al., 2006; Pierrot-Deseilligny, Cléry, 2012; Schon-
berger, Frahm, 2016). If the image pose should be known
in a reference coordinate system, i.e. be georeferenced, a 7-
parameter transformation followed by a posteriori bundle block
adjustment must be carried out.

Unlike in modern images where the image coordinate system
overlaps with the planimetric camera coordinate system, in his-
torical images the overlap is not maintained due to the scanning
procedure. To account for this, an additional 2D transformation
is estimated in the course of the processing (McGlone, 2013).
(Giordano et al., 2018) demonstrates the importance of the self-
calibration of historical images and its impact on 3D accuracy.
Poorly modelled intrinsic parameters result in the known dome-
like deformations that the authors eliminate with the help of
automatic GCPs from exiting orthophotos.

Many cases reported in the literature calculate the image poses
with SfM using features matched exclusively within the same
epoch (Nurminen et al., 2015; Cardenal et al., 2006; Fox,
Cziferszky, 2008; Walstra et al., 2004). In multi-epoch scen-
arios, the individual epochs should be defined in a common
frame, be it the frame of a reference epoch or an absolute refer-
ence frame (i.e., a projection coordinate frame). Control points
derived from recent orthophotos and DEM (Nurminen et al.,
2015; Ellis et al., 2006; Fox, Cziferszky, 2008) or GPS survey
(Micheletti et al., 2015; Walstra et al., 2004; Cardenal et al.,
2006) serve to transform the individual epochs to the common
frame. Alternatively, a coarse flight plan may provide an ap-
proximate co-registration (Giordano et al., 2018).

To increase relative accuracy between several epochs,
(Cardenal et al., 2006; Korpela, 2006; Micheletti et al., 2015)
manually insert inter-epoch tie-points. (Giordano et al., 2018)
extracts tie-points between analogue images and recent images
based on the method of (Aubry et al., 2014). (Feurer, Vinatier,
2018) joins multi-epoch images in a single SfM block based on
SIFT-like algorithm (Lowe, 2004; Semyonov, 2011) by making
the assumption that a sufficient number of feature points remain
invariant across each time period. Identifying permanent points
over a long time-span has not reached a maturity and research
in this domain remains insignificant. Most of the mentioned
approaches rely on manual effort, auxiliary input or limiting
hypothesis.

3. METHODOLOGY

Figure 1 exhibits the workflow of our algorithm proposed in this
paper. It can be divided as two main parts: processing intra-
epoch, and processing inter-epoch. The images are resampled
to the geometry of the fiducial marks prior to processing. For
the sake of simplicity we only exhibit the processing flow of two
epochs, however, it can be easily extended to more epochs. In
the remaining of this section, both intra-epoch and inter-epoch
processing will be explained in detail.

3.1 Intra-epoch Processing

We process each single-epoch data individually as follow:

1. Intra-epoch tie-points are effectively obtained by extract-
ing and matching feature points based on SIFT algorithm
(Lowe, 2004);

2. Interior and relative orientations are performed with
standard SfM algorithm implemented in MicMac soft-
ware (Pierrot-Deseilligny et al., 2015);

3. Individual depth maps are obtained with semi-global dense
matching available in MicMac (Pierrot-Deseilligny, Papar-
oditis, 2006).
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Figure 1. Our processing workflow. The inputs are marked in yellow, the blue area corresponds to the inter-epoch processing, and the
gray is the intra-epoch processing. The input images had been resampled to the geometry of the fiducial marks prior to the processing.

3.2 Inter-epoch Processing

Using images of all epochs, we now extract inter-epoch tie-
points. We propose the following 3-step guided matching
strategy to increase the robustness of the automated tie-points:

Get tentative inter-epoch tie-points: extracted with SIFT
and matched based on mutual nearest neighbor (i.e., Euclidean
distance) between respective descriptors. To increase compu-
tational efficiency and discard noise, features are extracted on
images down-sampled with a factor of 1/6. No ratio test (Lowe,
2004) was applied since very few tie-points were otherwise
retained. This obviously results in a higher number of false
matches but as these are only our tentative matches, we ac-
cept that. When choosing which feature extraction algorithm
to employ, we hesitated between SIFT as the state-of-the-art
algorithm for hand-crafted features, and D2-Net — the state-of-
the-art in learned features. We chose SIFT based on a conduc-
ted experiment (see Section 4.3) where it outperformed D2-Net.

Get enhanced inter-epoch tie-points: out of the set of all
tentative matches we now want to identify and eliminate the
false matches. We introduce a 2D similarity transformation (cf.,
Equation 1) to describe the relation between feature points in
a pair of inter-epoch images. This assumption is satisfactory
for nadir images, which is our primary focus. The calcula-
tion is embedded in a RANSAC framework, and at each iter-
ation the 2D similarity parameters (A, 8, Az, Ay) are computed
from minimal points in inter-epoch images. All points falling
within N pixels from the prediction are considered inliers. In
our experiment, N was set to 5% of the image diagonal, and
RANSAC iterations to 1000.

z cosf  sinf T Az
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Get final inter-epoch tie-points: in the preceding step we got
rid of a substantial number of outliers, however, we believe not
all outliers could be identified. To obtain the final tie-points
we introduce another filter, this time based on 3D similarity
transformation:

P=\NR-P+T )

Where the P’ are the 3D coordinates of a feature point in the
reference frame of the intra-epoch reconstruction (e.g., epoch1)
and P are its respective coordinates in epochz. The 3D co-
ordinates are retrieved from the individual depth maps com-
puted within the intra-epoch processing step. We now carry
out the estimation of the scale ), the translation vector T, and
the rotation matrix R in a RANSAC routine. We set the number
of RANSAC iterations to 1000, and consider tie-points within
10m of its predicted position as inliers.

3.3 Combined Processing

With the help of the 3D similarity transformation we can move
our multi-epoch acquisitions to a common reference frame. Fi-
nally, we perform a BBA to refine all the camera poses and
camera calibrations. The intra- and inter-epoch features are
the observations in our BBA. To analyze the results in a metric
scale, the BBA is followed by another spatial similarity trans-
formation that brings the arbitrary reference frame tied to a se-
lected acquisition to a global reference frame. In our experi-
ments, we derived this transformation thanks to several manu-
ally identified points in a recent orthophoto and a digital surface
model over the area. If precise poses for one of the epochs were
known, we fixed their parameters during the BBA and skipped
the final spatial similarity transformation.



4. EXPERIMENTS
4.1 Test Site and Data

The test site is a 420 km? rectangular area located in Pezenas
in the Occitanie region in southern France. The area is mainly
covered with vegetation, and several sparsely populated urban
zones. We have at our disposal three sets of images acquired
in June 1971, in June 1981 and in 2015 (cf., Table 1). The
2015 images were acquired with the IGN’s digital metric cam-
era (Souchon et al., 2010). The area exhibited changes in scene
appearance due to land-use changes in the 44-year period. Our
ground truth (GT) is a reference 0.25m resolution DSM gener-
ated by the French Mapping Agency (IGN) in 2015.

[ [ epoch 1971 [ epoch 1981 [ epoch 2015 ]
F [pix] 7589.06 7606.89 9967.5 | 9204.5
Size [mm] 230,230 230,230 47,35 | 50,36
GSD [m] 0.32 0.59 0.46 0.50
F. o. 60% 60% 60% 60%
S.o. 20% 20% 50% 50%

H [m] 2400 4500 4600 4600
Nb 57 27 308 74

Table 1. Details about 1971, 1981 and 2015 acquisitions. The
2015 acquisition is obtained with two sets of camera. GSD is
the ground sampling distance, F.o. and S.o. are forward and side
overlap, H is the flying height, Nb is the number of images.

4.2 Evaluation Method

As presented in Figure 1, we perform the BBA in a relative
coordinate system embedded in a selected epoch. Subsequently,
for evaluation purposes we transform the relative results to a
reference frame of our GT with the help of several manually
measured GCPs. We evaluate the results by computing DSM
differences (DoD), between the GT DSM and a DSM resulting
from our computations in respective years (cf. Figure 5). We
compare Our method to two other approaches:

— SIFTintra—inter: intra- and inter-epoch tie-points are ex-
tracted and matched with SIFT;

— SIFTintraVGC Pipter: intra-epoch tie-points are extrac-
ted with SIFT but no inter-epoch tie-points are present; the
individual epochs are co-registered with the help of virtual
GCPs (i.e., points triangulated in one epoch and used as
GCP in another).

4.3 Result

Comparison between D2-Net and SIFT. To decide which
feature extracting algorithm to use in our guided matching, we
performed an experiment based on D2-Net and SIFT. D2-Net is
employed with the off-the-shelf trained model provided by the
authors, and we use their multiscale detection version to achieve
better performance with scale changes. We always apply the
ratio test for SIFT, and for D2-Net we test scenarios with and
without the ratio test. We used an inter-epoch image pair from
1971 and 1981. The images have a scale difference of factor
1.8 and are rotated by 180° with respect to each other. D2-Net
failed at finding corresponding features. This is probably due
to its sensitivity to severe rotation. Meanwhile, SIFT correctly
identified several matching points as shown in Figure 2.
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Figure 2. SIFT matching result on an inter-epoch image pair with
rotation and scale change.

To be able to compare the two feature extractors we removed
the scale difference and rotated one image to the orientation
of the second image. The matching results are presented in
Figure 3. D2-Net detects and matches more points, however,
their precision is inferior to that of SIFT (see Figure 3 bottom).
As mentioned in (Dusmanu et al., 2019), D2-Net is a detec-
tion based on higher-level information which inherently leads to
more robust but less accurate keypoints. At the same time, D2-
Net features are also detected at lower resolution of the CNN
features (feature maps have a resolution of one fourth of the in-
put resolution). SIFT was the preferred algorithm because even
though it finds few points, they are much more reliable than
D2-Net, and they are robust to image rotation.

Inter epoch matching and BBA. In the BBA, all poses cor-
responding to 1971 and 1981 were considered as free paramet-
ers. Since the total number of intra-epoch tie-points is by far
larger than the inter-epoch tie-points (cf. Table 2), we set the re-
lative weight to balance the effect. We adopted the Fraser model
(Fraser, 1997) to calibrate the cameras, and allowed image-
dependent affine parameters. The remaining parameters were
shared among all images. The poses of the 2015 acquisition
were accurately known a-priori thereby treated as fixed during
the combined BBA.

Comparison between three methods. Figure 4 illus-
trates the inter-epoch tie-points extracted with Ours and
SIFT;ntra—inter between 1971 and 1981, 1971 and 2015 as
well as 1981 and 2015. Our guided matching strategy de-
tected far more points than the classical SIFT pipeline in
SIFTintra—inter (cf. Table 2), especially for the most challen-
ging scenario (i.e. the one with the longest time gap between
1971 and 2015). Figure 5 shows the computed DoDs and
Table 3 reports the average and standard deviations computed
on Z-coordinate difference. A dome artifact is present in
DoDs corresponding to methods SIFTintrqVGC Pipter and
SITFTintra—inter- This kind of systematic error is known
to originate from poorly modelled camera internal parameters
(Giordano et al., 2018). In Ours, given the reasonable dense
inter-epoch features and the calibrated 2015 acquisition, we are
able to effectively remove this discrepancy. Even though our
proposed method performs best of all, we still observe some
systematic errors, e.g. the stripe-like pattern that coincides
with the acquisition geometry, and the increasing differences
towards the edge of the image block in 1971, where few inter-
epoch tie-points were found.
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Figure 3. Matching result on inter-epoch image pair without scale change and rotation. Top: a global view, bottom: zoom over an area
with the images transformed to a common geometry. Notice the offsets between the D2-Net corresponding points.

(d) SIFTintra—inter: epoch 1971 and 1981  (e) SIFT;ptra—inter: epoch 1971 and 2015 (f) SIFTintra—inter: epoch 1981 and 2015

Figure 4. Inter-epoch tie-points.
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[ [ epoch 1971 [ epoch 1981 [ epoch 2015 ||

epoch 1971 448165 160031 28759
448165 9075 341
epoch 1981 / 631290 61546
/ 631290 2031
epoch 2015 / / 18363596
/ / 18363596

Table 2. Number of extracted tie-points with Ours (in bold), and
with SIFTintrafinteh

[ [ plm] | o[m] | [p][m] ]

DOD2015 036 156 081
DoD$h® 1.10 | 236 1.45
DoD) g, | intra=inter 110 | 345 | 294
DoD7 g, FintraV G inter | 153 | 800 | 6.98
DoD$%48 045 | 275 1.61
DoDS . intra—inter 2155 | 1.67 9.62

15.36 | 12.51

7
SIFT;pntraVGCP, .
DOD1971 intra inter 0.30

Table 3. Average ji, standard deviation o, and absolute average
|| of the Z-coordinate in the 7 DoDs in Figure 5.

5. CONCLUSION

A new approach to detecting inter-epoch tie-points in historical
images has been proposed. Our validation datasets consisted
of three epochs: 1971, 1981 and 2015. The proposed method
outperformed the classical SIFT and D2-Net extraction al-
gorithms in detecting many more and reliable points. This
resulted in better pose estimation outcomes. The approach is
generic as no auxiliary data is required, and it is independent of
limiting initial assumptions. We also performed an experiment
in which we show that (i) SIFT often provides less tie-points
than D2-Net but they are more precise; (ii) D2-Net is sensitive
to image rotation.

Future work might concentrate on further improving robustness
of the proposed method, in order to handle more challenging
conditions, such as larger temporal gap. This could for example
be done by automatically searching for a more suitable scale
factor to downsample the input image to perform the tentative
matching, or resorting to line features when necessary.
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