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Abstract

We investigate the streamwise evolutions of energy and pressure spectra along the shear-layer

region of very near-field grid-generated turbulence. The energy and pressure spectra evolve signif-

icantly in this near field. The shear-layer and vortex-shedding frequencies appear immediately in

different spectra but the shear-layer’s spectral signature is very soon replaced by a broad power-law

spectrum on both sides of that frequency. The spectra evolve further by filling the gap between the

vortex shedding and the shear-layer frequencies eventually leading to near −5/3 power-law energy

spectra at the point on the shear-layer region where the turbulence intensity reaches a maximum.

The pressure spectrum reaches a −7/3 power-law shape significantly further downstream. These

spectral scalings cover a range between the vortex-shedding frequency and frequencies larger than

the shear-layer frequency. They are discussed in relation to turbulent coherent structures of various

sizes, obtained by using Gaussian low-pass filtering of instantaneous turbulent flow fields. High

enstrophy small-scale structures originate from the shear-layer instability whereas low enstrophy

large-scale structures originate from the vortex shedding. The generation of near-field −5/3 en-

ergy and −7/3 pressure spectra involves cooperative interactions between these two different size

structures.
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christos.vassilicos@centralelille.fr

1



I. INTRODUCTION

In laboratory and numerical experiments, we often observe the −5/3 power-law scaling of

the energy spectrum Ê(k) and the frequency power spectrum E(f) of turbulence. For sta-

tistically homogeneous turbulence, the energy spectrum Ê(k) and the pressure fluctuation

spectrum Êp(k) are defined in terms of the Fourier transform of velocity and pressure fluc-

tuations. One can show that these spectra are proportional to k−5/3 and k−7/3, respectively,

by using a dimensional analysis [1, 2] based on the average of the energy dissipation rate

ϵ and the wavenumber k, which have been confirmed by experiments [3, 4] and numerical

simulations [5]. If turbulence is statistically stationary and homogeneous, this dimensional

analysis may be justified by the concept of the energy cascade; namely, the scale-by-scale

energy transfer from larger to smaller scales ensures that the energy flux is independent of

k and is balanced by ϵ.

We emphasize, however, that this Richardson-Kolmogorov energy cascade picture as-

sumes statistical homogeneity and stationarity. Since the energy cascade takes a finite time,

when the turbulence is unsteady, the energy flux cannot be balanced by the energy dissi-

pation rate. This implies that Kolmogorov’s local equilibrium hypothesis does not hold for

statistically non-stationary turbulence, even if it is statistically homogeneous (e.g. decaying

turbulence in a periodic cube). In other words, although we sometimes observe −5/3 power-

law scaling of the energy spectrum Ê(k, t) in decaying turbulence, its origin remains not fully

explained. Incidentally, even in statistically stationary turbulence, large-scale motions can

show significant unsteadiness [6, 7].

The target of the present study is the turbulence which is statistically stationary but

inhomogeneous. For this kind of turbulence (e.g., the near-field turbulence generated be-

hind a grid in a wind tunnel), we can define the frequency power spectrum E(f,x) but it

depends on the location x. Interestingly, the −5/3 power-law scaling of the frequency en-

ergy spectrum has been observed both experimentally and numerically, even in statistically

inhomogeneous turbulent flows. For examples, Laizet et al. [8] and Gomes-Fernandes et al.

[9] found a decade of −5/3 power-law scaling of frequency energy spectrum in a very near-

field region, where the flow is still statistically inhomogeneous, of a turbulent flow generated

by a fractal square grid. Furthermore, in a turbulent flow generated by a single square

element of a fractal square grid, Paul et al. [10] found a −5/3 slope in the frequency energy
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FIG. 1. Schematic of the grid used in this study. The length L0 and the thickness t0 are defined

in the figure. This single square grid is placed on the inlet plane x = 0 of the numerical domain

of size Lx × Ly × Lz = 8L0 × 2L0 × 2L0. The red-double square denotes the starting point of the

shear-layer line shown in Fig. 2.

spectrum for half a decade of frequencies, despite the value of Reλ being approximately 20.

It is important to emphasize that finding a well-defined −5/3 frequency energy spectrum

in the very near field is not limited to grid-generated turbulence but also other kinds of

turbulent flows such as axisymmetric turbulent wakes [11] and wakes of a square prism [12].

These reports motivate us to tackle the following questions: (i) how are power-law scalings

of energy spectra established in the very near field of grid-generated turbulence, i.e. highly

inhomogeneous turbulence? (ii) does the Kolmogorov scaling of the pressure spectrum de-

velop together with the energy spectrum? (iii) what kind of flow structures are relevant to

realizing such power-law scalings?

To this end, we numerically investigate a turbulent flow generated with a single square grid

[see Fig. 1] and a constant inflow velocity [10, 13–17], using Direct Numerical Simulation

(DNS). In the previous studies, the presence of the power-law scalings of energy spectra

and second-order velocity structure functions has been investigated along the centerline of

the grid and along the bar-centerline. Our interest is to understand the origin of power-

law scalings of energy and pressure spectra in the near field of the grid where the flow is
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statistically inhomogeneous. For this purpose, we have conducted long-time DNS so that

we can investigate well-defined frequency spectra along a shear-layer line which we define in

Sec. III.

The origin of multi-scale fluctuations related to power-law scalings of energy spectra is

also discussed in this paper in terms of coherent structures across various length scales.

We therefore use a coarse-graining method to filter specific length-scale fluctuations from

continuous signals/fields of turbulence [e.g., 6, 7, 18–22]. The visualization method based

on enstrophy isosurfaces can only detect small-scale dissipative structures, whereas our aim

is to detect coherent vortical structures at various scales. Such methods have been exploited

for several turbulent flows [7, 19, 22–24]. For example, Goto et al. [7] and Motoori and

Goto [22] have demonstrated a hierarchy of tubular vortical structures of different sizes

in the inertial subrange in triply periodic turbulence (see e.g. Fig. 1 in Ref. [7]) and in

a turbulent boundary layer (see e.g. Fig. 4 in Ref. [22]). This approach is effective when

investigating multi-scale spatial fluctuations relevant for power-law scalings of spectra in our

grid-generated turbulence.

Our aim in this paper is to investigate the spatial origin of power-law scalings in energy

and pressure spectra and multi-scale coherent structures related to them in the inhomoge-

neous and anisotropic near field of grid-generated turbulence. This paper is composed as

follows. In the next section, we explain the numerical methods, conditions, and our anal-

ysis tools. In Sec. III, we firstly examine the streamwise evolution of turbulence statistics

along the shear-layer line. Secondly, we pay some special attention to two characteristic

frequencies detected in the grid-generated turbulence. Thirdly, we present evidence of tur-

bulent coherent structures at several scales in the grid-generated turbulence, by exploiting

three-dimensional flow field data of DNS. To the best of our knowledge, this is the first such

attempt in the grid-generated turbulence. Fourthly, we discuss inter-scale energy fluxes in

relation to the other results of this section. Finally, we summarize our conclusions in Sec. IV.
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II. DIRECT NUMERICAL SIMULATIONS

A. Numerical schemes and parameters

We perform DNS of single-square grid-generated turbulence by solving the momentum

equation,

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u+ f , (1)

with the continuity equation,

∇ · u = 0 , (2)

where u is the velocity field, ρ and ν are, respectively, the density and the kinematic viscosity

of the fluid, both of which are assumed to be constant, and f is the external force used in

an immersed boundary method. As shown in Fig. 1, x is the streamwise direction and y

and z are the two-cross flow directions. The periodic boundary conditions are imposed for

y- and z-directions. The inflow velocity at the beginning of the computational domain in

the streamwise direction is U∞, and no disturbance is imposed on the inlet flow. For the

outlet flow at x = Lx, a standard convection equation is used.

We use a flow solver, Incompact3d [25, 26], to integrate (1) and (2), which can be run on

parallel supercomputers using a two-dimensional domain decomposition strategy. The solver

is based on sixth order compact finite schemes [27] for spatial differentiation and the third-

order Adams–Bashforth scheme for time integration. In order to treat the incompressibility

condition (2), a fractional step method is employed and the Poisson equation is solved in

Fourier space. More details about the solver are given in Refs. [25, 26].

The grid is modelled by using an immersed boundary method [28]. This method enables,

by adding an extra forcing f in (1), to enforce the no-slip boundary condition on the wall

of the grid. The shape of the grid used is shown in Fig. 1. L0 is the lateral length of each

bar of the grid and t0 is their lateral thickness, where L0 = 5.3t0, and their streamwise

thickness is 0.25t0. The computational domain is Lx × Ly × Lz = 8L0 × 2L0 × 2L0 and

is descritized with 2881 × 720 × 720 grid points. Our parameter setting is the same as

the one used for the highest resolution DNS of Laizet et al. [29]. The spatial resolution

∆ = ∆x = ∆y = ∆z lies between 0.5⟨η⟩ and 2⟨η⟩ throughout the domain, where η = ν
3
4 ϵ−

1
4

is the Kolmogorov length scale and the brackets ⟨·⟩ denote the time average. More details on
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the validation of the simulation can be found in Ref. [29], where the resolution effects on fine-

scale features and in particular on vorticity and strain rate statistics using the Q–R diagram

[30] are demonstrated. We have run a set of simulations for 6.94 ≤ t/(L0/U∞) ≤ 55.56,

so that the total time length of our simulation is 48.61L0/U∞. The initial condition of our

simulation is taken from fully developed turbulent flow. We have stored the numerical data

of 17,500 snapshots of velocity and pressure fields in the subdomain (0 ≤ x/x∗ ≤ 0.315,

−0.75 ≤ y/L0 ≤ 0.25, −0.25 ≤ z/L0 ≤ 0.25), with a time interval, 2.8 × 10−3L0/U∞.

We emphasize that this sufficiently long time series data enables us to precisely estimate

time averages (denoted by brackets ⟨·⟩) and power spectra of the three velocity components

and pressure. We have also stored the numerical data of fewer snapshots of velocity and

pressure fields in the full computational domain which are used for flow visualizations (see,

e.g. Fig. 9).

In the present study, the streamwise distance x from the grid is non-dimensionalized using

the wake interaction length-scale [31, 32],

x∗ = L2
0/t0 , (3)

and the full computational domain is set to −0.236 ≤ x/x∗ ≤ 1.27, −1 ≤ y/L0, z/L0 ≤ 1.

Our global Reynolds numbers ReL0 = L0U∞/ν and Ret0 = t0U∞/ν are 21600 and 4075,

respectively. The Reynolds number Ret0 = 4075 lies in the range (Re > 1300) where, for

circular cylinder wakes, Kelvin–Helmholtz vortices can be generated in the shear layer past

of the bluff body. (See Ref. [33].)

We also introduce the non-dimensional frequency,

St = ft0/U∞ , (4)

based on the bar thickness t0. In our setup, the vortex shedding Strouhal number Sts (defined

in terms of t0 and U∞) is found to be 0.186. This value of the shedding Strouhal number is

in good agreement with those of experiments. Melina et al. [16] determinded experimentally

that the vortex shedding Strouhal number of grid-generated turbulence with a single square

grid (L0 = 229.0 mm and t0 = 43 mm) as the one investigated in this study is about 0.19

for two different inlet velocities (U∞ = 5 and 17 m/s). Their Taylor scale-based Reynolds

number at x/x∗ ≈ 0.5 on the centerline is Reλ ≈ 200 for U∞ = 5 m/s and Reλ ≈ 350 for

U∞ = 17 m/s, while our simulation returns Reλ ≈ 100 at x/x∗ = 0.5. Numerical results
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for the streamwise evolution of Reλ along the centerline have been reported in Fig. 7 of

Ref. [29].

B. Coarse-graining method

Turbulent flows are composed of coherent structures [34, 35]. Topologies of fine-scale

coherent structures have been investigated in terms of invariants of the velocity gradient

tensor [8, 36–41]. One may decompose the velocity gradient tensor into the rate of strain

tensor sij = 1
2
(
∂uj

∂xi
+ ∂ui

∂xj
) and the rate of rotation tensor ωij = 1

2
(
∂uj

∂xi
− ∂ui

∂xj
). The second

invariant Q of the velocity gradient tensor can be written as

Q = Qω +Qs , (5)

where

Qω =
1

2
ωijωij and Qs = −1

2
sijsij . (6)

Locations in the flow where Q > 0 are dominated by vorticity rather than strain. This is

one of the quantities exploited to visualize fine-scale coherent motions in a variety of flow

geometries [37, 38].

Since the velocity gradient is predominately determined by dissipation-scale motions, flow

visualizations of physical quantities based on velocity gradients, by nature, highlight dissipa-

tive small-scale coherent structures in the flow. Our interest lies in multi-scale flow structures

in the flow relating to the broad spectra which will be shown in Sec. III B. Therefore, in this

study we apply coarse-graining to instantaneous turbulent flow fields [6, 7, 18–21] in order

to extract spatial fluctuations with several length scales.

In the present study, we use the three-dimensional Gaussian low-pass filter, which is

written in physical space as

G(r;σ) =
1

(
√
2πσ)3

e−
|r|2

2σ2 . (7)

Here, σ is the filter width. By using this filter, a quantity A(x) is coarse-grained as follows:

Ã(x;σ) =

∫
G(x− x′;σ) A(x′) dx′ . (8)

It is sometimes useful to do the coarse-graining in Fourier space because the Fourier trans-

form of Ã(x;σ) is expressed by ̂̃
A(k; kc) = Ĝ(k; kc) Â(k) (9)
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with

Ĝ(k; kc) = e
− |k|2

2k2c , (10)

where kc = 1/σ is the cut-off wavenumber. We apply Gaussian filtering in either real space

(8) or Fourier space (9) depending on the data structure. Gaussian filters were used in

previous studies to investigate multi-scale structures in triply-periodic turbulence [19] and

wall-bounded turbulence [22–24].

It is useful to connect spatial with temporal variations of velocity signals. For this,

we need to relate the cut-off wavenumber kc of the Gaussian filter (10) to a frequency f .

Guided by the concept encapsulated in Taylor’s frozen hypothesis [42, 43], we define the

cut-off wavenumber,

kc(St) = 2πf/U∞ = 2πSt/t0 , (11)

in terms of the inflow velocity U∞, so that kc is a function of non-dimensional frequency St

(= ft0/U∞). This cut-off wavenumber kc is used in Sec. III C to make a link with frequency

spectra, which are shown in Sec. III B.

Finally, we define the coarse-grained quantities used in the present study. After obtaining

the coarse-grained velocity gradient tensor
∂ũj

∂xi
with the use of Eq. (8) or Eq. (9), we decom-

pose it into the coarse-grained strain-rate tensor s̃ij =
1
2
(
∂ũj

∂xi
+ ∂ũi

∂xj
) and the coarse-grained

rotation-rate tensor ω̃ij =
1
2
(
∂ũj

∂xi
− ∂ũi

∂xj
). Using these, we define the second invariant Q̃ of the

coarse-grained velocity gradient tensor, as

Q̃ = Q̃ω + Q̃s (12)

where

Q̃ω =
1

2
ω̃ijω̃ij and Q̃s = −1

2
s̃ij s̃ij . (13)

III. RESULTS

A. Streamwise evolution of energy and pressure fluctuations

In grid-generated turbulence, there exist shear-layer regions past the bars of the grid.

The Reynolds number Ret0 based on t0 of our simulation is 4075 and therefore lies in the

range (Re > 1300) where Kelvin–Helmholtz vortices can be generated in the shear-layer
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FIG. 2. The mean field of streamwise velocity obtained by subtracting the inflow velocity U∞ on

the plane at z = 0. The time average is taken over the period 6.94 ≤ t/(L0/U∞) ≤ 55.56. The

black line denotes the locations which satisfy ⟨ux⟩ − U∞ = 0. The cross-section of the grid shown

in Fig. 1 is illustrated by the black rectangle.

regions past a circular cylinder (see Ref. [33]). Similarly to this observation in the wake

of a circular cylinder, intense turbulent fluctuations start to be generated in shear layers

behind the bars of the grid shown in Fig. 1. Let us first demonstrate how the signatures

of developed turbulence such as the −5/3 power-law scaling of energy spectra appear and

develop along a shear layer. For this purpose, we define the shear-layer line by the locations

x past a bar of the grid which satisfy

⟨ux⟩(x)− U∞ = 0. (14)

In Fig. 2, the shear-layer line is represented by the black thick line, which separates ⟨ux⟩ >

U∞ from ⟨ux⟩ < U∞. The starting point of the shear-layer line is indicated by the red double

square in Fig. 1, whose coordinate is (x, y, z) = (0,−(L0 − t0)/2 + 0.0589t0, 0).

Figure 3 shows streamwise evolutions of turbulent intensities Ix =
√

⟨u′2
x ⟩/U∞, Iy =√

⟨u′2
y ⟩/U∞, and Iz =

√
⟨u′2

z ⟩/U∞ in x-, y-, and z-directions, and root-mean-square pressure

fluctuation prms =
√

⟨p′2⟩/ρ U2
∞, along the shear-layer line, where u′

x = ux − ⟨ux⟩, u′
y =

uy−⟨uy⟩, and u′
z = uz−⟨uz⟩ are the three fluctuating velocity components and p′ = p−⟨p⟩ is

the pressure fluctuation. The evolutions of the turbulent intensities are qualitatively similar

to those previously found along the centerline of grid-generated turbulence [9, 31, 32, 44, 45]

and within shear layers in the near field of the turbulent flow past a square cylinder [41].
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FIG. 3. The streamwise evolution of root mean square velocity components and pressure along

the shear-layer line as a function of the streamwise coordinate. The time average is taken for the

period 6.94 ≤ t/(L0/U∞) ≤ 55.56.

The peak of Ix is found at x/x∗ ≈ 0.15. We hereinafter refer to 0 ≤ x/x∗ <∼ 0.15 as the

production region and 0.15 <∼ x/x∗ as the decay region. Ix is much larger than Iy and Iz

until x/x∗ = 0.15 and Iy becomes the largest beyond x/x∗ = 0.15. Evidently, turbulent

velocity fluctuations are statistically anisotropic along the shear-layer line, particularly in

the very near field (0 ≤ x/x∗ <∼ 0.05).

In Fig. 4 we plot the space-time diagrams which show the time evolutions (48.6 ≤

t/(L0/U∞) ≤ 51.6) of fluctuating velocity components u′
x/U∞, u′

y/U∞, u′
z/U∞, and fluc-

tuating pressure p′/ρU2
∞ along the shear-layer line. It is found in the diagrams that, going

downstream from the starting point x/x∗ = 0, intense high-frequency fluctuations start to

appear at x/x∗ ≈ 0.05 for all the quantities. Going further downstream (0.15 <∼ x/x∗), the

frequency of alternations of positive-valued and negative-valued contours becomes lower. As

shown below, the former high-frequency fluctuations stem from the shear-layer instability,

whereas the latter from the vortex shedding.
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FIG. 4. Space-time diagrams of (a) u′x, (b) u′y, (c) u′z, and (d) p′. The horizontal axis shows

the streamwise coordinate (0 ≤ x/x∗ ≤ 0.315), and the vertical axis shows the time (48.6 ≤

t/(L0/U∞) ≤ 51.6).

B. Streamwise evolution of energy and pressure spectra

We now move to the frequency spectra of the three fluctuating velocity components and

the fluctuating pressure, which are defined, respectively, by

Ei(f) = lim
T→∞

1

T
|û′

i(f)|2 (i = x, y, z) and Ep(f) = lim
T→∞

1

T
|p̂′(f)|2 . (15)
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FIG. 5. Logarithmic plots of the compensated power spectra (a) ExSt
5
3 , (b) EySt

5
3 , (c) EzSt

5
3 ,

and (d) EpSt
7
3 , against the Strouhal number St = ft0/U∞, at the six different locations in the

shear-layer line: x/x∗ = 0, 0.01, 0.031, 0.058, and 0.10.

They are computed on the basis of the Fourier transforms û′
x, û′

y, û′
z, and p̂′ of long

time series data for u′
x, u

′
y, u

′
z and p′ (6.94 ≤ t/(L0/U∞) ≤ 55.56). Figure 5 shows the

compensated frequency spectra of velocity and pressure fluctuations at five different locations

x/x∗ = 0, 0.01, 0.031, 0.058, and 0.10 along the shear-layer line. The velocity and pressure

spectra are multiplied by St
5
3 and St

7
3 , respectively. It is clear that the spectra undergo

a drastic change while moving downstream. The energy spectra seem to be developing a

continuous region at x/x∗ ≈ 0.1.

Another observation regarding the spectra in the production region is that they have

strong peaks at two characteristic frequencies: one is at St = 0.186 and the other is around

2 <∼ St <∼ 3. The lower frequency is the so-called vortex-shedding frequency [16]. The
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FIG. 6. Streamwise evolution of power spectra (a) Ex, (b) Ey, (c) Ez, and (d) Ep. The horizontal

axis shows the streamwise coordinate (0 ≤ x/x∗ ≤ 0.315).

higher frequency is related to the shear-layer instability [46–48]. Around the streamwise

location x/x∗ ≈ 0.031, energy and pressure spectra, especially Ey(St) and Ep(St), start to

demonstrate a significant growth around 2 <∼ St <∼ 3 [see Figs. 5(b,d)]. This frequency

is about 10 times larger than the vortex-shedding frequency. It is important to note that

the spectra first acquire (see the spectra at x/x∗ = 0.058) the energy at the shear-layer

instability frequency and the spectra around the vortex-shedding frequency grow later.

To identify the origin of these two characteristic peaks of the spectra, we show, in Fig. 6,

plots of power spectra of velocities and pressure as functions of the streamwise location. It
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is clear in Figs. 6(a) and 6(b) that Ex and Ey at the vortex-shedding frequency St = 0.186

start to become intense at x/x∗ ≈ 0.1. Because the central axis of rotation of large-scale

vortices shed in the shear layers is aligned parallel to z-axis, as seen in Fig. 10, the peak

at the vortex-shedding frequency in Ez is not high relative to those in Ex and Ey [compare

Fig. 6(c) with Figs. 6(a) and 6(b)]. Crucially, the significant peak of Ep at the vortex

shedding frequency is observed throughout the streamwise range shown in Fig. 6(d).

Next, let us look at the evolution of the shape of the spectra in the downstream region,

0.058 ≤ x/x∗ ≤ 0.28 (Fig. 7). There is a clear tendency that, in the production region [see

black lines in Figs. 7(a,b,c)], the energy spectra at the shear-layer frequency first become

intense, and then those around the vortex-shedding frequency become stronger while those at

the shear-layer frequency become weaker. As the spectra at the vortex-shedding frequency

become weaker, the energy spectra gradually start to demonstrate a very defined −5/3

power-law scaling. The energy spectra in the decay region, on the other hand, keep the

−5/3 power-law scaling [see blue lines in Figs. 7(a,b,c)], where the peaks of Ex and Ey at

the shedding frequency are persistent.

We emphasize that this spatial evolution of the energy spectrum along the shear-layer

line is qualitatively different from the one along the centerline of the grid. This is seen by

comparing the above observation (Fig. 7) with Fig. 20 in Ref. [8] and Fig. 8 in Ref. [9]. The

first difference is that the shear-layer frequency is absent on the spectra along the centerline

before a −5/3 power-law scaling emerges. The second difference is that along the shear-

layer line the slope of the inertial range spectra is found to be steeper before −5/3 energy

spectrum appears, whereas they are shallower along the centerline. Along the shear-layer

line, as examined in the next subsection, turbulent fluctuations start to build up from smaller

to larger scales.

Another intriguing observation relates to the streamwise evolution of the pressure

spectrum. The way that the flow approaches the turbulent state characterized by the

Kolmogorov-like scaling is different between the energy and pressure spectra in the decay

region (see blue lines in Fig. 7). Beyond the location where turbulence intensities are

maximal (≈ 0.15x∗), the energy spectra show the −5/3 power-law scaling and this scaling

exponent remains the same up to x/x∗ = 0.315. For the pressure spectrum, on the other

hand, the scaling exponent is decreasing along the downstream direction such that it is close

to −5/3 at x/x∗ = 0.16, −2 at x/x∗ = 0.2, and −7/3 at x/x∗ = 0.28. This dissimilarity of
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FIG. 7. Logarithmic plots of the power spectra (a) Ex, (b) Ey, (c) Ez, and (d) Ep, against the

Strouhal number St = ft0/U∞. The spectra are computed at the six different streamwise locations

in the shear-layer line: x/x∗ = 0.058, 0.1, 0.13, 0.16, 0.2, and 0.28 from top to bottom. For

clarity, the spectra shown are shifted downward along the vertical axis by multiplying by a factor

of 5.0×10−5, 5.0×10−7, 5.0×10−9, 5.0×10−11 and 5.0×10−13, with the exception of the ones on

the top. The black-colored and blue-colored spectra belong to the production and decay regions,

respectively. The red lines from top to bottom denote the slopes of power-law exponents (a,b,c)

−11/3,−7/3,−2,−5/3,−5/3,−5/3 and (d) −4,−3,−5/3,−5/3,−2,−7/3.
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FIG. 8. Space-time evolution of coarse-grained enstrophy Q̃ω along the shear-layer line. The cut-off

wavenumbers (11) used are (a) kc(2) and (b) kc(0.186). We observe the periodic behaviors with

the period (a) about 0.1L0/U∞ in the production region at the scale 1/kc(2) and (b) about L0/U∞

in the decay region at the scale 1/kc(0.186).

behaviors of the energy and pressure spectra may be attributed to the non-locality of the

pressure field.

C. Streamwise evolution of coherent vortices

In Sec. III B, we have demonstrated the streamwise evolutions of energy and pressure spec-

tra along the shear-layer line. In the spectra, we have detected two characteristic frequencies,

the vortex-shedding frequency (St = 0.186) and the shear-layer frequency (2 <∼ St <∼ 3), and

confirmed their streamwise evolution. It is noticeable in Figs. 5(b,d) that rapid temporal

fluctuations are first excited along the shear-layer line, which is the spatial origin of intense

temporal fluctuations. The purpose of this subsection is to elucidate a connection between

the energy and pressure spectra observed in the previous subsection and several-scale coher-

ent structures in the grid-generated turbulence.

For achieving this, we use the coarse-graining method introduced in Sec. II B. Recall that

we need to determine the filter scale σ in Eq. (7), or equivalently the cut-off wavenumber

kc in Eq. (10). Here, we show evidence for the validity of Eq. (11) for determining kc as a
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function of frequency f . Figure 8 shows the space-time diagrams of the enstrophy Q̃ω coarse-

grained at two different wavenumbers. The cut-off wavenumbers used in Figs. 8(a) and 8(b)

for Gaussian low-pass filtering are kc(2) and kc(0.186), respectively, which correspond to the

shear-layer frequency St=2 and the vortex-shedding frequency St=0.186. We can confirm

that high-frequency coherent signals are observed in the contour of Q̃ω with kc(2) in the range

0.05 <∼ x/x∗ <∼ 0.1 [see Fig. 8(a)]. The high-frequency coherent signals are relevant to the

shear-layer dynamics because the period of the temporal oscillation is about 0.1L0/U∞, which

corresponds to St = 2 because 2U∞/t0 ≈ 10U∞/L0. Recall that L0/t0 = 5.3. As the cut-off

wavenumber is decreased, such signals become less and less evident as smaller-scale spatial

fluctuations are filtered out. As a result, only slowly evolving and large-scale fluctuations

are observed in the space-time diagram for the cut-off wavenumber kc(St = Sts = 0.186)

[Fig. 8(b)]. This figure shows that the time scale of the temporal oscillation is about L0/U∞,

which corresponds approximately to the non-dimensional frequency St = ft0/U∞ = 0.186.

Hence, temporal and spatial signals are reasonably connected using the low-pass filtering

with the cut-off wavenumber (11).

We now compare the isosurfaces [Fig. 9(a)] of the unfiltered second invariant (5) of the

velocity gradient tensor with those [Figs. 9(b) and (c)] of filtered ones. The streamwise range

in Fig. 9 is 0 ≤ x/x∗ ≤ 0.419 and the two spanwise ranges are −1 ≤ y/L0 and z/L0 < 1.

The isosurfaces visualized in Fig. 9(a) are found to be small-scale tube-like structures and

large-scale spatial coherence is not observed in this visualization. Figure 9(a) clearly shows

that we need coarse-graining (Sec. II B) of the velocity gradients to capture coherent vortical

structures larger than the dissipative scale.

Let us move to the larger-scale coherent vortices observed in Figs. 9(b) and 9(c), which are

coarse-grained with the cut-off wavenumbers kc(2) and kc(0.186). Looking at blue vortices in

Fig. 9(c), we observe large-scale coherent shedding vortices whose spatial scale is comparable

to the scale of the single-square grid. These large-scale structures have shapes of squares.

There are smaller square-shaped coherent structures shed by the inner square wall and larger

ones shed by the outer square wall, which appear alternately.

We observe in Fig. 9(b) that the (yellow) vortical structures coarse-grained with the cut-

off wavenumber kc(2) are parallel to the bars in the near-field region. This verifies that they

are due to a shear-layer instability [46, 47, 49–52]. In the downstream region (x/x∗ >∼ 0.15),

however, the orientation of most of the yellow vortices is not parallel to the bar but they
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FIG. 9. Visualizations of multi-scale coherent vortices in the computational domain whose stream-

wise range and spanwise ranges are 0 ≤ x/x∗ ≤ 0.42 and −1 ≤ y/L0, z/L0 < 1. They are

visualized by isosurfaces of (a) Q and (b,c) Q̃. The cut-off wavenumbers used for low-pass filter-

ing are (b) kc(St = 2.0) and (c) kc(0.186). The values of isosurfaces are (a) 12000(U∞/L0)
2, (b)

200(U∞/L0)
2, and (c) 1.5(U∞/L0)

2. (d) Superimposed visualization. The snapshots are taken at

time t = 48.61L0/U∞. The grid width indicates 0.05x∗.

are in quasi-streamwise direction. Next, we investigate this process in more detail.

Figure 10, which is a magnification of the subdomain of Fig. 9(d) shown by the green box

in Fig. 9(a), is a snapshot of coherent structures of different sizes in the near-field region.

To further clarify that the yellow vortices are due to shear-flow instability in the region

x/x∗ <∼ 0.1, we show a magnification of Fig. 10 in Fig. 11(a). In this very near-field region the

yellow vortical structures are indeed observed as spanwise vortices aligned parallel to the bar.

Looking at Fig. 10 again, in the downstream region x/x∗ >∼ 0.15, the intermediate (yellow)
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FIG. 10. Snapshot of multi-scale coherent structures in the subdomain (0 ≤ x/x∗ ≤ 0.315, −0.75 ≤

y/L0 ≤ 0.25). Red isosurfaces denote Q = 12000(U∞/L0)
2. Yellow isosurfaces denote Q̃ =

120(U∞/L0)
2 with the cut-off wavenumber kc(2). Blue isosurfaces denote Q̃ = 1.5(U∞/L0)

2 with

the cut-off wavenumber kc(0.186). Transparent grey isosurface denote ux = U∞. The snapshot is

taken at time t = 48.89L0/U∞. The cuboid domains drawn with red and blue lines are used in

Figs. 11(a) and 11(b), respectively. The grid width indicates 0.05x∗.

vortices tend to align with the stretching direction which bridges the counter-rotating large

vortices. It is a mechanism which could be a priori linked to a cascading event originating

from the largest (shedding) vortices. However, recall that broad continuous energy spectra,

even −5/3 power law spectra, are established well before this. They are in fact established

in the region 0.1 <∼ x/x∗ <∼ 0.15. In this upstream region, a stretching field between a

yellow vortex created by the shear-layer instability and a shedding (blue) vortex plays an

important role. In fact, we observe in the lower region in Fig. 10 that an anti-clockwise

yellow vortex located around x/x∗ ≈ 0.1 and an anti-clockwise blue vortex located around

x/x∗ ≈ 0.2 cooperate to stretch and create intermediate-scale vortices between them. This

may be related to the reason why the continuous energy spectrum is established in the region

0.1 <∼ x/x∗ <∼ 0.15.

We now examine how the smallest-scale (red) vortices are created. In the very near field

[Fig. 11(a)], the smallest-scale (red) vortices align in the direction perpendicular to the axes
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FIG. 11. Snapshot of coherent structures in the cropped domains shown in Fig. 10: (a) the cuboid

domain with red lines (0 ≤ x ≤ 0.105), and (b) the cuboid domain with blue lines (0.157 ≤ x ≤

0.262). t = 49.58L0/U∞. (a,b) Red isosurfaces denote Q = 2000(U∞/L0)
2. Yellow isosurfaces

denote Q̃ = 120(U∞/L0)
2 with the cut-off wavenumber kc(2). (a) Transparent grey isosurface

denote ux = U∞. The grid width indicates 0.01x∗.

of the yellow vortices, which are created by the shear-layer instability. This suggests that

the smallest-scale vortices are generated by vortex stretching in the straining fields between

intermediate-scale (yellow) spanwise co-rotating vortices.

Figure 11(b) shows the smallest-scale vortices further downstream, specifically the

cropped domain with blue lines in Fig. 10, whose streamwise range (0.157 ≤ x/x∗ ≤ 0.262)

is within the decay side on the shear-layer line. A large number of clustered small-scale

tubular (red) vortices appear in the vicinity of intermediate-scale (yellow) vortices. The

orientation of these small-scale vortices is random in the decay side of the shear-layer line,

whereas it is strongly anisotropic in the very near-field side of this line [see Fig. 11(a)].

In summary, the development of the energy spectrum is related to the generation pro-

cess of the coherent vortical structures. In the very near-field region, intermediate (yellow)

vortices are first generated due to the shear-layer instability [Fig. 11(a)]. Their spectral sig-

nature is the strong spectral peak at St ≈ 2−3 observed at x/x∗ ≈ 0.05, see Figs. 7(a,b,c,d).

When the (blue) shedding vortices are established around x/x∗ ≈ 0.1, the peak at St = 0.186

becomes conspicuous in Ex and Ey [Figs. 7(a,b)]. One can expect the interactions be-
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tween these shedding vortices and the shear-layer vortices to excite turbulence fluctuations

and vortices at intermediate length-scales, see Fig. 10, so that frequencies in the range

0.186 < St <∼ 2 acquire energy. Perhaps surprisingly, the energy spectrum appears to tend

to a close to −5/3 power-law scaling as a result of this cooperative process (Fig. 7) in the

region 0.1 <∼ x/x∗ <∼ 0.15 on the shear-layer line. Further downstream on this line, where the

near to −5/3 power law of the energy spectra persists, the blue large-scale vortices remain

present. This is consistent with the persistence of peak at St = 0.186 which remains clearly

well-defined in the spectra (Fig. 7).

D. Streamwise evolution of scale-by-scale energy transfer

The presence of large-scale coherent structures can be expected to interfere with inter-

scale energy transfer and may be a key ingredient leading to non-equilibrium, i.e. unsteadi-

ness in time and non-uniformity across scales of inter-scale transfer rates [9, 12, 53–56]. Hav-

ing demonstrated the streamwise evolution of spectra (Sec. III B) and characteristic coherent

vortical structures (Sec. III C), we now discuss inter-scale energy transfers by evaluating the

streamwise evolution of the scale-by-scale turbulent energy flux along the shear-layer line.

A reference situation is homogeneous stationary turbulence where the spherically averaged

inter-scale flux is balanced by the turbulence dissipation rate [9, 45, 57–59], as∫
r̂ ·

⟨
δu

r
|δu|2

⟩
dΩ ≈ −16π

3
⟨ϵ⟩ , (16)

where δu(x, rd, t) = u(ξ, t) − u(ξ′, t) is the two-point velocity difference, x = (ξ + ξ′)/2

is the centroid, rd = ξ − ξ′ is the separation vector, r = rd/2, r̂ = r/r and dΩ is the

differential of the solid angle in the r-space. The minus sign on the right-hand side indicates

a forward cascade, from large to small scales. If turbulent velocity field is locally isotropic

such that r̂ · ⟨δu|δu|2⟩ is the same irrespective of the orientation of the unit vector r̂, then

Eq. (16) leads to the 4/3 law [9, 57, 59–61]. This law is equivalent to the 4/5 law for the

third-order longitudinal velocity structure function.

We define and compute the normalized spherically averaged energy flux Π∗(x, r)

Π∗(x, rd) =

⟨∫
r̂ · δu

r
|δu|2dΩ

⟩/(
− 16π

3
⟨ϵ⟩

)
, (17)

where ⟨ϵ⟩ is computed at the centroid x. If the energy flux balances over scales, a constant

scale range emerges in the distribution of Π∗(x, rd) against rd. Figure 12 shows the scale
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FIG. 12. Scale distribution of normalized spherically-averaged energy flux Π∗(x, rd) in physical

space. x is chosen at six different locations on the shear-layer line whose streamwise location is

x/x∗ = 0.031, 0.058, 0.10, 0.16, 0.20, 0.28.

distribution of Π∗(x, rd) at six different centroids x on the shear-layer line. The streamwise

locations of these centroids are x/x∗ = 0.031, 0.058, 0.1, 0.16, 0.2, 0.28. With the use

of Eq. (11), the spatial scale rd = 0.5t0 relates to the shear-layer instability frequency

St = 2. We find that the distribution of Π∗(x, rd) against rd varies significantly with

centroid position. The three black-colored curves correspond to the production region (0 ≤

x/x∗ <∼ 0.15) where the spectra do not exhibit Kolmogorov-like scalings yet, whereas the

three blue-colored curves are obtained in the decay region (0.15 <∼ x/x∗). Very near the

grid bar (x/x∗ = 0.031), Π∗(x, rd) is negative over the entire range of rd, suggesting the

energy flowing from small to large scales. Π∗(x, rd) becomes clearly positive over all scales

rd up to at least 1.25t0 once the decay region is reached. From x/x∗ = 0.10 to 0.16, where

we identified the cooperative action between the shear-layer and the shedding vortices, the

power-law exponent of the energy spectra transients from near −7/3 to near −5/3 [see

Fig. 7(a,b,c)]. The behaviour of Π∗(x, rd) in this region evolves quickly and involves both

positive and negative values of Π∗(x, rd). The end of the production region and start of the

decay region around x/x∗ = 0.16 coincides with the appearance of near −5/3 spectra. It is

from that point and moving downstream along the shear-layer line that the sign of Π∗(x, rd)
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is uniformly positive (at least in the range rd/t0 <∼ 1.25, i.e. St >∼ 0.8) suggesting that

fluctuating kinetic energy is transferred, on average, from larger to smaller scales. However

Π∗(x, rd) is neither equal to 1 nor in fact constant with varying rd in the decay region (see

Fig. 12), which is what one would have expected in homogeneous stationary turbulence in

the presence of −5/3 energy spectra. Of course, the present flow field is not statistically

homogeneous and one should not necessarily expect Kolmogorov equilibrium scalings, but

it is noteworthy that −5/3 energy spectra appear without constant Π∗(x, rd). Moving

further downstream on the shear-layer line, Π∗(x, rd) shows a tendency towards a broad

range constancy but does not reach it till the most downstream position in Fig. 12, which is

x/x∗ = 0.28. However, the pressure spectrum which varies with downstream position on the

shear-layer line [see Fig. 7(d)] achieves its Kolmogorov-like −7/3 shape at x/x∗ = 0.28, i.e.

before any constancy of Π∗(x, rd) might be achieved. The results of Ref. [12] and Ref. [9]

suggest that Π∗(x, rd) might well achieve constancy further downstream, perhaps even a

constant value close to −1, but in a region which remains highly inhomogeneous.

IV. CONCLUSIONS

Near −5/3 and −7/3 power-law scalings of the energy and pressure frequency spectra

are rapidly established in the near-field region behind bars of a grid obstructing a uniform

laminar stream. The flow generated by the bars is statistically highly inhomogeneous, yet

the exponents of the spectra are reminiscent of Kolmogorov’s theory [1] predictions. In this

study, by virtue of long-time DNS integrations, we have shed some light on the origin of

these spectra.

We have found peaks at two characteristic frequencies in both the energy and the pressure

spectra: a vortex-shedding frequency (St = 0.186) and a shear-layer frequency (St ≈ 2).

These frequencies appear immediately in different spectra, but the shear-layer’s spectral

signature is very soon replaced by a broad spectrum on both sides of that frequency. The

spectra evolve further by filling the gap between the vortex shedding and the shear-layer

frequencies, eventually leading to a near −5/3 power-law energy spectra at the point on

the shear-layer line where the turbulence intensity reaches a maximum. Interestingly, the

pressure spectrum does not evolve in the same way, but reaches a −7/3 power-law shape

significantly further downstream [Fig. 7(d)].
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We discussed the spatial development of these spectra in terms of turbulent coherent

structures of various sizes, obtained by using Gaussian low-pass filtering (8) of instanta-

neous turbulent flow fields. Concretely, in this very near field turbulence, intermediate-

scale vortices (the yellow isosurfaces in Figs. 9–11) emerge in a slightly downstream region

(x/x∗ ≈ 0.05) because of the shear-layer instability, while large shedding vortices (the blue

isosurfaces in Figs. 9 and 10) are fully established in a downstream region (x/x∗ ≈ 0.1).

These two different coherent vortices at two different length scales have a large gap in their

time scales and interact cooperatively to generate intermediate-scale vortices in the region

0.1 <∼ x/x∗ <∼ 0.15 (Fig. 10), thereby rapidly leading to energy spectra proportional to, ap-

proximately, f−5/3 in a broad range of frequencies (Fig. 7). We emphasize that this process

is different from the conventional concept of an energy cascade with constant scale-by-scale

energy flux (Fig. 12).

Although we observe smaller-scale vortices (the red isosurfaces in Figs. 9–11) around the

intermediate-scale yellow vortices, which are relevant to frequencies higher than St > 3 in

the spectra of Fig. 7, this high-frequency region does not appear to be so important for

the establishment of the near −5/3 power-law scalings at the Reynolds number examined

here. The pressure spectrum established a near −7/3 power-law scaling significantly further

downstream, though also in the near-field very inhomogeneous turbulence. At the down-

stream point where this −7/3 power-law scaling finally appears, the scale-by-scale energy

flux which evolves significantly along the shear-layer line is still not constant over a broad

range of scales (Fig. 12). Further future investigations of the differences in the way energy

and pressure spectra develop (Fig. 7) are needed for a better understanding of turbulent

inter-scale transfers and their potentially important relations with spatial energy transfers.
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[21] J. I. Cardesa, A. Vela-Mart́ın, and J. Jiménez, “The turbulent cascade in five dimensions,”

Science 357, 782–784 (2017).

[22] Y. Motoori and S. Goto, “Generation mechanism of a hierarchy of vortices in a turbulent

boundary layer,” J. Fluid Mech. 865, 1085–1109 (2019).
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