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This paper presents a extented Kalman filter based on a dynamic model of a commercial lithium ion battery pack in automotive applications, and experimental data are collected using the Noao. This vehicle is an electric track with range extender, which has been developed and produced by the association Pôle de Performance de Nevers Magny-Cours (PPNMC). This model has been developed with MATLAB/Simulink to investigate the output characteristics of lithium-ion batteries. It incorporates I-V performance of the battery, battery capacity fading, temperature effect on battery performance, and the battery temperature rise. This estimation technique is used in order to estimate some parameters, which cannot be measured directly by physical sensors such as SOC and SOH and to compensate for uncertainties in the model parameters and the measurements. The proposed model is validated by comparing simulation results with experimental data collected through battery testbed of Noao vehicle.

I. INTRODUCTION

The limitation of resources and the climate change impose a change in the mode of personal transport. One promising solution is the use of electrical vehicles [START_REF] Khaligh | Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plugin hybrid electric vehicles: State of the art[END_REF], which give the possibility to use energy based on renewable sources. Even though electric vehicles show good results with regard to performance, they suffer from a draw back based on their limited autonomy, which is linked to the limited density of their energy storage [START_REF] Nicolas | Review of adaptive systems for lithium batteries state-of-charge and state-of-health estimation[END_REF]. This is why the electrochemical storages, especially the lithium ion battery systems, which promise the best performances, are under constant development [START_REF] He | Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach[END_REF], [START_REF] Lee | State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge[END_REF]. A quick fixi no r d e rt og a i n autonomy is the use of a combination of different energy sources -so called hybrid systems [START_REF] Khaligh | Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plugin hybrid electric vehicles: State of the art[END_REF], [START_REF] Asus | Simple method of estimating consumption of internal combustion engine for hybrid application[END_REF], [START_REF] Emadi | Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles[END_REF]. Based on the information available from the racing team it is difficult to get comprehensive information about the battery system that is installed. Most of the time not even the battery supplier is known. On the other hand race track vehicles are interesting objects for a study as they are exposed to extreme requirements with regard to performance and thus undergo fast aging. In order to be able to analyze a race track vehicle, it is mandatory to dispose of comprehensive models of all key components inside the system. Furthermore, if the model is than used to evaluate the system control, the degree of precision of each component model can be moderate. A multitude of approaches to model lithium ion batteries for vehicle applications are available, chemical models allow a close view to the reaction process [START_REF] M E Y E R | A g e r t ," S t u d yo ft h el o c a l soc distribution in a lithium-ion battery by physical and electrochemical modeling and simulation[END_REF], [START_REF] Plett | Extended kalman filtering for battery management systems of lipb-based hev battery packs[END_REF] and 3D models [START_REF] G O L D I N | Three-dimensional particle-resolved models of li-ion batteries to assist the evaluation of empirical parameters in one-dimensional models[END_REF], [START_REF] Sun | Three-dimensional thermal modeling of a lithium-ion battery pack[END_REF] give a good impression about the variations in reaction over the entire cell in order to give important responses for cell developers. Cell users prefer to use zero dimensional electrochemical models that allow to describe a battery system depending on its key parameters like state of charge (), state of health (), current, voltage and temperature. Nevertheless in order to use one of these models it is mandatory to know the key parameters of the lithium ion battery, which is not always possible.

The Extended Kalman filter is a valuable instrument in order to evaluate a system. It allows to identify system parameters using a basic model and measurement values. It has been used successfully in order to describe different kinds of process, such as photobioreactor [START_REF] Daboussy | State estimation of a hydrogen production process by the green microalga chlamydomonas reinhardtii[END_REF], and they have already shown their use in the domain of batteries for vehicle applications [START_REF] Nicolas | Review of adaptive systems for lithium batteries state-of-charge and state-of-health estimation[END_REF], [START_REF] Watrin | Multiphysic lithium-based battery pack modelling for simulation purposes[END_REF], [START_REF] Lee | Li-ion battery soc estimation method based on the reduced order extended kalman filtering[END_REF].

In the presented work, Extended Kalman filter is used to estimate the lithium ion key parameters which are the battery output voltage (  ) as well as battery open-circuit voltage () and state of charge ()b yu s i n gab a s i c zero dimensional electrochemical model and the experimental measurement values of the current () of a lithium ion battery system used in an electric vehicle with range extender. This approach shows that based on a limited number of information and some measurement values it is possible to develop a system model that can be used for control system development.

In the next section, the electric track vehicle with range extender is introduced. Thereafter, the system characterization will be discussed, first by introducing a generic zero dimensional electrochemical battery model and then by the introduction of the Extended Kalman filter method. Both approaches are applied in conjunction on measurement values obtained during a track race. The results of this evaluation are presented and discussed in section IV. The article closes with conclusions and perspectives.

II. NOAO: ELECTRIC TRACK VEHICLE WITH RANGE EXTENDER

The Noao is an electric track vehicle with range extender (Figure 1). It has been developed and produced by the association Pôle de Performance de Nevers Magny-Cours (PPNMC) and its companies, which are all high class expert in the development of track and prototype vehicles resident in the vincity of the Nevers Magny-Cours race track. NOAO is the first rechargeable electric competition vehicle, combined with a range extender.Its range can be increased by means of a low capacity range extender to cover 100 km under race conditions. Aside from its obvious exterior sports styling, NOAO also has some exceptional aerodynamic qualities which contribute to improving its performance. Aimed in priority at racing schools which want to offer more environmentally friendly courses, NOAO also serves as a prototype to further improve the performance of this type of vehicle and, in the near future, to offer new track car solutions. The vehicle has the parameters presented in table II.

III. CHARACTERIZATION OF LITHIUM ION BATTERIES FOR VEHICLE APPLICATIONS USING EXTENDED KALMAN FILTER

A. Modelling of Lithium Ion Battery

Different approaches for lithium ion battery modelling have been proposed in literature. In general, existing battery models can be divided into physical models [START_REF] Marc Doyle | Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[END_REF], analytical models [START_REF] Rong | An analytical model for predicting the remaining battery capacity of lithium-ion batteries," Ve r y L a rge S c a l e Integration[END_REF], [START_REF] Rakhmatov | An analytical high-level battery model for use in energy management of portable electronic systems[END_REF], and circuit-based models [START_REF] Chen | Accurate electrical battery model capable of predicting runtime and i-v performance[END_REF]- [START_REF] Shen | Estimation of battery available capacity under variable discharge currents[END_REF]. Circuit-based models can capture the complicated battery properties, which can be easily implemented in electronic design automation (EDA) tools at different levels of abstraction. It is more realistic, intuitive and easy to handle [START_REF] Tan | Modelling of battery temperature effect on electrical characteristics of li-ion battery in hybrid electric vehicle[END_REF], and considered as the best compromise in term of complexity, time consuming and accuracy compared as compared to other models. Lithium ion battery model used in this work falls within circuit-based models, which is a combination of a voltage source and other electrical components to capture the electrochemical processes and dynamics of a battery [START_REF] Tsang | Identification and modelling of lithium ion battery[END_REF].It is based on the chen work [START_REF] Chen | Accurate electrical battery model capable of predicting runtime and i-v performance[END_REF] and expanded by adding the effects of temperature and capacity fading on a battery cell [START_REF] Erdinc | A dynamic lithium-ion battery model considering the effects of temperature and capacity fading[END_REF].

1) The battery output voltage: The battery output voltage can be calculated due to the battery open circuit voltage, voltage drop resulting from the battery equivalent internal impedance and the temperature correction of the battery potential(Eq 1). ∆( ) is a potential correction term used to compensate for the variation of equilibrium potential that is induced by temperature changes [START_REF] Gao | Dynamic lithium-ion battery model for system simulation[END_REF].

  =   -  •  + ∆( ) (1) 
Figure 1. Noao series hybrid race car [START_REF]Association pole de performance de nevers magny-cours (ppnmc)[END_REF] 2

) The battery open circuit voltage:

The battery open circuit voltage is the difference of the electrical potential between the two terminals of a battery,when there is no external load connected. As the value of battery open circuit voltage is strongly dependent on battery SOC, it can be calculated as [START_REF] Abu-Sharkh | Rapid test and non-linear model characterisation of solid-state lithium-ion batteries[END_REF] (Eq 2).

  = -1031e (-35 • ) +3685 + 02156 •  -01178 •  2 +0321 •  3 (2)
3) The effect of capacity fading: Capacity fading refers to the irreversible loss in the usable capacity of a battery due to time, temperature and cycle number. Permanent loss in capacity can be divided into calendar and cycling losses. So that modeling the capacity fading is important for predicting the remaining life of the battery [START_REF] Spotnitz | Simulation of capacity fade in lithium-ion batteries[END_REF]. Both calendar and cycle life losses of a battery appear to be linear with time and dramatically increase with increasing temperature [START_REF] Ramadass | Mathematical modeling of the capacity fade of li-ion cells[END_REF]. Therefore, the effect of temperature must be considered while modeling the capacity fading for a battery. The calendar and cycle life losses lead to a capacity correction factor to determine the remaining usable battery capacity. The capacity correction factor can be calculated using Eq 3 [START_REF] Spotnitz | Simulation of capacity fade in lithium-ion batteries[END_REF].

 =1-(Calendar life losses + Cycle life losses) (3)

Then the remaining usable battery capacity can be defined using Eq 4.

  =   •  (4) 
The calendar life losses of a battery consist of storage losses occuring when the battery is not used. The percentage of storage losses can be expressed as (Eq 5).

  =1544 10 7 e ( 40498 83143 •  ) •  (5)
The variations of negative electrode  can be considered f o rs i m u l a t i n gt h ec y c l el i f el o s s e s .T h er a t eo fc h a n g ei n negative electrode  dependent on cycle number and temperature [START_REF] Ramadass | Mathematical modeling of the capacity fade of li-ion cells[END_REF] (Eq 6).

  =  1  +   ( 6 
)
where  is the amount of capacity fading,  1 is the parameter for cycling under reference conditions,   the parameter for cycling under adverse conditions and n the number of cycles. Under changing temperatures or C-rates,   will change, but  1 will remain the same [START_REF] Ramadass | Mathematical modeling of the capacity fade of li-ion cells[END_REF]. Large currents, and thus large C-rates, can cause unwanted side reaction in lithim ion cells. In figure (Figure 2) an example of capacity fading due to high C-rates is given [START_REF] Choi | Factors that affect cycle-life and possible degradation mechanisms of a li-ion cell based on licoo2[END_REF]. From experiments the C-rate was shown to have a large influence on the capacity fading. Nevertheless, to take the effect of high C-rates into account, a second order equation as proposed by Safari et al. [START_REF] Safari | Life Prediction Methods for Lithium-Ion Batteries Derived from a Fatigue Approach II. Capacity-Loss Prediction of Batteries Subjected to Complex Current Profiles[END_REF] is used Eq 7. with   as the C-rate stress factor,  3 ,  4 and  5 as parameters dependent on the amount of capacity fading and  the current in C-rate. So   will be as (Eq 8).

  =  3 ()+ 4 () •  +  5 () •  2 (7) 
  Battery output voltage [V]   Battery open-circuit voltage [V]  Battery equivalent internal resistance [Ω]  Instantaneous cell current [A]   Battery current [A] ∆( ) Temperature correction
  =  2   =  2 • ( 3 ()+ 4 () •  +  5 () •  2 ) (8)
4) The state of charge: The state of charge () is an indication of the amount of energy left in the battery cell as a percentage of the current capacity. The higher the ,t h e more energy is stored in the cell. This will mean the battery cell is more reactive, which will accelerate degradation of the cell Eq 9.

 =   - Z    (9)
5) The state of Health (): In this work capacity fading is chosen for the SOH determination of a battery cell. The  of a cell can be calculated with a predetermined End of Life (EoL) condition. The EoL condition depends on the application, but by convention this is set at 80 % of the rated capacity. The  in percentages is :

 =(1-  02  ) • 100% ( 10 
)
where   is the rated capacity of the cell,  the amount of capacity fading under reference conditions and SOH the state of health of the cell from a capacity fading point of view.

B. Extended Kalman Filter for System Characterization

Extended Kalman filter (EKF) can be used to minimize measurement noise effects [START_REF] Kalman | A new approach to linear filtering and prediction problems[END_REF], and estimate a system state which can not be measured directly (i.e SOC or SOH). EKF is a recursive algorithm which combines one data base and a measurement set. This algorithm is composed by several equations that estimate a measureable value. This value is compared to the real measured value and the EKF corrects the estimation. EKF is basicly defined by a state space model of two functions: a process equation and a measurement equation.

A dynamic model and measurment system is given by Eq 11 and Eq 12. Process equation is a function which uses the previous value of   (i.e.  -1 ) to estimate the current value. Measurement equations correct the estimated value to converge it to the real value.

  =  -1 +  -1 +  -1 ( 11 
)
  =   +   +   ( 12 
)
Extended Kalman Filter algorithm is composed by five important equations, two equations for the prediction and three for the correction. To clarify these equations,  means estimated value of  ,a n d -means a priori value of  .

Prediction equations are given by:

-  =  -1 +  -1 +  -1 (13) 
 -  =  -1   +  (14) 
Correction equations are given by:

  =  -    ( -    + ) -1 (15)  = -  +   (  - -  ) (16) 
  =( -  ) -  (17) 
with  the vector to the state variable,  the control input,  the measurement vector, (  ) thethe error covariance ahead,  the variance of the process noise,  the measurement matrix covariance,  the covariance matrix of the measurement noise and  the Extended Kalman Filter gain. As explained before, EKF combines measurement set and one data base. Data bases are often a mathematical model of the battery.

The EKF requires a small signal model of the system at each sample step. By linearizing around the current operating point, using Eq 11 and Eq 12, and using the Jacobian matrix, we obtain a linear system.

  =  ( )  (18) 
  =  ( )  (19) 
  = ()  =  (20) 
In this nonlinear state space, we have :  =[    ]  and ()= ,  =  Observability of the system must be investigated after system linearization. Calculating the observability matrix shows that this matrix is always of full rank.

White noise was added to the input system which is the measure of current to generate normaly distributed random numbers. Although no formal stability and tuning methods are available for initializing the EKF and recourse to empirical tuning is normally required, its use is nevertheless widespread. Information about the system noise contribution is contained in matrices  and  and, in essence, the selection of  and  determines the accuracy of the filters performance, since they mutually determine the action of the EKF gain matrix  +1 and estimation error covariance matrix  +1 . The covariance matrix representing measurement noise  can be estimated from knowledge of the battery terminal voltage. The variance is obtained from the square of the root mean square (rms) of noise on each cell and is assumed to be Gaussian distributed and independent.

Initialization of the covariance matrix describing the disturbances on the plant  is complicated while knowledge of the model inaccuracies and system disturbances is limited, particularly as each cell has different characteristics. The The error on the initial values of state variables was consideredat 5%.

IV. RESULTS AND DISCUSSION

The proposed method is tested on a lithium-ion battery with complete discharge cycle, which allowed us to through the values of SOC from 89% to 20%. driving cycle have made of the magny cours circuit, where the Formula 1 Grand Prix of France is ran from 1991 to 2008.

Figure 3 shows the battery output voltage during one driving cycle with a length of 146 s.W eh a v ec h o s e nt os i m u l a t eo n this time for the battery voltage and the Battery Current curves for that the curves are clear. We find a small gap between EKF estimation and experimental results, mainly with the increase of time, this might be due to the description if the internal resitance, which has been set to a constant value of XY Ω in this case.

The experimental result and EKF estimation of the battery current show very good agreement (Figure 4). The accurate The experimental data on  were provided by the manufacturer of Noao without much detail. We do not know the exact method which was used to determine the  for a privacy issue, where the interest of the use of the EKF in order to characterize. The initial value of  is 89% after several cycles it has droped to 20% (Figure 6). EKF begains the estimation with 10% error but it shows a fast convervenge and a good adequacy. However, we see a small gap after 1800 seconds, which is due to an increase in  in the experimental data for some time which probably derives from a brake energy recovery. The comparison between the simulation model and EKF estimation of open circuit voltage shows a good adequacy (Figure 5).

Figure 7 shows the simulation of model and EFF estimation of the proposed method to calculate  from capacity fading. We find a small gap 0.0001 between the model and the estimation of the EFK. The simulation over a few hours is not sufficient to fully characterize the  but gives us a good idea of the feasibility of this method to find the .

To validate our method we tested EFF under different conditions. We have a discharge cycle which starts from 93% to 59%. The results found are similar with those of the first The proposed  and  estimation algorithm is based on the simple electrical battery model and current measurement.This measure directly intervenes in the formulation of the , where we have a good estimation of this parameter. Against for the , the current measure intervenes indirectly in the formula by the capacity fading that depends of C-rates, that explains the small gab. Finally we can conclude that the method proposed by EKF give a good estimate for  and .
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