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Fig. 1. We ran 151 codes provided by papers published at SIGGRAPH 2014, 2016 and 2018. We analyzed whether these codes could still be run
as of 2020 to provide a replicability score, and performed statistical analysis on code sharing.

Being able to duplicate published research results is an impor-
tant process of conducting research whether to build upon these
findings or to compare with them. This process is called “repli-

cability” when using the original authors’ artifacts (e.g., code),
or “reproducibility” otherwise (e.g., re-implementing algorithms).

Reproducibility and replicability of research results have gained a
lot of interest recently with assessment studies being led in various
fields, and they are often seen as a trigger for better result diffusion

and transparency. In this work, we assess replicability in Computer
Graphics, by evaluating whether the code is available and whether
it works properly. As a proxy for this field we compiled, ran and

analyzed 151 codes out of 374 papers from 2014, 2016 and 2018
SIGGRAPH conferences. This analysis shows a clear increase in
the number of papers with available and operational research codes

with a dependency on the subfields, and indicates a correlation
between code replicability and citation count. We further provide

an interactive tool to explore our results and evaluation data.
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1 INTRODUCTION

The ability to reproduce an experiment and validate its results
is a cornerstone of scientific research, a key to our understand-
ing of the world. Scientific advances often provide useful tools,
and build upon a vast body of previous work published in
the literature. As such, research that cannot be reproduced
by peers despite best efforts often has limited value, and thus
impact, as it does not benefit to others, cannot be used as
a basis for further research, and casts doubt on published
results. Reproducibility is also important for comparison pur-
poses since new methods are often seen in the light of results
obtained by published competing approaches. Recently seri-
ous concerns have emerged in various scientific communities
from psychological sciences [Open Science Collaboration et al.
2015] to artificial intelligence [Hutson 2018] over the lack
of reproducibility, and one could wonder about the state of
computer graphics research in this matter.
In the recent trend of open science and reproducible re-

search, this paper aims at assessing the state of replicability
of papers published at ACM Transactions on Graphics as
part of SIGGRAPH conferences. Contrary to reproducibility
which assesses how results can be obtained by independently
reimplementing published papers – an overwhelming task
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given the hundred papers accepted yearly to this event – repli-
cability ensures the authors’ own codes run and produce the
published results. While sharing code is not the only available
option to guarantee that published results can be duplicated
by a practitioner – after all, many contributions can be reim-
plemented from published equations or algorithm descriptions
with more or less effort – it remains an important tool that
reduces the time spent in reimplementation, in particular as
computer graphics algorithms get more sophisticated.

Our contributions are twofold. First, we analyze code shar-
ing practices and replicability in computer graphics. We hy-
pothesize strong influence of topics, an increase of replicability
over time similar to the trend observed in artificial intelli-
gence [Hutson 2018], and an increased impact of replicable
papers, as observed in image processing [Vandewalle 2019].
To evaluate these hypotheses, we manually collected source
codes of SIGGRAPH 2014, 2016 and 2018 papers and ran
them, and when possible, assessed how they could replicate
results shown in the paper or produce reasonably similar
results on different inputs. Second, we provide detailed step-
by-step instructions to make these software packages run (in
practice, in many cases, code adaptations had to be done
due to dependencies having evolved) through a website, thus
becoming a large code review covering 151 codes obtained
from 374 SIGGRAPH papers. We hope this platform can be
used collaboratively in the future to help researchers having
difficulties reproducing published results.
Our study shows that:

∙ Code sharing is correlated with paper citation count,
and has improved over time.

∙ Code sharing practices largely vary with sub-fields of
computer graphics.

∙ It is often not enough to share code for a paper to be
replicable. Build instructions with precise dependencies
version numbers as well as example command lines and
data are important.

2 PRIOR WORK

The impact of research involves a number of parameters that
are independent of the quality of the research itself, but of
practices surrounding it. Has the peer review process been
fairly conducted? Are the findings replicable? Is the paper
accessible to the citizen? A number of these questions have
been studied in the past within various scientific communities,
which this section reviews.

Definitions. Reproducible research has been initiated in
computer science [Claerbout and Karrenbach 1992] via the
automation of figures production within scientific articles.
Definitions have evolved [Plesser 2018] and have been de-
bated [Goodman et al. 2016]. As per ACM standards [ACM
2016], repeatability indicates the original authors can dupli-
cate their own work, replicability involves other researchers
duplicating results using the original artifacts (e.g., code) and
hardware, and reproducibility corresponds to other researchers
duplicating results with their own artifacts and hardware –

we will hence use this definition. We however mention that
various actors of replicable research have advocated for the
opposite definition: replicability being about answering the
same research question with new materials while reproducibil-
ity involves the original artifacts [?] – a definition championed
by the National Academies of Sciences [?].

Reproducibility and replicability in experimental sci-
ences. Concerns over lack of reproducibility have started to
emerge in several fields of studies, which has led to the term
“reproducibility crisis” [Pashler and Harris 2012]. In experi-
mental sciences, replicability studies evaluate whether claimed
hypotheses are validated from observations (e.g., whether the
null hypothesis is consistently rejected and whether effect
sizes are similar). In different fields of psychology and social
sciences, estimations of replication rates have varied between
36% out of 97 studies with significant results, with half the
original effect size [Open Science Collaboration et al. 2015],
50%-54% out of 28 studies [Klein et al. 2018], 62% out of
21 Nature and Science studies with half the original effect
size [Camerer et al. 2018], and up to roughly 79% out of 342
studies [Makel et al. 2012]. In oncology, a reproducibility rate
of 11% out of 53 oncology papers has been estimated [Begley
and Ellis 2012], and a collaboration between Science Exchange
and the Center for Open Science (initially) planned to repli-
cate 50 cancer biology studies [Baker and Dolgin 2017]. Over
156 medical studies reported in newspapers, about 49% were
confirmed by meta-analyses [Dumas-Mallet et al. 2017]. A sur-
vey published in Nature [Baker 2016] showed large disparities
among scientific fields: respondents working in engineering be-
lieved an average of 55% of published results are reproducible
(𝑁 = 66), while in physics an average of 73% of published
results were deemed reproducible (𝑁 = 91).
This has resulted in various debates and solutions such

as reducing hypothesis testing acceptance thresholds to 𝑝 <
0.005 [Benjamin et al. 2018] or simply abandoning hypothe-
sis testing and p-values as binary indicators [McShane et al.
2019], providing confidence intervals and using visualization
techniques [Cohen 2016], or improving experimental proto-
cols [Begley 2013].
While computer graphics papers occasionally include ex-

periments such as perceptual user studies, our paper focuses
on code replicability.

Reproducibility and replicability in computational sci-
ences. In hydrology, Stagge et al. [2019] estimate via a survey
tool that 0.6% to 6.8% of 1,989 articles (95% Confidence In-
terval) can be reproduced using the available data, software
and code – a major reported issue being the lack of direc-
tions to use the available artifacts (for 89% of tested articles).
High energy physicists, who depend on costly, often unique,
experimental setups (e.g., the Large Hadron Collider) and
produce enormous datasets, face reproducibility challenges
both in data collection and processing [Chen et al. 2019]. Such
challenges are tackled by rigorous internal review processes
before data and tools are opened to larger audiences. It is
argued that analyses should be automated from inception and
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not as an afterthought. Closer to our community is the repli-
cation crisis reported in artificial intelligence [Gundersen and
Kjensmo 2018; Hutson 2018]. Notably, the authors surveyed
400 papers from top AI conferences IJCAI and AAAI, and
found that 6% of presenters shared their algorithm’s code,
54% shared pseudo-code, 56% shared their training data, and
30% shared their test data, while the trend was improving
over time. In a recent study on the reproducibility of IEEE
Transactions on Image Processing papers [Vandewalle 2019],
the authors showed that, on average, code availability approx-
imately doubled the number of citations of published papers.
Contrary to these approaches, we not only check for code
availability, but also evaluate whether the code compiles and
produces similar results as those found in the paper, with
reasonable efforts to adapt and debug codes when needed.
Efforts to improve reproducibility are nevertheless flour-

ishing from early recommendations such as building papers
using Makefiles in charge of reproducing figures [Schwab
et al. 2000] to various reproducibility badges proposed by
ACM [ACM 2016] in collaboration with the Graphics Repli-
cability Stamp Initiative [Panozzo 2016]. Colom et al. list
a number of platforms and tools that help in reproducible
research [2018]. Close to the interest of the computer graphics
community, they bring forward the IPOL journal [Colom et al.
2015] whose aim is to publish image processing codes via a
web interface that allows to visualize results, along with a
complete and detailed peer-reviewed description of the algo-
rithm. They further mention an initiative by GitHub [2016]
to replicate published research, though it has seen very lim-
ited success (three replications were initiated over the past
three years). In Pattern Recognition, reproducible research is
awarded with the Reproducible Label in Pattern Recognition
organized by the biennal Workshop on Reproducible Research
in Pattern Recognition [Kerautret et al. 2019, 2017]. Program-
ming languages and software engineering communities have
created the Artifact Evaluation Committees for accepted pa-
pers [?], with incentives such as rewarding with additional
presentation time at the conference and an extra page in the
proceedings, with special recognition for best efforts.

Other initiatives include reproducibility challenges such as
the one organized yearly since 2018 by the ICLR conference in
machine learning [Pineau et al. 2019] that accepts submissions
aiming at reproducing published research at ICLR. In 2018,
reproducibility reports of 26 ICLR papers were submitted,
out of which 4 were published in the ReScience C journal.

Open access. Software bugs have had important repercus-
sions on collected data and analyses, hence pushing for open
sourcing data and code. Popular examples include Microsoft
Excel that converts gene names such as SEPT2 (for Septin
2) to dates [Ziemann et al. 2016], or a bug in widely used
fMRI software packages that resulted in largely inflated false-
positive rates, possibly affecting many published results [Ek-
lund et al. 2016]. Recently, Nature Research has enforced an
open data policy [nat 2018], stated in their policies as authors
are required to make materials, data, code, and associated

protocols promptly available to readers without undue qualifi-
cations, and proposes a journal focused on sharing high re-use
value data called Scientific Data [Scientific Data (Nature
Research) 2014]. Other platforms for sharing scientific data
include the Open Science Framework [Center for Open Science
2015]. Related to code, Colom et al. [2018] reports the web-
sites mloss that lists machine learning codes, RunMyCode for
scientists to share code associated with their research paper,
or ResearchCompendia that stores data and codes. Long-term
code availability is also an issue, since authors’ webpages are
likely to move according to institution affiliations so that code
might be simply unavailable. Code shared on platforms such
as GitHub is only available as long as the company exists
which can also be an issue, if limited. For long-term code
storage, the Software Heritage initiative [Di Cosmo and Za-
cchiroli 2017] aims at crawling the web and platforms such
as GitHub, Bitbucket, Google code etc. for open source soft-
ware and stores them in a durable way. Recently, the Github
Archive Program [Github 2020] pushed these ideas further
and propose a pace layer strategy where code is archived at
different frequencies (real-time, monthly, every 5 years), with
advertised lifespans up to 500 years and possibly 10,000 years.

Other assessments of research practices. Repro-
ducibility of paper acceptance outcome has been assessed
in machine learning. In 2014, the prestigious NIPS conference
(now NeurIPS) has performed the NIPS consistency experi-
ment : a subset of 170 out of 1678 submissions were assigned to
two independent sets of reviewers, and consistency between
reviews and outcomes were evaluated. The entire process,
results, and analyses, were shared on an open platform [nip
2014]. Decisions were inconsistent for 43 out of 166 reviewed
papers (4 were withdrawn, 101 were rejected by both commit-
tees, 22 were accepted by both committees). Other initiatives
for more transparent processes include the sharing of peer
reviews of published papers on platforms such as OpenRe-
view [Soergel et al. 2013] or directly by journals [The Royal
Society Publishing 2020], and the post-publication monitoring
for misconducts or retractions on platforms such as PubPeer
and RetractionWatch [Didier and Guaspare-Cartron 2018].

3 METHOD

Our goal is to assess trends in replicability in computer graph-
ics. We chose to focus on the conference in the field with
highest exposure, ACM SIGGRAPH, as an upper bound
proxy for replicability. Although this hypothesis remains to
be verified, this conference more often publishes completed
research projects as opposed to preliminary exploratory ideas
that are more often seen in smaller venues which could explain
lower code dissemination. To estimate a trend over time, we
focus on three SIGGRAPH conferences: SIGGRAPH 2014
(Vancouver, 127 accepted papers), 2016 (Anaheim, 119 ac-
cepted papers), and 2018 (Vancouver, 128 accepted papers).
We did not include SIGGRAPH 2019 (Los Angeles) since au-
thors sometimes need time to clean up and publish their code
after publication. We did not include SIGGRAPH Asia nor
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papers published in ACM Transactions on Graphics outside
of the conference main track to reduce variability in results
and keep a more focused scope. We chose a two-year interval
between conferences in the hope to get clearer trends, and to
keep a tractable number of papers to evaluate.
We searched for source codes as well as closed-source bi-

naries for all papers. We restricted our search to original im-
plementations and reimplementations authored and released
by the original authors of the paper, excluding reimplementa-
tions by others, as we aim at assessing replicability and not
reproducibility (see Sec. 2). For each paper, we report the
objective and subjective information described below.
Identifying and factual information. This includes the

paper name and DOI, ACM keywords, pdf, project and code
or binaries URLs if they have been found, as well as infor-
mation indicating if authors are from the industry, academia,
or unaffiliated, for further analysis. For papers, we include
information as whether they can be found on arXiv or other
Open Archive Initiative providers we may have found, in open
access on the ACM Digital Library, or by other means such
as institutional web pages. Aside from ACM keywords, we
further categorize papers into 6 broad topics related to com-
puter graphics, and we also keep track of whether they relate
to neural networks. We defined these topics as:

∙ Rendering. This includes simulating light transport,
real-time rendering, sampling, reflectance capture, data-
structures for intersections, and non-photorealistic ren-
dering.

∙ Animation and simulation. This includes character an-
imation, motion capture and rigging/skinning, cine-
matography/camera path planning, deformable models
as well as fluid, cloth, hair or sound simulation, includ-
ing geometric or topology problems related to these
subjects.

∙ Geometry. This includes geometry processing and mod-
eling, for point-based, voxel-based and mesh-based ge-
ometries, as well as topology, mapping, vector fields and
shape collection analysis. We also include image-based
modeling.

∙ Images. This includes image and video processing, as
well as texture synthesis and editing, image segmen-
tation, drawing, sketching and illustration, intrinsic
decomposition or computational photography. We also
included here image-based rendering, which relies more
on image techniques than rendering.

∙ Virtual Reality. This category includes virtual and aug-
mented reality, 3d displays, and interactions.

∙ Fabrication. This includes 3d printing, knitting or caus-
tic design.

We strive to classify each paper into a single category to sim-
plify analyses. Both these categories and paper assignments
to these categories can be largely debated. While they may
be prone to errors at the individual level, they still provide
meaningful insight when seen as statistical aggregates. These
categories were used in our analysis instead of ACM keywords
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Fig. 2. Distribution of the ACM keywords per topic. The font size
reflects the number of papers associated with a keyword.

for several reasons: first, we counted more than 127 different
ACM keywords which would make overspecialized categories.
The hierarchical nature of this taxonomy also makes the anal-
ysis more complicated. In Fig. 2 we show the distribution
of ACM keywords of papers involved in each of our cate-
gories. Interestingly, this visualization exacerbates the lack of
ACM keywords dedicated to fabrication despite the increasing
popularity of this topic.
Information about code includes code license, presence of

documentation, readme files and explicit mention of the code
authors (who usually are a subset of the paper authors), as
well as build mechanism (Makefile, CMakeLists, SCons, IDE
projects, or other types of scripts), and lists of dependencies.
We notably indicate whether library or software dependencies
are open source (e.g., Eigen, OpenCV), closed source but free
at least for research purpose (e.g., mosek, CUDA or Intel MKL),
or closed source and paying even for research purpose (e.g.,
Matlab). Similarly, we ask whether the code depends on data
other than examples or input data (e.g., training data or
neural network description files) and their license.
One of our key contributions is that we report the undoc-

umented steps required to make the code run – from bug
fixes to dependency installation procedures. We believe this
information is valuable to the community as these steps are
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often independently found by students relying on these codes
sometimes after significant effort.
Subjective judgments on replicability. For papers

without published code, this includes information as to
whether the paper contains explicit algorithms and how much
effort is deemed required to implement them (on a scale of
1 to 5). For algorithms requiring little reimplementation ef-
fort (with a score of 5) – typically for short shaders or short
self-contained algorithms – this can give an indication as to
why releasing the code was judged unnecessary. For papers
containing code, we evaluate how difficult it was to replicate
results through a number of questions on a scale of 1 to 5.
This includes the difficulty to find and install dependencies,
to configure and build the project, to fix bugs, to adapt the
code to other contexts, and how much we could replicate the
results shown in the paper. We strived to remain flexible in
the replicability score: often, the exact input data were not
provided but the algorithms produced satisfactory results that
are qualitatively close to those published on different data,
or algorithms relied on random generators (e.g., for neural
network initializations) that do not produce repeatable num-
ber sequences and results. Contrary to existing replicability
initiatives, we did not penalize these issues, and this did not
prevent high replicability scores.
We shared the task of evaluating these 374 submissions

across 4 full-time tenured researchers (authors of the paper),
largely experienced in programming and running complex
computer graphics systems. Reasonable efforts were made
to find and compile the provided code, including retrieving
outdated links from the WayBack Machine [Tofel 2007], recre-
ating missing Makefiles, debugging, trying on multiple OS
(compiling was tested on Windows 10, Debian Buster, Ubuntu
18.04 and 19.10 and MacOS 10.151), or adapting the code to
match libraries having evolved. Efforts to adapt the code to
evolved libraries, compilers or languages are due to practical
reasons: it is sometimes impractical to rely on old Visual
Studio 2010 precompiled libraries when only having access
to a newer version, or to rely on TensorFlow 1.4.0 requiring
downgrading CUDA drivers to version 8 for the sole purpose
of having a single code run. We chose to avoid contacting
authors for clarifications, instructions or to report bug fixes
to protect anonymity. We also added the GitHub projects to
Software Heritage [Di Cosmo and Zacchiroli 2017] when they
were not already archived and gave the link to the Software
Heritage entry in our online tool.

4 DATA EXPLORATION

We provide the data collected during our review as a JSON
file, available as supplementary material. Each JSON entry
describes the properties of a paper (e.g., author list, project
page, ACM keywords, topics) and its replicability results
(e.g., scores, replicability instructions). All the indicators and
statistics given in this paper are computed from this data,

1Ubuntu 14.04 and Windows 2012 virtual machines for very specific
tests.

and we provide in supplementary materials all the scripts
required to replicate our analysis.
We facilitate data exploration by providing an intuitive

web interface available at https://replicability.graphics (see
Fig. 3) to visualize collected data. This interface allows two
types of exploration, either the whole dataset or per paper.

Dataset exploration. Our dataset exploration tool is split
into two components: a table listing the reviewed papers,
and two graphs showing statistics about the table content. A
first graph displays the distribution of papers with respect
to the code/pseudocode availability, and their replicability
score. A second graph shows papers availability, either as
ACM Open Access or as a preprint provided by the authors.
The interactive table allows to filter the dataset by the author
name, paper title, publication year and/or by topic, and
to update the graphs according to the selection. It is also
possible to sort the paper by their properties and in particular
their replicability score or a documentation score between 0
and 2 (0: no documentation, 2: exhaustive documentation).
Each paper is associated with a dedicated webpage accessible
directly from the table.

Per-paper exploration. The paper webpage gives a direct
access to the information extracted from the JSON file. It
includes the links to resources available online (Digital ACM
library, preprint, code), several information (e.g., paper topic,
nature of the artifact, list of the dependencies) and a break-
down of the replicability experiment when code was available
(scores and comments). In addition, the paper webpage gives
the Altmetric Attention Score2 and links to the Altmetric
webpage of the paper if available. This score measures the
overall attention a paper has received, including on social
networks, which differs from academic citation scores. The
comment section mostly covers the steps that the reviewer
had to follow in order to try to replicate the paper, which
includes details about the dependencies management and
updates, bug fixes or code modifications. We expose the exact
revision number (for git projects) or MD5 hash of the archive
file (for direct download) of codes that relate to the comments.
The website allows for commenting scores and instructions,
both as a user and as a paper author, as well as adding new
entries, for adding new or updated codes.

5 RESULTS AND ANALYSIS

This section analyzes both objective and subjective metrics.
All reported p-values were adjusted for multiple comparisons
using the false discovery rate control procedure proposed
by Benjamini and Hochberg [1995].

5.1 Objective analysis

Availability of papers. Papers are overall available. Over
all 374 papers, only two are available only on the ACM
Digital Library. Notably, ACM provides free access to all
SIGGRAPH and SIGGRAPH Asia proceedings though it

2https://www.altmetric.com/
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Fig. 3. We designed a web interface to explore our collected data allowing to see individual paper replicability and build instructions, available at
https://replicability.graphics.

is little advertised [?]. Also, 27 are available as preprints
on arXiv (9 only on arXiv), 17 on HAL (7 only on HAL)3,
44 benefit from the ACM Open Access policy –the other
papers being available as preprints at least on the authors
website or other paper repositories.

Availability of code. Software packages were available
for 151 papers, which consist of 133 papers for which source
code was provided plus 18 papers for which no source code
was provided but instead compiled software was provided. For
the rest of the analysis, we considered both compiled and open
source software combined. While open source research codes
allow for adaptation, making it easier to build upon them, and
are thus ideal, binary software at least allows for effortless
method comparisons. Nevertheless, among these software
packages, we could not run 19 of them due to technical issues
preventing the codes to compile or run, and 5 of them due
to lack of dedicated hardware (see Sec. 6). Among these
133 codes, 60 do not have license information, which could
notably prevent code dissemination in the industry, and 11 do
not come with any documentation nor build instructions.
We perform 𝜒2 tests to analyze trends in code sharing.

Overall, codes or binaries could be found for 37 papers out
of 127 (29.1%) in 2014, 47 out of 119 (39.5%) in 2016, 67 pa-
pers out of 128 (52.3%) in 2018. This increase is statistically
significant between 2014 and 2018 (𝑝 = 1.3 10−3), though
not between 2014 and 2016 (𝑝 = 0.13) nor between 2016 and
2018 (𝑝 = 0.086). This trend is similar to that observed in
artificial intelligence [Gundersen and Kjensmo 2018; Hutson
2018]. Results can be seen in Fig. 4. In two cases, we had
to retrieve the code from the WayBack Machine [Tofel 2007]
due to expired URLs. Further analysis per topic shows vastly
different practices, with 17.1% of papers sharing code for
Fabrication, 26.9% for Animation, 31.8% for Virtual Real-
ity, 47.9% for Rendering, 51.9% for Geometry and 57.9% for
Images (Fig. 4).

We also analyzed the involvement of at least one author
from the industry on the release of codes or binaries. We
found that overall, papers involving the industry provided
code or binaries 31.3% of the times, while this was the case
for 45.4% of purely academic papers – a difference that is
significant (𝑝 = 0.031). This could be explained by strict

3Some references or preprints may also be available on other OAI
providers thanks to database interconnections or local initiatives, we
only report here the most significant ones found by this study.

Fig. 4. We compute the percentage of papers that include either code
or binaries as a function of years and topic. We also show Clopper-
Pearson 95% confidence intervals.

rules imposed by employers, understandably worried about
industrial consequences of sharing a code.
Given the sheer amount of deep learning codes available

online, we hypothesized that deep learning-related papers
were more likely to share code. We tested this hypothesis
on our dataset, but we found that they provided code only
44.6% of the times (25 out of 56), while this was the case
39.6% of the times for non-deep papers (126 out of 318) – a
non-significant difference (𝑝 = 0.48).

We finally found that, in the long term, sharing code results
in higher citations, with a median citation count of up to
67 in 2014 for papers sharing code compared to 43 for papers
not sharing code (see Fig. 5). A Mann-Whitney U-test gives
this difference significant (𝑝 = 0.045). This observation is
similar to that observed in image processing [Vandewalle
2019] though the effect is less pronounced (they observed
a doubling of citation rates). Few additional information is
given in Table 1.

5.2 Subjective analysis

As replicability scores are subjective, we first perform an
analysis of variance (ANOVA), despite some limitations here
(see Norman [2010] for a full discussion), aimed at determining
two things: is there a dependence on the reviewer of the
code on replicability scores? And, does the year influence
replicability (as it would seem that older non-maintained
codes are harder to replicate)? The ANOVA is performed
on the replicability score, taking only papers with codes for
which compiling was successful, and with two factors: reviewer
and year. The answer to both questions seems negative (resp.
𝑝 = 0.13 and 𝑝 = 0.27).
To make the codes run, we had to modify source codes

in 68 out of 151 codes. These code alterations were deemed
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Fig. 5. We compute the median number of citations and its 95%
confidence intervals for papers sharing code (or executable) and for
papers not sharing code nor executable.

Table 1. Additional quantitative data from our study.

2014 2016 2018 Total

Nb of papers 127 119 128 374
Nb of papers with codes 37 47 67 151

Nb of codes without license 16 24 20 60
Nb of codes with doc. score 0 6 16 14 36
Nb of codes flagged as “Deep” 4 4 17 25
Nb of codes with associated data 5 7 18 30

difficult (“easy to fix bugs” score ≤ 2 out of 5) for 20 codes.
The time spent to make codes run, including time to debug
and compile dependencies was longer than 100 minutes for
27 codes.

In the years covered by this study, we found a total of 5
papers with a Replicability Stamp from the Graphics Repli-
cability Stamp Initiative [Panozzo 2016]. While this number
is too low to derive meaningful statistics, one can note that
out of these 5 papers, 4 get the maximum score for results
replication. This could be expected because this initiative
ensures that a script for each single result shown in the pa-
per is provided. A limitation is that these scripts are only
guaranteed to work at the time when the stamp is granted
–a limitation shared by the present study.

6 LIMITATIONS

Our analysis has a number of limitations. First, the data
we collected may only be partly reliable. While we spent
reasonable efforts to find, run and compile codes, it is possible
that we missed codes, or that additional efforts or contacting
the authors for clarifications or to report bugs would result
in different outcome for a few papers. Similarly, we could not
fully evaluate codes that depend on specific hardware (such as
spatial light modulators, microcontrollers, Hall effect sensors
etc.) for 4 papers. Our analysis focused on assessing the codes
provided by the authors which only assesses replicability but
not reproducibility: there are instances for which papers were
successfully reimplemented by other teams, which falls out
of our analysis scope. It could also be expected that certain

codes could be available upon request ; in fact, in a few cases,
the provided code relied on data only available upon request,
which we did not assess.

Second, the codes we found and assessed may have evolved
after the paper has been published, which we cannot control.
Similarly, the published code could be a cleaned-up version
of the original code, or even a full reimplementation.

Third, our focus on SIGGRAPH could hide a more negative
picture of the entire field. We believe that the exposure SIG-
GRAPH probably gives biases our results, with a tendency
to find more codes here than in smaller venues. It would be
an interesting future work to compare replicability across
computer graphics venues.

7 RECOMMENDATIONS

Our replicability evaluation led us to identify a number of
issues. First, the number of dependencies was often corre-
lated with the difficulty to compile – especially on Windows.
Precompiled libraries were sometimes provided for compilers
that became outdated, or some dependencies were no longer
supported on recent hardware or OS. The lack of precise
dependencies version number was another important issue
we faced. Package managers for Python such as pip or conda
evolve and default to different library versions, and build
instructions or installation scripts did not directly work with
these new versions. Lack of instructions for running software
raised important frustration: default parameters were some-
times not provided, command line parameters not described,
or results output as numerical values in the console or writ-
ten to files of undocumented format with no clear ways to
use. In one case we had to develop a software for reading
the output file and displaying results. Similarly, input data
were not always provided, or sometimes only provided upon
request. Finally, in some cases, the software implemented only
part of the method, producing results that did not match
the quality of the results shown in the paper (e.g., missing
post-processing, or only implementing the most important
parts of the paper).
This leads us to issue several recommendations for the

research community in Computer Graphics to promote their
research work through the code replicability point of view.

For the authors. Sharing the code or any artifact to help
the replicability of the paper results is a good way to spread
the contributions of the paper, as shown in terms of citation
numbers in Sec. 5.1 and independently by Vandewalle [2019].
When shipping the code as a supplementary material for the
paper, several concerns must be addressed: Accessibility of the
source code (e.g., using the Software Heritage archive when
the article is accepted) ; Replicability of the build process
specifying the exact versions of the software or libraries that
must be used to build and execute the code (for instance
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using container/virtualization services –docker4– or pack-
age/configurations managements services –anaconda5, Nix6

etc.); Clarity of the source code as a knowledge source (e.g.,
through technical documentation and comments in the code);
and, finally, tractability of the coding process (authorship,
clear licensing etc.). Extra care should be given to codes that
depend on rapidly evolving libraries. This is particularly the
case of deep learning libraries (TensorFlow, Pytorch, Caffe
etc.). As an example, several syntax changes occurred in
pytorch over the past few years and caffe appears not to be
maintained anymore (e.g., pre-built binaries are provided up
to Visual Studio 2015, and the last commit on Github was
in March 2019) ; Python 2.7 is not maintained anymore as
of January 1st, 2020. We recommend limiting the number
of dependencies when possible – e.g., avoiding to depend on
large libraries for the sole purpose of loading image files –
possibly shipping dependencies with the source code (with
integration into the project build framework). Similarly, deep
learning codes can require up to several days of training: shar-
ing pre-trained models together with the training routines is
a good way to ensure replicability.

For the conference program chairs. Not all research
papers need to be involved in a source code replicability effort.
A paper presenting a mathematical proof of the asymptotic
variance of some sampler is intrinsically reproducible and does
not need source code. On the contrary, for research papers
for which it would make sense, the source code should be
considered as a valuable artifact when evaluating a submission.
This can be emphasized and encouraged in the guidelines
and submission forms. Asking the reviewers to check the
replicability of the article through the provided code is an
ultimate goal for targeting replicability but it may not be
sustainable for the entire community. Intermediate action
could be to communicate about the importance of paper
replicability and to allow authors to submit their (anonymous)
code and data with appropriate entries in the submission
system. Furthermore, we advocate for a specific deadline
for the submission of the code and data materials, e.g. one
week after the paper deadline. The objective would be to
let additional time for authors to sanitize their code and
encourage its publication, without interfering with the intense
paper polishing process happening right before the paper
deadline, nor with the reviewing process, since reviewers
would only wait for a short amount of time before getting the
code.

For the publishers. Publishers already offer the possibil-
ity to attach supplementary materials to published papers
(videos, source code, data. . . ). Beside videos, other types
of supplementary documents are not clearly identifiable. We
would recommend to clearly tag (and promote on the publisher
library) supplementary data that correspond to source codes.
Independent platforms, such as Software Heritage [Di Cosmo

4https://www.docker.com
5https://anaconda.org
6https://nixos.org

and Zacchiroli 2017], permit archiving and attach unique
identifiers to source codes as well as a timestamp. Publishers
could easily rely on these platforms to link to the source code
of a paper.

8 CONCLUSION

Our in-depth study of three years of ACM SIGGRAPH confer-
ence papers showed a clear increase in replicability as authors
are increasingly sharing their codes and data. Our study also
showed that sharing code was correlated with a higher im-
pact, measured in terms of citation numbers. We developed
a website which aims at helping practitioners run existing
codes on current hardware and software generations, with
build instructions for 151 codes we found online when we
could run them. Contrary to existing replicability stamps,
our replicability scores are non-binary but on a 1-to-5 integer
scale, less strict in the sense that results sufficiently close those
shown in the paper on different data were deemed appropriate,
but sometimes inconsistent with these stamps when software
could not be run anymore on current hardware and software
generations. In the future, we hope to see interactions with
these replicability stamp initiatives for which we share the
common goal of spreading open research.
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