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Central tendency bias in belief elicitation∗

Paolo Crosetto† Antonio Filippin‡ Peter Katuščák§ John Smith¶

April 15, 2020

Abstract

We conduct an experiment in which subjects participate in a first-price auction against an automaton that
bids randomly in a given range. The subjects first place a bid in the auction. They are then given an
incentivized elicitation of their beliefs of the opponent’s bid. Despite having been told that the bid of the
opponent is drawn from a uniform distribution, we find that a majority of subjects report beliefs that have a
peak in the interior of the range. This result is robust across seven different experimental treatments. While
not expected at the outset, these single-peaked beliefs have precedence in the experimental psychology
judgments literature. Our results suggest that an elicitation of probability beliefs can result in responses
that are more concentrated than the objectively known or induced truth. We provide indicative evidence
that such individual belief reports can be rationalized by well-defined subjective beliefs that differ from
the objective truth. Our findings offer an explanation for the conservatism and overprecision biases in
Bayesian updating. Finally, our findings suggest that probabilistic forecasts of uncertain events might have
less variance than the actual events.

Keywords: belief elicitation, quadratic scoring rule, overprecision, conservatism

JEL: C72, C91

1 Introduction

Often when experimenters describe a stochastic distribution to subjects, it is assumed that they accept the

distribution as given.1 We conduct an experiment in which subjects participate in a first-price auction against

a randomly bidding opponent who uses a strategy known to the subject: the bid is chosen from the uniform
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1One exception is Camerer and Weigelt (1988), who find that subjects can bring “homemade” priors to the experiment that are
different from those specified in the experiment. We also note that Prospect Theory (Kahneman and Tversky, 1979) suggests that
subjects can behave as if probabilities were different from those given by the experimenter. This relationship is characterized by
the probability weighting function. Also see Cohen, Plonsky, and Erev (2020) for more on the possibility that subjects do not read,
understand, or believe experimental instructions, in a context of choice under risk.
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distribution on a given range. Subjects first place a bid in the auction. They are then given an incentivized

elicitation of their beliefs of the opponent’s bid. Despite having been told that their opponent’s bid is drawn

from the uniform distribution, we find that subjects tend to report beliefs that have a single peak in the interior

of the range. While not expected at the outset, these single peaked beliefs have precedence in the judgments

literature.

When subjects estimate physical quantities (length, weight, loudness, etc.), the judgments2 often exhibit

a bias toward the mean of the distribution of the stimuli (Hollingworth, 1910; Poulton, 1979). For instance,

if subjects are tasked to make judgments of lengths of lines, lines longer than the mean tend to be underesti-

mated and lines shorter than the mean tend to be overestimated. In other words, there is a tendency to judge

physical quantities to be closer to the mean than they actually are. This effect is sometimes referred to as the

central tendency bias.3 Considered in aggregate, the reported distribution of judgments tends to be less variable

than the true distribution of line lengths.

The central tendency bias has been found in various other judgment settings, for instance weight (Jones

and Hunter, 1982), distance (Radvansky, Carlson-Radvansky, and Irwin, 1995), loudness (Algom and Marks,

1990), and temporal duration (Jazayeri and Shadlen, 2010). Huttenlocher, Hedges, and Vevea (2000) also find

the central tendency bias in judgments of the fatness of computer-generated images of fish, the greyness of

squares, and the lengths of lines.4

The central tendency bias is not commonly studied in economic settings. However, some authors report

a bias toward the center of an ordered action space in games. For instance, Arad and Rubinstein (2012) and

Arad and Penczynski (2018) find a tendency to overweight the central battlefields in Colonel Blotto games,

despite there being no strategic advantage of doing so. Even more striking, in some settings players forego

potential profits because of their central bias. Rubinstein, Tversky, and Heller (1997) report that hiders in

2Judgments of uncountable physical quantities are common in the psychology literature. See, for example, Duffy, Gussman, and
Smith (2019) for an experiment where subjects estimate line lengths in a choice setting.

3It is also sometimes referred to as the “regression effect” (Stevens and Greenbaum, 1966) or the “contraction bias” (Jou et al.,
2004). The representativeness heuristic (Kahneman and Frederick, 2002; Kahneman and Tversky, 1973) makes similar predictions.
Finally, the extremeness aversion literature (Simonson and Tversky, 1992; Chernev, 2004; Neumann, Böckenholt, and Sinha, 2016)
finds that subjects tend to avoid extreme options in choice settings.

4Huttenlocher el al. (2000) offer an explanation for this experimental regularity (also see Huttenlocher, Hedges, and Duncan,
1991). The authors propose a category adjustment model, which posits that subjects compensate for their imperfect memory and imper-
fect perception by employing information about the distribution of stimuli. We note that, according to the category adjustment model,
subjects learn the distribution through experience. Huttenlocher et al. (2000) refer to this as a Bayesian model since the information
about the distribution is employed to maximize the precision of the judgments. However, Duffy and Smith (2019) analyze data from
a replication of Huttenlocher et al. (2000) and find that non-Bayesian explanations have more support in the data than the category
adjustment model. Duffy and Smith (2018) analyze the data from Duffy, Huttenlocher, Hedges, and Crawford (2010), and come to a
similar conclusion about the predictions of the category adjustment model. See also Crawford (2019) and Duffy and Smith (2020).
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a hide-and-seek game have a bias toward the center of the action space in a way that is exploitable by the

seekers.

We say that the elicitation of beliefs in our experiment exhibits the central tendency bias because there

appears to be such a bias toward the mean of the distribution. In the domain of beliefs, Kareev, Arnon, and

Horwitz-Zeliger (2002) find that subjects tend to perceive a stochastic distribution learned through sampling

to be less variable than it truly is.5 Theoretically, the authors explain this finding by arguing that subjects esti-

mate the true variance by sample variance, which, if uncorrected for the degrees of freedom, is a downward-

biased estimate of variance. We find that underestimation of true variance is present also when the distribu-

tion is learned by description rather than by sampling. Further, note that the theoretical justification described

above does not apply in our case. Our finding therefore suggests that the central tendency bias in reporting of

judgments in general and beliefs in particular might be driven by an intrinsic reporting bias toward the center

of the support range.

We also go a step further and investigate where such bias might come from in our setting. We first rule

out that it is due to a lack of understanding that the true underlying distribution is uniform. We also find

that it is not an artefact of our experimental design, operating through incentive incompatibility of the belief

elicitation procedure or through payoff hedging. Finally, we provide indicative evidence that such individual

belief reports can be rationalized by well-defined subjective beliefs that differ from the objective truth. This

view is also supported by a finding that, between subjects, beliefs are correlated with auction bids.

Apart from contributing to the literature documenting biases in reported judgments and beliefs, our find-

ing, if corroborated by future research, has a significant implication for designing experiments. It implies that

subjects do not necessarily accept the distribution as given by the experimenter, even when the distribution is

as simple as the uniform distribution. Moreover, our findings offer another explanation for the conservatism

and overprecision biases in Bayesian updating. To the extent that our results generalize to other distributions,

our findings also suggest that probabilistic forecasts (rather than point forecasts) of events will have less vari-

ance than the true variance of these events. We hope to stimulate more empirical work on these issues.

5Also see Marchiori, Di Guida, and Erev (2015).
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2 Experimental design

2.1 Overview

We conduct an experiment where subjects engage in a first-price auction. Subjects are told the distribution

of their random-draw opponent’s strategy: a uniform distribution on a range of possible integer bids. The

subjects then place a bid in the auction. Subsequently, subjects are given an incentivized elicitation of their

beliefs of the random-draw opponent’s strategy and their beliefs of winning the auction. The random-draw

opponent’s bid is determined by a physical draw of a token at the end of the experiment. A total of 379

subjects participated in the experiment.

2.2 Belief elicitations

After submitting a bid in the auction, subjects report their beliefs of the distribution of their random-draw

opponent’s strategy. The strategy space of the random-draw opponent is divided into 5 bins of equal size.

Subjects allocate probability weights into the bins. An automatic checker verifies that these amounts correctly

sum to 100. Screenshots of the elicitation procedure are provided in Appendix D.6 The maximum that subjects

can earn on this task is 20 ECUs, where 1 ECU=e0.20.

It is well-known that eliciting beliefs from subjects, particularly the full distribution of beliefs, can be a

difficult endeavor.7 We elicit the distribution of beliefs of the opponent’s strategy by using the quadratic

scoring rule (QSR), apparently first suggested by Brier (1950). Presenting the payoff formula (or a simulator

based on it) should, under standard assumptions, establish incentive compatibility under risk neutrality (see

subsection 4.2 for different risk preferences). However, subjects might find it hard to infer the expected payoff

dominance of truthful reporting from the formula. Indeed, there is now a growing empirical evidence, from

both lab and field, that individuals often do not report their private type truthfully, even though the under-

lying mechanism is incentive compatible (see, for example, Hassidim, Marciano, Romm, and Shorrer, 2017).

Although there could be several underlying explanations, difficulty in perceiving the incentive compatibility

6Figure D2 shows a treatment in which the random-draw opponent’s strategy is the uniform distribution on {1, . . . , 60} and a
subject attempts to report weights that correctly sum up to 100. Figure D3 shows a treatment in which random-draw opponent’s
strategy is the uniform distribution on {1, . . . , 100} and a subject attempts to report weights that do not sum up to 100.

7See Winkler and Murphy (1970), Savage (1971), Matheson and Winkler (1976), Allen (1987), Manski (2004), Karni (2009), Offer-
man, Sonnemans, Van de Kuilen, and Wakker (2009), Blanco, Engelmann, Koch, and Normann (2010), Armantier and Nicolas (2013),
Hossain and Okui (2013), Schlag and van der Weele (2013), Andersen, Fountain, Harrison, and Rutström (2014), Schotter and Trevino
(2014), Schlag, Tremewan, and van der Weele (2015), Schlag and van der Weele (2015), and Harrison, Martı́nez-Correa, Swarthout,
and Ulm (2017).
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is probably a primary reason. Simply providing the formula does not guarantee that subjects understand the

incentive properties of the elicitation procedure.

We therefore opt for an alternative approach that attempts to communicate the incentive properties of the

mechanism directly via an intuitive and easy-to-understand payoff determination description and a set of

advices. In particular, subjects are told: “You will be paid based on how closely your estimates match your opponent’s

bid. The exact formula (the so-called quadratic scoring rule) is complicated and the experimenters will be happy to explain

it after the end of the experiment to those who are interested. However, in order to maximize your expected earnings from

this procedure, you should report these likelihoods truthfully according to what you believe.”

A clarification is in order here. The optimal response to the QSR depends on whether “your expected

earnings” is taken to refer to subjective beliefs or, instead, to the objective distribution. Since we take care

through the instructions and control questions (see subsection 4.1 below) to make sure that subjects hold

a correct representation of the objective distribution, we would expect the subjective beliefs to be uniform,

making the issue moot. That said, subjects might still wrongly believe that a single bid draw is not equally

likely to fall into any bin. In that case, while the uniform response maximizes the objective expected payoff,

truthful reporting does indeed maximize subjectively expected earnings. Since we are interested in eliciting

subjective beliefs, we provide advice consisting of four statements on how to report that link “your expected

earnings” to subjective beliefs:8 (1) report higher probabilities in bins that you believe to be more likely in

comparison to bins that you believe to be less likely; (2) report equal probabilities in bins that you believe to

be equally likely; (3) do not concentrate the reported probability in one or two bins if you are not quite sure

that the opponent’s bid is in that bin (those bins); (4) do concentrate the reported probability in one or two

bins if you feel confident that the opponent’s bid is in that bin (those bins).

It is our view that we provide proper incentives for truthful subjective belief reporting directly, without

these having to be inferred from the payoff formula.9 We also prepared a sheet with the payoff formula to be

shown to subjects who requested seeing it after the experiment.10

Subjects are also asked to report their beliefs of winning (and not winning) the auction given their bid.

Given the known strategy of their opponent, there is a well-defined objective probability of winning the

auction given the bid. Similar to the previous elicitation, there is an automatic checker that verifies that the

8We present an abbreviated form here. For the full wording, see “Question 1 stage” in Appendix C.
9We note that Qiu and Weitzel (2016) and Fairley, Parelman, Jones, and McKell (2019) also do not show their subjects a formal

expression for the scoring rule.
10This information sheet is available on OSF at https://osf.io/fy3mt/. Only 2 out of 379 subjects requested this information.
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weights correctly sum to 100.11 These beliefs are also incentivized with the QSR. The maximum that subjects

can earn on this task is 20 ECUs. Screenshots are provided in Appendix D.12

2.3 Auction treatments

Subjects place a bid against a random-draw-bidding opponent in one of seven different auction treatments, in

a between-subject design. In every treatment, the payoff is an induced value known by the subject minus the

bid in the event of winning the auction, and 0 otherwise. Ties are resolved in favor of subjects.

The auction 100/100 treatment is our baseline.13 In this treatment, the subject’s value of the object is 100

ECUs. The random-draw opponent has a strategy of placing a bid drawn from the uniform distribution on

{1, ..., 100}. Subjects select a bid from {1, ..., 100}. This treatment elicits bids using a visual representation of

the strategy space and of the lottery induced by each choice (see Figure D6 in Appendix C for a screenshot).

The auction 100/100 without visualization treatment is identical to the baseline, except that auction bids are

elicited simply by typing a response from {1, ..., 100} rather than with the aid of the visual representation.

In the BRET treatment, we implement the Bomb Risk Elicitation Task (BRET, Crosetto and Filippin, 2013).

In this treatment, subjects face a 10× 10 matrix with 100 numbered boxes. Of these, 99 are empty, while one

contains a time bomb programmed to “explode” at the end of the task, i.e., after choices have been made. The

bomb has an equal probability to be in any of the 100 boxes. Subjects decide how many of the 100 boxes to

collect in the increasing order of their numbers. If the collection does not contain the bomb, the payoff is equal

to the number of collected boxes. It is 0 otherwise. The BRET treatment is isomorphic to the auction 100/100

treatment, with the number of uncollected boxes corresponding to the bid, and the same visual representation

as the baseline.

In the auction 80/100 treatment, subjects’ value of the object is 80 ECUs. The strategy of the computerized

opponent and subjects’ bidding space is identical to the baseline. The bid is elicited using the same visual

representation as in the baseline, and includes the possibility of overbidding. The instructions contain a

warning against bidding more than 80.

The auction 60/100 treatment is identical to the auction 80/100 treatment, with the exception that subjects’

value of the object is 60 ECUs and the instructions contain a warning against bidding more than 60 (see Figure

11See “Question 2 stage” in Appendix C for complete instructions.
12See Figure D4 for a screenshot in which a subject attempts to report weights that correctly sum up to 100. See Figure D5 for a

screenshot in which a subject attempts to report weights that do not sum up to 100.
13In the name of the treatments, the number before “/” refers to the subject’s value of the object and the number after “/” to the

upper bound of the bidding range of the automaton.
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D7 in appendix C for a screenshot).

The auction 60/60 treatment sets the subjects’ value of the object to 60 ECUs. The computerized oppo-

nent bids uniformly on {1, ..., 60}. Subjects select a bid from {1, ..., 60}. Bids are elicited with a visualization

analogous to the baseline, but with the size of the matrix reduced to 10× 6 boxes that are numbered {1, ..., 60}.

The auction 60/60 expand treatment is identical to the auction 60/60 treatment, with the exception that sub-

jects select a bid from {1, ..., 100} and the visualization accommodates this by presenting a 10× 10 matrix.

However, the difference from the baseline is that the auction winning probabilities are derived from the

random-draw opponent bidding range being {1, ..., 60} rather than {1, ..., 100}. The instructions contain a

warning against bidding more than 60.

2.4 Experimental details and earnings

The timing of the experiment is as follows. First, subjects are required to pass an unincentivized test of their

understanding of first-price auctions and uniform probability distributions.14 Then, they place their auction

bid under 1 of the 7 experimental treatments. The subjects then respond to an elicitation of their beliefs of the

distribution of the random-bid opponent’s strategy and their beliefs regarding the probability of winning the

auction given their bid.

The auction values, bids and prices are expressed in ECUs, where 1 ECU=e0.20. Each belief elicitation

question can earn as many as 20 ECUs. One of these two elicitations is randomly selected for payment.

Subjects are paid their earnings in the auction, the randomly drawn belief elicitation and a e2.50 show-up fee.

The sessions were conducted in German in the laboratory of the Max Plank Institute for Economics in Jena,

Germany.15 They lasted approximately 30 minutes and subjects earned e8.50 on average. We note that this

amount was above the hourly wage available to our student subjects at the time of the experiment.

14More on control questions in Section 4.1 below. See section C.2 in Appendix C for the complete list of questions that subjects
have to answer correctly before being allowed to proceed with the experiment.

15Appendix C contains the English translation of the instructions given to the subjects. The original German wording is available
from the corresponding author upon request.
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Table 1: Mean weights within bins

Treatment Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

Auction 100/100 11.92 21.92 30.38 23.72 12.07
Auction 100/100 w/o 11.68 21.39 28.98 23.05 14.90
BRET 18.16 25.87 23.82 18.45 13.69
Auction 80/100 16.53 26.09 28.72 18.06 10.59
Auction 60/100 15.85 25.77 28.08 18.95 11.35
Auction 60/60 12.25 19.03 29.68 23.59 15.44
Auction 60/60 expand 14.94 22.45 24.15 21.61 16.85

Pooled 14.33 23.02 27.65 21.27 13.73

Note: We list the means of the weights reported within each of the 5 bins for each
treatment and pooled across all treatments.

3 Results

3.1 Summary statistics

We define a response to be the collection of probability weights allocated to the 5 bins. The response in the

lowest bin is labeled Bin 1, next, Bin 2, and so on. The 5 bins in auction 60/60 and auction 60/60 expand treatments

refer to ranges 1− 12, 13− 24, 25− 36, 37− 48, 49− 60. The 5 bins in the remaining treatments refer to ranges

1− 20, 21− 40, 41− 60, 61− 80, 81− 100. Table 1 summarizes the means of the reported weights within each

bin. Figure 1 gives an overview of the full dataset, with each point representing the weight allocated by a

subject to the given bin and the boxplots summarizing the distribution. The central tendency is robust across

treatments and immediately evident at the aggregate level.

Analyzing the data at the individual level, we first explore the extent of the general deviation from the uni-

form response. We define a response to be non-uniform if a distribution of weights other than (20, 20, 20, 20, 20)

is reported. Results are shown in Table 2. More than 72% of subjects give a response other than the uniform

distribution. To capture how far the response is from the uniform distribution, we measure the largest vertical

distance (d) of the cumulative distribution function (cdf) of the reported belief from the cdf of the uniform

distribution at the four boundaries dividing the 5 bins. Cumulative beliefs of more than two thirds of subjects

deviate from the uniform distribution by at least 10 percentage points, those of more than two fifths by at least

20 percentage points and those of more than a fifth by at least 30 percentage points.16

16Interestingly, not having the visualization (in Auction 100/100 without visualization) does not make the deviation from the uniform
distribution larger. If anything, the deviation rate and the threshold distance are lower than the average of the other 6 treatments, but
the difference is not statistically significant using the Fisher’s exact test (the p-values corresponding to the four measures presented
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Figure 1: The full dataset at a glance. Each point represents the weight allocated by a subject to the given bin.
The boxplots show the 25 th, 50th and 75th percentile of the distribution.

3.2 Central single-peaked responses

We next explore to what extent deviations from the uniform distribution are due to the central tendency bias.

We define a response to have a strict central single peak (strict-CSP) if the weight in Bin 1 is strictly less than

that in Bin 2, the weight in Bin 2 is strictly less than that in Bin 3, the weight in Bin 4 is strictly less than that

in Bin 3, and the weight in Bin 5 is strictly less than that in Bin 4. If we define wi as the weight allocated into

Bin i, then we can write the definition of strict-CSP as w1 < w2 < w3 > w4 > w5. To loosen this definition

such that it allows a multi-bin peak that includes Bin 3, we define a response to have a weak central single peak

(weak-CSP) if the inequalities are allowed to be weak, but the weight in Bin 1 is strictly less than the weight in

in Table 2 are 0.427, 0.880, 0.474 and 0.177, respectively).
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Table 2: Non-uniform responses and distances from the uniform distribution

Treatment Non-Uniform d > 0.1 d > 0.2 d > 0.3 Subjects

Auction 100/100 46 (76.7%) 41 (68.3%) 20 (33.3%) 11 (18.3%) 60
Auction 100/100 w/o 40 (67.8%) 39 (66.1%) 22 (37.3%) 9 (15.3%) 59
BRET 44 (71.0%) 39 (62.9%) 20 (32.3%) 13 (21.0%) 62
Auction 80/100 25 (78.1%) 25 (78.1%) 18 (56.3%) 11 (34.4%) 32
Auction 60/100 40 (72.7%) 39 (70.9%) 28 (50.9%) 14 (25.5%) 55
Auction 60/60 41 (69.5%) 38 (64.4%) 29 (49.2%) 16 (27.1%) 59
Auction 60/60 expand 39 (75.0%) 35 (67.3%) 23 (44.2%) 10 (19.2%) 52

Pooled 275 (72.6%) 256 (67.5%) 160 (42.2%) 84 (22.2%) 379

Note: We list the number (and percentage) of subjects with non-uniform responses. We also list the number
(and percentage) of subjects whose reported beliefs deviate from the uniform distribution by at least a threshold
sup-norm distance d ∈ {0.1, 0.2, 0.3}.

Bin 3 and the weight in Bin 5 is strictly less than the weight in Bin 3.17 To loosen the definition of strict-CSP in a

different direction, namely by allowing a strict peak also in other non-boundary bins, we define a response to

have a strict semi-central single peak (strict-semi-CSP) if it satisfies the conditions for strict-CSP or there is a strict

single peak in either Bin 2 or Bin 4.18 Finally, in the least restrictive definition, that subsumes both weak-CSP

and strict-semi-CSP, we define a response to have a weak semi-central single peak (weak-semi-CSP) if it satisfies

the conditions for weak-CSP or there is a weak single peak in either Bin 2 or Bin 4.19 Table 3 describes the

distribution of responses according to these definitions. Within each treatment and across all treatments, there

appears to be a single peak in the interior of the bid support. Over 50% of responses satisfy our definition of

a weak semi-central single peak. Figure 2 gives a visual characterization of the data by plotting the allocation

of subjects to types of peaked response by treatment, assigning subjects to the most restrictive type.20

To further explore the incidence of a central single peak in the responses, we take pairwise tests of the dif-

ferences of the weights between adjacent bins (w2 −w1; w3 −w2; w4 −w3; w5 −w4). We perform this analysis

with paired t-tests and signed rank tests. Since we make multiple pairwise tests, we perform the Bonferroni

correction. As we make four pairwise comparisons, we multiply every p-value by 4. We summarize this anal-

ysis in Table 4. We note that each statistic involving Bins 1 or 2 is positive and each statistic involving Bins 4

17In other words, a response has a weak-CSP if w1 ≤ w2 ≤ w3 ≥ w4 ≥ w5, w1 < w3, and w3 > w5. Note that if a response has a
strict-CSP, it has also a weak-CSP.

18A response has a strict-semi-CSP if it has a strict-CSP or it is a response with w1 < w2 > w3 > w4 > w5 or w1 < w2 < w3 <
w4 > w5.

19A response has a weak-semi-CSP if it has a weak-CSP or it is a response with w1 < w2 ≥ w3 ≥ w4 ≥ w5 and w2 > w5, or it is a
response with w1 ≤ w2 ≤ w3 ≤ w4 > w5 and w1 < w4. Note that if a response has a strict-semi-CSP, it has also a weak-semi-CSP.

20For instance, if a response has a strict-CSP, then, by definition, it has also a weak-CSP; in this case, the subject is assigned to the
strict-CSP type.
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Figure 2: Non-uniform responses at a glance. Each piece-wise line represents a subject. The percentages are
frequencies of the types within the treatment.
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Table 3: Frequencies of peaked responses

Treatment Strict-CSP Weak-CSP Strict-Semi-CSP Weak-Semi-CSP Subjects

Auction 100/100 15 (25.0%) 26 (43.3%) 25 (41.7%) 39 (65.0%) 60
Auction 100/100 w/o 14 (23.7%) 21 (35.6%) 21 (35.6%) 32 (54.2%) 59
BRET 12 (19.4%) 16 (25.8%) 17 (27.4%) 28 (45.2%) 62
Auction 80/100 4 (12.5%) 15 (46.9%) 5 (15.6%) 18 (56.3%) 32
Auction 60/100 10 (18.2%) 21 (38.2%) 12 (21.8%) 31 (56.4%) 55
Auction 60/60 17 (28.8%) 25 (42.4%) 21 (35.6%) 32 (54.2%) 59
Auction 60/60 expand 6 (11.5%) 15 (28.8%) 11 (21.2%) 26 (50.0%) 52

Pooled 78 (20.6%) 139 (36.7%) 112 (29.6%) 206 (54.4%) 379

Note: We list the number (and percentage) of responses that we categorize as having a strict CSP, a weak CSP, a strict
semi-CSP, and a weak semi-CSP.

Table 4: Paired t-tests and signed rank tests of differences in weights between adjacent
bins

Bin 2 - Bin 1 Bin 3 - Bin 2 Bin 4 - Bin 3 Bin 5 - Bin 4

t-statistic 10.83 4.81 −6.68 −11.00
Corrected p-value < 0.001 < 0.001 < 0.001 < 0.001

Signed rank z-statistic 11.01 5.14 −6.99 −11.18
Corrected p-value < 0.001 < 0.001 < 0.001 < 0.001

Notes: We list t-statistic for a paired t-test and the signed rank test statistic for adjacent bins. We report the
Bonferroni-corrected p-values of these tests. Since we have 4 pairwise tests, we multiply each p-value by 4.
Each test is based on 379 observations.

or 5 is negative. The implication is that the weights tend to be increasing below Bin 3 and decreasing above

Bin 3. In other words, this is evidence of a central single peak. Moreover, even with the Bonferroni correction,

each test is significant at 0.001 level.

4 What drives the non-uniform responses?

In this section, we try to shed light on what drives the non-uniform responses, and particularly the CSP

responses. In subsection 4.1, we show that these responses are not due to a possible misunderstanding of the

objective distribution. In subsections 4.2 and 4.3, we examine the possibility that the non-uniform responses

are an artefact of the experimental design in that, even if beliefs are uniform, the subject considers it preferable

to give a non-uniform response. In 4.2, we ask whether the non-uniform responses might be driven by the
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way we implement the belief elicitation procedure. In 4.3, we analogously examine a potential role of payoff

hedging. In subsection 4.4, we examine the extent to which the responses might reflect truly held beliefs, as

opposed to noise. To do so, we analyze whether the responses are consistent either with bids or with the

reported probabilities of winning the auction.

4.1 Possible problems with understanding the uniform distribution

In this subsection, we consider the possibility that subjects provide CSP responses because they do not under-

stand that the true underlying distribution is uniform.

To begin with, note that after instructions are read aloud and displayed on each subject’s screen, subjects

have to clear a control question screen to be allowed to continue with the experiment (see section C.2 in

Appendix C for the text of the control questions). Question 3 is devoted specifically to understanding the

uniform distribution. It asks: ”What is the probability of your opponent’s bid being in the range: a. 39 through 72;

b. 22 though 47; c. 1 through 10; d. 16 through 56; e. 62 through 100”. When subjects make a mistake in one

or more questions, a pop-up screen tells them which questions they got wrong, and prompts them to change

their answers. This procedure is iterated until no mistakes are submitted. We would therefore expect that a

vast majority of subjects understand the environment, including the uniform distribution, when they start the

experiment.

That being said, there is still some chance that subjects ultimately answer the control questions correctly

by using some heuristics or trial and error, without fully understanding the environment. Such subjects are

likely to provide incorrect initial responses to at least some control questions. On the other hand, those who

provide correct initial responses to control questions might be considered to understand the relevant parts

of the environment. Hence to examine the hypothesis that subjects provide CSP responses because they do

not understand that the true underlying uniform distribution, we turn to evidence from control questions.

We have data on the number of attempts, the number of mistakes on any question and sub-question, and the

time spent on the control question screen. The time variable is an ambiguous indicator, but the number of

mistakes constitutes a reliable proxy for initial understanding, and a noisy proxy for ultimate understanding.

We particularly focus on question 3 that deals with understanding of the uniform distribution.

Subjects can fail one or more of the five sub-questions, and we keep track of each of them separately. The

question generates a considerable number of initial mistakes: 58.8% subjects made at least one mistake in point

a, 62% in b, 28% in c, 61.7% in d and 60.2% in e. The difference in the frequencies suggests that mistakes are to

13



Table 5: Relative frequency of responses by mistake type and χ2 tests

mistakes wrong uniform wrong simple uniform

None Some None Some None Some
N 59 320 104 275 272 107

Uniform 0.271 0.275 0.288 0.269 0.298 0.215
Weak-Semi-CSP 0.571 0.537 0.529 0.549 0.518 0.607
Extreme 0.114 0.129 0.115 0.131 0.129 0.121
Other 0.043 0.058 0.067 0.051 0.055 0.056

χ2 test p-value 0.93 0.88 0.38

some extent due to a problem with correctly taking into account the boundaries of the intervals. 72% of subjects

correctly report the probability mass for the interval 1 through 10 as 10%, as immediately intuitive. However,

when estimating the probability mass for the interval 16 through 56, a subtraction heuristic is largely used,

making many subjects report 40% rather than the correct 41%.

We do not record the content of the wrong answers, only the number of wrong attempts. We use two

different proxies of low comprehension. First, we identify subjects who make at least one mistake in any of

the five sub-questions (wrong uniform = 1). Second, in order to take into account the possibility that mistakes

reflect the boundary problem rather than a basic misunderstanding of the uniform distribution, we identify

those who make at least one mistake in the 1-through-10 sub-question (wrong simple uniform = 1). This

sub-question is the easiest to answer and is immune to the boundary problem. For reference, we also identify

subjects who make at least one mistake on any of the control questions on their first attempt (mistakes = 1).

Table 5 reports the relative frequencies of different types of responses for each of the two values of our three

initial comprehension indicators. We use four mutually exclusive categories of responses: uniform, weak-

semi-CSP (that includes as special cases all the centrally-concentrated response types), extreme (a weakly

decreasing or a weakly increasing non-uniform response), and a residual “other” category. Response distri-

butions are not significantly different for subjects committing zero rather than a positive number of overall

mistakes, mistakes on any of the uniform distribution sub-questions, or specifically on the sub-question 3c.21

Overall, we therefore conclude that the central bias identified in the responses is not due to a misunderstand-

21For subjects who initially fail the 1-through-10 sub-question, we see a slight decrease in the frequency of uniform responses and
a corresponding increase in the frequency of CSP responses relative to subjects who do not initially fail this question. This suggests
that the CSP reporting might after all be at least partly driven by a lack of understanding of the uniform distribution. We present
additional analysis in Appendix B to evaluate robustness of the CSP reporting within each the two groups. The analysis shows that
the central bias is robustly present in both groups. Hence even though misunderstanding of the uniform distribution, to the extent
that it is present after clearing the control questions screen, might contribute to CSP reporting, it is not a major force behind such
reporting.
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ing of the uniform distribution.

4.2 Quadratic Scoring Rule and its implementation

In this subsection, we investigate the possibility that a subject holding the uniform subjective belief provides

a non-uniform response because of incentives inherent in the QSR and its description. We make three points

on the matter.

First, we do not provide subjects with the QSR payoff formula, but rather with advice on how to report

(see subsection 2.2). Could it be that a subject holding the uniform subjective belief is somehow confused

into thinking that a non-uniform response is superior? To evaluate this hypothesis, note that the main advice

states that “... in order to maximize your expected earnings from this procedure, you should report these likelihoods

truthfully according to what you believe.” Moreover, the second additional statement of advice (the only relevant

one for someone with the uniform subjective belief) recommends reporting equal probabilities in bins that the

subject believes to be equally likely. Therefore, we do not see why our description of the QSR would drive the

deviations from the uniform response.

Second, it is well-known that the QSR gives risk-averse subjects an incentive to report a distribution that

is ”closer to” the uniform distribution than their true subjective beliefs (see, for example, Harrison et al. 2017).

As a result, someone with both knowledge of the QSR payoff formula and understanding of its incentive

properties might give a biased report of her subjective non-uniform belief. However, when the subjective

belief is uniform, there is no bias in reporting. We state this result formally in Proposition 1 in Appendix

A. Moreover, in comparison to Harrison et al. (2017), we prove that this result is true even for preferences

with reasonable degrees of risk loving. Therefore, with the exception of degrees of risk loving that are not

commonly observed, the non-uniform responses cannot be a consequence of deviations from risk neutrality

if the underlying subjective belief is uniform.

Third, turning to a more behavioral perspective, given that we use an odd number of bins, the central

bin might be salient or focal for putting a relatively large probability weight into. While we cannot rule out

this possibility, we point out that Fairley, Parelman, Jones, and McKell (2019), who use 20 bins in a setting

fundamentally similar to ours, report an auxiliary result that, on average, beliefs are single-peaked with the

peak in bin 10.22 Since 20 bins arguably provide a finer grid for reporting beliefs about a random variable,

this finding suggests that the central single peak is not purely a consequence of a small, odd number of bins

22See their Figure 4 and A1. The authors do not point out the CSP property of the average beliefs.
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in our experiment.

4.3 Hedging

Next, we investigate the possibility that subjects who hold true uniform subjective belief provide a non-

uniform response because they use their payoff from the belief elicitation as a hedge for their payoff from

the auction. Obviously, only a risk-averse subject desires to hedge.23

The first comment is analogous to that given in the previous subsection. Given that the instructions do not

provide a payoff formula for the QSR and given the advice provided, the possibility of hedging is arguably

not apparent to subjects. However, analogously the previous subsection, we consider how subjects who

understand incentives for hedging would report given their subjective belief. In particular, we want to see

whether the non-uniform responses could be due to risk-aversion-driven hedging despite the underlying

subjective belief being uniform.

Intuitively, the auction does not pay off if and only if the bid of the computerized opponent is above the

subject’s bid. As a result, in order to hedge against losing the auction, a subject should bias the belief report

toward the computerized bids in excess of her own bid and away from computerized bids below her own

bid. We formalize this result in Proposition 2 in Appendix A. This proposition implies that if a risk-averter

has the uniform subjective belief, then the reported probability in all bins below the bin in which her bid is

located should be the same and strictly less than 20%, the reported probability in all bins above the bin in

which her bid is located should be the same and strictly more than 20% and the reported probability for the

bin in which her bid is located should be somewhere (weakly) in between. Among 379 subjects in our data,

only 9 are strictly consistent with these predictions. Once we allow various probability reports below the

bin or above the bin in which the bidder’s bid is located to vary up to 1 percentage point24 or 3 percentage

points or 5 percentage points, this number increases to 10 or 11 or 13 (3.4% of the sample), respectively. Since

this fraction is negligible compared to the fraction of subjects with non-uniform responses, we conclude that

the non-uniform responses that we observe cannot be a consequence of payoff hedging if the underlying

subjective belief is uniform.

23Recall that each subject is paid by the QSR for either eliciting beliefs of the opponent’s bid or for eliciting beliefs of winning the
auction, but not both. Therefore the payoff from the latter elicitation does not enter into consideration when thinking about hedging
using the payoff from the former elicitation.

24This could occur, despite the subjects’ best effort to equalize the reported probabilities, due to a perception that only integer
probabilities can be reported (which is not the case).
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4.4 Consistency of responses

In this subsection, we try to shed light on the question of whether the non-uniform responses, and particularly

the CSP responses, capture truly-held subjective beliefs. If not, such responses could be noisy reports of

underlying well-defined subjective beliefs, or they could reflect a lack of well-defined subjective beliefs or

confusion, responses we refer to as “pure noise.”

We begin by asking whether there is at least some evidence of the non-uniform responses being consis-

tent with ”external” behavior, namely bidding in our experiment. We define the response of a subject to be

externally consistent if this subject’s bid maximizes his expected utility (EU) under some (strictly increasing)

utility function and under some belief about the opponent’s bid that, when aggregated within each of the 5

bins, results in the given response.25 Based on this definition, the only subjects who might have externally

inconsistent responses are: (a) those whose bid exceeds the value when the probability of winning at this bid

is strictly positive; (b) those whose bid results in a zero probability or a zero surplus if winning when there

is a different bid at which the auction could be profitably won with a positive probability; or (c) those who

bid below their value, but whose bid could be reduced without affecting a positive probability of winning.

All subjects bid below their value, making (a) irrelevant. Only 3 subjects have a guaranteed zero probability

of winning given their response and only 2 of these fit (b). Another 4 subjects fit (c). That is, only 6 out of

379 subjects (about 1.6% of the sample) display externally inconsistent responses. The remaining 373 subjects

have externally consistent responses.

Given that the concept of external consistency imposes relatively little discipline on the responses, we

also check for the relationship between responses and bids across subjects. This exercise is motivated by

considering how the subject’s EU-maximizing bid would change if the belief about the opponent’s bid were to

shift toward higher bids. Holding the utility function constant, such shift of beliefs might be expected to lead

to a higher bid.26 To examine the extent to which this theoretical comparative static is borne in between-subject

25This is, admittedly, a fairly non-restrictive definition. However, it is arguably the only possible one in the absence of knowledge
of subject domain-specific risk attitude and in the absence of assumptions on how beliefs summarized by a response are distributed
within the individual bins.

26This is not the case for all possible belief shifts to the right in the sense of first-order stochastic dominance. However, a simple
sufficient, but not necessary, condition for the bid to (weakly) increase is that the after-shift belief cdf G(·) satisfies, relative to the
pre-shift belief cdf F(·), that G(b1)/F(b1) ≤ G(b2)/F(b2) for any b1 < b2 such that F(b1) > 0. To see this, let u(·) be the utility
function normalized such that u(0) = 0. Then the expected payoff from bidding b when having the belief F(·) is u(v − b)F(b).
We then have that if for b1 < b2 with F(b1) > 0 it is the case that u(v − b1)F(b1) ≤ u(v − b2)F(b2), it must also be the case that
u(v − b1)G(b1) ≤ u(v − b2)G(b2). As a result, whenever b2 generates at least as high an expected utility as b1 under F(·), it does
so also under G(·), and a similar implication analogously holds for strict inequalities as well. Hence the peak of the expected utility
function cannot move to the left under G relative to F, and will typically move to the right.
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comparisons, we rank-correlate across subjects their bid with the probability that the bid of the opponent does

not exceed the upper boundary of Bin i implied by the response, repeating the exercise for i ∈ {1, .., 4}. To

make this exercise meaningful as a reflection of the comparative static discussed above, we must assume

that subjects reporting lower probabilities up to Bin i are not systematically more risk averse than subjects

reporting higher probabilities. We perform the rank-correlation computations for four groups of subjects. In

the first group, we use all 373 externally consistent subjects. In the second group, we use only the externally

consistent subjects with non-uniform responses. Next, we split this group into subjects with Weak-Semi-CSP

responses (the third group) and others (the fourth group). The resulting rank-correlations are presented in

Table 6.

We observe that the rank correlations are negative and, with the exception of one case, statistically signif-

icant (even after a Bonferroni correction for multiple pairwise testing). That is, reporting lower probabilities

up to Bin i (hence assigning higher probabilities above Bin i) is indeed significantly correlated with higher

bids. This is a very broad and robust observation. It holds within all four considered groups, which comprise

both wide and successively narrower sub-samples of the data. This observation provides further evidence

that non-uniform responses in general, and CSP responses in particular, cannot be dismissed as pure noise.

However, it is unclear to what extent the responses reflect true ex ante subjective beliefs that subjects hold

before they decide on their bid. Given that subjects had to decide on their bids before being probed for their

beliefs, their responses might also be driven by an ex-post justification of the submitted bids.

Since the concept of external consistency is not powerful in determining whether the responses capture

truly-held subjective beliefs, or noisy reports of underlying well-defined subjective beliefs, or pure noise, we

turn to a different concept of consistency. To streamline exposition, in the rest of this subsection we refer to

one’s belief report about the bid of the opponent as response 1 (this is what we otherwise refer to as “response”),

and we refer to one’s winning probability report as response 2. We define the pair of responses of a subject to

be internally consistent if there exists a belief about the opponent’s bid such that: a) it can be aggregated within

the 5 bins to reconstruct response 1; b) given these beliefs, the implied probability of winning the auction at

the submitted bid is equal to response 2. If a subject’s responses are internally consistent, there is an argument

for considering such responses to capture truly held beliefs.

If a subject’s responses are not internally consistent, we next ask whether they could be considered to

be noisy reports of well-defined subjective beliefs. In such case, assuming that noise in the two responses

is independent, we expect the two responses to become internally consistent once noise is removed from
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response 1 (correction 1) or response 2 (correction 2). If the pair of responses becomes internally consistent after

at least one of the two corrections, we consider that subject to have well-defined subjective beliefs. In the

opposite case, we consider that subject’s beliefs to be pure noise.27

Applicability of this methodology requires to posit true subjective beliefs. If beliefs were allowed to be

subject-specific, one could obtain a 100% internal consistency rate after correction 1 or after correction 2 by

choosing a subjective belief that perfectly matches response 2 or response 1, respectively. Hence to render

the exercise meaningful, we restrict attention to the case of the subjective beliefs being uniform. This choice

is motivated by the shape of the objective distribution. This means that, under correction 1, response 1 is

replaced by the uniform response. Analogously, under correction 2, response 2 is replaced by the objective

probability of winning the auction at the submitted bid given the uniform distribution of the opponent’s bid.

As a consequence, we might end up classifying the responses of some internally inconsistent subjects with

non-uniform subjective beliefs as pure noise as opposed to noisy reports of well-defined subjective beliefs

just because we do not consider the correct subjective beliefs. Also, we might end up with such erroneous

pure-noise classification even if the true subjective beliefs are uniform but the noise in the two responses is

so large that none of the two corrections establishes internal consistency. Hence the incidence of pure noise

responses in our data should be taken as an upper bound on the true incidence of not-well-defined beliefs.

Table 7 reports results of the consistency and correction classification. We observe that, overall, about

65% of responses are internally consistent. For the uniform-response subjects, it is almost 77%, whereas for

the non-uniform-response subjects, it is about 60%. For the weak-semi-CSP subjects in particular, 66% of

responses are internally consistent. Performing one or the other correction establishes internal consistency

for about another quarter of responses in each of these three groups (for the uniform response group, this

happens by construction). That is, (at least) about a quarter of the non-uniform responses in general, and the

single-peaked responses in particular, can be thought of as being noisy reports of a well-defined underlying

(uniform or non-uniform) subjective belief. Finally, (at most) about 14% of the non-uniform responses in

general and 10% of the single-peaked responses in particular can be thought of as pure noise.

This exercise implies that a majority of non-uniform responses might indeed reflect true subjective beliefs.

Only for a minority (at most one seventh) of non-uniform responses there is little evidence of any other expla-

nation but pure noise. And as discussed above, even this fraction should be taken as an upper bound on the

27Performing both noise corrections simultaneously by definition establishes internal consistency. Therefore, we do not consider
such exercise.
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true incidence of pure noise responses in the data.

5 Implications for biases in Bayesian updating

In this section, we discuss implications of the central tendency bias on well-known biases in Bayesian updat-

ing when there are more than 2 ordered states of the world. It is well-known that subjects’ updating behavior

often does not conform to predictions of the Bayes’ rule.28 Specific individual characteristics may trigger

different failures in Bayesian updating in the same decision task, for instance due to a personal inclination

to overweight prior over new information (Achtziger, Alós-Ferrer, Hügelschäfer, and Steinhauser, 2014). We

argue that the central tendency bias can help to rationalize at least two well-documented biases, namely con-

servatism and overprecision, even for the same decision maker, depending on the type of new information

received.

The first bias is conservatism, defined as the tendency of subjects to overweight prior information and

therefore to insufficiently adjust their posteriors to new information (Phillips and Edwards, 1966).29 The

second bias, overprecision (or Bayesian overconfidence), describes a situation in which the variance of posterior

beliefs is lower than that justified by the acquired information.30

Rather than a feature of the updating process, however, conservatism and overprecision could be observa-

tionally equivalent to proper Bayesian updating under ex ante beliefs that are centrally biased relative to the

assumed underlying distribution. The two biases can even coexist for the same decision maker, and which

of the two occurs depends on the type of new information received. In particular, the central tendency bias

suggests an explanation for conservatism in settings where the new information is relatively “extreme”, i.e.,

supporting a state (or states) close to a boundary of the state space. If subjects perceive the prior distribution

to be less variable than what the experimenter attempts to induce, we should observe, in response to extreme

new information, a subjective posterior that is closer to the induced prior than the objective Bayesian posterior

is.31 In contrast, when the new information is “central”, i.e., supporting centrally located states, the subjective

28A sample of this large literature would include Kahneman and Tversky (1973), Bar-Hillel (1980), Grether (1980, 1992), Weber
(1994), Gigerenzer and Hoffrage (1995), El-Gamal and Grether (1995), Zizzo, Stolarz-Fantino, Wen, and Fantino (2000), Sedlmeier and
Gigerenzer (2001), Kahneman and Frederick (2002), Charness, Karni, and Levin (2007, 2010), Oechssler, Roider, and Schmitz (2009),
Achtziger and Alós-Ferrer (2013), Hawkins et al. (2015), and Cassey, Hawkins, Donkin and Brown (2016).

29Also see Beach (1968), Marks and Clarkson (1972), De Swart, J. H. (1972), Griffin and Tversky (1992), Erev, Wallsten, and Budescu
(1994), Oechssler, Roider, and Schmitz (2009), and Corner, Harris, and Hahn (2010).

30For instance, there is evidence that subjects facing a uniform ex-ante distribution of events tend to hold updated beliefs that, even
though unbiased on average, are characterized by a lower variance than implied by Bayesian updating (Harrison and Swarthout,
2019).

31See He and Xiao (2017) for a related model. Also, Benjamin, Rabin, and Raymond (2016) and Kovach (2015) propose other
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posterior will exhibit overprecision relative to the objective Bayesian posterior.

To illustrate how our results can imply behavior consistent with conservatism and overprecision, consider

the following example. Suppose that there are 5 ordered states of the world, ωi = i for every i ∈ {1, ..., 5}.

Also suppose that there is a uniform objective prior on the states, Pr(ωi) = 0.2 for every i ∈ {1, ..., 5}. The

subject receives one signal, si ∈ {1, ..., 5}, which matches the true state with probability 0.8, i.e., Pr(si|ωj) = 0.8

if i = j. The signal does not match the state with probability 0.2, and there is a uniform distribution on signal

realization over the remaining states, i.e., Pr(si|ωj) = 0.05 if i 6= j. Therefore, upon observing an extreme

signal, say s5, a Bayesian subject will report a posterior of

Pr(ω5|s5) =
Pr(s5|ω5)Pr(ω5)

∑5
i=1 Pr(s5|ωi)Pr(ωi)

= 0.8.

Further, the expected posterior value of the state will be

EV =
5

∑
i=1

ωi ∗ Pr(ωi|s5) = 4.5.

Suppose, however, that the subject has an ex-ante subjective belief that, rather than being uniform, exhibits

the central tendency bias. For an illustration, take Pr(ω1) = 0.15, Pr(ω2) = 0.2, Pr(ω3) = 0.3, Pr(ω4) = 0.2,

and Pr(ω5) = 0.15. Upon observing the extreme signal s5, the subject will report a posterior of Pr(ω5|s5) =

0.738 and an expected value EV = 4.38. Since both are insufficiently sensitive to the extreme signal, the

experimenter will conclude that the subject exhibits behavior consistent with conservatism.

Now consider the same example again, but this time assuming that the signal received by the same subject

is s3. The Bayesian posterior belief starting from the uniform prior should be:

Pr(ω1|s3) = 0.05; Pr(ω2|s3) = 0.05; Pr(ω3|s3) = 0.8; Pr(ω4|s3) = 0.05; Pr(ω5|s3) = 0.05.

When the agent holds prior beliefs that exhibit the central tendency bias as assumed above, the posterior

beliefs are instead:

Pr(ω1|s3) ' 0.027; Pr(ω2|s3) ' 0.036; Pr(ω3|s3) ' 0.873; Pr(ω4|s3) ' 0.036; Pr(ω5|s3) ' 0.027.

While unbiased on average (EV = 3), these posterior beliefs are characterized by overprecision in that the

models of conservatism.
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distribution is more concentrated than the Bayesian posterior given the correct prior (the variance is equal to

σ2 ' 0.29 instead of σ2 = 0.50.)

Hence, the central tendency bias in prior beliefs, as found in our experiment, may offer an alternative

explanation for purported failures in Bayesian updating in settings where there are more than 2 ordered

states of the world. In other words, another explanation for conservatism and overprecision is that, rather

than failing to process information according to the Bayes rule, subjects have subjective prior beliefs that are

more concentrated in the middle of the ordered state space than the objective distribution.

Our experiment measures ex-ante beliefs only, and therefore is not equipped to test the implications of

the central tendency bias on Bayesian updating. The nature of the exercise shown in this section is purely

exploratory, but it is our view that it illustrates interesting implications and suggests a direction for promising

future research.

6 Conclusion

In our experiment, we describe the distribution of bids of a random-bid auction opponent as being uniform.

We subsequently elicit beliefs of this distribution using the Quadratic Scoring Rule. To our surprise, we find

evidence that the reported beliefs are largely non-uniform and that many tend to be centrally biased.

The judgments literature has found such a central tendency bias in other settings. Our results suggest that

the central tendency bias is more general than the collection of one-at-a-time judgments. The central tendency

bias can also be observed when subjects report their beliefs of a probability distribution that is objectively

uniform. Even more strikingly, this pattern occurs despite subjects demonstrating the ability to compute

probabilities of events drawn from the uniform distribution. Moreover, many of the central tendency bias

experiments are not incentivized, whereas we find evidence of this bias in an incentivized belief elicitation

procedure.

We argue and empirically demonstrate that the central tendency bias found in our data is not an artefact

of our experimental design. In contrast, there is some indicative evidence that the reported beliefs exhibiting

the central tendency bias capture, or at least approximate, truly held beliefs for most of the subjects. This

evidence draws upon consistency of reported beliefs with another belief report and with the auction bid. If

confirmed by future research, such finding would imply that it is not easy to control beliefs in the laboratory

because, in line with the insights of the decision-from-experience literature (see for instance Cohen, Plonsky
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and Erev 2020), subjects having read and understood the instructions can still hold idiosyncratic subjective

beliefs.

Our data does not allow us to shed light on the causes of the documented central tendency bias. We spec-

ulate that there could be several potential explanations. For example, subjects might over-generalize from

naturally occurring situations. Uniform distributions, while widespread in man-made settings like casino

games and lotteries, are rare in the natural world, where central singe-peaked distributions are more com-

mon. Or, alternatively, subjects might find it beneficial to be ’in the center’ since they partially confuse the

distribution with its mean or median.32

The central tendency bias offers an explanation for well-known biases in Bayesian updating, such as con-

servatism and overprecision. In studies of biases in Bayesian updating, it is usually assumed that subjects

correctly internalize the induced prior distribution. Our results suggest that this is not necessarily the case.

Conservatism and overprecision can also be rationalized by subjects holding prior beliefs that are more con-

centrated in the middle of the ordered state space than the objective distribution. The central tendency bias

also suggests that probabilistic forecasts (rather than point forecasts) of events might have less variance than

the actual events. While there is mixed evidence of this in macroeconomic forecasts (Smyth and Ash, 1981;

Stekler, 1975),33 we are interested to learn whether this implication of our results can be found in studies of

predictions of uncertain events.

Although we observe the central tendency bias in seven different experimental settings, we are interested

to learn the extent to which our results are robust to different stochastic distributions, different elicitation

specifications (for instance, different numbers of bins or bins that do not have identical sizes), and other

experimental details. We hope that future experimental work can shed light on the extent to which our results

are robust.

32An observationally equivalent outcome follows from targeting the distribution of the sample mean. Since the objective distribu-
tion is uniform, the distribution of the sample mean based on 2 or more draws in indeed single-peaked. Nonetheless, in our setting
subjects perform a single draw and do so after the belief elicitation phase, so this point should not apply.

33Engelberg, Manski, and Williams (2009) also examine probabilistic forecasts of experts but do not compare the variances of the
predictions with the actually realized variances.
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Appendices

A Propositions

A.1 Incentive compatibility of the QSR and risk non-neutrality

Suppose that the state space is partitioned into n mutually exclusive and exhaustive events (5 in our setting).

Let p1, ..., pn be the subjective probabilities and let r1, ..., rn be the reported probabilities of the individual

events. Any report must satisfy r1 + ... + rn = 1. The realized payoff is given by a constant minus a penalty

linear in the square of the Euclidian distance between the realized and the reported probability vector. The

former one is given by (0, ..0, 1, 0, .., 0), with “1” on the position of the realized state. That is, the payoff if state

i is realized is given by

πi ≡ α− β

(
(1− ri)

2 + ∑
j 6=i

(0− rj)
2

)

= (α− β) + 2βri − β
n

∑
j=1

r2
j

with α, β > 0. Note that the minimum possible value of πi is α− 2β and it is attained if rj = 1 for some j 6= i,

whereas the maximum possible value of πi is α and it is attained if ri = 1. In our setting α = 20 and β = 10,

implying a possible payoff range from 0 to 20 ECUs. Consider an EU maximizer with a strictly increasing and

twice continuously differentiable utility function u(·). We then have the following result:34

Proposition 1 Suppose that u′(·) is bounded away

from 0 and ∞ on [α− 2β, α]. Then any optimal report (r∗1 , .., r∗n) satisfies:

1. for any event i, r∗i = 0 if and only if pi = 0, 0 < r∗i < 1 if

and only if 0 < pi < 1 and r∗i = 1 if and only if pi = 1;

2. for any two distinct events i and j, if pi > pj, then r∗i > r∗j ; by a contrapositive, if r∗i = r∗j , then pi = pj;

34This proposition is similar to the theoretical results presented in Harrison et al. (2017). However, there are three novelties here:
(1) the first statement in part 2; while the same result follows from Lemma 1 in Harrison et al. (2017) under risk aversion, we prove it
generally for any risk preference (the contrapositive statement in part 2 is identical to Lemma 4 in Harrison et al., 2017); (2) the upper
bound on risk-loving in part 3; while Harrison et al. (2017) prove the same result under risk aversion (Lemma 3), we partially extend
it to risk loving as well; (3) part 4; in comparison to Proposition 4 in Harrison et al. (2017), this is a different way of expressing the
result that risk aversion leads to a “flattening” of reported beliefs toward equal reports, whereas risk loving has the opposite effect;
implications of the two approaches for data inference are arguably identical, though.
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3. for any two distinct events i and j, if u′′(x)/u′(x) ≤ β−1 for any x ∈ [α− 2β, α] and pi = pj, then r∗i = r∗j ;

4. for any two distinct events i and j with pi > pj > 0, if u(·) is linear, then r∗i = pi and r∗j = pj; if u(·) is strictly

concave, then r∗i /r∗j < pi/pj; and if u(·) is strictly convex,

then r∗i /r∗j > pi/pj.

The most important implication of this proposition is that if a subject believes that all 5 bins are equally

likely, then, barring a sufficiently high risk-loving, it is optimal to provide the uniform response.35 That is,

the non-uniform responses that we observe cannot be a consequence of deviations from risk neutrality if the

underlying subjective belief is uniform.

Proof of Proposition 1. The decision-maker solves

max
r1,..,rn∈[0,1]

n

∑
i=1

piu

(
α− β + 2βri − β

n

∑
j=1

r2
j

)
s.t. r1 + ... + rn = 1.

At the beginning, we are going to ignore the constraint r1 + ... + rn = 1 and

focus on the resulting “unconstrained” problem subject only to the usual

probability bounds of 0 and 1. Note that πi is strictly increasing

and concave in ri on [0, 1] with ∂πi/∂ri|ri=1 = 0 , whereas πj, j 6= i, is strictly decreasing and concave in ri

on [0, 1] with ∂πj/∂ri|ri=0 = 0. This implies that,

starting from ri = 0, a small increase in ri has a positive first-order

effect on πi without any counterbalancing negative first order effect

on πj, j 6= i. Since u′(·) is bounded away from 0

and ∞, this implies that r∗i > 0 if pi > 0. Likewise, starting

from ri = 1, a small decrease in ri has a positive first-order effect on πj, j 6= i, without any counterbalancing

first order effect on πi, implying that r∗i < 1 if pi < 1. Moreover, if pi = 0, it is trivial to see that r∗i = 0 even

without considering the lower probability bound of 0, and if pi = 1, it is trivial to see that r∗i = 1 even without

considering the upper probability bound of 1. This series of observations jointly implies the equivalent of part

35To gauge what is meant by “sufficiently high risk-loving”, note that by part 3 of Proposition 1, the result of equal reporting of
equal true probabilities goes through for any utility function with constant absolute risk loving of at most β−1 = 0.1 if payoffs are
denominated in ECUs, or of at most 0.5 if payoffs are denominated in Euros. Working with the constant absolute risk aversion utility
function u(x) = e0.1x when counting in ECUs (u(x) = e0.5x when counting in Euros), and considering a 50/50 lottery between the
two most extreme possible payoffs from the payoff elicitation, namely 0 and 20 (e0 and e4), the certainty equivalent of this lottery
for a decision maker with such utility function is approximately 14.34 ECUs (e2.87 ). Arguably, few subjects are as risk-loving as this.

34



1 of the Proposition for the unconstrained problem. It also implies that the probability bounds of 0 and 1 are

never binding in this problem and can therefore be ignored.

For the equivalent of part 2 of the Proposition for the unconstrained problem, suppose that pi > pj and,

by contradiction, r∗i ≤ r∗j .

First, suppose that r∗i = r∗j . By part 1 of the Proposition, it then

must be the case that 0 < r∗i = r∗j < 1. Now, starting from this point, consider a small increase in ri and an

exactly offsetting small decrease

in rj. This change has a positive first-order effect on πi, an offsetting negative first-order effect on πj of the

same absolute size

and no first-order effect on πk for k 6= i, j. Since pi > pj and u′(·) is bounded away from 0 and ∞,

such perturbation increases EU, contradicting optimality of r∗. Second, suppose that r∗i < r∗j , implying that

π∗i < π∗j . Now consider resetting ri and rj such that ri = r∗j and rj = r∗i . This change does not affect πk for

k 6= i, j. As a result, the EU changes by

[piu(π∗j ) + pju(π∗i )]− [piu(π∗i ) + pju(π∗j )] = (pi − pj)[u(π∗j )− u(π∗i )] > 0.

But this means that such a change increases EU, contradicting optimality of r∗. Hence if pi > pj, it must be

the case that r∗i > r∗j .

Since the probability bound constraints can be ignored as argued above, any

solution (r∗1 , .., r∗n) to the unconstrained problem must satisfy the

usual first-order necessary conditions

2βpku′(π∗k )− 2βr∗k
n

∑
j=1

pju′(π∗j ) = 0, k = 1, .., n, (1)

where π∗i is the resulting payoff if state i is realized. Summing

these n conditions gives

2β
n

∑
k=1

pku′(π∗k )− 2β

(
n

∑
k=1

r∗k

)
n

∑
j=1

pju′(π∗j ) = 0,

implying that r∗1 + ... + r∗n = 1. As a result, any solution to the unconstrained problem also solves the con-

strained problem. This observation

35



hence proves the first two parts of the proposition also for the constrained problem.

For part 3 of the Proposition, if pi = pj = 0, then r∗i = r∗j = 0 is implied by part 1 of the Proposition. Now

suppose that pi = pj ∈ (0, 0.5].

Then part 1 of the Proposition implies that r∗i , r∗j ∈ (0, 1). By (1), it then must be the case that

r∗i
r∗j

=
u′(π∗i )
u′(π∗j )

. (2)

Clearly, if r∗i = r∗j , then π∗i = π∗j , and (2 ) is satisfied. Next, we are going to show that (2) cannot be satisfied

for r∗i 6= r∗j . Suppose, by contradiction, that

there exists a report profile r∗ with, without loss of generality, r∗i > r∗j and r∗i , r∗j ∈ (0, 1) such that (2)

is satisfied. Let r̄ ≡ (r∗i + r∗j )/2. Now consider a different report profile r′ which differs from r∗ by both r∗i

and r∗j being replaced by r̄, while the other reported probabilities are left unchanged. Now, starting from r′,

gradually increase ri, by

the same amount gradually decrease rj, and keep all the other reported probabilities fixed until r∗ is

reached. At any point along this trajectory, we have

that

d
(

ln
ri

rj

)
= d ln ri − d ln rj

=
dri

ri
+
−drj

rj

=
dri

ri
+

dri

rj

= dri

(
1
ri
+

1
rj

)
≥ 4dri.

The last inequality follows from the constraint ri + rj ≤ 1. Equality

potentially applies only at r′, otherwise a strict inequality
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applies. At any point along this trajectory, we also have that

d
[

ln
u′(πi)

u′(πj)

]
= d ln u′(πi)− d ln u′(πj)

=
u′′(πi)

u′(πi)
dπi +

u′′(πj)

u′(πj)
(−dπj). (3)

Now note that

dπi = 2βdri − 2β(ridri + rjdrj)

= 2βdri − 2β(ri − rj)dri

= 2β(1− ri + rj)dri

and

−dπj = 2β(−drj) + 2β(ridri + rjdrj)

= 2βdri + 2β(ri − rj)dri

= 2β(1 + ri − rj)dri,

implying that dπi > 0, −dπj > 0 and

dπi − dπj = 4βdri.

These results and the upper bound of risk loving preferences assumed in part 3 of the Proposition imply that

in ( 3) we have that

d
[

ln
u′(πi)

u′(πj)

]
=

u′′(πi)

u′(πi)
dπi +

u′′(πj)

u′(πj)
(−dπj)

≤ β−1(dπi − dπj)

= 4dri.

Overall, we therefore have at any point along the trajectory from r′ to r∗ that

d
[

ln
ri

rj
− ln

u′(πi)

u′(πj)

]
≥ 0,
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with equality potentially applying only at r′ and a strict inequality applying otherwise. But this result and (2)

then imply that
r̄
r̄
<

u′(π̄)

u′(π̄)
,

where

π̄ ≡ α− β + 2βr̄− β

(
∑

k 6=i,j
r∗2k + 2r̄2

)
,

a clear contradiction. Therefore if pi = pj ∈ (0, 0.5], then, under the

assumption of part 3, it must be the case that r∗i = r∗j .

For part 4 of the Proposition, if pi > pj > 0, it follows from parts 1 and 2 of the Proposition that r∗i > r∗j > 0.

If u(·) is linear, then the result that r∗i = pi and r∗j = pj follows directly from (1) for events i and j. If u(·) is

non-linear, then (1) implies that
r∗i
r∗j

=
pi

pj

u′(π∗i )
u′(π∗j )

.

Since r∗i > r∗j , it must be the case that that π∗i > π∗j . Hence if u(·) is strictly concave, u′(π∗i )/u′(π∗j ) < 1,

implying that r∗i /r∗j < pi/pj, whereas if u(·) is strictly convex, u′(π∗i )/u′(π∗j ) > 1, implying that r∗i /r∗j >

pi/pj.

A.2 Hedging

We follow the structure introduced in the previous subsection, but this time adapted to the parameterization

used in the experiment. That is, n = 5, α = 20 and β = 10. Moreover, the events now correspond to the

individual bins, with event i corresponding to bin i, i = 1, .., 5. Let k be the bin that contains the bid. Also, let

s be the auction surplus, that is, the difference between value and bid. We assume that this surplus is strictly

positive.36 For i < k, the belief elicitation payoff is augmented by the auction surplus, resulting in the overall

payoff of

πi ≡ s + 10 + 20ri − 10
5

∑
j=1

r2
j .

An analogous payoff expression applies also to bin k if the bid of the opponent does not exceed the bid of the

subject. Denote this payoff πkH and let q be the subjective probability of such outcome conditional on the bid

of the opponent being in bin k. For i > k, the belief elicitation payoff is not augmented by the auction surplus,

36This is the case for all 379 subjects in our sample.
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resulting in the overall payoff of

πi ≡ 10 + 20ri − 10
5

∑
j=1

r2
j .

An analogous payoff expression applies also to bin k if the bid of the opponent exceeds the bid of the subject.

Denote this payoff πkL. The subjective probability of such outcome conditional on the bid of the opponent

being in bin k is 1− q. We then have the following result:

Proposition 2 Suppose that u(·) is strictly concave and u′(·) is bounded away from 0 and ∞ on [0, 20 + s].

Also suppose that the subjective belief is uniform. Then any optimal report (r∗1 , .., r∗5) satisfies:

1. if k > 1, then for any i < k it holds that r∗i = r∗L; moreover, if q < 1, then r∗L < r∗k and r∗L < 0.2; if q = 1 and

k < 5, then r∗L = r∗k < 0.2; if q = 1 and k = 5, then r∗L = r∗k = 0.2;

2. if k < 5, then for any i > k it holds that r∗i = rH with rH > r∗k and rH > 0.2.

Proof of Proposition 2. The decision-maker solves

max
r1,...,r5∈[0,1]

∑
i<k

0.2u

(
s + 10 + 20ri − 10

5

∑
j=1

r2
j

)
+ 0.2qu

(
s + 10 + 20rk − 10

5

∑
j=1

r2
j

)

+ 0.2(1− q)u

(
10 + 20rk − 10

5

∑
j=1

r2
j

)
+ ∑

i>k
0.2u

(
10 + 20ri − 10

5

∑
j=1

r2
j

)

s.t. r1 + · · ·+ r5 = 1.

Following the same steps as in the proof of part 1 of Proposition 1, it follows that the probability bounds are

never binding

in this problem and can therefore be ignored. Hence any solution (r∗1 , . . . , r∗5) to the unconstrained problem

must satisfy the usual

first-order necessary conditions which, after canceling out a common multiplier 0.2× 20, are given by

u′(π∗i )− r∗i

[
∑
j 6=k

u′(π∗j ) + qu′(π∗kH) + (1− q)u′(π∗kL)

]
= 0, i 6= k,

[
qu′(π∗kH) + (1− q)u′(π∗kL)

]
− r∗k

[
∑
j 6=k

u′(π∗j ) + qu′(π∗kH) + (1− q)u′(π∗kL)

]
= 0,
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where the asterisk denotes the resulting payoff if the corresponding state

is realized. Summing these 5 conditions gives

[
∑
j 6=k

u′(π∗j ) + qu′(π∗kH) + (1− q)u′(π∗kL)

]
−
(

5

∑
j=1

r∗j

)[
∑
j 6=k

u′(π∗j ) + qu′(π∗kH) + (1− q)u′(π∗kL)

]
= 0,

implying that r∗1 + ... + r∗5 = 1. As a result, any solution to the unconstrained problem also solves the con-

strained problem. The first-order

conditions also imply that

r∗i
u′(π∗i )

=
r∗k

qu′(π∗kH) + (1− q)u′(π∗kL)
, i 6= k. (4)

Since πj is strictly increasing in rj and u(·) is strictly

concave, it follows that: (1) if k > 1 and q < 1, then r∗i = r∗L for any i < k for some strictly positive (part 1

of Proposition 1 ) r∗L and r∗L < r∗k ; (2) if k > 1 and q = 1, then r∗i = r∗L for

any i ≤ k for some strictly positive r∗L; (3) if k < 5, then r∗i = r∗H for any i > k for some strictly positive r∗H

and r∗H > r∗k . The fact that r∗1 + ... + r∗5 = 1 then implies that: (1) if k > 1, then r∗L < 0.2, unless k = 5 and q = 1,

in which case r∗L = r∗k = 0.2; (2) if k < 5, then r∗H > 0.2.
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B Additional Analysis

In this appendix, we present a more in-depth analysis of responses of subjects who submitted at least one

mistaken answer to the 1-through-10 control sub-question 3c (wrong simple uniform = 1) and the responses

of those who did not submit a mistaken answer (wrong simple uniform = 0). For power reasons, we pool

observations from all seven treatments.

Figure B1 presents the mean weight allocated to each of the five bins separately for the two groups. First.

the figure readily shows that both groups show a considerable central bias on average. This is confirmed by a

recomputation of Table 4 for each of the two groups. The results are qualitatively unchanged for either of the

two groups, with the exception of the comparison of Bin 2 and Bin 3 for subjects with wrong simple uniform=

1. In this case, the Bonferroni-corrected p-values are 0.032 for the t-test and 0.004 for the signed rank test.

Second, the figure also shows that the differences in the average weights between the two groups are small.

This is confirmed by Table B1 that recomputes Table 1 separately for each of the two groups. Using the t-test,

none of the differences in the mean weights are statistically significant at any conventional level even before

the Bonferroni correction.

Figure B1: Mean weights within bins for subjects with no vs. some mistakes in answering the question 3c.

Table B2 presents a recomputation of Table 2 separately for each of the two groups. The “Non-Uniform”

column emphasizes the incidence of uniform reporting between the two groups observed in the rightmost

panel of Table 5. Using the t-test, the difference in the rate of non-uniform reporting is weakly statisti-

cally significant (p = 0.089). As for distances from the uniform report, the table shows that those with
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Table B1: Mean weights within bins (additional analysis)

Subsample Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Subjects

wrong simple uniform = 0 14.77 22.85 27.41 21.13 13.85 272

wrong simple uniform = 1 13.21 23.45 28.28 21.64 13.42 107

t-statistic for difference −1.27 0.43 0.58 0.43 −0.37
Raw p-value 0.205 0.664 0.560 0.665 0.711

Note: Means of the weights reported within each of the 5 bins are pooled across all treatments. The last two
rows present heteroscedasticity-robust t-statistics and p-values for two-tailed tests of equality of the mean
weights between the two groups.

Table B2: Non-uniform responses and distances from the uniform distribution (additional analysis)

Treatment Non-Uniform d > 0.1 d > 0.2 d > 0.3 Subjects

wrong simple uniform = 0 191 (70.2%) 178 (65.4%) 110 (40.4%) 68 (25.0%) 272

wrong simple uniform = 1 84 (78.5%) 78 (72.9%) 50 (46.7%) 16 (15.0%) 107

t-statistic for difference 1.71 1.44 1.11 −2.31
Raw p-value 0.089 0.152 0.269 0.021

Note: We list the number (and percentage) of subjects with non-uniform responses for the given subsample, pooled across
all treatments. We also list the number (and percentage) of subjects whose reported beliefs deviate from the uniform
distribution by at least a threshold sup-norm distance d ∈ {0.1, 0.2, 0.3}. The last two rows present heteroscedasticity-
robust t-statistics and p-values for two-tailed tests of equality of percentages between the two groups.

wrong simple uniform = 1, although being somewhat more likely to deviate from the uniform report, de-

viate less from it in terms of distribution distance than do those with wrong simple uniform = 0. The differ-

ences in the rates of reporting with d > 0.1 and d > 0.2 are not statistically significant at any conventional

level. The difference in the rates of reporting with d > 0.3 is statistically significant (p = 0.021), but in a

direction suggesting that those with wrong simple uniform = 1 are less likely to deviate far from the uniform

report. However, after a Bonferroni correction none of the differences are statistically significant.

Overall, these results show that the CSP reporting is robust to the level of initial understanding of the

uniform distribution as proxied by the response to the 1-through-10 sub-question 3c.
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C Experimental instructions

C.1 General instructions

Initial screen:

You are about to participate in an experiment in which following the instructions carefully, making good

decisions, and with a bit of luck, you can earn a considerable amount of money. Different participants may

earn different amounts according to their choices. For your participation in the experiment you will earn an

additional show-up fee of 2.5 Euro.

All the monetary values during the experiment are expressed in ECU (Experimental Currency Units).

At the end of the experiment, the ECUs you earned will be converted into a cash payoff in Euro using the

exchange rate 1 ECU = 20 euro cents and paid in cash privately.

New screen:

The experiment consists of 4 stages in the following order:

1. An Instruction Stage that we are currently going through. At the end of this stage you will be asked

some control questions to verify your understanding of the task. After everybody answers correctly, we

will proceed with the following stage.

2. A Decision Stage, in which you will make decisions and answer questions relevant towards your payoff.

3. A Demographic Questionnaire, in which you will be asked a few questions about your demographic

and academic background.

4. A Feedback Stage, in which your earnings from the experiment will be determined and announced to

you privately. You will not be given any feedback on the monetary outcome of your decisions before the

Feedback Stage.

New screen:

You are about to participate in an auction against a hypothetical opponent. In this auction, there is a

fictitious object for sale that you value at (60/80/100) ECUs. That is, if you win the auction, you obtain the

object and receive (60/80/100) ECUs, but from this amount you have to subtract the price you will have to

pay for the object.
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Your task in this auction is to place a bid. This bid can be any integer number from 1 through (60/100)

ECUs. A bid is a binding price offer to pay for the object in case you win the auction. Your opponent also

places a bid that will be randomly drawn from the set of integers 1 through (60/100) ECUs. Each of these

integers is equally likely to be drawn.

The winner of the auction is the bidder who places the highest bid. In case the two bids coincide, you are

the winner. That is, you win if your bid is at least as high as your opponent’s bid, otherwise you do not win.

The winner pays the price for the object equal to his/her bid. That is, if you win, you receive (60/80/100)

ECUs minus your bid. If you do not win, you do not receive anything and you do not pay anything either.

Control Questions: See below for details

Decision Stage: See below the treatment-specific instructions

Belief elicitation 1 stage:

New screen:

Before drawing your opponent’s bid, we ask you to answer two short questions that allow you to earn

some additional money. You will be paid for one of these two questions. At the end of the experiment, one

of the participants will flip a coin to decide which question will be paid. You can earn up to 20 ECUs for the

selected question.

Question 1. Please report your belief of your opponent’s bid. We will provide five intervals. You are asked

to report how likely you think your opponent’s bid is to be in each of these intervals. The number in each

input field you are asked to fill in is your percentage estimate of the likelihood of your opponent’s bid being

in that particular interval. The five percentages need to add up to 100. There will be an automatic checker to

tell you what the current sum is as you enter the numbers.

You will be paid based on how closely your estimates match your opponent’s bid. The exact formula (the

so-called quadratic scoring rule) is complicated and the experimenters will be happy to explain it after the

end of the experiment to those who are interested. However, in order to maximize your expected earnings

from this procedure, you should report these likelihoods truthfully according to what you believe.

Here is some advice on how to fill in the five input fields:

• If you believe that your opponent’s bid is more likely to be in a certain range, then assign higher per-

centages to intervals corresponding to that range and lower percentages to intervals corresponding to
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other ranges.

• If you believe that your opponent’s bid is equally likely to be in several different intervals, then assign

the same percentages to those intervals.

• Do not over-concentrate your assigned percentages in one or two intervals if you are not quite sure that

your opponent’s bid is in these intervals. Otherwise, if it turns out that your opponent’s bid is in some

other interval, you would earn little money from answering the question.

• On the other hand, do concentrate the entire 100 percent in one or two intervals if you feel confident that

your opponent’s bid is in this (these) interval(s). This will increase your earnings from answering this

question.

New screen:

Here we repeat Question 1 for your convenience. Please provide your answer using the input fields below.

Question 1. Please report your belief of your opponent’s bid. We will provide five intervals. You are asked

to report how likely you think your opponent’s bid is to be in each of these intervals. The number in each

input field you are asked to fill in is your percentage estimate of the likelihood of your opponent’s bid being

in that particular interval. The five percentages need to add up to 100. There will be an automatic checker to

tell you what the current sum is as you enter the numbers.

Belief elicitation 2 stage:

New screen:

Question 2. Please report your perceived probability of winning and of not winning the auction given the

choice you made in the main task. The number in each box you are asked to fill in is your percentage estimate

of the likelihood of that event. The two percentages need to add up to 100. There will be an automatic checker

to tell you what the current sum is as you enter the numbers. You will be paid based on how closely your

estimates match the outcome of the auction. The exact formula and the suggestions how to increase your

payoffs are the same as in Question 1.

C.2 Control Questions

Please answer the following control questions. Answers to these questions are not relevant to your earnings.

The computer will give you a feedback on whether your responses are correct or not. If you have any problems
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in answering, please raise your hand and an experimenter will come to assist you. After everyone answers

correctly all the questions, we will proceed with the decision stage.

1. Suppose that your opponent bids 25 ECUs.

a. If you bid 21 ECUs, how much will you earn in ECU?

b. If you bid 38 ECUs, how much will you earn in ECU?

c. If you bid 62 ECUs, how much will you earn in ECU?

d. If you bid 79 ECUs, how much will you earn in ECU?

2. Now suppose that your opponent bids 75 ECUs.

a. If you bid 21 ECUs, how much will you earn in ECU?

b. If you bid 38 ECUs, how much will you earn in ECU?

c. If you bid 62 ECUs, how much will you earn in ECU?

d. If you bid 79 ECUs, how much will you earn in ECU?

3. What is the probability of your opponent’s bid being in the range:

a. 39 through 72

b. 22 though 47

c. 1 through 10

d. 16 through 56

e. 62 through 100

4. Your opponent’s bid depends on your bid. YES/NO

5. Suppose the bid of your opponent is identical to your bid. Will you earn a positive amount? YES/NO

Please note that the numbers used in these questions are for illustrative purposes only. They are not meant

to be a guidance for your choice.
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C.3 Treatment-specific instructions

C.3.1 Auction 100/100 with visualization treatment

To help you visualize your decision, on your display you will see a square composed of 100 boxes numbered

1 through 100. One of these boxes corresponds to your opponent’s bid. You do not know which one it is,

however. You only know that it can be any of the 100 boxes with equal probability.

You initiate the bidding process by first entering your intended decision into an input field and clicking

on ”Evaluate.” At this point, the originally grey boxes change color. The boxes turning blue are those whose

number is less than or equal to your bid. The boxes turning yellow are those whose number exceeds your bid.

If the opponent’s bid corresponds to one of the blue boxes, you will earn the difference between 100 ECUs

and your bid. If the opponent’s bid corresponds to one of the yellow boxes, your will earn zero. You are free

to evaluate different bids in this way.

When you are confident about your choice, submit it by clicking on the ”Submit” button and then recon-

firm it by clicking on ”Confirm”.

At the end of the experiment, after answering some questions and filling out a short questionnaire, we

will randomly determine the number of the box corresponding to your opponent’s bid. This will be done by

one of the participants randomly drawing a token from a bag containing 100 tokens numbered 1 through 100.

New screen:

Please choose your bid. Using the input field and the ”Evaluate” button, you are free to evaluate as many

different bids as you wish. The boxes turning blue are those whose number is less than or equal to your

bid. The boxes turning yellow are those whose number exceeds your bid. If the opponent’s bid corresponds

to one of the blue boxes, you will earn the difference between 100 ECUs and your bid. If the opponent’s bid

corresponds to one of the yellow boxes, your will earn zero. When you are ready to submit your final decision,

click on the ”Submit” button and then confirm your choice by clicking on ”Confirm”.

C.3.2 Auction 100/100 without visualization treatment

Identical to Auction 100/100 with visualization treatment but without visualization or mentions of visualiza-

tion.
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C.3.3 Bomb Risk Elicitation Task treatment

Your task is to decide on the number of boxes to collect out of 100 such boxes numbered 1 through 100. You

collect the boxes starting from box number 1, continuing until the box whose number is equal to the number

of boxes you decide to collect. Exactly one of these 100 boxes contains a bomb. You do not know the bomb’s

location. You only know that it is equally likely to be in any of the 100 boxes.

If the number of the box in which the bomb is located is higher than the number of boxes you collected,

you do not collect the bomb and you earn 1 ECU for each collected box. If the number of the box in which the

bomb is located is lower than or equal to the number of boxes you collected, you do collect the bomb and you

earn zero.

New screen:

To help you visualize your decision, on your display you will see a square composed of 100 numbered

boxes. There is a bomb in one of these boxes. You do not know which one it is, however. You only know that

it can be in any of the 100 boxes with equal probability.

You initiate the decision process by first entering your intended decision into an input field and clicking

on ”Evaluate.” At this point, the originally grey boxes change color. The boxes turning yellow are those that

you are deciding to collect. The boxes turning blue are those you are deciding to not collect. If the bomb is in

one of the yellow boxes, you will earn zero. If the bomb is in one of the blue boxes, you will earn 1 ECU for

every (yellow) box collected. You are free to evaluate different numbers of collected boxes in this way.

At the end of the experiment, after answering some questions and filling out a short questionnaire, we will

randomly determine the number of the box containing the bomb. This will be done by one of the participants

randomly drawing a token from a bag containing 100 tokens numbered 1 through 100.

Instructions from Questions 1 and 2:

Identical to the Auction 100/100 with visualization treatment but ”your opponent’s bid” was replaced by

”the position of the bomb” and ”winning and of not winning the auction” was replaced by ”collecting and

not collecting the bomb.”

C.3.4 Auction 80/100 treatment

Identical to Auction 100/100 with visualization treatment but the value to the subject was 80.
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Added to first screen in Auction 100/100 with visualization treatment:

Note that if you bid more than 80 you make losses in case you win.

Added to second screen in Auction 100/100 with visualization treatment:

In case you bid more than 80 the boxes in excess turn red signaling that you would make losses if you win.

C.3.5 Auction 60/100 treatment

Identical to Auction 80/100 with visualization treatment but the value to the subject was 60 and the warnings

were for bids greater than 60.

C.3.6 Auction 60/60 treatment

In this treatment both the value of the subject and of the opponent are set to 60.

Subjects bid choosing a number from 0 to 60, and report beliefs of the opponent’s bid which is uniformly

distributed in the interval 0-60.

New screen:

You are about to participate in an auction against a hypothetical opponent. In this auction, there is a

fictitious object for sale that you value at 60 ECUs. That is, if you win the auction, you obtain the object and

receive 60 ECUs, but from this amount you have to subtract the price you will have to pay for the object.

Your task in this auction is to place a bid. This bid can be any integer number from 1 through 60 ECUs.

A bid is a binding price offer to pay for the object in case you win the auction. Your opponent also places a

bid that will be randomly drawn from the set of integers 1 through 60 ECUs. Each of these integers is equally

likely to be drawn.

The winner of the auction is the bidder who places the highest bid. In case the two bids coincide, you are

the winner. That is, you win if your bid is at least as high as your opponent’s bid, otherwise you do not win.

The winner pays the price for the object equal to his/her bid. That is, if you win, you receive 60 ECUs minus

your bid. If you do not win, you do not receive anything and you do not pay anything either.

New screen:

To help you visualize your decision, on your display you will see a rectangle composed of 60 boxes num-

bered 1 through 60. One of these boxes corresponds to your opponent’s bid. You do not know which one it is,

however. You only know that it can be any of the 60 boxes with equal probability.
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You initiate the bidding process by first entering your intended decision into an input field and clicking

on ”Evaluate.” At this point, the originally grey boxes change color. The boxes turning blue are those whose

number is less than or equal to your bid. The boxes turning yellow are those whose number exceeds your bid.

If the opponent’s bid corresponds to one of the blue boxes, you will earn the difference between 60 ECUs and

your bid. If the opponent’s bid corresponds to one of the yellow boxes, you will earn zero. You are free to

evaluate different bids in this way.

At the end of the experiment, after answering some questions and filling out a short questionnaire, we

will randomly determine the number of the box corresponding to your opponent’s bid. This will be done by

one of the participants randomly drawing a token from a bag containing 60 tokens numbered 1 through 60.

C.3.7 Auction 60/60 expand treatment

New screen:

You are about to participate in an auction against a hypothetical opponent. In this auction, there is a

fictitious object for sale that you value at 60 ECUs. That is, if you win the auction, you obtain the object and

receive 60 ECUs, but from this amount you have to subtract the price you will have to pay for the object.

Your task in this auction is to place a bid. This bid can be any integer number from 1 through 60 ECUs.

A bid is a binding price offer to pay for the object in case you win the auction. Your opponent also places a

bid that will be randomly drawn from the set of integers 1 through 60 ECUs. Each of these integers is equally

likely to be drawn.

The winner of the auction is the bidder who places the highest bid. In case the two bids coincide, you are

the winner. That is, you win if your bid is at least as high as your opponent’s bid, otherwise you do not win.

The winner pays the price for the object equal to his/her bid. That is, if you win, you receive 60 ECUs minus

your bid. Note that if you bid more than 60 you make losses in case you win. If you do not win, you do not

receive anything and you do not pay anything either.

New screen:

To help you visualize your decision, on your display you will see a square composed of 100 boxes num-

bered 1 through 100. One of these boxes corresponds to your opponent’s bid. You do not know which one it

is, however. You only know that it can be any of the 60 boxes with equal probability.

You initiate the bidding process by first entering your intended decision into an input field and clicking
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on ”Evaluate.” At this point, the originally grey boxes change color. The boxes turning blue are those whose

number is less than or equal to your bid. In case you bid more than 60 the boxes in excess turn red signaling

that you would make losses if you win. The boxes turning yellow are those whose number exceeds your bid.

If the opponent’s bid corresponds to one of the blue or red boxes, you will earn the difference between 60

ECUs and your bid. If the opponent’s bid corresponds to one of the yellow boxes, your will earn zero. You

are free to evaluate different bids in this way.

At the end of the experiment, after answering some questions and filling out a short questionnaire, we

will randomly determine the number of the box corresponding to your opponent’s bid. This will be done by

one of the participants randomly drawing a token from a bag containing 60 tokens numbered 1 through 60.
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D Screenshots

Figure D2: Screenshot of the belief elicitation of the random-draw opponent’s strategy after a subject attempts
to report weights that correctly sum to 100.
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Figure D3: Screenshot of the belief elicitation of the random-draw opponent’s strategy after a subject attempts
to report weights that do not sum to 100.

Figure D4: Screenshot of the belief elicitation of the probability of winning the auction after a subject attempts
to report weights that correctly sum to 100.
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Figure D5: Screenshot of the belief elicitation of the probability of winning the auction after a subject attempts
to report weights that do not sum to 100.

Figure D6: Screenshot of the bid submission screen in auction 100/100.
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Figure D7: Screenshot of the bid submission screen in auction 60/100.
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