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Numerical schemes for semiconductors energy-
transport models

Marianne Bessemoulin-Chatard, Claire Chainais-Hillairet and Hélène Mathis

Abstract We introduce some finite volume schemes for unipolar energy-transport
models. Using a reformulation in dual entropy variables, we can show the decay of
a discrete entropy with control of the discrete entropy dissipation.
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1 Energy-transport models

Presentation

In this article, we are interested in the discretization of unipolar energy-transport
models for semiconductor devices. Such models describe the flow of electrons
through a semiconductor crystal, influenced by diffusive, electrical and thermal ef-
fects. As they have a drift-diffusion form, they remain simpler than hydrodynamic
equations or semiconductor Boltzmann equations. As explained for example in [17]
(and the references therein), these energy-transport models can be derived from the
Boltzmann equation by the moment method.

The unipolar energy-transport system consists in two continuity equations for
the electron density ρ1 and the internal energy density ρ2, coupled with a Poisson
equation describing the electrical potential V . Following the framework adopted in
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[6], we consider that the electron and energy densities are defined as functions of
the entropy variables u1 = µ/T and u2 = −1/T where µ is the chemical potential
and T the temperature. We set u = (u1,u2).

Let Ω be an open bounded subset of Rd (d ≥ 1) describing the geometry of
the considered semiconductor device and let Tmax > 0 be a finite time horizon. The
energy transport model writes in Ω × (0,Tmax)

∂tρ1(u)+divJ1 = 0, (1a)
∂tρ2(u)+divJ2 = ∇V · J1 +W (u), (1b)

−λ
2
∆V =C(x)−ρ1(u), (1c)

where J1 and J2 are respectively the electron and energy current densities, ∇V · J1
corresponds to a Joule heating term and W (u) is an energy relaxation term. The
doping profile C(x) describes the fixed charged background and λ is the rescaled
Debye length. The electron and energy current densities are given by:

J1 =−L11(u)(∇u1 +u2∇V )−L12(u)∇u2, (2a)
J2 =−L21(u)(∇u1 +u2∇V )−L22(u)∇u2, (2b)

where L(u) = (Li j(u))1≤i, j≤2 is a symmetric uniformly positive definite matrix.
The system (1)-(2) is supplemented with an initial condition u0 = (u1,0,u2,0)

and with mixed boundary conditions. There are Dirichlet boundary conditions on
the ohmic contacts and homogeneous Neumann boundary conditions on insulating
segments. More precisely, we assume that Ω is an open bounded polygonal (or
polyhedral) subset of Rd , such that its boundary ∂Ω is split into ∂Ω = Γ D ∪Γ N ,
with Γ D∪Γ N = /0 and md−1(Γ

D) > 0. We denote by n the normal to ∂Ω outward
Ω . The boundary conditions write

u1 = uD
1 , u2 = uD

2 , V =V D on Γ
D× [0,Tmax], (3a)

J1 ·n = J2 ·n = ∇V ·n on Γ
N× [0,Tmax]. (3b)

We assume that the Dirichlet boundary conditions uD
1 , uD

2 and V D do not depend
on time and are the traces of some functions defined on the whole domain Ω , still
denoted by uD

1 , uD
2 and V D. Moreover, we assume that uD

2 < 0 is constant on Γ D and
that the energy relaxation term W (u) verifies, for all u ∈ R2 and uD

2 < 0,

W (u)(u2−uD
2 )≤ 0. (4)

The main results on the energy-transport model (1)-(2)-(3) are presented in [15]:
existence of solutions to the transient system, regularity, uniqueness and existence
and uniqueness of steady-states. The main assumptions needed on the function u 7→
ρ(u) = (ρ1(u),ρ2(u)) for the existence result are the following:



Numerical schemes for ET models 3

ρ ∈W 1,∞(R2;R2), (5a)

∃c0 > 0 such that (ρ(u)−ρ(v)) · (u− v)≥ c0|u− v|2 for u,v ∈ R2, (5b)

∃χ ∈C1(R2;R) strictly convex such that ρ = ∇uχ. (5c)

These hypotheses are rather hard to satisfy in the applications (see Section 4), as well
as the hypothesis on uniform positive definiteness of the diffusion matrix L. Exis-
tence results for physically more realistic diffusion matrices (only positive semi-
definite) are established in [10, 12] for the stationary model and in [4, 5] for the
transient system, but only in the case of data close to thermal equilibrium. More
recently, existence of solutions has been proved in a simplified degenerate case,
namely for a model with a simplified temperature equation in [16] and for vanishing
electric fields (avoiding the coupling with Poisson equation) in [20].

The existence result due to Degond, Génieys and Jüngel [6, 15] is based on a
reformulation of the system in terms of dual entropy variables. This reformulation
symmetrizes the system and allows to apply an entropy method. Since we are going
to adapt the results of [6] to the discrete framework, let us now introduce the system
reformulated in terms of dual entropy variables and give the outline of the entropy
structure.

The system in dual entropy variables

The key point of the analysis of the primal model (1)-(2) is to use another set of
variables which symmetrizes the problem, see [6]. Let us define the so-called dual
entropy variables w = (w1,w2) (w1 is an electrochemical potential):

w1 = u1 +u2V, (6a)
w2 = u2. (6b)

Through this change of variables, the problem (1)-(2) is equivalent to

∂tb1(w,V )+divI1(w,V ) = 0, (7a)

∂tb2(w,V )+divI2(w,V ) = W̃ (w)−∂tV b1(w,V ), (7b)

−λ
2
∆V =C−b1(w,V ), (7c)

where the function b(w,V ) = (b1(w,V ),b2(w,V )) is related to ρ and V by

b1(w,V ) = ρ1(u), b2(w,V ) = ρ2(u)−V ρ1(u), (8)

and the new energy relaxation term is defined by W̃ (w) = W (u). Moreover, the
symmetrized currents are given by I1 = J1 and I2 = J2−V J1, which leads to

I1(w,V ) =−D11(w,V )∇w1−D12(w,V )∇w2, (9a)
I2(w,V ) =−D21(w,V )∇w1−D22(w,V )∇w2, (9b)
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where the new diffusion matrix D(w,V ) = (Di j(w,V ))1≤i, j≤2 is defined by

D(w,V ) = P(V )TL(u)P(V ), with P(V ) =

(
1 −V
0 1

)
. (10)

It is therefore clear that the new diffusion matrix D is also symmetric and uniformly
positive definite.

Entropy structure

We recall in this section the entropy/entropy-dissipation property satisfied by the
energy-transport model (1)-(3) established in [6]. The entropy function is defined
by

S(t)=
∫

Ω

[
ρ(u) · (u−uD)− (χ(u)−χ(uD))

]
dx− λ 2

2
uD

2

∫
Ω

|∇(V−V D)|2dx. (11)

Since uD
2 < 0 and χ is a convex function such that ρ = ∇uχ , S(t) is nonnegative for

all t ≥ 0.
In addition to the hypotheses already given above, we assume that the Dirichlet

boundary conditions are at thermal equilibrium, namely

∇wD
1 = ∇wD

2 = 0. (12)

Then the entropy function satisfies the following identity:

d
dt

S(t) =−
∫

Ω

(∇w)TD∇w+
∫

Ω

W (u)(u2−uD
2 )≤ 0. (13)

The proof of (13) is given in [6], even for more general boundary conditions.

2 Numerical schemes

Different kind of numerical schemes have already been designed for the energy-
transport systems, essentially for the stationary systems: finite difference schemes
in [11, 19], finite element schemes in [7, 14]. We also refer to [3] for DDFV (Dis-
crete Duality Finite Volume) schemes for the evolutive case. Up to our knowledge,
there exists no convergence analysis of these numerical schemes. In this paper, we
are interested in the design and the analysis of some finite volume schemes for
the system (1)–(3), with two-point flux approximations (TPFA) of the numerical
fluxes. We pay attention, while building the scheme, on the possibility of adapting
the entropy method to the discrete setting. This will be crucial in order to fulfill the
convergence analysis of the scheme.
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Mesh and notations

Let ∆ t > 0 be the time step and set tn = n∆ t for all n≥ 0. We now define the mesh
of the domain Ω . It is given by a family T of open polygonal (or polyhedral in
3D) control volumes, a family E of edges (or faces), and a family P = (xK)K∈T of
points. The schemes we will consider are based on two-points flux approximations,
so that we assume that the mesh is admissible in the sense of [9, Definition 9.1].

In the set of edges E , we distinguish the interior edges σ = K|L ∈ Eint and the
boundary edges σ ∈ Eext . Due to the mixed boundary conditions, we have to distin-
guish the edges included in Γ D from the edges included in Γ N : Eext = E D∪E N . For
a control volume K ∈ T , we define EK the set of its edges, which is also split into
EK = EK,int ∪E D

K ∪E N
K .

In the sequel, we denote by d the distance in Rd and m the measure in Rd or
Rd−1. For all σ ∈ E , we define dσ = d(xK ,xL) if σ = K|L ∈ Eint and dσ = d(xK ,σ)
if σ ∈ Eext , with σ ∈ EK . Then the transmissibility coefficient is defined by τσ =
m(σ)/dσ , for all σ ∈ E .

A finite volume scheme with two-point flux approximation provides, for an un-
known v, a vector v = (vK)K∈T ∈ Rθ (with θ = Card(T )) of approximate values
on each cells. We can associate to v a piecewise constant function, still denoted v.
For all K ∈T and all σ ∈ EK , we define

vK,σ =

 vL if σ = K|L ∈ Eint ,
vD

σ if σ ∈ E D,
vK if σ ∈ E N ,

and
DK,σ v = vK,σ − vK , Dσ v = |DK,σ v|.

Schemes in primal and dual entropy variables

Our aim is to design a scheme for the energy transport model in the primal entropy
variables (1)-(3). This scheme must lead to an equivalent scheme for the system
written in the dual entropy variables (7)-(9). Indeed, in this case, it will be possible
to apply the entropy method at the discrete level. This step is crucial as it brings a
priori estimates on the sequences of approximate solutions, leading to compactness
results. Moreover, it also permits to prove existence of a solution to the scheme.

One main difficulty in writing a TPFA scheme for the energy-transport model (1)-
(3) comes from the approximation of the Joule heating term ∇V ·J1. One possibility
would be to apply the technique developed in [1], and further used in [18, 8], to
discretize de Joule heating term. However, with such discretization, the rewriting
of the scheme in dual entropy variables is not straightforward. Therefore, following
[2], we propose an approximation of the Joule heating term which is based on its
following reformulation:

∇V · J1 = div(V J1)−V divJ1.



6 M. Bessemoulin-Chatard, C. Chainais-Hillairet and H. Mathis

Let us now turn to the definition of the scheme for the model (1)-(3). Initial and
Dirichlet boundary conditions are discretized as usually: u0

i,K is the mean value of
ui,0 over K for all K ∈ T and i = 1,2, uD

i,σ and V D
σ are the mean values of uD

i for
i = 1,2 and V D for σ ∈ E D and we define:

un
1,σ = uD

1,σ , un
2,σ = uD

2,σ , V n
σ =V D

σ , ∀σ ∈ E D, ∀n≥ 0. (14)

The scheme is backward Euler in time and finite volume in space with a two-
point flux approximation. It writes, for all n≥ 0, for all K ∈T :

m(K)
ρ

n+1
1,K −ρn

1,K

∆ t
+ ∑

σ∈EK

F n+1
1,K,σ = 0, (15a)

m(K)
ρ

n+1
2,K −ρn

2,K

∆ t
+ ∑

σ∈EK

F n+1
2,K,σ = m(K)W n+1

K

+ ∑
σ∈EK

V n+1
σ F n+1

1,K,σ −V n+1
K ∑

σ∈EK

F n+1
1,K,σ , (15b)

−λ
2

∑
σ∈EK

τσ DK,σV n+1 = m(K)(CK−ρ
n+1
1,K ), (15c)

where

ρ
n+1
i,K = ρi(un+1

K ), i = 1, 2 and W n+1
K =W (un+1

K ) for all K ∈T .

The numerical fluxes are given by

F n+1
1,K,σ =−τσ

(
Ln

11,σ (DK,σ u1
n+1 +un+1

2,σ DK,σ Vn+1)+Ln
12,σ DK,σ u2

n+1
)
, (16a)

F n+1
2,K,σ =−τσ

(
Ln

12,σ (DK,σ u1
n+1 +un+1

2,σ DK,σ Vn+1)+Ln
22,σ DK,σ u2

n+1
)
, (16b)

where the matrix Ln
σ = (Ln

i j,σ )1≤i, j≤n is defined as

Ln
σ = L

(un
K +un

K,σ

2

)
for all K ∈T ,σ ∈ EK . (17)

At this point, it remains to define V n+1
σ involved in (15b) and un+1

2,σ involved in (16)
for all σ ∈ E . We will do it later. The choice will be driven by the expected equiva-
lence with a scheme for (7)–(10).

In order to obtain an equivalent scheme for the energy transport system in the
dual entropy variables (7)–(10), we apply the change of variables (6), associated
with the new functions defined in (8), (9) and (10), to (15)-(16). Let us define for all
K ∈T , for all n≥ 0,

wn
1,K = un

1,K +un
2,KV n

K , wn
2,K = un

2,K , (18a)

bn
1,K = ρ

n
1,K = b1(wn

K ,V
n
K), bn

2,K = ρ
n
2,K−ρ

n
1,KV n

K = b2(wn
K ,V

n
K). (18b)
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We similarly define wD
1,σ and wD

2,σ for σ ∈ E D. From (15a) and (15b), we deduce

m(K)
bn+1

1,K −bn
1,K

∆ t
+ ∑

σ∈EK

F n+1
1,K,σ = 0,

m(K)
bn+1

2,K −bn
2,K

∆ t
+ ∑

σ∈EK

(
F n+1

2,K,σ −V n+1
σ F n+1

1,K,σ

)
= m(K)W n+1

K −m(K)
V n+1

K −V n
K

∆ t
bn

1,K .

It leads to the following scheme for the system written in the dual variables (7):

m(K)
bn+1

1,K −bn
1,K

∆ t
+ ∑

σ∈EK

G n+1
1,K,σ = 0, (19a)

m(K)
bn+1

2,K −bn
2,K

∆ t
+ ∑

σ∈EK

G n+1
2,K,σ = m(K)W̃ n+1

K −m(K)
V n+1

K −V n
K

∆ t
bn

1,K , (19b)

−λ
2

∑
σ∈EK

τσ DK,σV n+1 = m(K)(CK−bn+1
1,K ), (19c)

with

G n+1
1,K,σ = F n+1

1,K,σ , ∀K ∈T ,∀σ ∈ EK , (20a)

G n+1
2,K,σ = F n+1

2,K,σ −V n+1
σ F n+1

1,K,σ , ∀K ∈T ,∀σ ∈ EK , (20b)

and W̃ n+1
K =W n+1

K = W̃ (wn+1
K ).

The crucial point now is to ensure that the new numerical fluxes G n+1
1,K,σ , G n+1

2,K,σ
can be seen as approximations of the currents I1 and I2 defined by (9). This means
that we want to rewrite the numerical fluxes as

G n+1
1,K,σ =−τσ (D∗11,σ DK,σ wn+1

1 +D∗12,σ DK,σ wn+1
2 ), (21a)

G n+1
2,K,σ =−τσ (D∗21,σ DK,σ wn+1

1 +D∗22,σ DK,σ wn+1
2 ), (21b)

with the coefficients (D∗i j,σ )1≤i, j≤2 defined such that the associate matrix D∗σ is sym-
metric and uniformly positive definite. This property will now depend on the def-
inition of V n+1

σ and un+1
2,σ , respectively involved in (15b) and (16), for each edge

σ ∈ E .

Equivalence of the schemes in the primal and dual entropy variables

Proposition 1. Let us supplement the scheme (15)-(16) with the definition of the
(V n+1

σ )σ∈E , n≥0 and (un+1
2,σ )σ∈E , n≥0. We distinguish two cases:

• Case 1: centered scheme. For all σ ∈ E and n≥ 0, we set:
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un+1
2,σ =

un+1
2,K +un+1

2,K,σ

2
and V n+1

σ =
V n+1

K +V n+1
K,σ

2
. (22)

• Case 2: upwind scheme. For all σ ∈ E and n≥ 0, we set:

un+1
2,σ =

{
un+1

2,K,σ , if DK,σV n+1 > 0,
un+1

2,K , if DK,σV n+1 ≤ 0,
and V n+1

σ = min(V n+1
K ,V n+1

K,σ ). (23)

Then, in both cases, the scheme (15)-(16) written in the primal entropy variables is
equivalent with the scheme (19)-(21) written in the dual entropy variables, provided
that

D∗σ = (Pn+1
σ )TLnPn+1

σ with Pn+1
σ =

(
1 −V n+1

σ

0 1

)
. (24)

Proof. Starting from the definition (20) of the numerical fluxes G n+1
1,K,σ and G n+1

2,K,σ ,
we want to establish (21) with D∗σ defined by (24).

Let us first notice that, due to the change of variables (18a), we can rewrite
DK,σ u1

n+1 and DK,σ u2
n+1 for all K ∈ T and σ ∈ EK . It is clear that DK,σ u2

n+1 =
DK,σ w2

n+1. Moreover, we have

DK,σ u1
n+1 = DK,σ w1

n+1−V n+1
K DK,σ w2

n+1−wn+1
2,K,σ DK,σ Vn+1,

= DK,σ w1
n+1−V n+1

K,σ DK,σ w2
n+1−wn+1

2,K DK,σ Vn+1.

This yields, for Case 1 as well as for Case 2,

DK,σ u1
n+1 = DK,σ w1

n+1−V n+1
σ DK,σ w2

n+1−wn+1
2,σ DK,σ Vn+1,

with wn+1
2,σ = un+1

2,σ . Therefore, from (16) and (20), we deduce that

G n+1
1,K,σ =−τσ

(
Ln

11,σ DK,σ w1
n+1 +(Ln

12,σ −V n+1
σ Ln

11,σ )DK,σ w2
n+1) ,

G n+1
2,K,σ =−τσ

(
(Ln

12,σ −V n+1
σ Ln

11,σ )DK,σ w1
n+1)

+(Ln
22,σ −2V n+1

σ Ln
12,σ +(V n+1

σ )2Ln
11,σ )DK,σ w2

n+1) .
This corresponds to (21) with D∗σ defined by (24). We have shown that the scheme
(15)-(16), supplemented either with (22) or (23), implies (19)-(21)-(24). Starting
from (19)-(21)-(24), we similarly get (15)-(16).

3 Discrete entropy inequality

In this Section, we establish the discrete counterpart of the decay of the entropy,
with the control of its dissipation, (13). The result is stated in Proposition 2.



Numerical schemes for ET models 9

Main result

First of all, since the functions uD
1 , uD

2 , V D are assumed to be defined on the whole
domain Ω , we can set

(uD
1,K ,u

D
2,K ,V

D
K ) =

1
m(K)

∫
K
(uD

1 (x),u
D
2 (x),V

D(x))dx, ∀K ∈T .

Moreover, we remember that uD
2 is a constant function, such that

uD
K,2 = uD

2 < 0, ∀K ∈T . (25)

Let (un
K = (un

1,K ,u
n
2,K)

T ,V n
K)K∈T ,n≥0 be a solution to the scheme (14)–(17), sup-

plemented with either (22) or (23). For all n ≥ 0, we define the discrete entropy
functional as follows:

Sn = ∑
K∈T

m(K)
[
ρ

n
K · (un

K−uD
K)− (χ(un

K)−χ(uD
K))
]

(26)

−λ 2

2
uD

2 ∑
σ∈E

τσ (Dσ (Vn−VD))2.

We recall that ρn
K = ρ(un

K) = (ρ1(un
K),ρ2(un

K))
T and that ρ is related to χ by (5c).

Therefore, Sn is nonnegative for all n≥ 0.

Proposition 2 (Discrete entropy dissipation). Assume (4), (5), (25) and let (un
K =

(un
1,K ,u

n
2,K)

T ,V n
K)K∈T ,n≥0 be a solution to the scheme (14)–(17), supplemented with

either (22) or (23). The discrete entropy satisfies the following inequality: for all
n≥ 0,

Sn+1−Sn

∆ t
≤− ∑

σ∈E
τσ (DK,σ wn+1)TD∗σ DK,σ wn+1

+ ∑
K∈T

m(K)W n+1
K (wn+1

2,K −wD
2,K)≤ 0,

(27)

where DK,σ wn+1 = (DK,σ wn+1
1 ,DK,σ wn+1

2 )
T

.

Proof. Using the definition (26) of the discrete entropy, one has

Sn+1−Sn = A+B, (28)

where

A = ∑
K∈T

m(K)
(

ρ
n+1
K · (un+1

K −uD
K)− (χ(un+1

K )−χ(uD
K))

−ρ
n
K · (un

K−uD
K)+(χ(un

K)−χ(uD
K))
)
, (29)

B =− λ 2

2
uD

2 ∑
σ∈E

τσ

[
(Dσ (Vn+1−VD))2− (Dσ (Vn−VD))2

]
. (30)
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We first consider the term A. As χ is a convex function such that ρ = ∇uχ ,
leading to ρn

K = ∇uχ(un
K), we have:

χ(un+1
K )−χ(un

K)−ρ
n
K · (un+1

K −un
K)≥ 0.

This yields
A≤ ∑

K∈T
m(K)(ρn+1

K −ρ
n
K) · (un+1

K −uD
K). (31)

We now address the term B. Since (a2 − b2)/2 ≤ a(a− b), for all a,b ∈ R, and
uD

2 ≤ 0, we get:

B≤−λ
2uD

2 ∑
σ∈E

τσ DK,σ (Vn+1−VD)DK,σ (Vn+1−Vn).

A discrete integration by part leads to

B≤ λ
2uD

2 ∑
K∈T

(V n+1
K −V D

K )

(
∑

σ∈EK

τσ DK,σ (Vn+1−Vn)

)
.

Using the scheme for the Poisson equation (15c), we obtain

B≤ uD
2 ∑

K∈T
m(K)(V n+1

K −V D
K )(ρn+1

1,K −ρ
n
1,K). (32)

From (28), (31) and (32), we deduce:

Sn+1−Sn ≤ ∑
K∈T

m(K)(ρn+1
1,K −ρ

n
1,K)
(
(un+1

1,K −uD
1,K)+uD

2 (V
n+1
K −V D

K )
)

+ ∑
K∈T

m(K)(ρn+1
2,K −ρ

n
2,K)(u

n+1
2,K −uD

2,K).
(33)

Using the primal scheme (15a), (15b), the inequality (33) becomes

Sn+1−Sn

∆ t
≤C+D+ ∑

K∈T
m(K)W n+1

K (un+1
2,K −uD

2,K), (34)

with

C =− ∑
K∈T

(
∑

σ∈EK

F n+1
1,K,σ

)[
(un+1

1,K −uD
1,K)+V n+1

K (un+1
2,K −uD

2,K)
]

−uD
2 ∑

K∈T

(
∑

σ∈EK

F n+1
1,K,σ

)
(V n+1

K −V D
K ),

D =− ∑
K∈T

(
∑

σ∈EK

F n+1
2,K,σ −V n+1

σ Fn+1
1,K,σ

)
(un+1

2,K −uD
2,K).
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Using the change of variables (18a), the relations (20) on the numerical fluxes
written in the primal and dual entropy variables and the hypothesis (25), we get

C =− ∑
K∈T

(
∑

σ∈EK

G n+1
1,K,σ

)
(wn+1

1,K −wD
1,K),

D =− ∑
K∈T

(
∑

σ∈EK

G n+1
2,K,σ

)
(wn+1

2,K −wD
2,K).

(35)

Accounting for the boundary conditions, we conclude by a discrete integration by
parts which gives (27):

Sn+1−Sn

∆ t
≤ ∑

σ∈E
G n+1

1,K,σ DK,σ wn+1
1 + ∑

σ∈E
G n+1

2,K,σ DK,σ wn+1
2

+ ∑
K∈T

m(K)W n+1
K (wn+1

2,K −wD
2,K).

(36)

The formulation (21) of the numerical fluxes G n+1
i,K,σ permits to rewrite

∑
σ∈E

G n+1
1,K,σ DK,σ wn+1

1 + ∑
σ∈E

G n+1
2,K,σ DK,σ wn+1

2

=− ∑
σ∈E

τσ

(
DK,σ wn+1

1
DK,σ wn+1

2

)T

D∗σ
(

DK,σ wn+1
1

DK,σ wn+1
2

)
. (37)

From (36) and (37), we deduce (27). The hypothesis (4) on the energy relaxation
term and the positive definiteness of the matrices Dσ ensure the nonpositivity of the
right-hand-side in (27) and the decay of the discrete entropy.

Consequences

From Proposition 2, we deduce the uniform bound: Sn≤ S0 for all n≥ 0. The control
of the dissipation writes

N

∑
n=0

∑
σ∈E

τσ (DK,σ wn+1)TD∗σ DK,σ wn+1 ≤ S0.

This yields a discrete L2(0,Tmax,H1) estimates on w1 and w2. But, following the
ideas of [6, 17], we may obtain other a priori estimates on the solution. They permit
first to prove the existence of a solution to the scheme, thanks to a topological degree
argument, and second to show the compactness of the sequence of approximate
solutions leading to the convergence of the scheme. The existence result and the
convergence analysis will be detailed in a forthcoming paper.
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4 Numerical experiments

For the numerical experiments, we consider the unipolar energy-transport model
under Boltzmann statistics, as in [17, 6]. It is based on the following definitions of
the densities ρi(u), i = 1,2:

ρ1(u) =
(
− 1

u2

)3/2

exp(u1),

ρ2(u) =
3
2

(
− 1

u2

)5/2

exp(u1).

(38)

so that ρ(u) = ∇uχ(u) with χ(u) = (−u2)
−3/2 exp(u1).

The diffusion matrix L(u) = (Li j(u))1≤i, j≤2 actually depends on u under the fol-
lowing form [17]:

L= coρ1(u)T 1/2−β

(
1 (2−β )T

(2−β )T (3−β )(2−β )T 2

)
, (39)

where c0 > 0 is a constant (and we recall that T =−1/u2). The usual values of β are
1/2, corresponding to the Chen model, and 0, corresponding to the Lyumkis model
[17]. The matrix L(u) is symmetric positive definite.

Presentation of the test case

We consider a test case of a 2-D n+nn+ silicon diode, uniform in one space direc-
tion, already introduced in [7, 13, 3]. It is a simple model for the channel of a MOS
transistor. The adopted model is the Chen model (β = 1/2 in (39)). Additional test
cases will be given in a forthcoming paper.

The domain is Ω = (0, lx)×(0, ly) with lx = 0.6 µm and ly = 0.2 µm. The channel
length is 0.4 µm, see Fig. 1.

x in µm0 0.1 0.5 0.6
0

0.2

y in µm

n+ n+nΓ D
1 Γ D

2

Fig. 1 Geometry of the n+nn+ ballistic diode.

The numerical values of the physical parameters for a silicon diode are given in
Table 1. The doping profile is
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Table 1 Physical parameters.

Parameter Physical meaning Numerical value

q elementary charge 10−19 As
ε permittivity constant 10−12AsV−1cm−1

µ0 low field mobility 1.5×103cm2V−1s−1

UT thermal voltage at T0 = 300K 0.0259 V
τ0 energy relaxation time 0.4×10−12 s

C =Cm = 5×1017cm−3 in the n+ region,

C =Cm = 2×1015cm−3 in the n region.

The boundary conditions are

V = 1.5V on Γ
D

1 and V = 0 on Γ
D

2 ,

u2 =−1/T0, with T0 = 300K, on Γ
D

1 ∪Γ
D

2 ,

ρ1(u) =Cm on Γ
D

1 ∪Γ
D

2 ,

the latest giving the boundary condition for u1 according to (38). The initial condi-
tions for u1 and u2 are constant and equal to the boundary conditions.

The function W reads

W (u) = c1ρ1(u)− c2ρ2(u),

with

c1 =
3
2

l2
x

τ0µ0UT
, c2 =

l2
x

τ0µ0UT
,

and the scaling ensures that the Debye length is

λ
2 =

εUT

ql2
xCm

.

Numerical results

We use an admissible mesh made of 896 triangles. Figure 2 presents the results ob-
tained by the scheme (15)-(16) in the centered case (22). The results are plotted for
the final time Tfinal = 1s, as the equilibrium state is reached. Although the discretiza-
tion is fully implicit, it is necessary to use an adaptative time step during the first
iterations, in order to allow the convergence of the Newton’s method. As expected,
the computed quantities are almost uniform in one space direction. Moreover one
observes the expected hot electron effect in the channel, which compares with the
results given in [7, 13, 3].
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Fig. 2 2-D n+nn+ diode: temperature (above) and electrostatic potential (below).
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13. S. Holst, A. Jüngel, and P. Pietra. A mixed finite-element discretization of the energy-transport
model for semiconductors. SIAM J. Sci. Comput., 24(6):2058–2075, 2003.
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20. N. Zamponi and A. Jüngel. Global existence analysis for degenerate energy-transport models
for semiconductors. J. Differential Equations, 258(7):2339–2363, 2015.


