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Abstract
How much and when should we limit economic and social activity to

ensure that the health-care system is not overwhelmed during an epi-
demic? We study a setting where ICU resources are constrained and
suppression is costly. Providing a fully analytical solution we show that
the common wisdom of “flattening the curve”, where suppression measures
are continuously taken to hold down the spread throughout the epidemic,
is suboptimal. Instead, the optimal suppression is discontinuous. The
epidemic should be left unregulated in a first phase and when the ICU
constraint is approaching society should quickly lock down (a discontinu-
ity). After the lockdown, regulation should gradually be lifted, holding
the rate of infected constant, thus respecting the ICU resources while not
unnecessarily limiting economic activity. In a final phase, regulation is
lifted. We call this strategy “filling the box”. The cost under the optimal
strategy is obtained in closed form as an explicit function of economic
and medical fundamentals. We show that the policy is optimal also when
there, in addition, is a small cost associated with the number of infected.
The tighter the ICU constraint, the wider is the range of such cost for
which the policy is still optimal. This suggests the primary focus of poor
countries (with few ICU resources) should be to protect the health-care
system, while richer countries (with extensive ICU resources) may strive
to reduce the number of infected even more.
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1 Introduction
Amid the Covid-19 health and economic crisis one question has been standing at
the centre of professional opinion: How much and when should we limit economic
and social activity to ensure that the health-care system is not overwhelmed?
This question embodies two simultaneous goals when fighting a pandemic. First,
to ensure that each infected person gets the best possible care, we need to ensure
that the capacity of the health-care system (henceforth the ICU constraint)
is never breached. This goal was perhaps best epitomized by the UK slogan
“Protect the NHS” and by the Imperial College report (Ferguson et al., 2020).
The second goal is to minimize the socioeconomic costs associated with epidemic
suppression. Essentially, the more one is suppressing the spread, the costlier it
is since, absent a vaccine, suppression boils down to keeping people away from
each other, thus limiting economic activity and social life.

This paper extends the standard S.I.R. model (Kermack and McKendrick,
1927) to provide an analytical answer to the above question. Our answer departs
from common wisdom. During the Covid-19 pandemic, authorities, news report-
ing and policy makers popularized the ideal policy as “flattening the curve”,1
i.e., imposing continuous limitations to lower the number of simultaneously in-
fected in all time periods. This would ensure that the peak of the curve never
crossed the ICU constraint. We show that this policy is suboptimal. Instead,
the optimal policy can be described as “filling the box”, involving a sudden and
discontinuous suppression. More precisely, it prescribes (Theorem 1 and Figure
2) leaving the spread unregulated during a first phase. As the number of infected
approaches the ICU constraint we enter a second phase where harsh suppres-
sion measures are imposed at once (a discontinuity) but afterwards gradually
relaxed. The aim of policy in this second phase is to precisely stop the number
of infected from exceeding the ICU constraint and keep it constant at that level.
The discontinuous tightening followed by gradual relaxation of suppression is
optimal since the underlying growth of infections is highest in the beginning
of this phase. In a third phase, once the underlying growth of infections sub-
sides and herd immunity under laissez-faire has been obtained, no suppression
measures are taken.

We further fully solve for the optimized cost in closed form as a function
of economic and medical fundamentals. This is thus a lower bound, within
the S.I.R. model, below which no policy whatsoever (in our wide class) can
bring down the costs associated with a given ICU capacity constraint. This
lower cost bound is higher the lower is the ICU capacity. The lower cost bound
is increasing in the basic reproduction number and in the population share of
initially infected, for instance, how many infected individuals arrived from other
regions or countries at the start. The expression obtained (see equation (20))
makes all these dependencies explicit and allows for quantification.

Our main contribution is methodological; we show how to analytically solve
— from first principles without relying on numerical simulations or quantitative

1See, e.g., the Imperial College report (Ferguson et al., 2020), Branswell (2020), Time
(2020), Pueyo (2020), even Donald Trump (The Sun, 2020) and many more.
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calculations — a classic epidemic-economic model for the optimal suppression
policy. Importantly, the suppression policy is allowed to be fully time varying,
including potential discontinuities. This clearly distinguishes our paper both
from papers that study a subset of simpler policies analytically (e.g., Loertscher
and Muir, 2021), and from papers that study particular policies by way of
numerical simulation.2

We focus on analytically solving the mentioned optimization problem, min-
imization of the socioeconomic costs associated with limitations of economic
and social activity, subject to a health-capacity constraint. Clearly, this opti-
mization program neglects many other relevant aspects. In particular, we do not
consider non-linear economic costs, vaccine arrival, endogenous expansion of the
health-care system and political constraints to suppression. We discuss the pos-
sible effects of such extensions on our results in the concluding section. However,
since the classical S.I.R. model is ubiquitous within economic-epidemic modeling
and taught to so many students around the globe, we think it is important to il-
luminate the model’s properties and its capability to permit analytical solutions
to relevant policy questions. One important aspect is the cost associated with
being infected (including potentially harmful long-term health consequences or
death), for the afflicted individuals themselves and for society at large. We
show that our main result (Theorem 1) is optimal also under sufficiently small
such costs (see Theorem 2). Moreover, “filling the box” is optimal under larger
infection costs if the ICU constraint is more binding. This has the policy im-
plication that developing countries (with few ICU resources) should primarily
focus on ensuring their health-care system is not overwhelmed. Richer countries
(with more ICU resources) on the other hand should also focus on reducing the
infection numbers per se. The intuition for this is that countries with a low ICU
capacity need to implement extensive suppression in order to ensure that the
capacity is not breached. Therefore, further suppression, to generally reduce
infection, becomes redundant.

In the epidemiology literature there exist other papers with analytical solu-
tions for optimal policy.3 For a literature review on the early research see Wick-
wire (1977). Many papers model vaccinations (Morton and Wickwire, 1974;
Ledzewicz and Schättler, 2011; Hu and Zou, 2014, Laguzet and Turinici, 2015;
Maurer and de Pinho, 2015), some model screening (Ainseba & Iannelli, 2012).
The previous papers focusing on suppression (or quarantine) either restrict the
policy (e.g., diLauro et al., 2020, see also Nowzari 2016 for a review) or abstract

2In a rich numerical model, Favero et al. (2020) analyze ways to restart the Italian econ-
omy. They do take into account that ICU capacity is limited among many other things and
analyze a subset of policy options (containing not only suppression) but not global optimality.
Also Gollier (2020a) analyzes the effect on an ICU constraint among many other things in a
simulation model. For numerically solved models with other focuses see, e.g., Wearing et al.
(2005), Iacoviello and Liuzzi (2008), Lee et al. (2011), Kar and Batabyal (2011), Iacoviello
and Stasio (2013), Giamberardino and Iacoviello (2017), Wang (2020), Farboodi et al. (2020),
Eichenbaum et al. (2020), and Alvarez et al. (2020).

3There is a much larger literature studying epidemics without controls, of course, see for
instance Dickison et al (2012) and Brauer and Castillo-Chavez (2011), Pastor-Satorras et al.
(2015) and references therein.
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from the fact that increasing the suppression is costly, obviously a key aspect
of any economic analysis.4

The papers most closely related to ours are Toxvaerd (2020), Kruse and
Strack (2020), and Loertscher and Muir (2021). The last paper is the closest.
Their model and question are similar to ours. However, their analytical result
concerns only constant suppression levels. They solve for optimal time-varying
policies only numerically. By contrast, we (a) solve analytically for a fully time-
varying policy (Theorem 1), (b) obtain a closed-form solution for the indirect
cost function, thus allowing for analytical comparative statics (equation (20)),
and (c) obtain a robustness result concerning the cost of the number of infected
(Theorem 2).

Toxvaerd (2020), though being fully analytical, has a different research ques-
tion and, indeed, a different model than us, focusing on individual choice of social
distancing (a form of self-suppression). He does not analyze social optimality
and abstracts from the ICU capacity which are the focus of our paper. Yet, in-
terestingly, Toxvaerd (2020) finds that individuals may, by their own individual
choices, collectively create an infection spread which graphically looks similar
to the one that we show is optimal.

Kruse and Strack (2020), finally, also look at optimal suppression with costs
which are increasing in suppression. They show existence of an optimizer for a
rather general health-cost function but only solve for the optimizer in the spe-
cial case where the health costs are linear in the number of currently infected.5
This is equivalent to assuming that the total number of deaths (over time) is
proportional to the total number of infected (the linearity assumption implies
bang-bang solutions for suppression) so it does not (directly) matter how many
are infected at the same time (in that sense, their paper is similar to Grigorieva
et al., 2016, and Grigorieva and Khailov, 2014). Our contribution is thus com-
plementary since in our model the planner wants to avoid too many infected at
the same time – respecting the capacity of the health-care system. The exten-
sion where we add a cost of the number of infected (Theorem 2) is in essence a
convex combination of Kruse and Strack’s (2020) and our model.

4Many papers analytically solve for a suppression policy while respecting a budget con-
straint (Hansen and Day, 2011; Bolzoni et al., 2019) or a time constraint (so that the sup-
pression cannot be too long, Morris et al 2020) but disregarding that more suppression within
a time period is costlier than less suppression (Bolzoni et al., 2017; Piunovskiy et al., 2019).
This is isomorphic to restricting the suppression policy to be binary since, once there is sup-
pression within a time period, it may as well be at full force. We allow the suppression policy
to take any value within a period and change in any way between time periods. Grigorieva et
al. (2016) and Grigorieva and Khailov (2014) analyze an objective of minimizing the number
of infectious during or at some end period, but the control bears no cost. Abakus (1973) and
Behncke (2000) analyze an objective of minimizing the total (over time) number of infected
(see Behncke, 2000, Section 3) but the cost of putting a person in quarantine is only taken
once so is independent of the length of quarantine. Finally, Gonzales-Eiras and Niepelt (2020)
analyze an S.I. model, finding, just like some of the papers above, that the optimal control is
binary.

5They also show existence of an optimizer when adding that a vaccine may arrive. For
dual approaches to the problem solved by Kruse and Strack (2020), see Bliman and Duprez
(2021) and Bliman et al. (2021).
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2 Model
Our model setup closely follows the canonical Susceptible-Infectious-Removed
model (Kermack and McKendrick 1927; see also Brauer and Castillo-Chavez,
2011, for an excellent overview). At any time t ě 0, let x1 ptq be the population
share of individuals who at time t are susceptible to the infection, and let x2 ptq
be the population share of individuals who are infected at time t. All infected
individuals are assumed to be contagious, and population shares are defined
with respect to the initial population size, N . Let m ptq be the rate at time
t of pairwise meetings between susceptible and infected, and let q ptq be the
probability of contagion when an infected person meets a susceptible person
at time t. Write b ptq “ m ptq q ptq. Infected individuals are removed from the
population at rate α ą 0. This may be either because they become immune
or because they die. An important assumption is that those who are infected
never again become susceptible.

The population dynamic is then defined by the following simple system of
ordinary differential equations:

"

9x1 ptq “ ´b ptqx1 ptqx2 ptq
9x2 ptq “ b ptqx1 ptqx2 ptq ´ αx2 ptq

. (1)

The initial condition is x1 p0q “ 1´ ε and x2 p0q “ ε, for some ε P p0, 1q. That
is, the infection enters the population at time zero in a population share ε ą 0.
The state space of this dynamic is ∆ “

 

x “ px1, x2q P R2
` : x1 ` x2 ď 1

(

. The
only difference from the standard S.I.R. model is that the propagation coefficient
b ptq, instead of being a constant over time, is here allowed to vary over time.6

Indeed, we will view pbptqqtě0 as a non-negative function in the hands of a
social planner who strives to minimize the economic and social costs of limiting
economic activity and/or social life, while never letting the population share
of infected individuals, x2 ptq, exceed an exogenously given level γ. The latter
is interpreted as the capacity of the health-care system to give full treatment
to infected patients. We refer to it as the ICU capacity or constraint.7 It is
meant to capture a situation, such as under Covid-19, where if the number of
simultaneously and seriously ill exceeds the number of respirators some patients
may have to be left to die. Not breaching the ICU capacity thus ensures that
all get the full care. To allow for risk – e.g., due to intrinsic stochasticity or
uncertainty about parameter values – the ICU constraint can of course also
include a margin to the actual limit.

We assume that the cost of keeping b ptq below its natural, or unregulated
level β is a linear function of the difference, while there is no cost of moving
b ptq above β. The latter assumption is made to “tilt the table” against us in the
subsequent analysis, where we will show that it is suboptimal to enhance the

6If x3 ptq denotes the population share of removed individuals in a standard S.I.R. model,
then its dynamic is 9x3 ptq “ αx2 ptq, and x1 ptq ` x2 ptq ` x3 ptq “ 1 at all times t ě 0.

7If, for example, on average 20% of those infected need intensive care and the number of
ICUs is C in a population of size N , then γ “ 5C{N .
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propagation of the infection even if this can be done at no cost. Formally, the
cost functional C : B Ñ R` is defined by

C pbq “

ż 8

0

rβ ´ b ptqs` dt. (2)

where B is the class of piecewise continuous functions b : R` Ñ R` that have
finitely many points of discontinuity (allowing for no discontinuity at all). Let
x p0q ” px1 p0q , x2 p0qq be the population state at time t “ 0 and let

c˚ px p0q , γq “ inf
bPBpxp0q,γq

C pbq (3)

Here Bpxp0q, γq, for any given xp0q and γ ą 0, is the subset of functions in B
for which x2 ptq ď γ at all times t ě 0.8 Thus c˚ px p0q , γq is the greatest lower
bound on the socio-economic cost of keeping the infection from ever surpassing
the ICU capacity constraint γ, when the initial population state is x p0q. The so-
cial planner seeks to find a policy b P B px p0q , γq that achieves this theoretically
lowest cost. Does such a policy exist? If so, can optimal policies be charac-
terized in terms of the primitives of the S.I.R. model? How does c˚ px p0q , γq
depend on the health-care capacity γ, the initial population share of infected
x2 p0q (say when x2p0q ` x1p0q “ 1), the natural propagation rate β, and the
recovery rate α? These are the questions we here raise and answer.

We focus on situations in which ε ă γ, that is, when the initial infection level
is below the ICU capacity constraint. Moreover, we assume that β ą α. Other-
wise the population share of infected individuals does not increase from its initial
value, which would imply herd immunity already from the outset, and thus the
social planner’s optimization program then has a trivial solution; laissez-faire,
that is, b ptq ” β. The basic reproduction number, or basic reproduction rate, is
R0 “ β{α.

3 Preliminaries
The class B of policies allowed for in this analysis is very large (an infinite-
dimensional function space). However, it can be shown that for any function
b P B, equations (1) define a unique solution trajectory through any given state
pxo1, x

o
2q P ∆ and time t0 ě 0 (see Appendix for a proof.). Evidently, all constant

functions b : R` Ñ R`, with b ptq “ δ for some δ ą 0, belong to B. However,
they do not all belong to Bpxp0q, γq, i.e., they may violate the ICU constraint. It
is easy to show that such constant policies belong to Bpxp0q, γq if δ is sufficiently
low, for any given γ ą 0. Thus, to choose δ as high as possible, while keeping
x2 ptq ď γ for all t ě 0, is a feasible policy (belongs to Bpxp0q, γq), and can

8To be more precise, we require that there is a finite set T Ă R` such that the function
b : R` Ñ R` is continuous at all other points, and that it is everywhere left-continuous and
has a right limit. We also require that b is positive except on at most finitely many connected
components.
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be called flattening the curve.9 However, such a policy incurs an infinite cost
if δ ă β, since it lasts forever. An alternative feasible control function, with
finite cost, is to only temporarily keep b ptq at a constant level δ ă β, where δ
is such that x2 ptq ď γ for all t ě 0. However, as will be shown below, also such
“temporary constant shut down” policies are suboptimal. Before turning to the
formal statement of our main result, we analyze some general properties of the
dynamic induced by (1).

3.1 Dynamic
Some well-known properties of the solutions to standard S.I.R. models hold also
here (see Brauer and Castillo-Chavez, 2011). A key such property is that the
population share of susceptible individuals, x1 ptq , is non-increasing over time t.
Roughly speaking, this follows from the first equation in (1), since b ptq is always
non-negative and x2 ptq is positive at all times t ě 0. Being bounded from below
by zero, x1 ptq necessarily has a limit value as t Ñ 8, which we denote x81 .
According to (1), also the sum x2 ptq ` x1 ptq is strictly decreasing over time t,
and hence also this sum has a limit value. If x82 ą 0, then x1 ptq` x2 ptq Ñ ´8

which implies that x82 “ 0. In other words, in the very long run, the population
share of (currently) infected individuals tends to zero. Denoting by x83 the
total population share of removed individuals during the whole epidemic, we
thus have x83 “ 1 ´ x81 , and Nx83 is approximately (for large N), the total
number of individuals who were infected during the epidemic.

Let us now consider the solution to (1) through any given state xo “
pxo1, x

o
2q P ∆ at any time t0 ě 0, where 0 ă xo1 ă 1 and 0 ă xo2 ă 1. Di-

viding both sides of the first equation in (1) by x1 ptq ą 0 and integrating, we
obtain

lnx1 ptq “ lnxo1 ´

ż t

t0

b psqx2 psq ds @t ě t0. (4)

Moreover, integrating the sum of the two equations in (1), we obtain

x1 ptq ` x2 ptq “ xo1 ` x
o
2 ´ α

ż t

t0

x2 psq ds @t ě t0. (5)

3.2 Constant policy
In particular, if b ptq “ δ ą 0 for all t ě t0, for some δ ą 0, then for all t ě t0:

ln

„

x1 ptq

xo1



“ ´δ

ż t

t0

x2 psq ds “
δ

α
rx1 ptq ´ x

o
1 ` x2 ptq ´ x

o
2s , (6)

or
x1 ptq ` x2 ptq “

α

δ
ln

„

x1 ptq

xo1



` xo1 ` x
o
2 @t ě t0. (7)

9In the public debate, “flattening the curve” has not been provided a mathematically exact
meaning. We perceive the common usage to suggest a constant suppression level which is also
what we will mean formally when using that term in the paper.
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This equation is well-known for S.I.R. models. Moreover, (7) implies that
px1 ptq , x2 ptqq Ñ px81 , 0q P ∆, where x81 by continuity solves (7) for x2 ptq “ 0,
so

x81 “
α

δ
ln

„

x81
xo1



` xo1 ` x
o
2. (8)

Since x1 ptq is strictly decreasing, x81 ă xo1. It is easily verified that the fixed-
point equation (8 ) has a unique solution x81 P p0, xo1q. 10 Equation (8) will
later be used to calculate the population share that were ever infected during
the epidemic under the optimal suppression policy.

The value
x̂2 “ sup

tě0
x2 ptq (9)

is the peak infection level. It is obtained when 9x2 “ 0, or, equivalently (by (1)),
when x1 “ α{δ. From (7 ), for xo1 “ 1´ ε and xo2 “ ε, we obtain

x̂2 “ 1`
α

δ
ln

„

α

δ p1´ εq



´
α

δ
. (10)

The right-hand side is a strictly decreasing function of the ratio α{δ. Thus, the
infection peak is higher the larger δ is and the smaller α is.

Once the population share x1 ptq of susceptible individuals has fallen below
the level α{δ, achieved precisely when x2 ptq “ x̂2, herd immunity is obtained;
the population share x2 ptq of infected individuals falls, even without interven-
tion. To see this, note that according to (1), x1 ptq “ β{α “ R0 if 9x2 ptq “ 0
and b ptq “ β. In particular, the limit state as tÑ8 is Lyapunov stable. That
is, there is no risk of a second infection wave, since after any small perturbation
of the limit population state px81 , 0q P ∆, obtained by exogenously inserting a
small population share of infected individuals, the population share of infected
individuals will fall gradually back towards zero, while the population share of
susceptible individuals gradually moves towards a somewhat lower, new limit
value.

Equation (10) is particularly relevant for the case when δ “ β, that is, under
laissez-faire. Because if the peak of the infection wave then does not exceed the
ICU capacity constraint, that is, if

1`
α

β
ln

ˆ

α

β p1´ εq

˙

´
α

β
ď γ, (11)

then laissez-faire is evidently optimal; b˚ ptq ” β solves (3) at no cost. Since
R0 “ β{α, we note that inequality (11) holds if and only if R0 is small enough.
More precisely, (11) can be rewritten as

γ ě 1´
1

R0
rlnR0 ` ln p1´ εqR` 1s . (12)

10For any xo1 ą 0 and 0 ă xo2 ď 1´xo1, the right-hand side of (8) is a continuous and strictly
increasing function f of s “ x81 P

`

0, xo1
˘

. Moreover, f psq Ñ ´8 as s Ó 0 and f
`

xo1
˘

ą xo1,
f 1 ą 0 and f2 ă 0, so there exists a unique fixed point s˚ in

`

0, xo1
˘

.
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In other words: c˚ pxp0q, γq “ 0 for all such γ. Moreover, when the initial
infection constitutes an infinitesimal population fraction (ε Ñ 0), then (12)
boils down to γ ě 1´ plnR0 ` 1q {R0. For γ ě 1 , the condition is trivially met
(then the health sector has the capacity to receive the whole population). For
γ ă 1, this inequality gives an upper bound on R0.11 But if the peak is above
the ICU constraint, regulation has to be implemented. This is the topic of the
next section.

4 Main result
Our main result, optimal control of an epidemic under a health-care capacity
constraint, is fairly easy to state but involved to prove. The formal proof, based
on the Hamilton-Jacobi approach, is provided in a separate appendix. Here we
state the result and provide intuitions and sketch a heuristic proof.

We summarize below our main result, which treats all cases when laissez-
faire does not respect the ICU constraint. If (11) does not hold, which we
henceforth assume, then the solution orbit (7) under laissez-faire intersects the
capacity constraint x2 ptq “ γ twice. Let τ1 ą 0 be the first such time and let
x1 pτ1q be the population share of susceptible individuals at that time. Then

τ1 “ min

"

t ě 0 : x1 ptq “ 1´ γ `
α

β
ln

ˆ

x1 ptq

1´ ε

˙*

(13)

where x1 ptq is solved for according to (1) when b ptq ” β, and x1 pτ1q is the
larger of the two solutions to the associated fixed-point equation in x1,

x1 “
α

β
ln

ˆ

x1
1´ ε

˙

` 1´ γ. (14)

We note that x1 pτ1q ą α{β.12 Let

τ2 “ τ1 `
1

αγ

„

x1 pτ1q ´
α

β



. (15)

Theorem 1 Suppose that ε ă γ, α ă β and (11) does not hold. There exists a
solution to program (3), one of which is the policy b˚ P Bpxp0q, γq defined by

b˚ ptq “

$

&

%

β for t ď τ1
β{ r1` βγ pτ2 ´ tqs for τ1 ă t ď τ2
β for t ą τ2

(16)

11This follows from the observation that

B

BR0

ˆ

lnR0 ` 1

R0

˙

“ ´
lnR0

R2
0

,

a negative number for all R0 ą 1, which holds under our maintained hypothesis that α ă β.
12This follows from the observation that the derivative of the right-hand side of (14) is less

than unity at x1 “ x1 pτ1q.
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Every optimal policy b P Bpxp0q, γq agrees with b˚ on r0, τ2s and satisfies b ptq ě
β for all t ą τ2.

We note that the optimal policy is laissez-faire both before time τ1 and after
time τ2. We also note that the optimal policy has exactly one discontinuity,
namely, a sudden shut-down of society at time τ1; then b˚ ptq falls from b˚ pτ1q “
β to

lim
tÓτ1

b˚ ptq “
β

1` βγ pτ2 ´ τ1q
“

α

x1 pτ1q
. (17)

From time τ1 on, b˚ ptq rises continuously until time τ2, at which point b˚ ptq
reaches the level β. In the meantime, between times τ1 and τ2, the population
share x2 ptq of infected individuals remains constant at the capacity level γ, while
the population share x1 ptq falls linearly over time to the level α{β “ 1{R0,
reached at time τ2. The solid curve in the phase-space diagram in Figure 1,
below, is the orbit induced by the optimal policy, starting at where x1 p0q is
close to 1 and x2 p0q is close to zero. Once the orbit hits the horizontal line
where x2 “ γ, it remains there until it reaches the point where herd immunity
is reached, whereupon the orbit without any suppression turns back down. The
dotted curve is the orbit taken under laissez-faire.

0

0.4

x
2

Filling the box

Unregulated

x
1

Figure 1: The solution orbit (solid) in the px1, x2q-plane under the optimal policy b˚,
and the solution orbit under unregulated spread (dotted) . Parameter values used:
α “ 0.3, β “ 1, γ “ 0.2, and ε “ 0.01.
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Figure 2 depicts the optimal policy as a function of time in comparison to a
strategy of flattening the curve, here assumed to take the form: keep b ptq at the
level δ ă β for which x̂2 “ γ (see (10)) until the infection wave has passed its
peak, and then return to laissez-faire, b ptq “ β (outside the time range of the
figure). The upper panel shows the dynamics of infections and the lower panel
the policy b ptq.

0

0.3

x
2
(t

)

Flattening the curve

Filling the box

Time
0

1.5

b
(t

)

21

Figure 2: Upper panel: The share of infected over time under the optimal policy
(solid) and flattening the curve (dotted). The horizontal dashed line represents the
ICU constraint γ. Lower panel: Optimal suppression (solid) and flattening-the-curve
suppression (dotted). The horizontal dashed line represents the baseline spread β.
Parameter values used: α “ 0.3, β “ 1, γ “ 0.2, and ε “ 0.01.

As can be seen, and as expressed by the theorem, the optimal policy is
characterized by leaving the spread unregulated initially, then a sudden shut-
down of society (a discontinuity at τ1), followed by gradual (continuous) opening
of society, until time τ2, from which onwards the propagation is not regulated.
The time axis and the ICU constraint create a square – a box. The economic
logic behind the optimal policy is essentially to ensure that we do not close
down society while leaving idle ICU resources – “filling the box”. This implies
that whenever the natural spread is not threatening the constraint, it should go
unregulated. This holds in the early phase when only few have been infected,
and in the last phase, when many have already been infected but most of them
also have recovered. It is only when the epidemic may breach the ICU constraint
– the second phase – that it should be regulated. In order to ensure that the
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constraint is not breached, strong suppression has to be imposed when reaching
the ICU constraint – a sudden shutdown. The reason for the abruptness of this
policy (the discontinuity) is that the natural infection is progressing very quickly
at that point, so a sudden break is needed to stop it. This can be seen in the
lower panel by the drop at τ1. After that, b˚ gradually increases. The reason for
this is that the suppression only needs to keep the infection just below the ICU
constraint. Then since over time the number of susceptible, x1, is falling, the
number of infected, x2, is held endogenously constant and since new infections
depends on their product, b ptqx2 ptqx1 ptq, it follows that b˚ is increasing during
the second phase. The policy as a function of the uninfected population share
simply is b˚ ptq “ α{x1 ptq, i.e., the recovery rate α determines what share of
the susceptible population that can be allowed to be infected.

Three further remarks about optimal policies are now in place. First, it may
be noted that the optimal policy never attempts to fully eradicate the spread. In
our model, like in all standard S.I.R. models, this is since x2 only asymptotically
goes to zero. Hence, full eradication (a form of extreme corner solution) would
imply locking down forever. We discuss this further in the conclusions.

Second, the optimal policy is unique during the first and the second phase
but not during the third. The uniqueness during the first phase is not obvious.
To see this note that here there is no reason to hold back the spread. Then,
given that bptq ą β has been assumed to be costless, why would accelerating
the spread not be optimal? The answer is that, if one does that, then the
ICU capacity is reached at a high speed of infection hence it would require
hitting the breaks very hard. This is not optimal. The multiplicity of optimal
strategies during the third phase is due to the same assumption – acceleration
is free. Hence, not only laissez-faire is optimal, but also acceleration (of which
one can think as stimulus for economic interaction). The acceleration cannot
be too fast, however, as it may then breach the ICU constraint. Naturally,
should we assume that there is a cost of acceleration (even the slightest) this
multiplicity disappears and a unique optimal policy emerges also in the third
phase – laissez-faire.

Third, compared with the optimal policy, “flattening the curve” implies costs
that lead to idle resources. This is visible in the upper panel of Figure 2, where
costs are incurred without the spread posing a threat to the health system –
both before and after the peak, suppression costs are incurred for no reason.
The additional cost of flattening the curve (instead of filling the box) can be
seen in the lower panel by comparing the rectangle between β and the dashed-
dotted line on the one hand with the area between β and the solid line on the
other. It is potentially very large, in particular if the policy maker continues to
flatten the curve long after the peak.

4.1 A heuristic
While the interested reader is recommended to consult the Appendix for a rig-
orous proof of Theorem 1, we here provide a graphical heuristic for some key
steps.

12



Consider the solution orbits associated with (1) in the state space ∆, through
a given state xo “ pxo1, x

o
2q, at some arbitrary time, where 0 ă xo1 ă 1 and

0 ă xo2 ă γ. In such a population state, some, but not all individuals are
susceptible, and the population share of infected is positive but below the health-
care capacity. Write Dγ Ă ∆ for this subset of population states, and write
(1) more concisely as an autonomous system of ordinary differential equation
9x “ f px, u pxqq, where u : ∆ Ñ R` is a control function and f : ∆ˆ R` Ñ R2

is the vector field that defines the population dynamic — by pointing in the
tangential direction of movement. In this (timeless) perspective, (1) becomes

"

f1 px, u pxqq “ ´u pxqx1x2
f2 px, u pxqq “ u pxqx1x2 ´ αx2

.

While b is a function of (calendar) time, for a fixed and given initial state at
time zero, u is a timeless function of the current state. The laissez-faire policy is
now represented by the (costless) control function uo pxq “ β for all x P ∆. We
will call the solution orbits under this control function the laissez-faire orbits.
As shown above, the laissez-faire orbit through any given state xo P ∆ consists
of those population states x P ∆ that satisfy the equation

x2 “
α

β
ln

ˆ

x1
xo1

˙

`´x1 ` x
o
1 ` x

o
2. (18)

Such laissez-faire orbits are shown in Figure 3.

Figure 3: Laissez-faire orbits.

The orbit through any point xo on any one of these curves will follow its
curve counter-clockwise and gradually over time approach a limit point on the
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boundary where x2 “ 0. The dashed horizontal line represents the capacity
constraint γ “ 0.2, and the thick curve is the maximal laissez-faire orbit that
respects the health-care constraint x2 ď γ. The dashed vertical line indicates
states with x1 “ α{β. The population state at the intersection of these dashed
lines, x̃ “ pα{β, γq, is the point at which the maximal laissez-faire orbit touches
the health-care capacity constraint. All laissez-faire orbits reach their maximal
infection share when x1 “ x̃1 “ α{β. At all such states, herd immunity is
achieved.

From any population state in the rectangle A “ r0, α{βsˆr0, γs, the solution
orbit respects the capacity constraint at all future times. Inside this rectangle,
the population state travels counter-clockwise along its orbit, and both x1, the
number of (currently) susceptible, and x2, the number of (currently) infected,
decline over time, and x2 tends towards zero. Consider a population state
xo P A, the expansion of the set A to also contain all states on or below the
maximal laissez-faire orbit. At any such population state (irrespective of time),
laissez-faire is clearly an optimal policy; the population state will drift along its
laissez-faire orbit, without ever breaching the capacity constraint. Hence, the
value function c˚p¨, γq is zero on the subset of initial states x p0q P A.

How should one optimally control the epidemic in population states xo P Dγ
outside A? We here only provide intuitions for why local deviations from the
proposed optimal control,

u˚ pxq “

"

α{x1 if x2 “ γ
β otherwise

are suboptimal.
Suppose, first, that the population state xo P Dγ , outside A, is exactly at

the capacity constraint, that is, xo1 ą α{β and xo2 “ γ. In such a situation, it is
necessary to suppress the propagation rate not to violate the constraint. It can
be shown that it is optimal to suppress it as little as possible, while not breaching
the capacity constraint. The population state will then travel west-ward along
the straight line x2 “ γ. During this travel, which requires costly regulation,
gradually less suppression is needed. This is because the population share x1 of
susceptible individuals declines over time while the population share of infected
is held constant. When the population share x1 has reached the critical value
α{β, herd immunity has been obtained. From then on, laissez-faire is optimal.

Second, suppose that the population state is above the maximal laissez-faire
orbit and with xo1 ą α{β and xo2 ă γ. According to the claimed optimal control
u˚, it is best to follow the laissez-faire orbit, the (thin) curve through the point,
all the way up to the capacity constraint, and from there behave as described
above. Could it be better to deviate upwards or downwards, in comparison
with the laissez-faire orbit? It can be shown that it is suboptimal to boost
the propagation rate. All that then happens is that the population state will
sooner reach the capacity constraint, and will then have a higher share x1 of
susceptible than if laissez-faire had been applied. Since it is costly to travel along
the capacity constraint, as noted above, there will be no gain but an additional
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suppression cost, to travel an extra stretch along this straight line. Could it be
better to deviate downwards? By assumption, this is costly. But by doing so,
the capacity constraint can be reached later, and thus be less costly to uphold
until x1 “ α{β. However, one can show that the cost is higher than the benefit.

Suppose that xo1 ą α{β and xo2 ă γ, and suppose that the social planner,
by way of a brief temporary suppression induces inward with respect to the
laissez-faire orbit through xo, and thereafter applies laissez-faire. This ends up
being suboptimal, as it would be cheapest to wait until the capacity constraint
is reached (the population share of susceptible will then be lower). A direct
comparison of the cost is not so easy as it may seem (and is related to the
linearity of the cost), that is why we will resort to the Hamilton-Jacobi approach
in the Appendix to prove Theorem 1.

4.2 The socio-economic cost of respecting the ICU con-
straint

Having solved the optimization program, one can readily obtain a closed form
expression for the minimized socio-economic cost, when starting from a popu-
lation state x p0q P Dγ outside A. With a slight abuse of notation we will write
c˚ pε, γq for c˚ px p0q , γq when x p0q “ p1´ ε, εq for some ε P p0, 1q.

Corollary 1 Suppose ε ă γ, α ă β, and that (11) does not hold. Then

c˚ pε, γq “
1

γ

„

β ´ α

α
´ ln

β p1´ εq

α



´
β

α
. (19)

Proof. In force of Theorem 1:

c˚ pε, γq “ C pb˚, x p0qq “ β

ż τ2

τ1

ˆ

1´
1

1` βγ pτ2 ´ tq

˙

dt

“ β pτ2 ´ τ1q ´ β

ż τ2

τ1

dt

1` βγ pτ2 ´ tq

“ β pτ2 ´ τ1q ´
1

γ

ż 1`βγpτ2´τ1q

1

ds

s

“ β pτ2 ´ τ1q ´
1

γ
ln r1` βγ pτ2 ´ τ1qs

where we have used the substitution s “ 1` βγ pτ2 ´ tq. In force of (15):

τ2 ´ τ1 “
1

αγ

ˆ

x1 ´
α

β

˙
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where x1 ą α{β is the largest solution to the fixed-point equation (14). Hence,

c˚ pε, γq “
1

γ

„

β

α

ˆ

x1 ´
α

β

˙

´ ln
βx1
α



“
1

γ

ˆ

βx1
α
´ 1´ ln

β

α
´ lnx1

˙

“
1

γ

ˆ

β

α
p1´ γq ´ ln p1´ εq ´ 1´ ln

β

α

˙

“
1

γ

ˆ

β

α
´ ln p1´ εq ´ 1´ ln

β

α

˙

´
β

α

where we used the fixed-point equation (14).

From equation (19) it is clear that the lower the ICU capacity (γ) is the
more costly implementing the policy will be. Likewise, the cost is increasing in
the initial share of infected. It may seem surprising that the size ε of the initial
infection plays a role, since under the optimal policy no actions are anyhow
taken during the first phase of the epidemic. However, if the initial infection is
large, contagion is faster already from the outset, which necessitates a harder
lock-down once the ICU capacity is reached. This result can be interpreted as a
motivation for closing borders when a new virus hits another country. Limiting
interaction with that country then may decrease the initial infection ε which
will lower the total costs. It can also be shown that the cost is increasing in
the basic level of infection spread , β. Moreover, since in this model the basic
reproduction rate R0 equals β{α, the expression for the minimal cost can be
rewritten entirely in terms of three fundamental parameters, the ICU capacity
constraint, γ, the initial infection size, ε, and R0:

c˚ pε, γq “
R0 ´ 1´ lnR0 ´ ln p1´ εq

γ
´R0. (20)

For infinitesimally small initial infection levels (ε Ó 0), the expression of the cost
boils down to a simple formula:

ĉ pR0, γq “ lim
εÓ0

c˚ pε, γq “
R0 ´ 1´ lnR0

γ
´R0 (21)

This lower bound is continuous in R0, taking the value zero when R0 is such that
the infection peak, x̂2, in the absence of regulation, equals γ. For R0 above this
critical level (see equation (11)), ĉ p¨, γq is strictly increasing in R0. Moreover,
the dependence is non-linear. An increase in the ICU capacity γ has a moderate
effect on the minimal suppression cost if R0 is low (near its critical unit value),
but a relatively strong cost effect if R0 is high.

5 Infection costs
The policy of filling the box may need to be mitigated in practice when including
other considerations than just the existence of an ICU constraint. However, fill-
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ing the box does remain optimal under some perturbations of our simple model.
We are now in a position to present such an instance, where the cost suffered
by infected people is added. This cost may include both personal sufferings
as well as treatment costs or a cost to delays in other medical activities when
treating a large number of infected during an epidemic. Indeed, there is a range
of small such costs for which the same filling-the-box policy as found above re-
mains optimal. When the costs are large enough to fall outside this range, the
optimal policy may take another mathematical form, a form that can be found
by numerical simulation, but for which we do not see any possibility to pin it
down analytically in closed form.

Let a ě 0 and generalize the cost functional C defined in (2) to Ca, defined
by

Ca px p0q , bq “

ż 8

0

rβ ´ b ptqs` dt ` a

ż 8

0

x2 ptq dt. (22)

(now this quantity depends on xp0q through the second integral). Since the last
integral equals the total number of infected during the epidemic, a is a cost per
infected person. For any a ě 0, the corresponding optimized cost is defined like
in (3) by

c˚a px p0q , γq “ inf
bPBpxp0q,γq

Ca pb, x p0qq . (23)

Our next result establishes that exactly the same filling-the-box policy (b˚
or u˚) that was found to be optimal when a “ 0 remains optimal also when a
is positive but small enough, and we also establish a closed-form expression for
c˚a px p0q , γq for values of a in this range.

To rigorously pin down this result in our formal model, we restrict the anal-
ysis to initial states x p0q P ∆ where the initial population share of infected is
strictly below the health-care capacity, but where this constraint will be hit in
finite time under laissez-faire. Formally, x p0q belongs to the subset Dγ but not
to A.

In order to state the result, some more notation is needed. First, let a0 ě 0
denote the maximal a-value for which the original filling-the-box policy (for the
case a “ 0) is still optimal. Second, let λ be the unique solution x81 P p0, α{βq
of equation (8) for δ “ β and xo “ x̃ (recalling that x̃1 “ α{β and x̃2 “ γ, see
Section 4.1, see also Figure 4 in the Appendix):

λ “
α

β

„

lnλ´ ln

ˆ

α

β

˙

` 1



` γ (24)

In other words, λ, a number in the interval p0, α{βq, is the population share that
remains uninfected during the whole epidemic, granted the population state at
some point in time passes through the population state x̃. And this is always
true under the optimal filling-the-box policy when a “ 0. Third, and finally,
let ρ be the unique solution in p0, 1q of the equation ρ2 ` ρ ` ln p1´ ρq “ 0
(ρ « 0.684)). Moreover, let

a0 “

#

λ
α´βλ ¨ γ if γ ď γ0
1´ρ
βρ ¨ γ0 γ ą γ0

. (25)
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where γ0 “ ρ2α{β.

Theorem 2 Suppose that x p0q P Dγ and x p0q R A. The filling-the-box policy
b˚ defined in (16) is optimal if and only if a P r0, a0s. Moreover, the optimized
cost for any a P r0, a0s is

c˚a px p0q , γq “ c˚ px p0q , γq ` a ¨
x1 p0q ` x2 p0q ´ λ

α
. (26)

The formal proof of the theorem can be found in the appendix. Part of the
intuition for the—perhaps surprising—result that the same policy is optimal
even when a is positive but sufficiently small, is latent in the heuristic sketched
in Section 4.1. Because, as suggested there, in the beginning of an epidemic,
an “outward” deviation (boosting its spread) is always suboptimal (even more
so when a ą 0 ). Also an “inward” deviation (suppressing the epidemic spread)
in the beginning of an epidemic is suboptimal, because, as we argued, it is
cheaper to postpone such a deviation, and the maximal postponement is until
the capacity constraint is reached. The cost saved by waiting is positive. Hence,
by continuity, it is still positive for when a ą 0 is sufficiently small. That laissez-
faire is also optimal in the late stage of an epidemic is a more subtle issue, and
we have to refer the interested reader to the appendix.

An economic intuition for the optimality of the filling-the-box policy also
in the presence of a small cost associated with the number of infected is that
a side effect of filling the box is that the total number of infected is lowered,
compared to complete laissez-faire, despite not having it as an explicit aim.
However, the filling-the-box policy may not reduce the infection in the cheapest
way, compared to if only the number of infected mattered and there were no ICU
constraint (a solution of which can be found in Kruse and Strack, 2020). But
given that the ICU constraint is respected, any further reductions of infections
are not worth the cost when the per unit cost a of infection is low. Another way
of interpreting the result is that when a policy maker has two considerations –
respecting an ICU constraint and reducing the number of infected – then the
former takes precedent and the latter can be ignored if the infection cost is low.

As can be verified, λ is a continuous function of γ, for any given 0 ă α ă β.
Hence also the upper bound a0 is a continuous function of γ, given 0 ă α ă β.
Our final result is that this upper bound on the optimality of the filling-the-box
policy b˚ is strictly decreasing in γ for all γ ă γ0:

Corollary 2 For given α and β, with 0 ă α ă β, equation (25) defines a0 as a
strictly decreasing function of γ P p0, γ0q.

By the same heuristic as above, a0 is greater the lower is γ, ceteris paribus.
Because when γ is lower, the initial part of the laissez-faire orbit hits the con-
straint sooner, when the population share of still susceptible is larger, and hence
the suppression cost is higher, which means that there is a wider range of a-
values for initial laissez-faire to still be optimal.

The policy implication of the corollary is that countries with less developed
health care (few ICU resources) should focus on ensuring that the spread is not
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overwhelming the health-care system. Meanwhile, more developed countries
(with more ICU resources) should also focus on reducing the infection numbers
per se. The intuition for this is that countries with a tight ICU constraint
need to implement extensive suppression just to respect the constraint (i.e.,
the side effect on reduced infection is large). Further suppression, to reduce
infection more generally, is then redundant. When the ICU constraint is not
very tight, on the other hand, less suppression is needed to respect it hence
further suppression is needed if one also cares about the number of infected.

We finally note that under the filling-the-box policy, the resulting additional
cost term in (26) is amenable to comparative statics in terms of the primitives of
the model. To see this, first note that the second integral in the generalized cost
function (22) equals the total population share ever infected during the epidemic,
multiplied by 1{α , the average duration of the infection in an individual. Hence,
if we write y for

ş8

0
x2 ptq dt, then the fixed-point equation for λ can be used to

establish that y is the unique solution, in the open interval between 1{α ´ 1{β
and 1{α , of the fixed-point equation

y “
1´ γ

α
´

1

β
ln

ˆ

1

α
´ y

˙

`
1

β

ˆ

ln
1

β
´ 1

˙

. (27)

We thus have c˚a px p0q , γq “ c˚ px p0q , γq ` ay, where (19) and (27) permit
comparative statics analyses. A topic we, for the sake of brevity, leave for
future studies.

6 Discussion
This paper provides an analytical answer to the question: What is the optimal
time-varying suppression policy to avoid a collapsed health-care system when
suppression is costly? We have shown that the general recommendation of “flat-
tening the curve” is suboptimal. Instead the optimal policy essentially prescribes
“filling the box”. In a first phase, the spread is unregulated until the number of
infected reaches the ICU constraint. A second phase begins by discontinuous
suppression followed by gradual relaxation until, in a third phase, the spread is
left unregulated again.

The main contribution of the paper is methodological, to analytically solve
a S.I.R. model with economic costs that are linearly increasing in suppression,
and respecting an I.C.U. constraint. We obtain closed-form expressions both for
the optimal policy and for the theoretically lowest possible cost of respecting a
given I.C.U. constraint. We also analyze under which infection costs “filling the
box” remains optimal. With these results we hope to contribute to the policy
debate on how to fight an epidemic, and, in particular, the current pandemic.

Our model rests upon a number of simplifying assumptions. We here briefly
discuss the robustness of our result on optimal policy with respect to some of
the modelling assumptions.

First, in our model (like in the standard S.I.R. model) a complete wipe
out of the spread is infeasible. The number of infected only asymptotically
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approaches zero, even if full suppression (b “ 0) were implemented. The reason
is the technical assumption that the duration of an individual’s infection has no
upper bound (it is treated as if it has an exponential distribution). Naturally,
if there instead would exist a maximal duration within which all recover with
probability one, then it could be optimal to go for a full wipe out right away.

Second, if account was taken of a potential vaccine arriving within a rea-
sonable time frame, then suppressing the spread more than what our policy
prescribes could be optimal. See, e.g., Auld (2003) and McAdams (2020) for
modeling and discussion of vaccines.

Third, another factor that could suggest early suppression is if the ICU
constraint can be expanded over time (for Covid-19 equivalent to an increased
number of respirators or development of a cure or improved treatment). Another
possibility is that one learns about the parameters of the disease. However, for
that to motivate early suppression, one has to assume that the suppression itself
does not distort the signal, see Gollier (2020b).

Fourth, if the cost of suppression is strictly convex (rather than as here
linear), in particular if mild suppression is very cheap, then that would again
motivate some suppression early on. However, most likely, it would still be
optimal to discontinuously increase suppression.

Fifth, and finally, the only constraint considered by our model is the health-
care capacity. In practice there may exist, for instance, political constraints
one how harsh policies that can be implemented or how fast a policy can be
changed. Our results remain the same if these other constraints do not bind
under our optimal policy. But if, for instance, a fast increase in suppression
is not politically feasible then suppression may need to start before infections
reach the ICU constraint.

Despite these limitations of our model, we do hope that the present analysis,
focusing on a restricted but clear question and providing a clear answer, provides
a useful stepping stone for future analyses of more complex and richer models.

7 Appendix
This appendix provides proofs of Theorem 1, Theorem 2 and Corollary 2. The
proofs are based on the Hamilton-Jacobi approach to optimal control. This
approach is quite useful here since we do have a conjectured candidate solution
to the optimization program. The Euler-Lagrange approach is more appropriate
for situations in which the analyst has no candidate solution to verify. This is,
for example, the case when a ą a0 in Theorem 2, and the Euler-Lagrange
approach may be useful for analyses of generalizations of the present model, a
task we leave for future studies.

The discussion in the main text, including the heuristics in Section 4.1, is
focused on a “new” epidemic, that is, a population in which initially nobody
is immune. Technically, this amounts to the assumption x1p0q ` x2p0q “ 1.
By contrast, in this appendix we also allow for “old” epidemics, that is, initial
population states where x1p0q ` x2p0q ă 1. The heuristic in Section 4.1 also
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presumes that the control problem is time homogenous, that is, that it is suf-
ficient to know the current population state xptq, and not the time t since the
epidemic started. By contrast, the appendix sets out without this presumption,
by allowing the control to depend in part also directly on time. At the end of
Section 7.2, we show how the Hamilton-Jacobi approach justifies the “timeless”
approach in Section 4.1. While the discussion in that section only considers
small local variations of the candidate solution, we here consider also global
variations, a much more challenging task.

The plan of this appendix is as follows: in the next section we recall the
general methodology we will follow, fixing the notation and introducing the
Hamilton-Jacobi equation. In Section 7.2, we will check that this equation is
satisfied when the control is given by the filling-the-box policy, thus proving The-
orem 1. The last section will extend these computations to the case of subcritical
infection costs a ď a0, ensuring the validity of Theorem 2 and Corollary 2.

7.1 The Hamilton-Jacobi approach
We begin by recalling some general features of the Hamilton-Jacobi approach to
optimal control. For more details, specially concerning regularity questions, we
refer to Section 1.4 of Soner [57] (the following lemmas correspond to Theorems
2 and 3 there) or to Section 5.1.4 of Liberzon [39].

Consider a controlled dynamical system

9xptq “ fpxptq, bptqq @ t ě 0 (28)

where the trajectory X B pxptqqtě0 is taking values in a closed domain D Ă Rd,
the control policy B B pbptqqtě0 is taking values in a closed set K Ă R. We
assume that B is right-continuous and admits left limits (at any positive time).
It follows the control policy B is measurable and locally bounded. The function
f goes from D ˆ K to Rd. In particular, X cannot cross the boundary BD,
which is seen as the set of constraints on the system (28). This property leads
to restrictions on the admissible controls. Namely, at any time t ě 0 when
X hits the boundary, say xptq “ x P BD, the value of the control bptq must
be such that there exists a continuous function rb on rt, t ` εs, with ε ą 0 and
rbptq “ bptq, such that the solution rx of (28) with rxptq “ x and b replaced by rb,
remains in D for any time belonging to rt, t ` εs. Denote Kpxq the set of such
bptq. When x P DzBD, it is convenient to define Kpxq B K. When D is smooth,
the requirement bptq P Kpxq amounts to

xfpx, bptqq, νpxqy ď 0

where νpxq is the outward normal of BD at x.
When D is the intersection of a finite number of smooth domains D1, D2,

..., DN , the previous requirement amounts to

xfpx, bptqq, νnpxqy ď 0
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for all 1 ď n ď N such that x P BDn. In our application, we will be in this
situation with N “ 4 and D1, D2, D3 and D4 half-planes.

For any initial condition xp0q P D, we would like to minimize the cost asso-
ciated to a policy B via

Cpxp0q, Bq B

ż `8

0

Lpxptq, bptqq dt

where L is a measurable function going from DˆK to R`. The non-negativeness
and the measurability of L, as well as the measurability of t ÞÑ pxptq, bptqq,
ensure that the above integral is well-defined, taking values in R` \ t`8u.
More precisely, we are interested in the following quantity as a function of
x B xp0q P D, the initial value of X,

V pxq B inf
B
Cpx,Bq

where the infimum is taken over all admissible control policies.
Introduce the Hamiltonian H on D ˆ Rd via

Hpx, pq B inftxp, fpx, bqy ` Lpx, bq : b P Kpxqu @ px, pq P D ˆ Rd. (29)

The principle behind the Hamilton-Jacobi method consists in the character-
ization of the function V described in the two following results. More precisely,
Lemma 1 and Lemma 2 respectively give conditions ensuring that a candidate
function U : D Ñ R` satisfies U ď V and U ě V .

Lemma 1 Let U : D Ñ R` be a differentiable function satisfying the Hamilton-
Jacobi equation

Hpx,∇Upxqq “ 0 @ x P D (30)

and such that for any control policy B, the transversality condition is satisfied:

lim
tÑ`8

Upxptqq “ 0. (31)

Then we have U ď V .

To get a reverse inequality, let be given a control policy B and consider X the
associated controlled trajectory, solution of (28) and starting from x P D.

Lemma 2 Let U : D Ñ R` be a function such that for a.e. t ě 0,

x∇Upxptqq, fpxptq, bptqqy ` Lpxptq, bptqq ď 0

then Upxq ě V pxq.

To conclude, for any px, pq P D ˆ Rd, consider the set of minimizers in (29)

Mpx, pq B tb P Kpxq : Hpx, pq “ xp, fpx, bqy ` Lpx, bqu
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Corollary 3 Let be given a function U : D Ñ R` satisfying the conditions of
Lemma 1. Consider a policy B and the associated trajectory X, starting from
x P D. Assume that for a.e. t ě 0, bptq PMpxptq,∇Upxptqqq, then Upxq “ V pxq.

As consequence a strategy to compute V is as follows. First find a solution
U of the Hamilton-Jacobi equation. Second for a.e. time t ě 0, pick up a control
bptq P Mpxptq,∇Upxptqqq, to construct the corresponding controlled trajectory
X. Finally check the validity of (31). In particular it follows that the optimal
solution we will get depends on time t only through xptq, enabling us to draw
corresponding orbits, as in Figures 1 and 3, thus establishing a link with Section
4.1.

7.2 Proof of Theorem 1
Let us come back to our S.I.R. minimization problem, with parameters α, β, γ ą
0 and a “ 0. Recall (1): we are interested in the controlled evolution described
by

"

9x1 ptq “ ´b ptqx1 ptqx2 ptq
9x2 ptq “ b ptqx1 ptqx2 ptq ´ αx2 ptq

(32)

where, with the notations of the previous section, we have X B px1ptq, x2ptqqtě0

(so the dimension is d “ 2) and B B pbptqqtě0. The constraint is represented by
the domain

D B tx P 4 : x2 ď γu, K B R`

(this set is Dγ in Section 4.1). The interior D̊ of D is

D̊ “ tx P 4 : x1 ą 0, x2 ą 0, x1 ` x2 ă 1 and x2 ă γu.

A priori BD consists in the four segments around the trapezoid D (see Figure 3),
but only the segment S Ă BD linking the point pα{β, γq to p1´ γ, γq is relevant
for our purposes (the other parts are not attainable from D̊). In this section
and in the next ones, we will check the Hamilton-Jacobi on D̊. Here it will
essentially be sufficient to check on DzA (where A was introduced in Section
4.1 and will be given an alternative characterization below).

With the notations of the previous section, we have
#

fpx, bq B p´bx1x2, bx1x2 ´ αx2q

Lpx, bq B pβ ´ bq`
@ px, bq P D ˆK. (33)

For x P S, let us compute Kpxq. The outward normal on S is the vector
p0, 1q (except at the corner p1´ γ, γq where it is not defined), so

Kpxq “ tb ě 0 : xfpx, bq, p0, 1qy ď 0u

“ tb ě 0 : bx1γ ´ αγ ď 0u “ r0, α{x1s.

The important computation corresponds to the determination of the Hamil-
tonian H:
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Lemma 3 We have for all px, pq P D̊ ˆ R2,

Hpx, pq “

"

mint1, pp2 ´ p1qx1x2uβ ´ αp2x2 if p1 ď p2
´8 if p1 ą p2.

where p1 and p2 are the components of the vector p.
Furthermore, the corresponding sets of minimizers are, still for all px, pq P

D̊ ˆ R2,

Mpx, pq “

$

&

%

t0u if p1 ď p2 and pp2 ´ p1qx1x2 ´ 1 ě 0
tβu if p1 ď p2 and pp2 ´ p1qx1x2 ´ 1 ă 0
H if p1 ą p2.

Proof. Let px, pq P D̊ ˆ R2 be fixed. He have

Hpx, pq “ inft´p1bx1x2 ` p2pbx1x2 ´ αx2q ` pβ ´ bq` : b P R`u
“ mintI1, I2u ´ αp2x2

with

I1 B β `mintrpp2 ´ p1qx1x2 ´ 1sb : b P r0, βsu

I2 B inftpp2 ´ p1qx1x2b : b ě βu.

Let us first deal with I2. We consider two cases:
(i) If p1 ď p2, then the mapping rβ,`8q Q b ÞÑ pp2 ´ p1qx1x2b is non-

decreasing, so its minimal value is attained at b “ β (as well as on the whole
interval r0, βs, if p1 “ p2) and I2 “ pp2 ´ p1qx1x2β.

(ii) If p1 ą p2, we have x1x2 ą 0 since x P D̊, thus the mapping rβ,`8q Q
b ÞÑ pp2 ´ p1qx1x2b is decreasing, its minimal value is “attained” at `8 and
I2 “ ´8.

Let us now come to I1. Again we consider two cases:
(i) If pp2´p1qx1x2´1 ě 0, then the mapping r0, βs Q b ÞÑ rpp2´p1qx1x2´1sb

is non-decreasing, so its minimal value is attained at b “ 0 (as well as on the
whole interval r0, βs, if pp2 ´ p1qx1x2 “ 1) and I1 “ β.

(ii) If pp2´p1qx1x2´1 ă 0, then the mapping r0, βs Q b ÞÑ rpp2´p1qx1x2´1sb
is decreasing, so its minimal value is attained at b “ β and I1 “ pp2´p1qx1x2β.

These observations lead us to divide D̊ ˆ R2 into the three regions:

• On tpx, pq P D̊ ˆ R2 : p2 ´ p1 ě 0 and pp2 ´ p1qx1x2 ´ 1 ě 0u, we
have I2 “ pp2 ´ p1qx1x2β ě 0 and I1 “ β, so that Hpx, pq “ ´αp2x2 `
mint1, pp2 ´ p1qx1x2u.

• On tpx, pq P D̊ ˆ R2 : p2 ´ p1 ě 0 and pp2 ´ p1qx1x2 ´ 1 ă 0u, we have
I2 “ pp2 ´ p1qx1x2β and I1 “ pp2 ´ p1qx1x2β “ I2, so that Hpx, pq “
pp2 ´ p1qx1x2β ´ αp2x2.

• On tpx, pq P D̊ ˆ R2 : p2 ´ p1 ă 0u, since I2 “ ´8, we necessarily have
Hpx, pq “ ´8.
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It follows that for all px, pq P D̊ ˆ R2,

Hpx, pq “

"

mint1, pp2 ´ p1qx1x2uβ ´ αp2x2 if p1 ď p2
´8 if p1 ą p2

as announced in the lemma.
The corresponding sets of minimizers follow from the above analysis.

�

Similar considerations lead to:

Lemma 4 We have for any px, pq P S ˆ R2,

Hpx, pq “

"

β ´ αγp2 if γpp2 ´ p1qx1 ´ 1 ě 0
β ´ αγp1 ´ α{x1 if γpp2 ´ p1qx1 ´ 1 ă 0

and

Mpx, pq “

$

&

%

t0u , if γpp2 ´ p1qx1 ´ 1 ą 0
r0, α{x1s if γpp2 ´ p1qx1 ´ 1 “ 0
tα{x1u if γpp2 ´ p1qx1 ´ 1 ă 0.

Proof. Let px, pq P S ˆ R2 be fixed.

Hpx, pq “ mint´p1bx1x2 ` p2pbx1x2 ´ αx2q ` pβ ´ bq` : b P r0, α{x1su

“ mint´p1bx1x2 ` p2pbx1x2 ´ αx2q ` β ´ b : b P r0, α{x1su

“ mint´p1bx1γ ` p2pbx1γ ´ αγq ` β ´ b : b P r0, α{x1su

“ mintrγpp2 ´ p1qx1 ´ 1sb : b P r0, α{x1su ` β ´ αγp2

where for the second equality we used that for x P S, we have x1 ě α{β, so
α{x1 ď β, and for the third equality we used that x2 “ γ for x P S.

We consider two cases:
(i) If γpp2 ´ p1qx1 ´ 1 ě 0, then the mapping that takes b from r0, α{x1s to

rγpp2 ´ p1qx1 ´ 1sb is non-decreasing, so its minimal value is attained at b “ 0,
Hpx, pq “ β ´ αγp2.

(ii) If γpp2 ´ p1qx1 ´ 1 ă 0, then the mapping that takes b from r0, α{x1s to
rγpp2 ´ p1qx1 ´ 1sb is decreasing, so its minimal value is attained at b “ α{x1
and

Hpx, pq “ rγpp2 ´ p1qx1 ´ 1s
α

x1
` β ´ αγp2

“ αγpp2 ´ p1q ´
α

x1
` β ´ αγp2

“ ´αγp1 ´
α

x1
` β.

The desired results follow. Note that in the first case, we have to separate
the sub-cases γpp2 ´ p1qx1 ´ 1 ą 0 and γpp2 ´ p1qx1 ´ 1 “ 0, where the sets of
minimizers are respectively t0u and r0, α{x1s.
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Let us now construct a function U , inspired by the results obtained in our
previous paper [45] (see also Corollary 1), that will satisfy the assumptions of
Corollary 3.

First, let us introduce some more notations. For any x P 4, let

ϕpx, ¨q B pϕ1px, tq, ϕ2px, tqqtPr0,`8q

be the trajectory starting from x and “controlled” by the laissez-faire policy.
It amounts to taking b ” β in (28), where the mappings f and L considered
in (33) have been extended to 4 ˆ K (then no boundary condition has to be
taken into account). As in Section 4.1, the trajectory ϕpx, ¨q will also be called
laissez-faire in the sequel. We need to extend the domain to all of 4 because
for some x, ϕpx, ¨q does take values in 4zD, i.e. the laissez-faire policy is not
always respecting the capacity constraint x2ptq ď γ. We have seen in (7) that
ϕpx, ¨q satisfies

ϕ2px, tq “ x2 `
α

β
ln

ˆ

ϕ1px, tq

x1

˙

´ ϕ1px, tq ` x1 @ t ě 0. (34)

Denote τ1pxq the hitting time of S when the state at time zero is x in D:

τ1pxq B inftt ě 0 : X2ptq “ γu.

By the usual conventions, this hitting time is infinite, when S is not hit by
ϕpx, ¨q.

Let A be the closure of initial points x P D with τ1pxq “ `8. Note it
corresponds to the same set A introduced in Section 4.1. Its boundary in D
consists of the points x P D such that ϕpx, ¨q passes through the point pα{β, γq.
For x P A, we take Upxq B 0.

Let us define U on S. Consider x “ px1, γq P S, we take

Upxq B
1

γ

ˆ

β

α
x1 ´ 1´ ln

ˆ

βx1
α

˙˙

.

For x P DzA, the trajectory ϕpx, ¨q hits S, say at a point ypxq P S. We take
Upxq B Upypxqq.

Here is a more explicit expression:

Lemma 5 For any x B px1, x2q P DzA, we have

Upxq “
1

γ

ˆ

β

α
x2 ´ ln

ˆ

βx1
α

˙

`
β

α
x1 ´ 1´

β

α
γ

˙

and

∇Upxq “
β

γα

ˆ

1´
α

βx1
, 1

˙

(for x P S, the interpretation of ∇Upxq is that for any v pointing toward D, the
differential of U at x in the direction of v is given by dUpxqrvs “ x∇Upxq, vy).
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Proof. For fixed x B px1, x2q P DzA, denote ypxq B pξpxq, γq. According to
(34), the coordinate ξpxq is a solution ξ to the equation

γ “ x2 `
α

β
ln

ˆ

ξ

x1

˙

´ ξ ` x1

(there are two solutions to this equation and ξpxq is the largest, corresponding
to the first time τ1pxq when ϕ˚2 px, ¨q goes through γ, it will pass at this level a
second time, in its way to herd immunity).

As a consequence, we get

Upxq “
1

γ

ˆ

β

α
ξpxq ´ 1´ ln

ˆ

βξpxq

α

˙˙

“
1

γ

ˆ

β

α
ξpxq ´ ln pξpxqq ´ ln

ˆ

β

α

˙

´ 1

˙

“
1

γ

ˆ

β

α
x2 ´ ln px1q `

β

α
x1 ´

β

α
γ ´ ln

ˆ

β

α

˙

´ 1

˙

“
1

γ

ˆ

β

α
x2 ´ ln

ˆ

βx1
α

˙

`
β

α
x1 ´ 1´

β

α
γ

˙

.

The gradient of U is immediately obtained by differentiation of this expres-
sion (extended on a neighborhood of points belonging to S).

�

We deduce:

Lemma 6 The function U satisfies the Hamilton-Jacobi equation on DzA.

Proof. First let us consider x P D̊zA. Let us write ∇1 and ∇2 the partial
derivatives with respect to x1 and x2. Note that

∇1Upxq “
β

γα

ˆ

1´
α

βx1

˙

ă
β

γα
“ ∇2Upxq

so according to Lemma 3

Hpx,∇Upxqq “ mint1, p∇2Upxq ´∇1Upxqqx1x2uβ ´ α∇2Upxqx2

“ min

"

1,
1

γx1
x1x2

*

β ´
β

γ
x2

“ min

"

1,
1

γ
x2

*

β ´
β

γ
x2.

Since x2 ă γ, the latter expression vanishes.
Second, for x “ px1, γq P S, we have

γp∇2Upxq ´∇1Upxqqx1 ´ 1 “ γ
1

γx1
x1 ´ 1 “ 0.
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According to Lemma 4, we infer

Hpx,∇Upxqq “ β ´ αγ∇1Upxq ´
α

x1

“ β ´ βγ
1

γ

ˆ

1´
α

βx1

˙

´
α

x1
“ 0.

�

Following the roadmap presented after the proof of Corollary 3, we are led
to choose at any time t ě 0, a policy bptq PMpxptq,∇Upxptqqq. In the following
cases, write x “ px1, x2q for the position xptq.

(i) When x P D̊zA, the above proof shows that ∇1Upxq ď ∇2Upxq and
similarly we see that

p∇2Upxq ´∇1Upxqqx1x2 “
1

γx1
x1x2 “

x2
γ
ă 1.

Thus according to Lemma 3, we must take bptq “ β.
(ii) When x P S, the proof of Lemma 6 shows that p∇2Upxq´∇1Upxqqx1γ´

1 “ 0. Thus according to Lemma 4, we must take bptq P r0, α{x1s. Taking
exactly bptq “ α{x1, namely bptq “ α{x1ptq where x1ptq is the first coordinate of
xptq, we recover the filling-the-box policy, at least untilX hits the point pα{β, γq.

To end the proof of Theorem 1, it remains to check (31), where X is the
trajectory controlled as above and where the initial point xp0q belongs to DzA.
Remark: X ends up hitting the point pα{β, γq after moving along S. Since
Upα{β, γq “ 0, afterward the trajectory X stays in the set where U vanishes,
following the laissez-faire trajectory passing through pα{β, γq, as explained in
Section 4.1.

7.3 Proof of Theorem 2 and Corollary 2
Let us add to the instantaneous cost a term ax2, with a ą 0, corresponding
to the costs suffered by infectious people. Namely in our S.I.R. minimization
problem, we replace L by

Lapx, bq B Lpx, bq ` ax2 @ x P D, @ b P K

(here and in the sequel, a quantity having no index a corresponds to a “ 0, i.e.
the quantity considered in the previous section).

Since the additional term does not contain b, we get for the corresponding
Hamiltonian and minimizer set:

"

Hapx, pq “ Hpx, pq ` ax2
Mapx, pq “ Mpx, pq

@ px, pq P D ˆ R2.

Our goal here is to investigate the modifications induced by this change of
the cost and to show that for a ą 0 sufficiently small, that will be precisely
quantified, the filling-the-box policy remains optimal.
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Our first task is to compute the induced surplus of cost for the filling-the-box
policy, whose definition is recalled below.

For x P D, let ϕ˚px, ¨q B pϕ˚1 px, tq, ϕ
˚
2 px, tqqtPr0,`8q be the trajectory con-

trolled by the filling-the-box policy B B pbptqqtPr0,`8q. Denote by τ˚2 the first
time ϕ˚1 px, ¨q hits α{β and τ˚1 the first time ϕ˚2 px, ¨q hits γ, except that if ϕ

˚
2 px, ¨q

never hits γ, we take τ˚1 “ τ˚2 . By convention we take τ˚1 “ τ˚2 “ 0 when
x1 ď α{β. The control B is given by

bptq B

$

&

%

β if t ă τ˚1
α{ϕ˚1 px, tq if t P rτ˚1 , τ

˚
2 s

β if t ą τ˚2

@ t ě 0.

Note that ϕ˚px, ¨q coincides with the laissez-faire trajectory ϕpx, ¨q (see the
paragraph before (34)) up to the time τ˚1 “ τ1pxq, with the notations of Section
7.2.

We begin by computing the surplus of cost on the first period r0, τ˚1 s.

Lemma 7 When τ˚1 ă τ˚2 , we have

ż τ˚
1

0

Lapϕ
˚px, tq, bptqq dt “

a

α
px1 ` x2 ´ ξpxq ´ γq

where ξpxq B ϕ˚1 px, τ
˚
1 q, was introduced in the proof of Lemma 5.

When τ˚1 “ τ˚2 , we have

ż τ˚
1

0

Lapϕ
˚px, tq, bptqq dt “

a

α
px1 ` x2 ´ χpxq ´ α{βq

where χpxq B ϕ˚2 px, τ
˚
1 q.

Proof. In all cases, since bptq “ β for t P r0, τ˚1 q, we have

ż τ˚
1

0

Lapϕ
˚px, tq, bptqq dt “

ż τ˚
1

0

Lapϕ
˚px, tq, βq dt

“ a

ż τ˚
1

0

ϕ˚2 px, tq dt

“ ´
a

α

ż τ˚
1

0

p´αqϕ˚2 px, tq dt

“ ´
a

α

ż τ˚
1

0

d

dt
pϕ˚1 px, tq ` ϕ

˚
2 px, tqq dt

“ ´
a

α
rϕ˚1 px, tq ` ϕ

˚
2 px, tqs

τ˚
1

0

“ ´
a

α
pϕ˚1 px, τ

˚
1 q ` ϕ

˚
2 px, τ

˚
1 q ´ px1 ` x2qq.

According to the situation τ˚1 ă τ˚2 or τ˚1 “ τ˚2 , we deduce the desired result.
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Next we compute the cost on the second period rτ˚1 , τ
˚
2 s, it is only needed

when τ˚1 ă τ˚2 .

Lemma 8 For any τ˚1 less than τ˚2 :

ż τ˚
2

τ˚
1

Lapϕ
˚px, tq, bptqq dt “

β ` aγ

αγ

ˆ

ξpxq ´
α

β

˙

´
1

γ
ln

ˆ

βξpxq

α

˙

.

Proof. We have
ż τ˚

2

τ˚
1

Lapϕ
˚px, tq, bptqq dt “

ż τ˚
2

τ˚
1

´

Lpϕ˚px, tq, bptqq ` aX
pxq
2 ptq

¯

dt

“

ż τ˚
2

τ˚
1

Lpϕ˚px, tq, bptqq dt` aγpτ˚2 ´ τ
˚
1 q.

The integral in the last r.h.s. was computed in Corollary 1, we have

ż τ˚
2

τ˚
1

Lpϕ˚px, tq, bptqqdt “
1

γ

ˆ

β

α
ξpxq ´ ln pξpxqq ´ ln

ˆ

β

α

˙

´ 1

˙

.

The time difference τ˚2 ´ τ
˚
1 was computed in (15):

τ˚2 ´ τ
˚
1 “

ξpxq ´ α{β

αγ

as claimed.
�

Finally follows the computation of the contribution to the cost of the last
period rτ˚2 ,`8q. Note that contrary to the situation a “ 0 considered in Sec-
tion 7.2, we can no longer overlook this period.

Lemma 9
ż `8

τ˚
2

Lapϕ
˚px, tq, bptqq dt “

#

a
α pα{β ` γ ´ λq if τ˚1 ă τ˚2
a
α pα{β ` χpxq ´ lpxqq if τ˚1 “ τ˚2

where λ is the smallest solution to the equation (24) (see also Figure 4 below),
and where lpxq, for x P A, is the smallest solution to the following equation in
l,

l “
α

β
ln

ˆ

βl

α

˙

`
α

β
` χpxq. (35)
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Proof. For t ě τ˚2 , we have bptq “ β, so as in the proof of Lemma 7,
ż `8

τ˚
2

Lapϕ
˚px, tq, bptqq dt “ a

ż `8

τ˚
2

ϕ˚2 px, tq dt

“ ´
a

α
pλpxq ´ ϕ˚1 px, τ

˚
2 q ´ ϕ

˚
2 px, τ

˚
2 qq

where λpxq B limtÑ`8 ϕ
˚
1 px, tq and where we took into account that

limtÑ`8 ϕ
˚
2 px, tq “ 0.

From (34), λpxq is the smallest solution to the equation in l

l “
α

β
ln

ˆ

l

ϕ˚1 px, τ
˚
2 q

˙

` ϕ˚1 px, τ
˚
2 q ` ϕ

˚
2 px, τ

˚
2 q.

Let us now separate the two possible cases.
(i) When τ˚1 ă τ˚2 , we have pϕ˚1 px, τ

˚
2 q, ϕ

˚
2 px, τ

˚
2 qq “ pα{β, γq, so lpxq does

not depend on x (except that x P DzA is required) and is the smallest solution
λ to (24).

(ii) When τ˚1 “ τ˚2 , we have pϕ˚1 px, τ
˚
2 q, ϕ

˚
2 px, τ

˚
2 qq “ pα{β, χpxqq, so lpxq

does depend on x and is the smallest solution to (35).
�

As a consequence of the three previous lemmas, we get:
(i) When τ˚1 ă τ˚2 , i.e. x P DzA, we have
ż `8

0

Lapϕ
˚px, tq, bptqq dt

“

ż τ˚
1

0

Lapϕ
˚px, tq, bptqq dt`

ż τ˚
2

τ˚
1

Lapϕ
˚px, tq, bptqq dt

`

ż `8

τ˚
2

Lapϕ
˚px, tq, bptqq dt

“
a

α
px1 ` x2 ´ ξpxq ´ γq `

β ` aγ

αγ

ˆ

ξpxq ´
α

β

˙

´
1

γ
ln

ˆ

βξpxq

α

˙

`
a

α
pα{β ` γ ´ λq

“

ż `8

0

Lpϕ˚px, tq, bptqq dt`
a

α
px1 ` x2 ´ ξpxq ´ γq `

a

α

ˆ

ξpxq ´
α

β

˙

`
a

α
pα{β ` γ ´ λq

“

ż `8

0

Lpϕ˚px, tq, bptqq dt`
a

α
px1 ` x2 ´ λq

“ Upxq `
a

α
px1 ` x2 ´ λq

where we took into account that

Upxq “

ż `8

0

Lpϕ˚px, tq, bptqq dt
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when a “ 0, as shown in the previous section.
(ii) When τ˚1 “ τ˚2 , i.e. x P A (recall that A is the set of points below the

laissez-faire trajectory passing through pα{β, γq), we have similarly, only using
Lemmas 7 and 9,
ż `8

0

Lapϕ
˚px, tq, bptqq dt “

a

α
px1 ` x2 ´ χpxq ´ α{βq `

a

α
pα{β ` χpxq ´ lpxqq

“ Upxq `
a

α
px1 ` x2 ´ lpxqq

where we used that Upxq “ 0 for x P A and where lpxq is defined in Lemma 9.
Since we want to test if the filling-the-box policy is optimal, let us define the

function Ua via

@ x P D, Uapxq B

ż `8

0

Lapϕ
˚px, tq, bptqq dt

“ Upxq `

#

a
α px1 ` x2 ´ λq if x P DzA
a
α px1 ` x2 ´ lpxqq if x P A.

(36)

In particular, we have (where T stands for transposition)

∇Uapxq “ ∇Upxq ` a

α

ˆ

1
1

˙T

@ x P DzA

and

∇Uapxq “ ∇Upxq ´ a

α
∇lpxq ` a

α

ˆ

1
1

˙T

@ x P A (37)

We deduce:

Lemma 10 The function Ua satisfies the Hamilton-Jacobi equation on DzA.

Proof. Note that on DzA, we have

∇2Ua ´∇1Ua “ ∇2U ´∇1U.

In Section 7.2, we checked that on D̊zA, ∇2U´∇1U ă 0, and that for x P S,
γp∇2Upxq ´∇1Upxqqx1 ´ 1 “ 0, so we get:

(i) On D̊zA,

Hapx,∇Uapxqq “ Hpx,∇Uapxqq ` ax2
“ mint1, p∇2Uapxq ´∇1Uapxqqx1x2uβ ´ α∇2Uapxqx2 ` ax2

“ mint1, p∇2Upxq ´∇1Upxqqx1x2uβ ´ α
´

∇2Upxq `
a

α

¯

x2 ` ax2

“ Hpx,∇Upxqq ´ ax2 ` ax2
“ Hpx,∇Upxqq
“ 0
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according to Section 7.2.
(ii) On S,

Hapx,∇Uapxqq “ Hpx,∇Uapxqq ` ax2
“ β ´ αγ∇2Uapxq ` aγ

“ β ´ αγ
´

∇2Upxq `
a

α

¯

` aγ

“ β ´ αγ∇2Upxq

“ Hpx,∇Upxqq
“ 0

according to Section 7.2.
�

To check if the Hamilton-Jacobi equation is satisfied on A, we need to in-
vestigate ∇lpxq. Taking into account (34) and that for x P A, the control is
the laissez-faire policy all the time, lpxq is the smallest solution to the following
equation in l,

0 “ x2 `
α

β
ln

ˆ

l

x1

˙

´ l ` x1

or equivalently,

l ´
α

β
ln plq “ x2 ´

α

β
ln px1q ` x1.

Except in the non-relevant case where x2 “ 0 and x1 ě α{β, we have
lpxq ă α{β. It follows that

∇lpxq “
1

1´ α
βlpxq

ˆ

1´ α{pβx1q
1

˙T

.

Since U “ 0 on A, we deduce from (37) that

@ x P A, ∇Uapxq “
a

α

˜

ˆ

1
1

˙T

´
1

1´ α
βlpxq

ˆ

1´ α{pβx1q
1

˙T
¸

“
a

α
´

1´ α
βlpxq

¯

˜

1´ α
βlpxq ´ p1´ α{pβx1qq

1´ α
βlpxq ´ 1

¸T

“
a

β
´

1´ α
βlpxq

¯

˜

1
x1
´ 1

lpxq

´ 1
lpxq

¸T

.

33



Recall that lpxq ă α{β, so that ∇1Uapxq ă ∇2Uapxq. We deduce that for
x P A:

Hpx,∇Uapxqq
“ Hpx,∇Uapxqq ` ax2
“ mint1, p∇2Uapxq ´∇1Uapxqqx1x2uβ ´ α∇2Uapxqx2 ` ax2

“ min

$

&

%

1,

¨

˝

´a{x1

β
´

1´ α
βlpxq

¯

˛

‚x1x2

,

.

-

β ´ α

¨

˝´
a{lpxq

β
´

1´ α
βlpxq

¯

˛

‚x2 ` ax2

“ min

"

1,
´ax2lpxq

βlpxq ´ α

*

β `
aαx2

βlpxq ´ α
` ax2

“ min

"

1,
ax2lpxq

α´ βlpxq

*

β ´
aβx2lpxq

α´ βlpxq
.

We are led to consider two cases.
(i) If ax2lpxq

α´βlpxq ď 1 (for a given x P A with x2 ą 0, this will be true for a ą 0

small enough), then

Hpx,∇Uapxqq “
ax2lpxqβ

α´ βlpxq
´
ax2lpxqβ

α´ βlpxq
“ 0

so the Hamilton-Jacobi equation is satisfied.
(ii) If ax2lpxq

α´βlpxq ą 1 (for a given x P A with x2 ą 0, this will be true for a ą 0

large enough), then

Hpx,∇Uapxqq “ β ´
aβx2lpxq

α´ βlpxq
ă β ´ β “ 0

and the Hamilton-Jacobi equation is not satisfied.
The following result shows that the former case can be satisfied uniformly

in x P A. Recall (see the paragraph preceding Theorem 2) that ρ is the unique
solution in p0, 1q of the equation ρ2 ` ρ ` ln p1´ ρq “ 0 and that γ0 “ ρ2α{β.
In addition, define λ0 B p1´ ρqα{β.

Proposition 3

sup
xPA

x2lpxq

α´ βlpxq
“

# γλ
α´βλ if γ ď γ0

γ0λ0

α´βλ0
if γ ą γ0.

Proof. Let

F pxq B
x2lpxq

α´ βlpxq
@ x P A.

Consider x P A. If x2 “ 0, then F pxq “ 0, so we are only interested in the
case x2 ą 0 and then lpxq ă α{β. For given l P p0, α{βq, let

Aplq B tx P A : lpxq “ lu
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There are three alternatives for this set:
(i) For l P p0, λq, Aplq is a curve going from pl, 0q to a point px1plq, γq, where

x1plq P p0, α{βq, see Figure 4 (recall that λ was defined as the smallest solution
to the equation (24), the largest one is rλ in the following figures).

Figure 4: When l P p0, λq, the set Aplq is the dotted line.

(ii) For l “ λ, Aplq is the union of the whole set DzA with the curve going
from the point pλ, 0q to pα{β, γq, see Figure 5.

Figure 5: When l “ λ the set Aplq is the bold line and the shaded area.

(iii) For l P pλ, α{βq, Aplq is the curve going from the point pl, 0q to prl, 0q
passing through pα{β, χplqq, see Figure 6.

For l ď λ, the highest second coordinate x2 for the elements of Aplq is γ. It
follows that

sup

#

F pxq : x P
ď

0ălďλ

Aplq

+

“ sup

"

γl

α´ βl
: l P p0, λs

*

“
γλ

α´ βλ
. (38)

For l P pλ, α{βq, the highest second coordinate x2 for the elements of Aplq is
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Figure 6: When l P pλ, α{βq, the set Aplq is the dotted line.

χplq. Thus we have

sup

$

&

%

F pxq : x P
ď

lPpλ,α{βq

Aplq

,

.

-

“ sup

"

χplql

α´ βl
: l P rλ, α{βq

*

.

Note that l and χplq are related via (35) (with χpxq replaced by χplq), so
that

χplq “ l ´
α

β
´
α

β
ln

ˆ

βl

α

˙

.

Using this expression and introducing the variable r B 1´ β
α l, which belongs

to p0, 1´ β
αλs, we get

β2

α

χplql

α´ βl
“ fprq B pr ´ 1q

ˆ

1`
1

r
lnp1´ rq

˙

and thus

sup

$

&

%

F pxq : x P
ď

lPpλ,α{βs

Aplq

,

.

-

“
α

β2
suptfprq : r P p0, 1´ βλ{αsu.

We compute that for any r P p0, 1q, f 1prq “ gprq
r2 , with gprq B r2`r`lnp1´rq.

Since

g1prq “
rp1´ 2rq

1´ r
@ r P p0, 1q

g is increasing on p0, 1{2q and decreasing on p1{2, 1q. Since gp0q “ 0 and
limrÑ1´ gprq “ ´8, there exists a unique ρ P p0, 1q such that gpρq “ 0, g
being positive and negative respectively on p0, ρq and pρ, 1q.
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It follows that

suptfprq : r P r0, 1´ βλ{αsu “ f pmintρ, 1´ βλ{αuq .

Taking into account that χpλq “ γ, we get that

α

β2
f p1´ βλ{αq “

γλ

α´ βλ

and consequently

sup

$

&

%

F pxq : x P
ď

lPpλ,α{βq

Aplq

,

.

-

“

#

γλ
α´βλ if 1´ βλ{α ď ρ
α
β2 fpρq if 1´ βλ{α ą ρ.

(39)

Considering the constants λ0 and γ0 introduced in the proposition,one may
write

α

β2
fpρq “

γ0λ0
α´ βλ0

and the condition 1 ´ βλ{α ď ρ is equivalent to λ ě λ0 or γ ď γ0. It follows
that (39) can be written

sup

$

&

%

F pxq : x P
ď

lPpλ,α{βq

Aplq

,

.

-

“

# γλ
α´βλ if γ ď γ0

γ0λ0

α´βλ0
if γ ą γ0

and comparing with (38), we conclude the desired result.
�

Remark 4 In Proposition 3, the alternative γ ą γ0 is only possible if the point
pα{β, γ0q belongs to the interior of the simplex, i.e. if α{β ` γ0 ă 1. This
condition is equivalent to

α

β
´
α

β
pρ` lnp1´ ρqq ă 1

or, recalling the definition of ρ,

α

β
p1` ρ2q ă 1

which is satisfied for α{β ă 1{p1` ρ2q.

Define a0 ą 0 as in (25). It follows from the previous considerations that for
a P r0, a0s, Ua satisfies the Hamilton-Jacobi on D. More precisely, it appears
that filling the box is an optimal policy if and only if a P r0, a0s. This ends the
proof of Theorem 2.
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Proof of Corollary 2
Recall that λ is solution of

λ´
α

β
ln pλq “

α

β
ln

ˆ

β

α

˙

`
α

β
` γ.

Differentiating with respect to γ, we get
ˆ

1´
α

βλ

˙

dλ

dγ
“ 1

from which it follows that λ is decreasing with respect to γ (this monotonicity
is obvious on a picture of the phase space), since λ ă α{β. Moreover,

da0
dγ

“
λ

α´ βλ
` γ

d

dγ

λ

α´ βλ

“
λ

α´ βλ
` γ

α

pα´ βλq2
dλ

dγ

“
λ

α´ βλ
` γ

α

pα´ βλq2
1

1´ α
βλ

“
λ

α´ βλ
´ γ

αβλ

pα´ βλq3

“
λ

pα´ βλq3
`

pα´ βλq2 ´ γαβ
˘

.

Since λ
pα´βλq3 is positive for λ P p0, α{βq, the sign of da0dγ is that of

fpλq B pα´ βλq2 ´ γαβ

“ pα´ βλq2 ´ αβ

ˆ

λ´
α

β
ln pλq ´

α

β
ln

ˆ

β

α

˙

´
β

α

˙

“ 2α2 ´ 3αβλ` β2λ2 ` α2 ln

ˆ

βλ

α

˙

.

Thus for λ P p0, α{βq,

f 1pλq “ ´3αβ ` 2β2λ`
α2

λ

“
2β2λ2 ´ 3αβλ` α2

λ
.

The two roots of the numerator are α{p2βq and α{β, so that f is increasing on
p0, α{p2βqq and decreasing on pα{p2βq, α{βq. We compute that limλÑ0`

“ ´8

and fpα{βq “ 0, so there exists a unique rl P p0, α{βq such that fprlq “ 0.
Comparing with the equation satisfied by ρ, we get rl “ λ0. It follows that f is
negative on p0, λ0q, that is, a0 is decreasing on p0, λ0q.

�
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