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CAPACITY CONSTRAINED ENTROPIC OPTIMAL TRANSPORT, SINKHORN
SATURATED DOMAIN OUT-SUMMATION AND VANISHING TEMPERATURE

JEAN-DAVID BENAMOU AND MÉLANIE MARTINET

ABSTRACT. We propose a new method to reduce the computational cost of the Entropic Optimal Trans-
port in the vanishing temperature (ε) limit. As in [Schmitzer, 2016], the method relies on a Sinkhorn
continuation “ε-scaling” approach; but instead of truncating out the small values of the Kernel, we
rely on the exact “out-summation” of saturated domains for a modified constrained Entropic Optimal
problem. The constraint depends on an additional parameter λ. In pratice λ = ε also vanishes and the
constraint disappear. Using [Berman, 2017], the convergence of the (ε, λ) continuation method based
on this modified problem is established. We then show that the saturated domain can be over esti-
mated from the previous larger (ε, λ). On the saturated zone the solution is constant and known and
the domain can be “out-summed” (removed) from Sinkhorn algorithm. The computational and cost
and memory foot print can be estimated. The complexity decreases with the dimension and should be
close to linear for dimension 3. We also give preliminary 1-D numerical experiments.
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1. INTRODUCTION

1.1. Optimal Transportation (OT). Solving numerically the OT problem is important in many
fields of applied mathematics. Without further ado we refer the interested reader to the recent
books [Santambrogio, 2015] [Peyré and Cuturi, 2018] [Galichon, 2016].
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In its Kantorovich primal and dual form (see [Villani, 2008]) :

Theorem 1 (Kantorovich duality). Given two compact manifold X and Y endowed with a continuous,
bounded from below cost function c : X × Y → R and two borel probability measures (µ, ν) ∈ P(X)×
P(Y). Then, the Kantorovich problem in primal and dual forms (1.1) has solutions.

(1.1) OT(µ, ν) := min
γ∈Π(µ,ν)

〈c, γ〉X×Y = max
f ,g∈C
〈 f , µ〉X + 〈g, ν〉Y

with respectively primal :

Π(µ, ν) := {γ ∈ P(X×Y), 〈1X , γ〉Y = ν, 〈1Y, γ〉X = µ},
and dual :

(1.2) C = {( f , g) ∈ C(X)× C(Y), f ⊕ g ≤ c},
constraints sets.

The notation 〈 f , α〉Ω stands for the duality product
∫

Ω f dα between bounded continuous func-
tions f ∈ C(Ω) and probability measures α ∈ P(Ω), { f ⊕ g}(x, y) = f (x) + g(y) is the direct sum
and µ⊗ ν ∈ P(X×Y) the tensor product. Finally 1Ω is the characteristic function, i.e. a constant 1
on Ω.

Complementary slackness ensures that γ?, the optimal transport plan, has support where the
constraint on the optimal dual potentials saturates, i.e. on {(x, y) ∈ X×Y, f ?(x)+ g?(y) = c(x, y)}
that is on the set {(x, y?x), x ∈ X} where

(1.3) y?x = arg inf
y∈Y

c(x, y)− g?(y)

The solution of (1.3) depends on the choice and regularity of c; the L2 cost c = 1
2 ‖x − y‖2 and

more generally c = h(x− y), h convex, have been intensively studied since [Brenier, 1991]. In those
case (see [Santambrogio, 2015] for a comprehensive mathematical presentation), x 7→ y?x is a map
and γ? is concentrated on its graph denoted Γ? ∈ X×Y.

This paper relies on the convergence result established in [Berman, 2017] (see theorem 4) and will
adress the following setting : we will work on the d-dimensionnal torus X = Y = Td := Rd/Zd

endowed with the usual periodic distance

(1.4) c = inf
k∈Zd

1
2
‖x + k− y‖2.

We will keep the generic notations X, Y and c. The probability measures µ and ν have positive
and C2,α continuous densities with respect to the Lebesgue measure on X. We will also need the
following result (adapted to our neeeds and notations) on the optimal transport map :

Lemma 2 ( Lemma 2.3 and 2.4 [Berman, 2017] ). Assume f is C2-smooth and stricly quasi-convex. Then
for any fixed x ∈ X, the unique infimum in (1.3) is attained at y?x = x −∇ f (x). The map x 7→ y?x is a
C1 diffeomorphism of X (and the inverse can be computed with g using the symmetric map). Moreover, the
function x 7→ c(x, y) is smooth on some neighborhood of y?x in X and its Hessian is equal to the identity
there.

Remark 1 (Regularity). The hypothesis on c and (µ, ν) are sufficient to get the C2-smooth and stricly
quasi-convex hypothesis on g.

1.2. Entropic Optimal Transport (EOT). The Kantorovich formulation (1.1) is a linear program. It
can be solved numerically using standard LP solvers. The main drawback of this method is it’s high
dimensionality, a discretization of the space X with N points gives a linear problem with N × N
unknowns and 2 N constraints. The theoretical LP solvers complexity is cubic in the number of
unknowns is therefore out of reach for reasonable discretizations (typically N > 100).
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A review of the different methods which can be applied to this OT problem and its many gen-
eralization can be found in the recent book [Peyré and Cuturi, 2018]. Amongst them, a popular
alternative is based on a strict convexification of the OT problem based on “Entropic Regulariza-
tion”. It has been introduced for OT computations in [Cuturi, 2013] but can be traced back to the
Schroedinger problem (see [Léonard, 2013]).

The “entropic regularization” of the Kantorovich problem (1) is based on the following Kull-Back
Leibler divergence or “relative entropy” (KL) penalization :

(1.5)
OTε(µ, ν) := minγε∈Π(µ,ν)〈c, γε〉X×Y + ε KL(γε | µ⊗ ν) =

max fε ,gε
〈 f , µ〉X + 〈gε, ν〉Y − ε 〈exp( 1

ε ( fε ⊕ gε))� Kε − 1, µ⊗ ν〉X×Y

where � is the element-wise multiplication and ε > 0 a small “temperature” parameter,

KL(γ | µ⊗ ν) :=
∫

X×Y
log(

dγ

dµ⊗ dν
) dγ if γ is absolutely continuous w.r.t to µ⊗ ν and +∞ else.

and the kernel

(1.6) Kε := exp(−1
ε

c)

depends explicitly on the cost c.

The dual problem is unconstrained and the primal-dual optimality conditions given by

(1.7) γ?
ε = exp(

1
ε
( f ?ε ⊕ g?ε ))� Kε � µ⊗ ν,

The optimal entropic plan γ?
ε is therefore a diagonal scaling by the Kantorovich potentials of Kε It

is diffuse, or not concentrated on a map.

1.3. Sinkhorn algorithm. Numerical solutions are produced under a space discretization : we set
XN = {xi}i=1..N , YN = {yj}j=1..N , cN = {c(xi, yj)}i,j=1..N and

(1.8) µN =
N

∑
i=1

µ(xi)

∑j µ(xj)
δxi , νN =

N

∑
j=1

ν(yj)

∑j ν(yj)
δyj

Replacing (X, Y, c , µ, ν) by (XN , YN , cN , µN , νN) provides a natural discretization of of the OT
problem. With our notation the dual optimal transport problem takes the same form :
(1.9)

OTε,N(µN , νN) := max
fε ,gε

J( fε, gε) = 〈 fε, µN〉XN + 〈gε, νN〉YN − ε 〈exp(
1
ε
( fε⊕ gε))�Kε− 1, µN⊗ νN〉XN×YN .

where by abuse of notation, we keep ( fε, gε) for discrete vectors in RN and Kε := exp(− 1
ε cN) ∈

RN×N
+ . As in (1.7), the solution of the discrete primal problem is the discrete probability measure

on XN ×YN :

(1.10) γ?
ε = exp(

1
ε
( f ?ε ⊕ g?ε ))� Kε � µN ⊗ νN .

We solve (1.9) with Sinkhorn iterative algorithm. It can be interpreted as a block coordinate ( fε

and gε) maximization. Initialize with g0
ε = 0Y and then iterate (in m) :

(1.11)

 f m+1
ε = arg max fε

J( fε, gm
ε )

gm+1
ε = arg maxgε J( f m+1

ε , gε),

giving
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(1.12)

 f m+1
ε = −ε log(〈Kε · exp( 1

ε (gm
ε )), νN〉YN )

gm+1
ε = −ε log(〈K>ε · exp( 1

ε ( f m+1
ε )), µN〉XN )

where · is the matrix vector multiplication and .> the transpose.

The transportation plan is approximated at each iteration as

(1.13) γm
ε = exp(

1
ε
( f m

ε ⊕ gm
ε ))� Kε � µN ⊗ νN .

The following lemma was pointed out to us by F. Collino (we do not know if it was previously
known). It will be useful in the implementation of the numerical method in section refs4.

Lemma 3 (Log Concavity of y 7→ exp( 1
ε ( f (x) + g(y)− c(x, y) [Collino, 2020] ). Assuming that : (i)

c(x, y) = 1/2‖y − x‖2 (non periodic case) and (ii) f and g ar solution of the Sinkhorn equation (1.12) ;
then y 7→ exp( 1

ε ( f (x) + g(y)− c(x, y) is log-concave.

Proof. The proof consists in replacing f using Sinkhorn equation and then checking that the Hessian
is negative definite. �

Remark 2. Note that this result holds for every Sinkhorn m iterate ( f m
ε , gm

ε ). In our case we will restrict to
a a period ]y?x − 1/2, y?x − 1/2[ where the periodic cost reduces to L2 to enforce the log-concavity.

Sinkhorn algorithm has been and still is popular : As can be seen in (1.12) the algorithm is cost
independant and easy to implement. A second reason is that the entropic regularization can be
used to smooth out undesirable discretization scale effects on the transport. For many applica-
tions, for example in computer graphics or maching learning, working with a finite and “not too
small” ε is fine. Conversely, and this will be the case in this paper, using Sinkhorn to approximate
the solution of (1.1), therefore in the ε→ 0 limit, remains a numerical challenge.

The convergence as ε → 0 of OTε(µ, ν) toward OT(µ, ν) is well understood in the continuous
setting [Léonard, 2013] as well as the in the discrete setting when N is fixed and independent of ε
[Cominetti and Martin, 1994].

In practice however, letting ε → 0 produces serious numerical difficulties. First, even though
Sinkhorn iterative algorithm linearly converges, the number of iterations to do so grows at best
like O(1/ε). Secondly, even if willing to pay the number of iteration price, the numerical stability
depends on the following constraints :

• Recalling the matrix Kε := exp(− 1
ε cN) appearing in (1.13) and denoting

(1.14) τ = supyc(x?y , y),

the maximum transport distance we are trying to calculate, we observe that exp(− 1
ε τ)

needs to remain positive to allow for the mass to travel from x?y to y. In order to do so
it exponentially reaches small values and even 0 numerically when ε → 0. This leads to
computer underflows and overflows.
• The entropic discrete transport plan (1.13) resolves the (entropic approximation of the)

transport map on a scale h2/ε where h = diam(X)/N is the discretization scale. Because
of finite precision if h2/ε is too large, Kε is the identity matrix and no mass displacement
is possible. This will be emphasised in theorem 4 where N and ε need to be dependent
parameters.

A good review of existing hacks and methods to mitigate the two problems above can be found
in [Chizat et al., 2018] and [Schmitzer, 2016] and in particular two techniques called “ε-scaling” and
“kernel truncation” (see section 1.5). This work also adresses this problem using the theorem in the
next section.
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1.4. Berman Joint Convergence. To the best of our knowledge joint convergence in N and ε has
only be studied in [Berman, 2017], we reproduce here partially his results. First, a technical condi-
tion on the sequence of discretization (XN , YN , cN , µN νN) called “local density property” (Lemma
3.1 [Berman, 2017]) is necessary : For any given open set U intersecting the support X of µ (same
for Y and ν)

(1.15) lim inf
ε→0

ε log(µN(U)) = 0

On the flat torus (our setting) this condition is trivially satisfied by a uniform grid. Next, a canonical
continuous extension of the discrete potential is constructed by replacing cN(xi, yj) respectively by
c(x, yj), x ∈ X and c(xi, y), y ∈ X in the Sinkhorn equations. Omitting the iteration index :

(1.16) f [gε](x) = −ε log( ∑
j=1..N

exp(
1
ε
(gε(yj)− c(x, yj)))νN(yj)), ∀x ∈ X

and the symmetric formula for g[ fε](y), y ∈ Y.

Theorem 4 (Berman joint convergence - corollary 1.3 [Berman, 2017] ). We assume µ and ν are in
C2,α(X), (X = Y) for some α > 0, and that N and ε are dependent parameters : N = (1/ep)d where d is the
dimension of the problem. We further assume that the discretisation (XN , YN , , µN νN) satisfies the “density
property” above and (µN , νN)→ (µ, ν) ∈ P(X). Then there exists a positive constant A0 such that for any
A > A0 the folowing holds : Setting mε = [−A log(ε)/ε] the continuous interpolation provided by f [gkε

ε ],
built using the canonical extension (1.16) of the discrete Sinkhorn iterate at f mε

ε , satisfy the estimate

(1.17) sup
X
| f [gmε

ε ]− f ?| ≤ −C ε log(
1
ε
)

for some constant C (depending on A), where f ? is an optimal potential for (1.1).

Moreover, the discrete probability measures γmε
ε on XN × YN (defined in (1.13)) converge weakly to the

optimal transport plan γ? solution of (1.1) and satisfies the the following estimate

(1.18) γmε
ε ≤ Bε � µN ⊗ νN ,

where we define

(1.19) (x, y) 7→ Bε(x, y) :=
p
εp exp(− c(y, y?x)

ε p
)

where c is the periodic cost (1.4) and x 7→ y?x the OT map (see lemma 2).

Remark 3 (Modifications of [Berman, 2017] around (1.18) ). We use slightly different notations, in
particular the function Bε will be the cornerstone to the proof of convergence in this paper. The estimate
(1.18) is slightly sharper than (1.11) in [Berman, 2017] but that follows directly from the proof in section
4.1.1 therein. In particular, it holds in the limit :

(1.20) γ?
ε ≤ Bε � µN ⊗ νN

Remark 4 (Vertical distance). We will call y→ c(y, y?x) the “vertical distance”, I.e. for x fixed it measure
the travel cost to the y?x,. It will be useful to think of x as a parameter in (1.19).

Remark 5 (Domains and Cost ). Theorem 4 holds in particular for the torus and the L2 periodic cost.
It also holds on the sphere for the reflector cost [Wang, 2004]. The case of densities µ and ν with compact
support is not covered.

Remark 6 (Transportation plan convergence). The support of the entropic transportation plan γε (see
(1.7)), built trough the interpolation procedure in theorem (4), converges exponentially fast to the graph of
the non entropic OT map when ε → 0. It corresponds to the heuristic justification of ε-scaling given in
section 1.5.
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Remark 7 (Constants). The constants A and more importantly p in theorem 4 depend on the curvature of
The Brenier potential y 7→ ‖y‖2 − g and ultimately on the data (µ, ν). More precisely, they should involve
bounds on the Hessians of the densities of µ and ν and a strict positive lower bound on the densities.

Remark 8 (Reduction of the discretization constraint (section 5.4 [Berman, 2017]) ). If (µ, ν) are
C∞(X), then theorem 4 holds under the relaxed condition

(1.21) N ≥ Cδ

(
1√

ε

) d
1+δ

, δ ∈]0, 1/2].

The increase in the number of discretization slows significantly as ε decrease. The constant depends on δ. In
practice, we used

(1.22) N =

(
2√

ε

)d
.

1.5. ε-scaling and kernel truncation. Ignoring for now the space discretisation to simplify the idea.
We are given a decreasing sequence (ε l) such that liml→∞ ε l = 0, to solve at a sequence of OTε l (µ, ν)
problems (1.5) where Kε l is replaced by the “stabilised” kernel :

(1.23) K̃ε l := exp(
1
ε l
( ∑

i=0,l−1
( f̃ ?εi
⊕ g̃?εi

)− c))

where ( f̃ ?ε l
, g̃?ε l

) are the optimal potentials at at each l iteration. The initialisation is K̃0
ε0

= Kε0 , that
is standard Sinkhorn at ε = ε0, and then one computes corrections to the kantorovich potentials
solutions of the “standard” entropic problem at the next ε l level :

f ?ε l
= ∑

i=0,l
f̃ ?ε l

g?ε l
= ∑

i=0,l
g̃?ε l

Assuming ( f ?ε l
, g?ε l

) → ( f ?, g?), the solution of the standard Kantorovich problem (1.1), the stabi-
lized Kernel satisfies (see (1.3)) :

(1.24) lim
l→∞
{ f ?ε l
⊕ g?ε l

− c}(x, y) ≤ 0, ∀(x, y) and lim
l→∞
{ f ?ε l
⊕ g?ε l

− c}(x, y?x) = 0, ∀x.

This technique indeed stabilises the numerical algorithm as the maximum transport τ (see (1.14))
is replaced by the above quantity. The stabilised Kernel (1.23) approaches 1 on Γ? the support of
the optimal transportation plan, and decreases exponentially elsewhere when ε l → 0. For all x and
in the l-limit, the function y 7→ K̃ε l (x, y) is expected to behave as a Gaussian function centered at
y?x and standard deviation ε l . This result is made rigorous and quantitative in theorem 4.

Going back to the computable discrete problem, note that ε-scaling has a very strong impact on
the cost of the method. A glance at algorithm (1.12) shows that the number of operations for each
Sinkhorn iteration is of order O(N2) : the multiplication of the N × N matrix Kε with a N vector.
Because of finite precision and as already mentioned, the stabilised Kernels K̃ε l replacing Kε be-
come sparse. In addition one can expect that low values at iteration l of the ε-scaling can be used
to localise the relevant support of the next stabilised Kernel and therefore truncated out. Sparse
Kernels with O(N) non-zeros elements woull lead to a O(N) cost for one Sinkhorn iteration. This
strategy is pursued in [Schmitzer, 2016] under the name “kernel truncation” where convincing nu-
merical results and partial theoretical results are given. The original Kernel Kε also enjoys the same
sparsification but can only capture maps close to the identity.

The combination of ε-scaling and kernel truncation is therefore fundamental to let ε go to 0.

Note finally that a multilevel truncation algorithm applied directly on the linear programming
problem (that is for ε = 0) has been proposed in [Oberman and Ruan, 2015]].
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1.6. Our contribution and strategy. Our goal is to solve (1.9) for the smallest possible ε and also to
approach the each the optimal O(N) complexity.

We will introduce in section 2 a modification of the Entropic optimal problem which includes
a “minimum capacity constraint” γ ≥ λ µ⊗ ν where 1 ≥ λ > 0 is an additional parameter. The
constrained optimal plans will be generically denoted γε,λ. The idea behind this modification is
that the saturation domain, i.e. where γ?

ε,λ = λµ⊗ ν can be exactly “out-summed” in the Sinkhorn
algorithm.

We then consider in section 3 a continuation method in ε where λ = λε depends on ε and
limε→0 λε = 0. Using theorem 4 we show that it is possible (in infinite precision arithmetics) to
generate from γε,λε

a sequence of discrete solutions (remember N depends on ε) γ0
ε,λε

which sat-
isfies the convergence result of theorem 4 to γ? the continuous solution of problem 1.1. We then
show that the associated sequence (in ε) of non-saturated domains is monotone decreasing. One
can use the saturation property at ε to predict the saturation domain for ε′ < ε for a carefully chosen
ε dependence of λε. It will also provides a theoretical estimate of the complexity gain obtained by
their “out-summation” of the Sinkhorn Algorithm.

Section 4 describe the finite arithmetic precision algorithm we have implemented and presents
1-D numerical results.

The conclusion gives a preliminary assessment of the method, its potential and limitations.

2. ADDING THE MINIMUM CAPACITY CONSTRAINT

2.1. The minimum capacity constrained Entropic OT problem. From this point on, we will con-
sider only OT discrete problems and will sometimes omit N in the subscript/superscript notations
in order to keep the formulae readable. Please remember that N = (1/ε)d or N = C(1/

√
ε)d in the

smoother case (remark 1.22).

We add a minimum capacity constraint to problem (1.9). More precisely and for 1 ≥ λ ≥ 0 we
consider :

(2.1) OTε,λ(µN , νN) := min
γε,λ∈Πλ(µN ,νN)

〈c, γε,λ〉XN×YN + ε KL(γε,λ | µN ⊗ νN)

where

Πλ(µ, ν) := {γ ∈ P(XN ×YN), 〈1XN , γ〉XN = νN 〈1XN , γ〉YN = µN and γ ≥ λ µN ⊗ νN}
Computing the Fenchel-Rockaffellar dual of (2.1) is a standard duality exercise (a simple extension
of the capacity constraint on the marginals established in [Chizat et al., 2018]). Note in particular
that µN ⊗ νN ∈ Πλ(µN , νN) 6= ∅ as usual.

(2.2)

max
fε,λ ,gε,λ ,hε,λ≥0

〈 fε,λ, µN〉XN + 〈gε,λ, νN〉YN +λ 〈hε,λ, µN⊗ νN〉XN×YN − ε 〈exp(
1
ε
(( fε,λ⊕ gε,λ)+ hε,λ− c))− 1, µ⊗ ν〉XN×YN

Where the positive function (x, y) 7→ hε,λ(x, y) is the Lagrange multiplier of the new saturation
constraint γ ≥ λ µN ⊗ νN . The primal-dual optimality condition is given by

(2.3) γ?
ε,λ = exp(

1
ε
(( f ?ε,λ ⊕ g?ε,λ) + h?ε,λ − cN))� µN ⊗ νN .

Still following the general framework in [Chizat et al., 2018], i.e. Sinkhorn algorithm corre-
sponds to alternate maximizations on the dual potentials ( fε,λ, gε,λ, hε,λ) we obtain the folowing
modification on the iterates in (1.12) :
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(2.4)


f m+1
ε,λ = −ε log(〈exp( 1

ε (gm
ε,λ + hm

ε,λ − cN)), νN〉YN )

gm+1
ε,λ = −ε log(〈exp( 1

ε ( f m+1
ε,λ + hm

ε,λ − cN)), µN〉XN )

exp( 1
ε hm+1

ε,λ ) = max{1, λ
exp( 1

ε ( f m+1
ε,λ ⊕gm+1

ε,λ −cN))
}

The last equation above is a point-wise maximum. The convergence proof of the above iterate to
a stationnary point ( f ?ε,λ, g?ε,λ, h?ε,λ) can be easily adapted from to theorem 4.1 in [Chizat et al., 2018]
and

(2.5) γm
ε,λ = exp(

1
ε
( f m

ε,λ ⊕ gm
ε,λ) + hm

ε,λ − cN)� µN ⊗ νN .

converges in P(X×Y) to (2.3).

2.2. Sinkhorn saturated domain “out-summation”. For the sake of clarity, we may drop in this
section the dependence on the Sinkhorn iteration index m. The following definitions will be handy
(also in order to construct and analyze our method below).

Definition 1 (Super Level sets). The λ super level set of y→ φ(z) is L+
λ (φ) = {z, φ(z) > λ}.

Definition 2 (non-satured transportation plan ). We will call “non-satured transportation plan” the
probability in P(XN ×YN) denoted

(2.6) γus
ε,λ := exp(

1
ε
( fε,λ ⊕ gε,λ)− cN)� µN ⊗ νN .

It may (and will) also depend (as mentionned above) on m the Sinkhorn iteration index. We will
continue to use (x, y) ∈ X × Y as generic notations for the product space (i.e γ0

ε,λ(x, y) but also
fε,λ(x) and gε,λ(y)). See figure 1 for a comparison of γ0

ε,λ and γε,λ.

Definition 3 (Vertical non-satured domain). We will denote “vertical non-satured domain” , ∀x :

(2.7) Sx
ε,λ := L+

λ (y 7→ exp(
1
ε
( fε,λ ⊕ gε,λ)− cN))

By construction hε,λ = 0 on the non-satured domain (see figure 1). The “horizontal non-satured
domain” Sy

ε,λ may be defined just interverting x and y. Horizontal and vertical satured domain of
course coincide :

(2.8) Sε,λ := {(x, Sx
ε,λ), x ∈ XN} = {(S

y
ε,λ, y), y ∈ YN}

where Sε,λ is the full saturated domain in XN × XN . These domains are to be understood either for
converged solutions or for a fixed final iteration m.

Using the two definition above and the third equation in (2.4) direct computations give the fol-
lowing trivial properties

(2.9) ∀x, γε,λ(x, y ∈ Sx
ε,λ) = λ, ∀y, γε,λ(x ∈ Sy

ε,λ, y) = λ.

Section 3 introduces a continuation method in (ε, λ) to compute domains containing exactly (Sx,y
ε,λ).

Assuming for now that the saturation domain is given , we are now ready to “out-sum” the satured
domain from Sinkhorn algorithm (2.4) :

• The third equation is trivially simplified as :

∀x, exp(
1
ε

hε,λ(x, y ∈ Sx
ε,λ)) = 1.
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• Using (2.9) the first two equations (m index omitted again), we sum out the constant λ

values on respectively XN \ Sx
ε,λ and YN \ Sy

ε,λ :

(2.10)


∀x, f m+1

ε,λ (x) = ε (log(1− λ〈1, νN〉YN\Sx
ε,λ
)− log(〈exp( 1

ε (gm
ε,λ + hm

ε,λ − cN)), νN〉Sx
ε,λ
))

∀y, gm+1
ε,λ (y) = ε (log(1− λ〈1, µN〉XN\S

y
ε,λ
)− log(〈exp( 1

ε ( f m+1
ε,λ + hm

ε,λ − cN)), µN〉Sy
ε,λ
))

By construction hm
ε,λ ≡ 0 on Sx

ε,λ and Sy
ε,λ. We do not use

Remark 9 ( Reduction in complexity). The first terms in the above simplification are constant. The
complexity of each Sinkhorn iteration now is O(|Sε,λ|) (See (2.8)).

3. A CONTINUATION METHOD IN (ε, λ)

The parameters N and ε are already dependent either trough N = (1/ε)d or N = C(1/
√

ε)d. In
order to avoid overloading the notations, this dependence will not be explicitely used in the text.
We will further assume here that λ = λε depends on ε (hence also on N) and

(3.1) lim
ε→0

λε = 0 or equivalently lim
N→+∞

λε = 0.

3.1. Construction of the sequence of plans. We first define the non-saturated transport plans (2.6)
marginals at the limit, that is when (2.4) has converged :

(3.2) µ0
N = 〈1, γus

ε,λ〉YN ν0
N = 〈1, γus

ε,λ〉XN

By construction (see 2.4) exp( 1
ε hε,λ) ≥ 1, we thereof have the following estimates :

(3.3) µN − λ < µ0
N < µN νN − λ < ν0

N < νN

The marginals (µ0
N , ν0

N) are probability measures in the limit only. They have the same support as
(µN , νN). We immediatly get from (3.3) :

Lemma 5. Assuming that (XN , YN , µN , νN) satisfies the “density property” (1.15) and (µN , νN) →
(µ, ν) ∈ P(X), then so does (XN , YN , µ0

N ν0
N).

3.2. Convergence to OT(µ, ν). We can now define our converging sequence of plans. We denote
( f 0,m

ε , g0,m
ε ) the sequence of potentials associated to the Sinkhorn resolution (1.12) associated with

the resolution of OTε(µ0
N , ν0

N). They will be useful for the analysis but are never computed. The
associated transport plans are given by (see (1.13) :

(3.4) γ0,m
ε = exp(

1
ε
( f 0,m

ε ⊕ g0,m
ε − cN))� µ0

N ⊗ ν0
N .

Using theorem 4 and lemma 5 directly gives (see remark 4.1 in [Berman, 2017] about un-normalized
discrete measure) :

Lemma 6. Setting mε = [−A log(ε)/ε] as in theorem 4, the discrete probability measures γ0,m
ε converges

weakly to the optimal transport plan γ? solution of (1.1) and satisfies the the following estimate

(3.5) γ0,mε
ε ≤ Bε � µ0

N ⊗ ν0
N .

As already mentionned we will never solve OTε(µ0
N , ν0

N) but instead rely on the ( f m
ε,λ, gm

ε,λ), the it-
erates of the (capacity constrained) Sinkhorn algorithm (2.4) with fixed parameters (ε, λ) (for which
Sinkhorm “out-summing” will be possible). They are not the same as ( f 0,m

ε,λ , g0,m
ε,λ ), but will be used

as a proxy. We will need, in particular the following lemma :

Lemma 7 (Convergence of the unsaturated plan). We assume (as in theorem 4) that (µ, ν) are bounded
below by a strict positive number. Choosing λε = ε1+β, β > 0, there is a constant Cµ,ν depending only on
(µ, ν) such that on the lattice XN ×YN :

(3.6) |{ f m
ε,λε
⊕ gm

ε,λε
} − { f 0,m

ε ⊕ g0,m}| ≤ m ε λ Cµ,ν, ∀m
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which directly gives :
(3.7)

exp(
1
ε
( f mε

ε,λε
⊕ gmε

ε,λε
− cN) ≤ exp(−Cµ,ν εβ log(ε)) exp(

1
ε
( f 0,mε

ε,λε
⊕ g0,mε

ε,λε
− cN) on the lattice XN ×YN

(where we absorbed the constant A in Cµ,ν).

Finally γus,mε
ε,λε

(see (2.6)) converges weakly to the optimal transport plan γ? when ε→ 0.

Proof. The proof of the first statement is done by estimating the discrepancy of | f m
ε,λ− f 0,m

ε | (also for
the g(s)) along the Sinkhorn iterations processes (1.12) and (2.4). To simplify the presentation we
will drop the (ε, λε) notations.

First we recall that the “LogSumExp operator” :

LSEν(g) := −ε log(〈exp(
1
ε
(g− c)), ν〉Y)

is decreasing in both ν and g but also 1-Lipschitz (see [Vialard, 2019] for a detailed presentation of
this result). We therefore have on one hand and (∀ x) from (2.4) and (3.3) :

(3.8) f m+1 = LSEνN (gm + hm) ≤ LSEν0
N
(gm).

Using definition 3 for the satured/non-satured domain, we remark that on Sx
ε,λ, hm = 0 and on the

satured domain YN \ Sx
ε,λ :

λ = exp(
1
ε
( f m ⊕ gm + hm − cN)) ≥ exp(

1
ε
( f m ⊕ gm − cN)) ≥ 0

we therefore have

0 ≤ exp(
1
ε
( f m ⊕ gm + hm − cN))− exp(

1
ε
( f m ⊕ gm − cN)) ≤ λ

Using the above and νN ≤ ν0
N + λ in the sum we obtain.

(3.9)
〈exp( 1

ε (gm + hm − cN)), νN〉YN ≤ 〈exp( 1
ε (gm − cN)), ν0

N + λ〉YN + λ exp(− 1
ε f m) 〈1, ν0

N + λ〉YN

≤ 〈exp( 1
ε (gm − cN)), ν0

N〉YN + λ R + λ2 exp(− 1
ε f m).

Where the remainded R is given by

R = 〈exp(
1
ε
(gm − cN)), 1〉YN + exp(−1

ε
f m) 〈1, ν0

N〉YN

In order to bound above R we will use the following :

• The mass of νN
0 (i.e. 〈1, ν0

N〉YN ) is bounded over by 1.

• The definition of µN
0 (3.2) is 〈exp( 1

ε ( f m + gm − cN)), µN × νN〉YN = µ0
N , therefore

exp(− 1
ε f m) =

µN

µ0
N
〈exp( 1

ε (gm − cN)), νN〉YN

≤ µN

µ0
N
〈exp( 1

ε (gm − cN)), ν0
N + λ〉YN

≤ µN
µN − λ

(
〈exp( 1

ε (gm − cN)), ν0
N〉YN + λ 〈exp( 1

ε (gm − cN)), 1〉YN

)
• And finally, we will use the bound

〈exp(
1
ε
(gm− cN)), 1〉YN ≤

1
minYN ν0

N
〈exp(

1
ε
(gm− cN)), ν0

N〉YN ≤
1

minYN (νN − λ)
〈exp(

1
ε
(gm− cN)), ν0

N〉YN .
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We assume that (µ, ν) are bounded below by a strict positive number. Then, for small enough λ,
there is a constant Cµ,ν depending only on µ and ν such that plugging the bullets above in (3.9) we
get

(3.10) 〈exp(
1
ε
(gm + hm − cN)), νN〉YN ≤ (1 + λ Cµ,ν) 〈exp(

1
ε
(gm − cN)), ν0

N〉YN

Applying the −ε log(.) function :

(3.11) f m+1 ≥ LSEν0
N
(gm)− ε log(1 + λ Cµ,ν)) ≥ LSEν0

N
(gm)− ε λ Cµ,ν

again for small λ and a constant depending only on (µ, ν).

Combining (3.11) and (3.8) we have :

(3.12) | f m+1 − f 0,m+1| ≤ |LSEν0
N
(gm)− LSEν0

N
(g0,m)|+ ε λ Cµ,ν

The symmetric in ( f , g) estimate holds for |gm+1− g0,m+1|, hence thanks to the 1-Lipschitz property
of g 7→ LSEν(g) we obtain the estimate (3.6) (both sequences have same intialization) ∀m

|{ f m
ε,λε
⊕ gm

ε,λε
} − { f 0,m

ε ⊕ g0,m} ≤ m ε λ Cµ,ν.

Thanks to (3.3) and (3.7) we know that γus,mε
ε,λε

weakly converges to a transport plan concentrated
on the support of the graph of the optimal monotone map with marginals (µ, ν), i.e. γ?.

�

Estimate (3.7) will allow us in the next section to approximate the saturation domain (2.7) and
perform the saturation domain “out-summing” (2.10).

Remark 10. The above estimate are probably not sharp, the Sinkhorn iterate are actually contractant in the
Hilbert or Oscillation norm. The function Bε converges exponentially fast to the support and the additional
coefficient, induced by using ( f m

ε,λ, gm
ε,λ) as a proxy for ( f 0,m

ε,λ , g0,m
ε,λ ) , can be absorbed in this rate. We used

β = 0 in the numerics.

Remark 11 (Link with Kernel truncation [Schmitzer, 2016]). A legitimate question is the usefulness
of the capacity constraints. The proof above seems to also work by setting to 0 the λ sub-levels sets of γ.
Combined with ε-scaling this is vey close to the Kernel truncation method and provides a rule to set the
truncation level as well as a convergence result.

3.3. Saturated domain localisation. We start by establishing a few properties and use of the “Berman”
function (1.19) :

Proposition 8 (Vertical monotonic properties of (1.19)). We fix the x ∈ XN coordinate and work on
one period of the vertical y-axis of the torus centered at y?x. We will use LSEε = ε1+β, β > 0 (as in
lemma 7). We define, see also figure 3, :

(3.13) Ax
ε,λε

:= LSE+
λε
(y 7→ exp(−Cµ,ν εβ log(ε))Bε,λε

(x, y)),

the λε super level set of y 7→ Bε,λε
(x, y).

(i) For a sufficiently small ε, Ax
ε,λε

= B(y?x, dBε,λε
) is the ball of center y?x and radius

dBε,λε
=

√
− p ε

(
log

εp+1+β

p
+ C εβ log ε

)
.

The second term under the square root can be aborbed in the constant p, even for β = 0, in
practice we will use

(3.14) dBε,λε
=

√
− p ε log

εp+1

p
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(ii) The estimates (3.5) and (3.7) gives

(3.15) Sx
ε,λε
⊂ LSE+

λε
(y 7→ exp(−Cµ,ν εβ log(ε)) exp(

1
ε
( f 0,mε

ε,λε
⊕ g0,mε

ε,λε
− cN)) ⊂ Ax

ε,λε
.

Please keep in mind that Sx
ε,λε

uses the mε iterate of Sinkhorn (2.4). Remark also that Sx
ε,λε

is
a discrete sets while Ax

ε,λε
and Sx

ε,λε

(iii) The actual computational domain will be defined and denoted by :

(3.16) Sx
ε,λε

:=
⋃

y∈Co(Sx
ε,λε

)

B(y, dBε,λε
)

where is the convex hull. of sets. Then Sx
ε,λε

is convex and Ax
ε,λε
⊂ Sx

ε,λε
.

(iv) Setting ε′ = α ε, α < 1 and assuming |x− x′| < ε1/2 we have, for small ε :

(3.17) Ax
ε′ ,λε′
⊂ Ax

ε,λε
.

(v) diam(Sx
ε,λε

) ≤ 3 dBε,λε
and |{x, Sx

ε,λε
}x∈XN | = O(log(N)d/2 N1/2+1/d) if N = (1/ε)d as in

theorem 4 or |{x, Sx
ε,λε
}x∈XN | = O(log(N)d/2 N1/d) if N = (1/

√
ε)d as in remark 8.

Proof. (i) For a small ε, Bε,λε
behaves as a Gaussian in the considered vertical period of the

torus. Definition (1.19) directly gives (i).
(iii) Thanks to Lemma 3 and for a small ε, the intermediate set in (3.15) is convex. The convex

hull of Sx
ε,λε

) is therefore also contained in Ax
ε,λε

and (iii) follows (see also remark 12).
(iv) Under the hypothesis of lemma 2, the OT map x 7→ y?x is C1, therefore |y?x′ − y?x| ≤ C ε1/2.

We need to check that

(3.18) dBε′ ,λε′
+ C ε1/2 ≤ dBε,λε

(remember that N depends on ε). Expending (3.18) and absorbing higher order terms in ε
into the constant C we find the necessary condition

ε(p+1)(1−α) ≤ exp C/α

which is satisfied for small ε as α < 1.
(v) The first assertion directly follows (ii). The complexity results assume that we are using

regular cartesian grid with the corresponding number of points.
�

We are now ready to formulate the lemma used to localize automatically the non-saturated do-
main as (ε, λε) decrease in order to “sum it out” in Sinkhorn for the next smaller (ε′, λ′ε′)

Lemma 9 (non-saturated domain localisation). We choose (ε, λε) and (ε′, λ′ε′) as in proposition 8 (iv).
We denote N and N′ the corresponding number of disscretization points. Then, for x ∈ XN and x′ ∈ X′N
such that |x− x′| < ε1/2, proposition 8 (ii) and (iv) directly gives :

(3.19) Sx′
ε′ ,λε′
⊂ Ax′

ε′ ,λε′
⊂ Ax

ε,λε
⊂ Sx

ε,λε
.

The saturated domain Sx
ε,λε

at (ε, λε) can be used to construct Sx
ε,λε

with (3.16) which is guaranteed

to contain Sx′
ε′ ,λε′

for the next smaller (ε′, λε′).

Remark 12 (Convexity of Sx
ε,λ). For small ε, we can assume that we are restricted to a period of the torus

and working with the usual Euclidean distance. The intermediate level set in (3.15) is convex thanks to
lemma (3). We do not know the log-concavity result extends to constrained Sinkhorn sequence ( f m

ε,λ, gm
ε,λ).

However Sx
ε,λ is exponentially close in ε to a convex set and its convex enveloppe is in any case contained in

Ax
ε,λε

.
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4. NUMERICS

4.1. The numerical procedure. The method will be a continuation method in (ε, λε) and N as it
also depends on ε. They will be chosen according to proposition 8 and remark 8. In the remaining
part of the paper we may sometimes drop the .? and .λ dependence in the notations.

Given the mε iterate ( f mε
ε , gmε

ε , hmε
ε ) of (2.2), We detail below how to compute the next solution

level at ε′ = ε α, α < 1 using the “out-summing” Sinkhorn algorithm (2.10). We will use the
same notations as in proposition 8. In particular xi ∈ XN , yj ∈ YN will be points on a regular
discretization grid and λ = λε = ε (i.e. β = 0 slightly abusing the hypothesis in proposition 8).

(Step A) ∀x ∈ XN , we compute Sx
ε : Thanks to lemma 3 and remark 2, we know that Sx

ε (which is
dominated by Ax

ε ) is convex in the period ]y?x− 1/2, y?x− 1/2[. It will be convenient to work
with :

(4.1) Pε = exp(
1
ε
( fε ⊕ gε)− cN).

For d = 1 (d > 1 is discussed in remark 16) one can therefore use the definition of Sx
ε :

(4.2) Sx
ε =] min

y∈]y?x−1/2,y?x−1/2[
{Pε(x, y) ≥ λε}, max

y∈]y?x−1/2,y?x−1/2[
{Pε(x, y) ≥ λε}[

In practice (4.2) cannot be implemented as the OT map x 7→ y?x is not known. Instead one
compute on an arbitrary period the (unique thanks to the log-concavity again) couple

{yjm} = {yj, Pε(x, yj) ≤ λε < Pε(x, yj+1)} {yjM} = {yj, Pε(x, yj) > λε ≥ Pε(x, yj+1)}

and sort them to determine if Sx
ε contains a periodic boundary or not.

(Step B) ∀x ∈ XN , we compute Sx
ε : using the definition (3.16) this simply is

(4.3) Sx
ε =]yjm − dBε,λ, yjM + dBε,λ[.

(Step C) “Out-Summation” at ε′ : ∀x′ ∈ X′N (the finer grid), we do not know Sx′
ε′ but thanks to lemma

9 we know it is contained in S
x[x′ ]
ε where

x[x′] ∈ XN is he nearest point to x′ on the coarser grid.

Indeed, the discretization step 1/N depends on ε and |x′ − x[x′]| < ε1/2.

By construction the saturated domain of the solution of OTε′ ,λ′(µ
′
N , ν′N) (2.2) is contained

in {x′, YN′ \ S
x[x′ ]
ε }, ∀x′. It is also contained in {XN′ \ S

y[y′ ]
ε , y′} ∀y′, obtained by switching

the x and y coordinates. We can now formulate the modified and implementable “out-
summed” Sinkhorn algorithm (2.10) :

ITERATE :
(4.4)

∀x′ ∈ XN′ , f m+1
ε′ (x′) = ε′ (log(1− λ〈1, νN′〉YN′\S

x[x′ ]
ε

)− log(〈exp( 1
ε′ (gm

ε′ + hm
ε′ − cN′)), νN′〉

S
x[x′ ]
ε

))

∀y′ ∈ YN′ , gm+1
ε′ (y′) = ε′ (log(1− λ〈1, µN′〉XN′\S

y[y′ ]
ε

)− log(〈exp( 1
ε′ ( f m+1

ε′ + hm
ε′ − cN)), µN〉

S
y[y′ ]
ε

))

∀x′ ∈ XN′ , {exp( 1
ε′ h

m+1
ε′ )}(x′, y′ ∈ S

x[x′ ]
ε ) = max

1,
λ

{exp( 1
ε′ ( f m+1

ε′ + gm+1
ε′ − cN)))}(x′, y′ ∈ S

x[x′ ]
ε )

 .
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UNTIL : We end the loop, in theory, when m = mε to comply with the hypothesis of lemma
7 which is the foundation of proposition 8 and lemma 9. In practice we found that the error
criterium :

(4.5)
ECε,λε

:= ‖〈1, γus,m
ε,λε
〉XN′
− µN′‖∞ + ‖〈1, γus,m

ε,λε
〉YN′
− νN′‖∞

= ‖µ0
N − µN′‖∞ + ‖ν0

N − νN′‖∞ < λ′ε

was also good and resulted in less iterations (see figures (5, 11, 17, 23)). Here γus,m
ε,λε

is con-
structed according to (2.6) from the mth iterate of (4.4). This condition ensures that it is a
solution of the EOT (1.9) with marginals satisfying (3.3).

(Step D) Set ε = ε′ and ε′ = ε α and the other parameters accordingly, go to (A).

Remark 13 (Computational complexity). Assuming we we will be repeating the Steps A → D a finite
number of times and based on the number on the number of Sinkhorn iterations mε = −A log(ε)/ε needed
at each ε step. We finally get, from 8 (v), a computational cost ofO(log(N)1+d/2 N1/2+2/d) if N = (1/ε)d

and O(log(N)1+d/2 N3/d) if N = (1/
√

ε)d; N is of course the largest discretization reached (for the
smaller ε).

Remark 14 (Stabilisation property of (4.4)). A nice side effect of the “out-summation” is to avoid over-
flows in the third equation of (4.4) : We remove (for the next ε′ level) the points such that exp( 1

ε ( fε + gε −
cN)) < λ, so at the next level (ε′, λ′) < (ε, λ) and for a “reasonable” decrease, it may be smaller but cannot
reach very small numbers.

Remark 15 (ε-scaling and kernel trunction ). The discussion on the unstability induced by finite precision
arithmetics in section 1.3 is still relevant. We still need to implement ε-scaling as explained in section 1.5.
Kernel truncation however is replaced by the exact λ “out-summation”.

Remark 16 (d > 1). As detailed in remark 13, the memory foot print and computational cost is (or is not far
from) linear in the N the number of points to discretize X. We only implemented this algorithm for d = 1 but
we do not foresee any difficulty for d > 1. The only delicate task would be the computation of Sx

ε (Step A),
but it is close to convex thanks to lemma 3 (see remark 12) and therefore can be approximated by a cartesian
box with the same ideas.

4.2. Numerical Results. All four presented test cases (all figures at the end of the paper) have been
computed with the same parameters. The procedure Steps A→ D is run 6 times with α = 0.2, the
decreasing sequence of ε is {0.1 αk}k=1..6. We always take λ = ε and N = (2/

√
ε)d. Regarding

theorem 4 parameters, we choose arbitrarily p = A = 1. Figure 3 shows a log plot of Bε (1.19), and
the Bε > λ level sets (see (3.9)) for this decreasing sequence of ε.

The numerical method was implemented in Matlab using sparse matrices to represent the sat-
urated domain. The code has not been optimized. The full computation for the 6 levels takes on
average a minute on a modern 1 GHz Intel Core i7, 16GB memory laptop.

• Figures (4, 10, 16, 22) show the marginals (µN , νN) for the successive ε/N discretization.
The last case does not satifies the C2 hypothesis.
• Figures (5, 11, 17, 23) show the Sinkhorn convergence curves for the successive ε/N dis-

cretization until (4.5) is satisfied. The O(N2) number of iterations is also log plotted in
figure 2.
• Figures (6, 12, 18, 24) show the computed transport plans γus

ε,λε
(see (2.6) or the successive

ε/N discretization. It converges to γ? the solution of the non entropic OT(µ, ν) problem
(1.1).
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• Figures (7, 13, 19, 25) show the computational domain {x, Sx
ε }, x ∈ XN (see (4.3) and there-

fore the sparsity pattern induced by the “out-summation” of the saturated domain, nz is
the number of kept (non zero) elements . Axis labels correspond to the cartesian grid dis-
cretization indices.
• Figures (8, 14, 20, 26) Show the saturation potential hε,λε

on {x, Sx
ε }. It is not computed and

set to 0 elsewhere but is in theory greater than 1 there. These figures show that the method
captures correctly the inclusions (3.19) in lemma 9. The 0 saturated zone Sx

ε′ ,λ′ [x
′] is inside

Sx
ε,λ for all x′.

• Figures (9, 15, 21, 27) show a log/log plot of |{x, Sx
ε }| versus N. Despite the (slightly) super-

linear complexity found in remark 13 we find a linear behavior.

5. CONCLUSION

The proposed method comes with theoretical and numerical guarantees. The p parameter in
theorem 4 has not however been estimated rigorously (we took p = 1). Likewise the Cδ parameter
in lemma 8 has been ignored. The comparison of the constrained/unconstrained Sinkhorn iterates
in lemma 7 introduces technical complications which can probably be avoided.

It is also unclear if the choice of parameters ε = λ and α = 0.2 are optimal. It gave good results
with our very crude 1D numerical implementation, even for non-smooth and non lower bounded
densitties (µ, ν). It heavily relies on Matlab sparse matrix and cell structures. It can certainly be
improved and optimized but already demonstrates that the method is robust and converges as
expected.

In dimension d = 1, the memory footprint is lower for N = (1/
√

ε)d (proposition 8) and the
number of operations is cubic (remark 13) instead ofO(N4) with no “out-summation”. For d > 1, a
large gain is expected in particular for N = (1/ε)d but that needs of course to be tested numerically.

Testing on higher performance computers would also make sense to check the stability of the
(ε, λ) continuation method for smaller values/larger discretizations. A numerical study using the
finer N = 1/ε discretization rule should also be undertaken.

We partially tested the method on the non-periodic l2 cost and it seems to work with a careful
treatment of the saturation at the boundaries. Based on [Berman, 2017], it seems reasonable to
conjecture that the method could be applied at least to costs in the form h(x− y), h convex.

AKNOWLEDGEMENTS

We want to thank Francis Collino, Robert Berman and François-Xavier Vialard for helpful dis-
cussions.

REFERENCES

[Berman, 2017] Berman, R. J. (2017). The sinkhorn algorithm, parabolic optimal transport and geometric monge-amp\ere
equations. arXiv preprint arXiv:1712.03082.

[Brenier, 1991] Brenier, Y. (1991). Polar factorization and monotone rearrangement of vector-valued functions. Communica-
tions on Pure and Applied Mathematics, 44(4):375–417.
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FIGURES

FIGURE 1. Vertical Slice of saturated versus unsaturated transport plans.
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FIGURE 2. Log/Log plot of the number of Sinhorn iterations to reach (4.5) ver-
sus N (which depends on ε = λ). Also represented is the theoretical number of
iterations mε in theorem 4 to get joint convergence.
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FIGURE 3. Log plot of Bε (see (1.19)) and Bε > λ level sets (see (3.9)), ε = λ
decrease as in the numerical tests.
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TEST 1
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FIGURE 4. Sequence (in ε/N) of (µN , νN) .
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FIGURE 5. Sinkhorn Convergence. Error defined by (4.5). For ε = 2.00e− 02, 4.5 is
satified after the first iteration.
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FIGURE 6. Transport Plan γus
ε,λε

(see (2.6)).
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FIGURE 7. Sparsity pattern {x, Sx
ε } (see (4.3), nz is the number of kept (non-zero)

elements. Axis show the grid indices.
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FIGURE 8. Saturation potential hε,λε
on {x, Sx

ε } (set to 0 elsewhere as it is not com-
puted but should be > 1) . Axis show the grid indices.
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FIGURE 9. Log/Log plot of |{x, Sx
ε }| versus N plus a linear fit.
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TEST 2
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FIGURE 10. Sequence (in ε/N) of (µN , νN) .
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FIGURE 11. Sinkhorn Convergence. Error defined by (4.5)
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FIGURE 12. Transport Plan γus
ε,λε

(see (2.6)).
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FIGURE 13. Sparsity pattern {x, Sx
ε } (see (4.3), nz is the number of kept (non-zero)

elements
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FIGURE 14. Saturation potential hε,λε
on {x, Sx

ε } (set to 0 elsewhere as it is not com-
puted but should be > 1) . Axis show the grid indices.
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FIGURE 15. Log/Log plot of |{x, Sx
ε }| versus N plus a linear fit.
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TEST 3
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FIGURE 16. Sequence (in ε/N) of (µN , νN) .
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FIGURE 17. Sinkhorn Convergence. Error defined by (4.5)
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FIGURE 18. Transport Plan γus
ε,λε

(see (2.6)).
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FIGURE 19. Sparsity pattern {x, Sx
ε } (see (4.3), nz is the number of kept (non-zero)

elements
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FIGURE 20. Saturation potential hε,λε
on {x, Sx

ε } (set to 0 elsewhere as it is not com-
puted but should be > 1) . Axis show the grid indices.
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FIGURE 21. Log/Log plot of |{x, Sx
ε }| versus N plus a linear fit.
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TEST 4
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FIGURE 22. Sequence (in ε/N) of (µN , νN) .
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FIGURE 23. Sinkhorn Convergence. Error defined by (4.5)
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FIGURE 24. Transport Plan γus
ε,λε

(see (2.6)).
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FIGURE 25. Sparsity pattern {x, Sx
ε } (see (4.3), nz is the number of kept (non-zero)

elements
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FIGURE 26. Saturation potential hε,λε
on {x, Sx

ε } (set to 0 elsewhere as it is not com-
puted but should be > 1) . Axis show the grid indices.
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FIGURE 27. Log/Log plot of |{x, Sx
ε }| versus N plus a linear fit.
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